
Ruby
CSC 372, Fall 2022

The University of Arizona
William H. Mitchell

whm@cs
CSC 372 Fall 2022, Ruby Slide 1

Introduction

CSC 372 Fall 2022, Ruby Slide 2

"A dynamic, open source programming language with a focus on
simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting
language".
• I don't like the term "scripting language"!
• I describe Ruby as a dynamically typed object-oriented language.

Ruby on Rails, a web application framework, has largely driven
Ruby's popularity.

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese
amateur language designer", in his own words.

What is Ruby?

CSC 372 Fall 2022, Ruby Slide 3

Here is a second-hand excerpt of a posting by Matz:
"Well, Ruby was born on February 24, 1993. I was talking with
my colleague about the possibility of an object-oriented
scripting language. I knew Perl (Perl4, not Perl5), but I didn't
like it really, because it had smell of toy language (it still has).
The object-oriented scripting language seemed very promising."

Another quote from Matz:
"I believe that the purpose of life is, at least in part, to be happy.
Based on this belief, Ruby is designed to make programming not
only easy but also fun. It allows you to concentrate on the
creative side of programming, with less stress. If you don’t
believe me, read this book [the "pickaxe" book] and try Ruby.
I’m sure you’ll find out for yourself."

Matz says...

CSC 372 Fall 2022, Ruby Slide 4

CSC 372 Fall 2022, Ruby Slide 5

Ruby by Observation

3+4
_.class
"x".<TAB><TAB>
("abc"*3_500).size.to_s
s = ('a'..'z').to_a.join
s[5,9]
s[5..9]
s[-3..]
"a test here".split.map {|s| s.size}
10[3]
s=`date; hostname`
s.gsub!("2","TWO"); print s

"call 555-1212" =~ /[0-9]+/
[$`, $&, $'] # just after above
"9-3".gsub(/\d/) {|d| d.to_i-1}
{1 => 2.0, :three => [!nil, 3] }
if 1 < 2 then 3 else 4 end
while line = gets; p line; end
print 3 unless 4 < 5
3.+(4)
Rational(1,3) * 300
1.i**2

Let's see what we can learn about Ruby by trying some expressions
using irb on lectura.

irb is the commonly used REPL for Ruby. Let's run it on lectura:
% irb
irb(main):001:0> 3 + 4
=> 7

irb's prompt changes if an expression is incomplete:
irb(main):002:0* "abc" +
irb(main):003:0*
irb(main):004:0*
irb(main):005:0> "xyz"
=> "abcxyz"

The slides won't show the result line (=> ...) when it is uninteresting.

Control-D terminates irb.

Use Control-C if you're stuck with an incomplete expression.

irb––Interactive Ruby Shell

CSC 372 Fall 2022, Ruby Slide 6

The latest stable version of Ruby is 3.1.2.

Due to both compatibility concerns and my late switch to Ruby, the only
available version of Ruby on lectura is 2.7, which is the last 2.X version.

Slides and assignments will be based on 2.7, released on 2019-12-25.

Ruby 3.0 improvements focus on performance, parallelism & concurrency,
and static type analysis.

The last major upheaval in Ruby occurred between 1.8 and 1.9. (2007)

In general, there are few incompatibilities between 1.9.3 (2011) and 3.X

Version issues

CSC 372 Fall 2022, Ruby Slide 7

ruby-lang.org is Ruby's home page

ruby-doc.org/core-2.7.0 is the root of the 2.7.0 documentation

A few places of interest:
Ruby syntax:
ruby-doc.org/core-2.7.0/doc/syntax_rdoc.html

But, for example, there's no link from Literals in the table!
Instead, click literals.rdoc in the Files bar on the left!

Operator precedence:
ruby-doc.org/core-2.7.0/doc/syntax/precedence_rdoc.html

Class-level documentation, with String as an example:
https://ruby-doc.org/core-2.7.0/String.html

discord.com/invite/EnSevaRfct —"Official" Ruby Discord server

Resources

CSC 372 Fall 2022, Ruby Slide 8

https://ruby-doc.org/core-2.7.0
https://ruby-doc.org/core-2.7.0/doc/syntax_rdoc.html
https://ruby-doc.org/core-2.7.0/doc/syntax/precedence_rdoc.html
https://ruby-doc.org/core-2.7.0/String.html
https://discord.com/invite/EnSevaRfct

Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic Programmers'
Guide by Dave Thomas, with Chad Fowler and Andy Hunt

– Known as the "Pickaxe book"
– $29.95 for a DRM-free PDF at pragprog.com.
– I'll call it "PA".
– Programming Ruby 3.2 (5th Edition) is in "beta"

The Ruby Programming Language by David Flanagan and Matz
– Perhaps the best book on Safari that covers 1.9 (along with 1.8)
– I'll call it "RPL" .

learning.oreilly.com has:
• Many relatively new Ruby books

One recommendation: The Ruby Way, 3rd edition by Hal Fulton
• Lots of books on Ruby on Rails
• A number of of pre-1.9 Ruby books

Resources, continued

CSC 372 Fall 2022, Ruby Slide 9

https://pragprog.com/titles/ruby4/programming-ruby-1-9-2-0-4th-edition/
https://pragprog.com/titles/ruby5/programming-ruby-3-2-5th-edition/
https://learning.oreilly.com/
http://proquest.safaribooksonline.com.ezproxy1.library.arizona.edu/book/web-development/ruby/9780132480352/firstchapter

Go to rubyinstaller.org/downloads and under "WITHOUT
DEVKIT" get Ruby 2.7.6-1 (x64).

When installing, I recommend the default selections:
• Add Ruby executables to your PATH
• Associate .rb and .rbw files with this Ruby installation
• Use UTF-8 as default external encoding

Then, on the "Completing the Ruby Setup Wizard Page", deselect
Run 'ridk install' to set up MSYS2... before you click "Finish".

(You'll need to revisit this choice if you later want to install
Ruby gems that have C extensions.)

Getting Ruby for Windows

CSC 372 Fall 2022, Ruby Slide 10

http://rubyinstaller.org/downloads

The version of Ruby on recent versions of macOS should be fine for
our purposes, assuming ruby --version shows 2.4 or better.

Alternatively, with Homebrew, you can do brew install ruby@2.7

Getting Ruby for macOS

CSC 372 Fall 2022, Ruby Slide 11

For two assignment points of extra credit:

1. Run irb and try ten Ruby expressions with some degree of variety.
Explore the String, Array, Integer, Float, and Rational classes
for methods to experiment with.

2. Capture the interaction (both expressions and results) and put it
in a plain text file, eca4.txt. No need for your name, NetID, etc. in
the file. No need to edit out errors.

3. On lectura, turn in eca4.txt with the following command:
% turnin 372-eca4 eca4.txt

Due: At the start of the next lecture after we hit this slide.

Extra Credit Assignment 4

CSC 372 Fall 2022, Ruby Slide 12

Ruby basics

CSC 372 Fall 2022, Ruby Slide 13

In Ruby, every value is an object.

Methods can be invoked using receiver.method(parameters...)

>> "testing".count("t") # How many "t"s are there?
=> 2

>> "ostentatious".tr("aeiou","12345")
=> "4st2nt1t345s"

>> "testing".length()
=> 7

Repeat: In Ruby, every value is an object.

What are some values in Java that are not objects? How about Python?

Every value is an object

CSC 372 Fall 2022, Ruby Slide 14

Of course, "everything" includes numbers:
>> 1.2.class()
=> Float

>> (10-20).class()
=> Integer

>> 17**37
=> 3362095853201812742282475234995233875224247377

>> _.pred()
=> 3362095853201812742282475234995233875224247376

>> _.class()
=> Integer

Everything is an object, continued

CSC 372 Fall 2022, Ruby Slide 15

7.bit_length
7.digits
7.lcm
7.gcd
7.rationalize
7.next
7.gcdlcm
7.denominator
7.numerator
7.upto
7.chr
7.inspect
7.size
7.succ
7.ord
7.to_int

7.to_s
7.to_i
7.to_f
7.to_r
7.div
7.divmod
7.fdiv
7.coerce
7.modulo
7.remainder
7.abs
7.magnitude
7.integer?
7.floor
7.ceil
(119 in all...)

Everything is an object, continued
The TAB key shows completions in irb:

>> 7.<TAB><TAB>

CSC 372 Fall 2022, Ruby Slide 16

Parentheses are often optional in method invocations:
>> 1.2.class
=> Float

>> "testing".count "aeiou"
=> 2

But, the following case fails. (Why?)
>> "testing".count "aeiou".class
TypeError (no implicit conversion of Class into String)

Solution:
>> "testing".count("aeiou").class
=> Integer

I usually omit parentheses in simple method invocations.

Parentheses are optional, sometimes

CSC 372 Fall 2022, Ruby Slide 17

You might have a Haskell moment and leave out a comma between
arguments:

>> "testing".slice 2 3
SyntaxError ((irb):14: syntax error, unexpected integer literal,
expecting end-of-input)

Commas are required between arguments!
>> "testing".slice 2,3
=> "sti"

I almost always use parentheses when there's more than one argument:
>> "testing".slice(2,3)
=> "sti"

Note: String#slice makes for a good example but we'll soon see an
operator-based slice.

A post-Haskell hazard!

CSC 372 Fall 2022, Ruby Slide 18

Ruby operators are methods with symbolic names.

In general,
expr1 op expr2

means
expr1.op(expr2)

Example:
>> 3 + 4
=> 7

>> 3.+(4)
=> 7

>> "abc".==(97.chr.+("bc")) # Try it w/o parens, too!
=> true

Operators are methods, too

CSC 372 Fall 2022, Ruby Slide 19

The Kernel module has methods for I/O and more. Methods in Kernel
can be invoked with only the method name.

>> puts "hello"
hello
=> nil

>> printf("sum = %d, product = %d\n", 3+4, 3 * 4)
sum = 7, product = 12
=> nil

>> puts gets.inspect
testing (typed by user)
"testing\n"
=> nil

See ruby-doc.org/core-2.7.0/Kernel.html

Kernel methods

What can say about value, type and
side-effect for puts and printf?

CSC 372 Fall 2022, Ruby Slide 20

http://ruby-doc.org/core-2.7.0/Kernel.html

A LHtLaL suggestion:
Start accumulating a file of brief notes on Ruby. Example:

$ cat ~/notes/ruby.txt
#FAQ
https://ruby-doc.org/core-2.7.0/String.html

#irb (REPL)
reads ~/.irbrc
_ is last value, like `it` in Haskell

#misc
Every value is an object
Can often omit parens on methods:

3.class, "testing".count "t"
Operators are methods: 3+4 is really 3.+(4)

#i/o
gets, puts, printf (in Kernel module)

Sidebar: ~/notes/ruby.txt

CSC 372 Fall 2022, Ruby Slide 21

The ruby command can be used to execute Ruby source code contained in
a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!

Note that the code does not need to be enclosed in a method—"top level"
expressions are evaluated when encountered.

There is no evident compilation step or artifact produced. It just runs!

Executing Ruby code in a file

CSC 372 Fall 2022, Ruby Slide 22

Alternatively, code can be placed in a method that is invoked by an
expression at the top level:

% cat hello2.rb # fall22/ruby/hello2.rb
def say_hello

puts "Hello, world!"
end

say_hello

% ruby hello2.rb
Hello, world!

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

Executing Ruby code in a file, continued

CSC 372 Fall 2022, Ruby Slide 23

The program below reads lines from standard input and writes each, with a
line number, to standard output:

line_num = 1 # numlines.rb
while line = gets

printf("%3d: %s", line_num, line)
line_num += 1 # Ruby does not have ++ and --

end

Execution:
% ruby numlines.rb < hello2.rb
1: def say_hello
2: puts "Hello, world!"
3: end
4:
5: say_hello

A line-numbering program

CSC 372 Fall 2022, Ruby Slide 24

Problem: Write a program that reads lines from standard input and writes
them in reverse order to standard output. Use only the Ruby you've seen.

For reference, here's the line-numbering program:
line_num = 1
while line = gets

printf("%3d: %s", line_num, line)
line_num += 1

end

Solution:
reversed = ""
while line = gets

reversed = line + reversed
end
puts reversed

tac.rb

CSC 372 Fall 2022, Ruby Slide 25

Usage:
% cal | ruby tac.rb

27 28 29 30
20 21 22 23 24 25 26
13 14 15 16 17 18 19
6 7 8 9 10 11 12

1 2 3 4 5
Su Mo Tu We Th Fr Sa

November 2022

ADD SLIDE on pitfall with gets vs.
STDIN.gets; show ENOENT error!

Some basic types

CSC 372 Fall 2022, Ruby Slide 26

nil is Ruby's "no value" value. The name nil references the only instance of
the class.

>> nil
=> nil

>> nil.class
=> NilClass

>> nil.object_id
=> 4

We'll see that Ruby uses nil in a variety of ways.

The value nil

CSC 372 Fall 2022, Ruby Slide 27

Instances of Ruby's String class represent character strings.

A variety of "escapes" are recognized in double-quoted string literals:
>> puts "newline >\n< and tab >\t<"
newline >
< and tab > <

>> "Newlines: octal \012, hex \xa, control-j \cj"
=> "Newlines: octal \n, hex \n, control-j \n"

All escapes:
docs.ruby-lang.org/en/2.7.0/syntax/literals_rdoc.html#label-Strings

Unicode:
>> "\u{1F355} \u{2b} \u{1F41F} = \u{1f610}"
=> "! + " = #"

Strings and string literals

CSC 372 Fall 2022, Ruby Slide 28

https://docs.ruby-lang.org/en/2.7.0/syntax/literals_rdoc.html

In single-quoted string literals only \' and \\ are recognized as escapes:

>> puts '\n\t'
\n\t
=> nil

>> '\n\t'.length
=> 4 # Four chars: backslash, n, backslash, t

>> puts '\'\\'
'\
=> nil

>> '\'\\'.length
=> 2 # Two characters: apostrophe, backslash

String literals, continued

CSC 372 Fall 2022, Ruby Slide 29

The public_methods method shows the public methods that are
available for an object. Here are some of the methods for String:

>> "".public_methods.sort
=> [:!, :!=, :!~, :%, :*, :+, :+@, :-@, :<, :<<, :<=, :<=>, :==, :===,
:=~, :>, :>=, :[], :[]=, :__id__, :__send__, :ascii_only?, :b,
:between?, :bytes, :bytesize, :byteslice, :capitalize, :capitalize!,
:casecmp, :casecmp?, :center, :chars, :chomp, :chomp!, :chop,
:chop!, :chr, :clamp, :class, :clear, :clone, :codepoints, :concat,
:count, :crypt, :define_singleton_method, :delete, :delete!,
:delete_prefix, :delete_prefix!, :delete_suffix, :delete_suffix!,
:display, :downcase, :downcase!, :dump, :dup, :each_byte,
:each_char, :each_codepoint, ...lots more...

>> "".public_methods.length
=> 183

String has a lot of methods

CSC 372 Fall 2022, Ruby Slide 30

Unlike Python, Java, Haskell, and many other languages, strings in Ruby
are mutable.

If two variables reference a string and the string is changed, the change is
reflected by both variables:

>> x = "testing"

>> y = x # x and y now reference the same instance of String

>> y << " this" # the << operator appends a string

>> y
=> "testing this"

>> x
=> "testing this"

Is it a good idea to have mutable strings?

Strings are mutable

CSC 372 Fall 2022, Ruby Slide 31

The dup method produces a copy of a string.
>> x = "testing"
>> x2 = x.dup
=> "testing"

>> x2 << "...more"

>> x2
=> "testing...more"

>> x
=> "testing"

Some objects that hold strings dup strings they are given.

Strings are mutable, continued

CSC 372 Fall 2022, Ruby Slide 32

Some methods have both an applicative and an imperative form.

String's upcase method is applicative––it produces a new String but
doesn't change its receiver, the instance of String on which it's called:

>> s = "testing"
=> "testing"

>> s.upcase
=> "TESTING"

>> s
=> "testing"

Sidebar: Applicative vs. imperative methods

CSC 372 Fall 2022, Ruby Slide 33

In contrast, an imperative method potentially changes its receiver.

String's upcase! method is the imperative counterpart to upcase:
>> s.upcase!
=> "TESTING"

>> s
=> "TESTING"

A Ruby convention:
When methods have both an applicative and an imperative form, the
imperative form ends with an exclamation mark.

Applicative vs. imperative methods, continued

CSC 372 Fall 2022, Ruby Slide 34

Strings can be compared with a typical set of operators:

>> "apples" == "oranges"
=> false

>> "apples" != "oranges"
=> true

>> "apples" < "Oranges"
=> false

We'll talk about details of true and false later.

These (common) operators work with most other types, too!

String comparisons

CSC 372 Fall 2022, Ruby Slide 35

There is also a comparison operator: <=>

Behavior:
>> "apple" <=> "testing"
=> -1

>> "testing" <=> "apple"
=> 1

>> "x" <=> "x"
=> 0

Speculate: How is the operator <=> read aloud by some programmers?
"spaceship"

What are the Java and C analogs for <=> when applied to strings?
String.compareTo and strcmp, respectively.

String comparisons, continued

CSC 372 Fall 2022, Ruby Slide 36

Subscripting a string with a number produces a one-character string.

>> s = "abcd"

>> s[0] # Positions are zero-based
=> "a"

>> s[-1] # Negative positions are counted from the right
=> "d"

>> s[100]
=> nil # An out-of-bounds reference produces nila

Historical note: With Ruby versions prior to 1.9, "abc"[0] is 97.

Why doesn't Java provide s[n] instead of s.charAt(n)?

Substrings

CSC 372 Fall 2022, Ruby Slide 37

A subscripted string can be the target of an assignment. A string of any
length can be assigned.

>> s = "tack"

>> s[0] = 65.chr

>> s[1] = "tomi"

>> s
=> "Atomick"

>> s[-1] = ""

>> s
=> "Atomic"

Substrings, continued

CSC 372 Fall 2022, Ruby Slide 38

A substring can be referenced with
s[start, length]

>> s = "replace"

>> s[2,3]
=> "pla"

>> s[3,100]
=> "lace" # Note too-long behavior!

>> s[-4,3]
=> "lac"

>> s[10,10]
=> nil

Substrings, continued

r e p l a c e
0 1 2 3 4 5 6
7 6 5 4 3 2 1 (negative)

CSC 372 Fall 2022, Ruby Slide 39

Instances of Ruby's Range class represent a range of values. A Range
can be used to reference a substring.

>> r = 2..-2
=> 2..-2

>> r.class
=> Range

>> s = "replaced"

>> s[r]
=> "place"

>> s[r] = ""

>> s
=> "red"

Substrings with ranges

CSC 372 Fall 2022, Ruby Slide 40

It's more common to use range literals with strings:

>> s = "rebuilding"
>> s[2..-4]
=> "build"

>> s[2...-4]
=> "buil" # three dots is "up to" a

>> s[-8..-4]
=> "build"

>> s[-4..-8]
=> ""

>> s[2..]
=> "building" # 2.. is an endless Range

Substrings with ranges, continued

r e b u i l d i n g
0 1 2 3 4 5 6 7 8 9
10 9 8 7 6 5 4 3 2 1 (negative)

CSC 372 Fall 2022, Ruby Slide 41

A substring can be the target of an assignment:
>> s = "replace"

>> s[0,2] = ""

>> s
=> "place"

>> s[3..-1] = "naria"
>> s
=> "planaria"

>> s["aria"] = "kton"
=> "kton" # If "aria" appears, replace it (error if not).

>> s
=> "plankton"

Changing substrings

r e p l a c e
0 1 2 3 4 5 6
7 6 5 4 3 2 1 (negative)

p l a c e
0 1 2 3 4
5 4 3 2 1 (negative)

CSC 372 Fall 2022, Ruby Slide 42

In a string literal enclosed with double quotes the sequence #{expr}
causes interpolation of the value of expr, an arbitrary Ruby expression.

>> x = 10

>> y = "twenty"

>> s = "x = #{x}, y + y = #{y + y}"
=> "x = 10, y + y = twentytwenty"

>> puts "There are #{"".public_methods.length} string methods"
There are 183 string methods

>> "test #{"#{"abc".length*4}"}" # Arbitrary nesting works
=> "test 12"

It's idiomatic to use interpolation rather than concatenation to build a
string from multiple values.

Expression interpolation in string literals

CSC 372 Fall 2022, Ruby Slide 43

Ruby's Integer class represents integers of any size.

>> 5.class
=> Integer

>> 11 ** 111
=> 3931769528717253549053417338688275670476160766413
5852855034678556753487133293648186980649622260361388
994869790176611

>> (3 ** 33_000).to_s.size
=> 15746

>> (3 ** 33_000_000).bit_length
(irb):115: warning: in a**b, b may be too big
NoMethodError (undefined method `bit_length' for
Infinity:Float)

Numbers

CSC 372 Fall 2022, Ruby Slide 44

The Float class represents floating point numbers that can be represented
by a double-precision floating point number on the host architecture.

>> x = 123.456
=> 123.456

>> x.class
=> Float

>> x ** 0.5
=> 11.111075555498667

>> x = x / 0.0
=> Infinity

>> (0.0/0.0).nan?
=> true

Numbers, continued

CSC 372 Fall 2022, Ruby Slide 45

Arithmetic on two Integers produces an Integer.
>> 2/3
=> 0

>> _.class
=> Integer

Integers and Floats can be mixed. The result is a Float.
>> 10 / 5.1
=> 1.9607843137254903

>> 10 % 4.5
=> 1.0

>> _.class
=> Float

Numbers, continued

CSC 372 Fall 2022, Ruby Slide 46

Ruby has a Complex type.

>> x = Complex(2,3)
=> (2+3i)

>> x * 2 + 7
=> (11+6i)

>> Complex 'i'
=> (0+1i)

> >> _ * _
=> (-1+0i)

Numbers, continued

CSC 372 Fall 2022, Ruby Slide 47

There's Rational, too.

>> Rational(1,3)
=> (1/3)

>> it * 300
=> (100/1)

>> Rational 0.5
=> (1/2)

>> Rational 0.6
=> (5404319552844595/9007199254740992)

>> Rational 0.015625
=> (1/64)

Numbers, continued

CSC 372 Fall 2022, Ruby Slide 48

With 2.2.4 on lectura, integers in the range -262 to 262-1 were represented
by instances of Fixnum. If an operation produces a number outside of that
range, the value is represented with a Bignum.

>> x = 2**62-1
=> 4611686018427387903

>> x.class => Fixnum

>> x += 1 => 4611686018427387904

>> x.class => Bignum

>> x -= 1 => 4611686018427387903

>> x.class => Fixnum

Sidebar: Fixnum and Bignum—RIP

LHtLaL:

Explore boundaries!

CSC 372 Fall 2022, Ruby Slide 49

Unlike some languages, Ruby does not automatically convert strings to
numbers and numbers to strings as needed.

>> 10 + "20"
TypeError (String can't be coerced into Integer)

The methods to_i, to_f, and to_s are used to convert values to Integers,
Floats and Strings, respectively.

>> 10.to_s + "20"
=> "1020"

>> 10 + "20".to_f
=> 30.0

>> 10 + 20.9.to_i
=> 30

Conversions

>> 33.to_<TAB><TAB>
33.to_c 33.to_int
33.to_enum 33.to_r
33.to_f 33.to_s
33.to_i

CSC 372 Fall 2022, Ruby Slide 50

A sequence of values is typically by an instance of the Array class.

An array can be created by enclosing a comma-separated sequence of values
in square brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 2**40]
=> ["ten", 20, 30.0, 1099511627776]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 1099511627776], [[[10, 20, 30]]]]

What's a difference between Ruby arrays and Haskell lists?

Arrays

CSC 372 Fall 2022, Ruby Slide 51

Array elements and subarrays (sometimes called slices) are specified with
a notation like that used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0]
=> 1

>> a[1,2] # a[start, length]
=> ["two", 3.0]

>> a[-1]
=> ["a", "b", "c", "d"]

>> a[-1][-2]
=> "c"

Arrays, continued

CSC 372 Fall 2022, Ruby Slide 52

Elements and subarrays can be assigned to. Ruby accommodates a
variety of cases; here are some:

>> a = [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

Arrays, continued

Semicolon separates
expressions. We make a

change and show new value.

CSC 372 Fall 2022, Ruby Slide 53

A few more:
>> a
=> [10]

>> a[0] = [1,2,3]; a
=> [[1, 2, 3]]

>> a[4] = [5,6]; a
=> [[1, 2, 3], nil, nil, nil, [5, 6]]

>> a[0,2] = %w{a bb ccc}; a
=> ["a", "bb", "ccc", nil, nil, [5, 6]

What's important to retain from the examples above?
• Elements of arrays and subarrays can be assigned to.
• Lots of rules; some complex.

Arrays, continued

CSC 372 Fall 2022, Ruby Slide 54

A variety of other operations are provided for arrays. Here's a
sampling:

>> a = []

>> a << 1; a
=> [1]

>> a << [2,3,4]; a
=> [1, [2, 3, 4]]

>> a.reverse; a
=> [1, [2, 3, 4]]

>> a.reverse!; a
=> [[2, 3, 4], 1]

Arrays, continued

CSC 372 Fall 2022, Ruby Slide 55

A few more:

>> a
=> [[2, 3, 4], 1]

>> a[0].shift
=> 2

>> a
=> [[3, 4], 1]

>> a.unshift "a","b","c"
=> ["a", "b", "c", [3, 4], 1

>> a.shuffle.shuffle
=> ["a", [3, 4], "b", "c", 1]

Arrays, continued

CSC 372 Fall 2022, Ruby Slide 56

Even more!
>> a = [1,2,3,4]; b = [1,3,5]

>> a + b
=> [1, 2, 3, 4, 1, 3, 5]

>> a - b
=> [2, 4]

>> a & b
=> [1, 3]

>> a | b
=> [1, 2, 3, 4, 5]

>> ('a'..'zzz').to_a.size
=> 18278

Arrays, continued

CSC 372 Fall 2022, Ruby Slide 57

TODO: show intercalation!

We can compare arrays with == and !=. Elements are compared in turn,
possibly recursively.

>> [1,2,3] == [1,2]
=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"]]
=> false

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"[1..-2]]]
=> true

Comparing arrays

CSC 372 Fall 2022, Ruby Slide 58

Comparison of arrays with <=> is lexicographic.

>> [1,2,3,4] <=> [1,2,10]
=> -1

>> [[10,20], [2,30], [5,"x"]].sort
=> [[2, 30], [5, "x"], [10, 20]]

Speculate: Will the following work?

>> [1,2] < [3,4]
NoMethodError (undefined method `<' for [1, 2]:Array)
Did you mean? <<

Comparing arrays

CSC 372 Fall 2022, Ruby Slide 59

Comparison with <=> produces nil if differing types are encountered.

>> [1,2,3,4] <=> [1,2,3,"four"]
=> nil

>> [[10,20],[5,30], [5,"x"]].sort
ArgumentError (comparison of Array with Array failed)

Here's a simpler failing case. Should it be allowed?
>> ["sixty",20,"two"].sort
ArgumentError (comparison of Integer with String failed)

Comparing arrays

Tie!

CSC 372 Fall 2022, Ruby Slide 60

At hand:
>> ["sixty",20,"two"].sort
ArgumentError (comparison of Integer with String failed)

Contrast with Icon:
][sort(["sixty",20,"two"])

r := [20,"sixty","two"] (list)

][sort([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])
r := [2, 7, -1.0, 3.0, ":", "A", "a", [2], [1]] (list)

What does Icon do better? What does Icon do worse?

Here's Python 2:
>>> sorted([3.0, 7, 2, "a", "A", ":", [2], [1], -1.0])
[-1.0, 2, 3.0, 7, [1], [2], ':', 'A', 'a']

Comparing arrays, continued

CSC 372 Fall 2022, Ruby Slide 61

An array can hold a reference to itself:
>> a = [1,2,3]

>> a.push a
=> [1, 2, 3, [...]]

>> a.size
=> 4

>> a[-1]
=> [1, 2, 3, [...]]

>> a[-1][-1][-1]
=> [1, 2, 3, [...]]

Arrays can be cyclic

[1, 2, 3,]

a

>> a << 10
=> [1, 2, 3, [...], 10]

>> a[-2][-1]
=> 10

CSC 372 Fall 2022, Ruby Slide 62

Control Structures

CSC 372 Fall 2022, Ruby Slide 63

Here's a loop to print the integers from 1 through 10, one per line.

i=1
while i <= 10 do # "do" is optional

puts i
i += 1

end

When i <= 10 produces false, control branches to the code
following end, if any.

The body of the while is always terminated with end, even if
there's only one expression in the body.

The while loop

CSC 372 Fall 2022, Ruby Slide 64

Java control structures such as if, while, and for are driven by the
result of expressions that produce a value whose type is boolean.

C has a more flexible view: control structures consider a scalar
value that is non-zero to be "true".

From my Python notes:
>>> list(map(bool, [False, None, [], {}, "", set(), 0, 0.0]))
[False, False, False, False, False, False, False, False]

PHP and JavaScript, too, have sets of "truthy" and "falsy/falsey"
values.

Here's the Ruby rule:
Any value that is not false or nil is considered to be "true".

while, continued

CSC 372 Fall 2022, Ruby Slide 65

Remember: Any value that is not false or nil is considered to be "true".

Let's analyze this loop, which reads lines from standard input using gets.
while line = gets

puts line
end

gets returns a string that is the next line of the input, or nil, on end of file.

The expression line = gets has two side effects but also produces a value.
Side effects: (1) a line is read from standard input and (2) is assigned to line.
Value: The string assigned to line.

If the first line from standard input is "one", then the first time through the loop
what's evaluated is while "one".

The value "one" is not false or nil, so the body of the loop is executed, causing
"one" to be printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value
of the assignment, in turn terminating the loop.

while, continued

CSC 372 Fall 2022, Ruby Slide 66

From the previous slide:
while line = gets

puts line
end

Partial understanding:
The loop reads and prints every line from standard input.

Full understanding:
What we worked through on the previous slide.

I think there's merit in full understanding.

More examples of full understanding:
• Knowing exactly how *p++ = *q++ works in C.
• Knowing the rules for field initialization in Java.
• Knowing exactly when you need to quote shell metacharacters.
• Knowing the full set of truthy/falsy rules for a language.

LHtLaL sidebar: Partial vs. full understanding

CSC 372 Fall 2022, Ruby Slide 67

String's chomp method removes a carriage return and/or newline from
the end of a string, if present.

Here's a program that's intended to flatten all input lines to a single line:
result = ""
while line = gets.chomp

result += line
end
puts result

Will it work?
% ruby while4.rb < lines.txt
Traceback (most recent call last):
while4.rb:2:in `<main>': undefined method `chomp' for
nil:NilClass (NoMethodError)

What's the problem?

while, continued

CSC 372 Fall 2022, Ruby Slide 68

At hand:
result = ""
while line = gets.chomp

result += line
end
puts result

At end of file, gets returns nil, producing an error on gets.chomp.

Which of the two alternatives below is better?

while, continued

result = ""
while line = gets

line.chomp!
result += line

end
puts result

result = ""
while line = gets

result += line.chomp
end
puts result

CSC 372 Fall 2022, Ruby Slide 69

Problem: Write a while loop that prints the characters in the string s, one
per line. Don't use the length or size methods of String.

Extra credit: Don't use any variables other than s.

Solution: (while5.rb)
i = 0
while c = s[i]

puts c
i += 1

end

Solution with only s: (while5a.rb)
while s[0]

puts s[0]
s[0] = ""

end

while, continued

CSC 372 Fall 2022, Ruby Slide 70

Unlike Java, Ruby does pay some attention to the presence of newlines in
source code.

For example, a while loop cannot be trivially squashed onto a single line.

while i <= 10 puts i i += 1 end # Syntax error

If we add semicolons where newlines originally were, it works:

while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

while i <= 10 do puts i; i+=1 end # OK. Note added "do"

Unlike Haskell and Python, indentation is never significant in Ruby.

Source code layout

CSC 372 Fall 2022, Ruby Slide 71

Ruby considers a newline to terminate an expression, unless the
expression is definitely incomplete.

For example, the following is ok because "i <=" is definitely incomplete.

while i <=
10 do puts i; i += 1 end

Is the following ok?

while i
<= 10 do puts i; i += 1 end

Nope...
test.rb:2: syntax error, unexpected <=
<= 10 do puts i; i += 1 end

Source code layout, continued

CSC 372 Fall 2022, Ruby Slide 72

The incomplete expression rule does have have some pitfalls.

Example: Ruby considers
x = a + b

+ c

to be two expressions: x = a + b and + c.

Rule of thumb: If breaking an expression across lines, end lines with an
operator:

x = a + b +
c

Alternative: Indicate continuation with a backslash at the end of the line.

Source code layout, continued

CSC 372 Fall 2022, Ruby Slide 73

Academic writing on programming languages commonly uses the term
"statement" to denote a syntactic element that performs operation(s) but
does not produce a value.

The term "expression" is consistently used to describe a construct that
produces a value.

Ruby literature sometimes talks about the "while statement" even though
while produces a value:

>> i = 1
>> while i <= 3 do i += 1 end
=> nil

Dilemma: Do we call it the "while statement" or the "while expression"?

Expression or statement?

CSC 372 Fall 2022, Ruby Slide 74

Ruby has operators for conjunction, disjunction, and "not" with the same
symbols as Java and C, but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false
=> false

>> 1 && 2
=> 2

>> true && "abc"
=> "abc"

>> nil && 1
=> nil

Challenge: Concisely describe the rule that Ruby uses to determine the
value of a conjunction operation.

Logical operators

Remember:
Any value that is not false or
nil is considered to be "true".

CSC 372 Fall 2022, Ruby Slide 75

Disjunction is ||, also like Java. As with conjunction, the values produced
are interesting:

>> 1 || nil
=> 1

>> false || 2
=> 2

>> "abc" || "xyz"
=> "abc"

>> s = "abc"
>> s[0] || s[3]
=> "a"

>> s[4] || false
=> false

Logical operators, continued

Remember:
Any value that is not false or
nil is considered to be "true".

CSC 372 Fall 2022, Ruby Slide 76

An exclamation mark inverts a logical value. The resulting value is always
true or false.

>> ! true
=> false

>> ! 1
=> false

>> ! nil
=> true

>> ! (1 || 2)
=> false

>> ! ("abc"[5] || [1,2,3][10])
=> true

>> ![nil]
=> false

Logical operators, continued

Remember:
Any value that is not false or
nil is considered to be "true".

CSC 372 Fall 2022, Ruby Slide 77

There are also and, or, and not operators, but with very low precedence.

Why?
They eliminate the need for parentheses in some cases.

We can write this,
x < 2 && y > 3 or x * y < 10 || z > 20

instead of this:
(x < 2 && y > 3) || (x * y < 10 || z > 20)

LHtLaL problem: Devise an example for ! vs. not.

Logical operators, continued

CSC 372 Fall 2022, Ruby Slide 78

Here is Ruby's if-then-else:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end * 3
=> "threethreethree"

Observations?

Speculate: Is the following valid? If so, what will it produce?
if 1 > 2 then 3 end

if-then-else

CSC 372 Fall 2022, Ruby Slide 79

If a language's if-then-else returns a value, it creates an issue about the meaning
of an if-then with no else.

In the C family, if-else doesn't return a value.

Haskell and ML simply don't allow an else-less if.

In Icon, an expression like if 2 > 3 then 4 is said to fail. No value is produced,
and failure propagates to any enclosing expression, which in turn fails.

Speculate: How does Ruby handle it?
>> if 1 > 2 then 3 end
=> nil
If there's no else clause and the control expression is false, nil is produced.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like the C
family. Is that a good thing or bad thing?

TMTOWTDI!

if-then-else, continued

CSC 372 Fall 2022, Ruby Slide 80

The most common Ruby coding style puts the if, the else, the end, and
the expressions of the clauses on separate lines:

if lower <= x && x <= higher or inExRange(x, rangeList) then
puts "x is in range"
history.add x

else
outliers.add x

end

Note the use of the low-precedence or instead of ||.

The "then" at the end of the first line above is optional.

then is not optional in this one-line expression:
if 1 then 2 else 3 end

if-then-else, continued

CSC 372 Fall 2022, Ruby Slide 81

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
grade = "A"

elsif average >= 80 then
grade = "B"

elsif average >= 70 then
grade = "C"

else
grade = "F"

end

Note that there is no "end" to terminate the then clauses. elsif both closes
the current then and starts a new clause.

It is not required to have a final else.

Is elsif syntactic sugar?

The elsif clause

CSC 372 Fall 2022, Ruby Slide 82

At hand:
if average >= 90 then

grade = "A"
elsif average >= 80 then

grade = "B"
elsif average >= 70 then

grade = "C"
else

grade = "F"
end

Can we shorten it by thinking less imperatively and more about values?

See 5.1.4 in RPL for Ruby's case (a.k.a. "switch") expression.

elsif, continued

grade =
if average >= 90 then "A"
elsif average >= 80 then "B"
elsif average >= 70 then "C"
else "F"
end

CSC 372 Fall 2022, Ruby Slide 83

if and unless can be used as modifiers to indicate conditional execution.

>> total, count = 123.4, 5 # Note: parallel assignment

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0
>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:
expr1 if expr2
expr1 unless expr2

What does 'x.f if x' mean?

if and unless as modifiers

CSC 372 Fall 2022, Ruby Slide 84

Ruby's break and next are similar to Java's break and continue.

Below is a loop that reads lines from standard input, terminating on end of
file or when a line beginning with a period is read. Each line is printed
unless the line begins with a pound sign.

while line = gets
if line[0] == "." then

break
end
if line[0] == "#" then

next
end
puts line

end

Problem: Rewrite the above loop to use if as a modifier.

break and next

while line = gets
break if line[0] == "."
next if line[0] == "#"
puts line

end

CSC 372 Fall 2022, Ruby Slide 85

Remember that while is an expression that by default produces the value
nil when the loop terminates.

If a while loop is exited with break expr, the value of expr is the value
of the while.

Here's a contrived example to show the mechanics of it:

% cat break2.rb
s = "x"
puts (while true do

break s if s.size > 30
s += s

end)

% ruby break2.rb
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

break and next, continued

CSC 372 Fall 2022, Ruby Slide 86

Here are three examples of Ruby's for loop:
for i in 1..100 do # as with while, the do is optional

sum += i
end

for i in [10,20,30]
sum += i

end

for msymbol in "x".methods
puts msymbol if msymbol.to_s.include? "!"

end

The "in" expression must produce a value that has an each method.
• In the first case, the "in" expression is a Range.
• In the latter two it is an Array.

The for loop

CSC 372 Fall 2022, Ruby Slide 87

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]]
puts [s] * n * sep

end

What's the output?
1-1-1-1-1
sos
<-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Consider the design choice of supporting parallel assignment in the for.
• How would we write the above without it?
• What's the mental footprint of this feature?
• What's the big deal since there's already parallel assignment?
• Is this creeping featurism?

The for loop, continued

CSC 372 Fall 2022, Ruby Slide 88

TODO: DROP THIS SLIDE
Expand previous slide,
Including for c in “abc”

Methods and more

CSC 372 Fall 2022, Ruby Slide 89

Here is a simple Ruby method:

def add x, y
return x + y

end

The keyword def indicates that this is a method definition.

Following def is the method name.

The parameter list follows, optionally enclosed in parentheses.
No types can be specified.

Zero or more expressions follow

end terminates the definition.

Method definition

CSC 372 Fall 2022, Ruby Slide 90

If the end of a method is reached without encountering a return, the value
of the last expression becomes the return value.

Here is a more idiomatic definition for add:

def add x, y
x + y

end

Do you prefer the above or the below?

def add x, y
return x + y

end

Which is more like Haskell?

Method definition, continued

CSC 372 Fall 2022, Ruby Slide 91

As we saw in an early example, if no arguments are required, the
parameter list can be omitted:

def hello
puts "Hello!"

end

What does hello return?
What does the last expression in hello return?

Execution:
>> hello
Hello!
=> nil
>>

Method definition, continued

CSC 372 Fall 2022, Ruby Slide 92

Contrast with Python:
>>> hello()
Hello!
>>>

Ruby methods in a file can be tested by hand using irb.
% cat simple.rb
def add x, y

x + y
end

% irb -r ./simple.rb # .rb is not required
>> add 3,4
=> 7

If the environment variable RUBYLIB is set to ".", the "./" can be omitted:
% echo $RUBYLIB
.
% irb -r simple
...

(Set it with "export RUBYLIB=." in your ~/.bashrc.)

Testing methods with irb

CSC 372 Fall 2022, Ruby Slide 93

A source file can loaded with Kernel.load:

>> load "simple.rb"
=> true
>> add 3,4
=> 7

How does load in Ruby differ from :load in ghci?
load "simple.rb" is simply a Ruby expression that's evaluated by
irb. Its side-effect is that the specified file is loaded.

How can we take advantage of load being a Ruby method?

Testing methods with irb, continued
% cat simple.rb
def add x, y

x + y
end

CSC 372 Fall 2022, Ruby Slide 94

Let's include in simple.rb an "r" method that loads simple.rb:
% cat simple.rb
def add x, y

x + y
end

def hello # new for example
puts "Hello!"

end

def r
load "simple.rb"

end

After loading simple.rb once with irb,
we can edit in a different window and
then reload simple.rb by just typing r.

Testing methods with irb, continued

CSC 372 Fall 2022, Ruby Slide 95

$ irb -r ./simple.rb
>> add 3,4
=> 7
>> hello
Hello!
[...edit simple.rb...]
>> r
=> true
>> add 3,4
add called...
=> 7
>> hello
Hello! (v2)

I claim to be defining methods add and hello but there's no class in sight!

A freestanding method found in a file is associated with an object referred
to as "main", an instance of Object.

At the top level, the name self references that object.
>> [self.class, self.to_s] => [Object, "main"]

>> methods_b4 = self.private_methods
>> load "simple.rb"

>> self.private_methods - methods_b4
=> [:r, :add, :hello]

self has three more private methods after loading simple.rb.

Methods can be added to a class at run-time in Ruby!

Where's the class?!

CSC 372 Fall 2022, Ruby Slide 96

We'll later see how to define classes but our initial "mode" on the
Ruby assignments will be writing programs in terms of top-level
methods.

This is essentially procedural programming with an object-oriented
library.

Where's the class, continued?

CSC 372 Fall 2022, Ruby Slide 97

Imagine a wrap method that can be used in three ways:
>> wrap "abc"
=> "(abc)"

>> wrap "abc","<>"
=> "<abc>"

>> wrap _, "|"
=> "|<abc>|"

Ruby allows default values to be specified for a method's arguments:
def wrap s, wrapper = "()" # wrap3.rb

wrapper[0] + s + wrapper[-1]
end

Lots of library methods use default arguments.
>> "a-b c-d".split => ["a-b", "c-d"]
>> "a-b c-d".split "-" => ["a", "b c", "d"]

Default values for arguments

CSC 372 Fall 2022, Ruby Slide 98

Ruby does not allow the methods of a class to be overloaded. Here's a
Java-like approach that does not work:

def wrap s
wrap(s, "()")

end

def wrap s, wrapper
wrapper[0] + s + wrapper[-1]

end

The imagined behavior is that if wrap is called with one argument it will
call the two-argument wrap with "()" as a second argument. In fact, the
second definition of wrap simply replaces the first. (Last def wins!)

>> wrap "x"
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "[]") => "[testing]"

Methods can't be overloaded!

CSC 372 Fall 2022, Ruby Slide 99

Different languages approach overloading and default arguments in
various ways. Here's a sampling:

Java Overloading; no default arguments
Python No overloading; default arguments
C++ Overloading and default arguments
Icon No overloading; no default arguments; use an idiom

How does the mental footprint of the four approaches vary? What's the
impact on the language's written specification?

Here is wrap in Icon:

procedure wrap(s, wrapper)
/wrapper := "()" # if wrapper is &null, assign "()" to wrapper
return wrapper[1] || s || wrapper[-1]

end

Sidebar: A study in contrast

CSC 372 Fall 2022, Ruby Slide 100

Java's String.format and Python’s print can accept any number of arguments.

Imagine a Ruby method that can be called with any number of arguments:
>> showargs(1, "two", 3.0)
3 arguments:
#0: 1
#1: two
#2: 3.0

Implementation:
def showargs(*args)

puts "#{args.size} arguments"
for i in 0...args.size do # Recall a...b is a to b-1

puts "##{i}: #{args[i]}"
end

end

The rule: If a parameter is prefixed with an asterisk, an array is made of all
following arguments.

Arbitrary number of arguments

CSC 372 Fall 2022, Ruby Slide 101

Problem: Write a method format that interpolates argument values into a
string where percent signs are found.

>> format("x = %, y = %, z = %\n", 7, "ten", "zoo")
=> "x = 7, y = ten, z = zoo\n"

>> format "testing\n"
=> "testing\n"

Use to_s for conversion to String.

A common term for this sort of facility
is "varargs"––variable number of
arguments.

Arbitrary number of arguments, continued

def format(fmt, *args)
result = ""
for i in 0...fmt.size do

if fmt[i] == "%" then
result += args.shift.to_s

else
result += fmt[i]

end
end
result

end

CSC 372 Fall 2022, Ruby Slide 102

Whole programs

CSC 372 Fall 2022, Ruby Slide 103

Here's an example of source file layout for a
program with several methods:

def main
puts "in main"; f; g

end

def f; puts "in f" end
def g; puts "in g" end

main # This runs the program

A rule: the definition for a method must be seen before it is executed.

The definitions for f and g can follow the definition of main because they
aren't executed until main is executed.

Could the line "main" appear before the definition of f?

Try it: Shuffle around the three definitions and "main" to see what works
and what doesn't.

Source File Layout

Execution:
% ruby main1.rb
in main
in f
in g

CSC 372 Fall 2022, Ruby Slide 104

I'd like to load the following file and then test showline, but loading it in
irb seems to hang. Why?

% cat main3.rb
def showline s

puts "Line: #{s.inspect} (#{s.size} chars)"
end
def main

while line = gets; showline line; end
end
main

% irb
>> load "main3.rb"
...no output or >> prompt after the load...

It's waiting for input! After the defs for showline and main, main is
called. main does a gets, and that gets is waiting for input.

Testing methods when there's a "main"

CSC 372 Fall 2022, Ruby Slide 105

TODO: irb –r ./main3.rb
(next slide, too)

Here's a technique that lets a program run normally with ruby but not run
main when loaded with irb:

% cat main3a.rb
def showline s

puts "Line: #{s.inspect} (#{s.size} chars)"
end
def main

while line = gets; showline line; end
end
main unless $0 == "irb"

% irb
>> load "main3a.rb"
>> showline "testing"
Line: "testing" (7 chars)
>> main
(waits for input)

Testing methods when there's a "main", cont.

Call main unless the name of the
program being run is "irb".

Now I can test methods by hand in
irb but still do ruby main3.rb ...

CSC 372 Fall 2022, Ruby Slide 106

Variables prefixed with a $ are global, and can be referenced in any
method in any file, including top-level code.

def f
puts "f: $x = #{$x}"

end

def g
$x = 100

end

$x = 10
f
g

puts "top-level: $x = #{$x}"

Global variables

The code at left...
1. Sets $x at the top-level.
2. Prints $x in f.
3. Changes $x in g.
4. Prints the final value of

$x at the top-level.

Output:
f: $x = 10
top-level: $x = 100

CSC 372 Fall 2022, Ruby Slide 107

Ruby has a number of predefined global variables:
>> puts global_variables.sort * ", "
$!, $", $$, $&, $', $*, $+, $,, $-0, $-F, $-I, $-K, $-W, $-a, $-d, $-i, $-l, $-
p, $-v, $-w, $., $/, $0, $1, ..., $9, $:, $;, $<, $=, $>, $?, $@, $DEBUG,
$FILENAME, $KCODE, $LOADED_FEATURES, $LOAD_PATH,
$PROGRAM_NAME, $SAFE, $VERBOSE, $\, $_, $`, $binding,
$stderr, $stdin, $stdout, $~

A few:
$0 Program name (>> $0 => "irb")
$, Used by print and Array.join. (>> $, = "-"; [1,2].join=> "1-2")
$: Directories where load and require look for files. (Try it!)
$_ Last string read by Kernel.gets and Kernel.readline. (Try it!)

More: ruby-doc.org/core-2.7.0/doc/globals_rdoc.html.

Predefined global variables

CSC 372 Fall 2022, Ruby Slide 108

https://ruby-doc.org/core-2.7.0/doc/globals_rdoc.html

Wikipedia says,
"In computer programming, a sigil is a symbol attached to a variable
name, showing the variable's datatype or scope, usually a prefix, as in
$foo, where $ is the sigil.

"Sigil, from the Latin sigillum, meaning a 'little sign', means a sign or
image supposedly having magical power."

"In 1999 Philip Gwyn adopted the term 'to mean the funny character at
the front of a Perl variable'."

Are reverse! and nan? examples of sigils?

Lots more: https://en.wikipedia.org/wiki/Sigil_(computer_programming)

Sidebar: "sigil"

CSC 372 Fall 2022, Ruby Slide 109

https://en.wikipedia.org/wiki/Sigil_(computer_programming)

Ordinary variables are local to the method in which they're created.

% cat scope1.rb
x = 10

puts "top-level: x = #{x}"

def f
puts "in f: x = #{x}"

end

f

% ruby scope1.rb
top-level: x = 10
scope1.rb:6:in 'f': undefined local variable or method `x' for
main:Object (NameError)

Local variables are local

CSC 372 Fall 2022, Ruby Slide 110

A rule in Ruby is that if an identifier begins with a capital letter, it
represents a constant.

The first assignment to a constant is considered initialization.
>> MAX_ITEMS = 100

Assigning to an already initialized constant is permitted but a warning is
generated.

>> MAX_ITEMS = 200
(irb):9: warning: already initialized constant MAX_ITEMS
(irb):8: warning: previous definition of MAX_ITEMS was here
=> 200

Modifying an object referenced by a constant does not produce a warning:
>> L = [10,20]
=> [10, 20]

>> L.push 30
=> [10, 20, 30]

Constants

CSC 372 Fall 2022, Ruby Slide 111

Like globals, constants can be accessed in all methods.
% cat constant1.rb
MAX_LEVELS = 1000

def f
puts "f:max levels = #{MAX_LEVELS}"

end

f

puts "top-level:max levels = #{MAX_LEVELS}"

% ruby constant1.rb
f:max levels = 1000
top-level:max levels = 1000

Find out: Can a constant be created in a method?

Constants

CSC 372 Fall 2022, Ruby Slide 112

Pitfall: If a method is given a name that begins with a capital letter, it
compiles ok but it can't be run!

>> def Hello; puts "hello!" end

>> Hello
NameError: uninitialized constant Hello

Constants, continued

CSC 372 Fall 2022, Ruby Slide 113

There are a number of predefined constants. Here are a few:

RUBY_VERSION
The version of Ruby that's running.

ARGV
An array holding the command line arguments, like the argument to
main in a Java program.

ENV
An object holding the "environment variables" (shown with env on
UNIX machines and set on Windows machines.)

STDIN, STDOUT
Instances of the IO class representing standard input and standard
output (the keyboard and screen, by default).

Constants, continued

CSC 372 Fall 2022, Ruby Slide 114

Type Checking

CSC 372 Fall 2022, Ruby Slide 115

"The Java programming language is a statically typed language, which
means that every variable and every expression has a type that is known at
compile time."

-- The Java Language Specification, Java SE 17 Edition

Example: assume the following...
int i = ...; String s = ...; Object o = ...; static long f(int n);

What are the types of the following expressions?
i + 5
i + s
s + o
o + o
o.hashCode()
f(i.hashCode()) + 3F
i = i + s

Did we need to know any values or execute any code to know those types?
No. Our analysis only required types and operations.

Static typing

CSC 372 Fall 2022, Ruby Slide 116

If there's a type error in a Java program, javac doesn't produce a .class
file—there's nothing to run.

% cat X.java
public class X {

public static void main(String args[]) {
System.out.println("Running!");
System.out.println(3 + new int[5]);
}}

% javac X.java
X.java:4: error: bad operand types for binary operator '+'

System.out.println(3 + new int[5]);
^

% java X
Error: Could not find or load main class X
• The file X.class wasn't created.
• What would a similar Python program do?

Static typing, continued

CSC 372 Fall 2022, Ruby Slide 117

Java does type checking based on the declared types of variables and the
intrinsic types of literals.

Haskell supports type declarations but we know that it also provides type
inferencing:

> :set +t
> f x y z = (isLetter $ head $ [x] ++ y) && z
f :: Char -> [Char] -> Bool -> Bool

Haskell, too, is a statically typed language—the type of every expression
can be determined by analyzing the code.

Static typing, continued

CSC 372 Fall 2022, Ruby Slide 118

With a statically typed language:
• The type for all expressions is determined when a body of code is

compiled/loaded/etc.

• All* type inconsistencies that exist are discovered at that time.

• Execution “not allowed” if errors exist.
o Sometimes manifested by no "executable" file being produced.
o With ghci, functions in a file with an error aren't loaded.

Static typing, continued

CSC 372 Fall 2022, Ruby Slide 119

Important:
A statically typed language lets us guarantee that certain kinds of errors
don't exist without having to run any code.

If a Java program compiles, we can be absolutely sure no errors of the
following sort (and more) exist:
• Dividing a string by a float

• Concatenating a number with a list

• Subscripting a value that's not an array

• Invoking a method with the wrong number of arguments

• Forgetting a return at the end of a method that returns a value

• Misspelling the name of a method (true?)

Exception: Errors due to casts and boxing/unboxing can still exist!

Static typing, continued

CSC 372 Fall 2022, Ruby Slide 120

How often did your Haskell code run correctly as soon as the type errors
were fixed?

How does that compare with your experience with Java?
With C?
With Python?
With others?

Paul Hudak of Yale wrote,
"The best news is that Haskell's type system will tell you if your
program is well-typed before you run it. This is a big advantage
because most programming errors are manifested as typing errors."

Do you agree with Hudak?

Static typing, continued

CSC 372 Fall 2022, Ruby Slide 121

In Java, variables are declared to have a type.

Variables in Ruby do not have a type. Instead, type is associated with
values.

>> x = 10
>> x.class # What's the class of the object held by x?
=> Integer

>> x = "ten"
>> x.class
=> String

>> x = 2**100
>> x.class
=> Integer

Variables in Ruby have no type

CSC 372 Fall 2022, Ruby Slide 122

Array's sample method returns a random element of the receiver.
>> a = ["one", 2, [3], 4.0]

>> a.sample => [3]

>> a.sample => "one"

What's the type of a.sample + a.sample?
>> (a.sample + a.sample).class
=> String

>> (a.sample + a.sample).class
=> Float

The type of a.sample, a.sample + a.sample, a.sample[0], etc. is
unknown until the expression is evaluated!

Methods in Ruby have no type

CSC 372 Fall 2022, Ruby Slide 123

Ruby is a dynamically typed language.

Consider this Ruby method:
def f x, y, z

return x[y + z] * x.foo
end

For some combinations of types it will produce a value. For others it will
produce a TypeError.

With a dynamically typed language, types are not checked until an
expression is evaluated.

Another way to say it:
There is no static analysis of the types in Ruby expressions.

Dynamic typing

CSC 372 Fall 2022, Ruby Slide 124

With dynamic typing, no type checking is done when code is loaded.
Instead, types of values are checked during execution, as each operation is
performed.

Consider this Ruby code:
while line = gets

puts(line[-x] + y)
end

What types must be checked each time through that loop?
• Is gets a method or a value?

• Can x be negated?

• Is line subscriptable with -x?

• Can line[-x] and y be added?

• Is puts a method?

Dynamic typing, continued

CSC 372 Fall 2022, Ruby Slide 125

One performance cost with a dynamically typed language is execution-
time type checking.

Evaluating the expression x + y might require decision-making like this:
if both x and y are integers

add them
else if both x and y are floats

add them
else if one is a float and the other an integer

convert the integer to a float and add them
else if both x and y are strings

concatenate them
...and more...

If that x + y is in a loop, that decision making is done every time around.

Note: The above "implementation" can be improved upon in many ways.

Performance implications with dynamic typing

CSC 372 Fall 2022, Ruby Slide 126

In contrast, consider this Java method:
int count(int wanted, int[] values)
{

int result = 0;
for (int value: values)

if (value == wanted)
result += 1;

return result;
}

Performance, continued

Generated virtual machine code:
0: iconst_0 18: aload_3
1: istore_2 19: iload 5
2: aload_1 21: iaload
3: astore_3 22: istore 6
4: aload_3 24: iload 6
5: arraylength 26: iload_0
6: istore 4 27: if_icmpne 33
8: iconst_0 30: iinc 2, 1
9: istore 5 33: iinc 5, 1

11: iload 5 36: goto 11
13: iload 4 39: iload_2
15: if_icmpge 39 40: ireturn

See also https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings CSC 372 Fall 2022, Ruby Slide 127

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

With respect to static typing, what are the implications of dynamic
typing for...

Loading ("compilation") speed?
Probably faster.

Execution speed?
Probably slower.

The likelihood of code to be correct?
It depends...

Static vs. dynamic typing

CSC 372 Fall 2022, Ruby Slide 128

A long-standing question in industry:
Can a good test suite find type errors in dynamically typed code as
effectively as static type checking?

What's a "good" test suite?
Full code coverage? (every line executed by some test)
Full path coverage? (all combinations of paths exercised)
How about functions whose return type varies?

But wouldn't we want a good test suite no matter what language we're
using?

"Why have to write tests for things a compiler can catch?"
––Brendan Jennings, SigFig

Can testing compensate?

CSC 372 Fall 2022, Ruby Slide 129

What does the user of software care about?
• Dynamic vs. static typing? Ruby vs. Java?

o No!

• Software that works
o Facebook game vs. radiation therapy system

• Fast enough
o When does 10ms vs. 50ms matter?

• Better sooner than later
o "First to volume" can be the key to success for a company.
o A demo that's a day late for a trade show isn't worth much.

• Affordable
o "People will pay to stop the pain." – Doug Higgins
o I'd pay a LOT for a great system for writing slides.

What ultimately matters?

CSC 372 Fall 2022, Ruby Slide 130

Java is statically typed but casts introduce the possibility of a type
error not being detected until execution.

C is statically typed but has casts that allow type errors during
execution that are never detected.

Ruby, Python, and Icon have no static type checking whatsoever, but
type errors during execution are always detected.

An example of a typing-related trade-off in execution time:
• C spends zero time during execution checking types.
• Java checks types during execution only in certain cases.
• Languages with dynamic typing check types on every operation,

at least conceptually.

Variety in type checking

CSC 372 Fall 2022, Ruby Slide 131

A common misunderstanding:
Python and Ruby are interpreted languages.
Java and C are compiled languages.

The fact:
Interpretation and compilation are attributes of an implementation of a
language, not the language itself!

A simple, polarized viewpoint:
• Interpreters execute source code as-is.
• Compilers translate source code into machine code.

Reality:
• Language implementations use a variety of techniques that each fall

along a broad spectrum from interpretation to compilation.
• A particular implementation of any language can be made to fall at

either end of that spectrum, or anywhere in the middle.

Sidebar: Interpreted or compiled?

CSC 372 Fall 2022, Ruby Slide 132

Duck Typing

CSC 372 Fall 2022, Ruby Slide 133

REPLACEMENTS!
Discard 133-157 in the prior set!

Definition from Wikipedia (c.2015):
Duck typing is a style of typing in which an object's methods and
properties determine the valid semantics, rather than its inheritance
from a particular class or implementation of an explicit interface.

Two examples of Ruby's for loop:
for i in 1..20 do ...statements... end

for word in line.split do ...statements... end

for only requires the "in" expression to produce an object that has an
each method.

This is an example of duck typing, so named based on the "duck test":
If it looks like a duck, swims like a duck, and quacks like a duck, then
it probably is a duck.

The value produced by the "in" expression qualifies as a "duck" if it has
an each method.

Duck typing

CSC 372 Fall 2022, Ruby Slide 134

For reference:
Duck typing is a style of typing in which an object's methods and
properties determine the valid semantics, rather than its inheritance
from a particular class or implementation of an explicit interface.

––Wikipedia (c.2015)

• Duck typing is both a technique and a mindset.

• Ruby both facilitates and uses duck typing.

• We don't say Ruby is duck typed. We say that Ruby allows duck
typing.

Duck typing, continued

CSC 372 Fall 2022, Ruby Slide 135

The key characteristic of duck typing is that we only care about whether
an object supports the operation(s) we require.

Consider this method:

def double x
x * 2 # think of this as x.*(2)

end

What operation(s) does double require that x support?
x must have a .*(n) method that works for n = 2.

Duck typing, continued

CSC 372 Fall 2022, Ruby Slide 136

>> double 10
=> 20

>> double "abc"
=> "abcabc"

>> double [1,2,3]
=> [1, 2, 3, 1, 2, 3]

>> double Rational(3)
=> (6/1)

>> double 1..10
NoMethodError: undefined method `*' for 1..10:Range

• Is it good or bad that double operates on so many different types?

• Is double polymorphic?

Duck typing, continued

For reference:
def double x

x * 2
end

CSC 372 Fall 2022, Ruby Slide 137

Here's wrap from slide 98. What does it require of s and wrapper?
def wrap s, wrapper = "()"

wrapper[0] + s + wrapper[-1]
end

>> wrap "test", "<>"
=> "<test>"

Will the following work?
>> wrap "test", ["<<<",">>>"]
=> "<<<test>>>"

>> wrap [1,2,3], [["..."]]
=> ["...", 1, 2, 3, "..."]

>> wrap 10,3
=> 11

Duck typing, continued

CSC 372 Fall 2022, Ruby Slide 138

Should a method check the type of parameters?
def double x

if [Integer, Float, String, Array, Rational].include? x.class
x * 2

else raise "Can't double a #{x.class}!" end
end

What does the following suggest?
>> double(Complex 'i')
RuntimeError (Can't double a Complex!)

• It's easy to forget a type that should be allowed!

• What about types added later that do handle .*(2)?

Bottom line: Checking for types is the antithesis of duck typing.

Duck typing, continued

CSC 372 Fall 2022, Ruby Slide 139

Recall: The key characteristic of duck typing is that we only care about
whether an object supports the operation(s) we require.

Does the following Java method exemplify duck typing?

static double sumOfAreas(Shape shapes[]) {
double area = 0.0;
for (Shape s: shapes)

area += s.getArea();
return area;
}

No! sumOfAreas requires an array of Shape instances.

Could we change Shape to Object above? Would that be duck typing?

Does duck typing require a language to be dynamically typed?

Duck typing, continued

CSC 372 Fall 2022, Ruby Slide 140

Iterators and blocks

CSC 372 Fall 2022, Ruby Slide 141

In Ruby, an iterator is a method that can invoke a block.

One of the many iterators in the Array class is each. Example:

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
element: 10
element: twenty
element: [30, 40]
=> [10, "twenty", [30, 40]]

What's the block in this case?

How many times is the block invoked?

What is |e|? Is it required?

What does Array#each return?

Iterators and blocks

CSC 372 Fall 2022, Ruby Slide 142

Array#each is typically used to create side effects of interest, like
printing values or changing variables.

However, with some iterators the value returned is of principle interest.

See if you can predict what the following iterators do.

>> [10, "twenty", 30].collect { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

>> [5,4,10,7].inject([[0,0]]) {|a, e| a + [[e, a[-1][1]+e]]}
=> [[0, 0], [5, 5], [4, 9], [10, 19], [7, 26]]

What do these remind you of?

Iterators and blocks, continued

CSC 372 Fall 2022, Ruby Slide 143

We can use [30, 20, 10, 40].sort to sort an array but we can also call
Array#sort with a block:

>> [30, 20, 10, 40].sort { |a,b| a <=> b}
=> [10, 20, 30, 40]

Speculate: What values is sort passing to the block?

>> [30, 20, 10, 40].sort { |a,b| puts "call: #{a} #{b}"; a <=> b}
call: 30 10
call: 10 40
call: 30 40
call: 20 30
call: 10 20
=> [10, 20, 30, 40]

How could we reverse the order of the sort?

Iterators and blocks, continued

CSC 372 Fall 2022, Ruby Slide 144

Problem: Sort the words in a sentence by descending length.

>> "a longer try first".split.sort { }
=> ["longer", "first", "try", "a"]

What does Array#sort do if not given a block?
>> "a longer try first".split.sort
=> ["a", "first", "longer", "try"]

Iterators and blocks, continued

|a,b| b.size <=> a.size

CSC 372 Fall 2022, Ruby Slide 145

TODO: maybe a good example would be to make [3,"5"].sort work

We can query the "ancestors" of a class like this:
>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

For now we'll simply say that an object can call methods of its ancestors.

Enumerable has a number of iterators. Here are some:
>> [2,4,5].any? { |n| n.odd? }
=> true

>> [2,4,5].all? { |n| n.odd? }
=> false

>> [1,10,17,25].find { |n| n % 5 == 0 }
=> 10

Iterators in Enumerable

CSC 372 Fall 2022, Ruby Slide 146

At hand:
A object can call methods of its ancestors. An ancestor of Array is
Enumerable.

Another Enumerable iterator is max:

>> ["apple", "banana", "grape"].max {
|a,b| v = "aeiou"
a.count(v) <=> b.count(v)
}

=> "banana"

The methods in Enumerable use duck typing. They require only an
each method except for min, max, and sort, which also require <=>.

See http://ruby-doc.org/core-2.7.0/Enumerable.html

Iterators in Enumerable

CSC 372 Fall 2022, Ruby Slide 147

>> 3.times { puts "Ding!" }
Ding!
Ding!
Ding!
=> 3

>> 3.downto(1) {|i| puts i }
3
2
1
=> 3

>> 1.step(2,Rational(1,3)) {|i| puts i}
1
4/3
5/3
2/1
=> 1

Numeric iterators

CSC 372 Fall 2022, Ruby Slide 148

In Ruby 1.9, String lost its each method!
>> "abc".each { |c| puts c }
NoMethodError (undefined method `each' for "abc":String)

Use each_char instead:
>> "abc".each_char { |c| puts c }
a
b
c
=> "abc"

Any ideas about the behavior of the following?
>> i = 0
>> "Mississippi".gsub("i") { (i += 1).to_s }
=> "M1ss2ss3pp4"

Some String iterators

CSC 372 Fall 2022, Ruby Slide 149

Which is better? This,

for name in "x".methods do
puts name if name.to_s.include? "!"

end

or this?

"x".methods.each {|name| puts name if name.to_s.include? "!" }

Sidebar: Iterate with each or use a for loop?

CSC 372 Fall 2022, Ruby Slide 150

An alternative to enclosing a block in braces is to use do/end:

a.each do
|element|
print "element: #{element}\n"

end

Common style is to use brackets for one-line blocks, like previous
examples, and do...end for multi-line blocks.

The opening brace or do for a block must be on the same line as the
iterator invocation.

The "do" syntax for blocks

CSC 372 Fall 2022, Ruby Slide 151

sumnums.rb computes some simple statistics for lines of zero or more
integers read from standard input:

$ cat nums.dat
5 10 0 50
200

1 2 3 4 5 6 7 8 9 10

$ ruby sumnums.rb < nums.dat
total = 320, n = 15, average = 21.3333

Let's write it! Notes:
• Use nested iterators/blocks. (Don't use fors!)
• Kernel.readlines returns an array of all lines of standard input:

readlines => ["5 10 0 50\n", " 200\n", "1 2 3 4 5 6 7 8...\n"]
• " 10 20 30\n".split => ["10", "20", "30"]
• "10".to_i => 10

Problem: sumnums.rb

CSC 372 Fall 2022, Ruby Slide 152

One solution:
total = n = 0
readlines.each do
|line|
line.split.each do
|word|
total += word.to_i
n += 1

end
end
printf("total = %d,n =%d, average =%g\n",

total, n, total / n.to_f) if n != 0

Or, if you can't let go of Haskell...
nums = STDIN.read.split.map {|s| s.to_i }
total = nums.inject(0) {|sum,e| sum + e }
n = nums.size
printf(...) if n != 0

sumnums.rb solution

CSC 372 Fall 2022, Ruby Slide 153

If a variable isn't created before a block, it is local to the block.
[7,1,3].each {|e| x = e * 2; ...}
puts x # x is undefined here!

If a variable is created before a block, references inside the block apply to
that outer variable.

x = 5
[7,1,3].each {|e| x = e * 2; ...}
puts x # prints 6

We can follow a block's parameter(s) with a list of block-local variables.
x = 5; y = 6
[7,1,3].each {|e; x, y| ... x = 10; y = 20; ...} # best practice
puts [x,y] # prints [5,6]

You can try the above cases and more with blockscope2.rb.

Scoping rules with blocks

CSC 372 Fall 2022, Ruby Slide 154

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
>> sum = 0; [1,2,3].each { |x| sum += x }

Both invoke blocks with each element in turn for side-effect(s).
Result of each uninteresting.

>> [10,20,30].map { |x| x * 2 } => [20, 40, 60]
Invokes block with each element in turn and returns array of block
results.

>> [1,2,4,5].all? { |n| n.odd? } => false
Invokes block with each element in turn; each block result
contributes to final result of true or false, possibly short-circuiting.

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 } => ["a", [3]]
Invokes block to determine membership in final result.

>> "try this first".split.sort {|a,b| b.size <=> a.size } => [...]
Invokes block an arbitrary number of times; each block result guides
further computation towards final result.

Various types of iteration side-by-side

CSC 372 Fall 2022, Ruby Slide 155

The Hash class

CSC 372 Fall 2022, Ruby Slide 156

Ruby's Hash class is similar to the Map family in Java and dictionaries in
Python. It's like an array that can be subscripted with values of any type.

The expression { } (empty curly braces) creates a Hash:
>> numbers = {} => {}

>> numbers.class => Hash

Subscripting with a key and assigning a value stores that key/value pair.
>> numbers["one"] = 1

>> numbers["two"] = 2

>> numbers
=> {"one"=>1, "two"=>2}

>> numbers.size
=> 2

The Hash class

CSC 372 Fall 2022, Ruby Slide 157

At hand:
>> numbers
=> {"one"=>1, "two"=>2}

Subscripting with a key fetches the associated value.

>> numbers["two"]
=> 2

What will happen with a non-existent key?
>> numbers["three"]
=> nil

Hash, continued

CSC 372 Fall 2022, Ruby Slide 158

At hand:
>> numbers => {"one"=>1, "two"=>2}

The Hash class has many methods. Here's a sampling:

>> numbers.keys
=> ["one", "two"]

>> numbers.invert
=> {1=>"one", 2=>"two"}

>> numbers.flatten
=> ["one", 1, "two", 2]

>> numbers.to_a
=> [["one", 1], ["two", 2]]

Hash, continued

CSC 372 Fall 2022, Ruby Slide 159

Here's the literal syntax with key/value pairs:
>> h = {"i" => 7, "a" => [3,1,5], "s" => "test"}

The value associated with a key can be changed in various ways:

>> h["i"] += 3

>> h["a"].unshift 11

>> h["s"] << "er"

>> h
=> {"i"=>10, "a"=>[11, 3, 1, 5], "s"=>"tester"}

Hash, continued

CSC 372 Fall 2022, Ruby Slide 160

Python:
>>> d = {}

>>> d[[10,20,30]] = 3
TypeError: unhashable type: 'list'

>>> d[d] = d
TypeError: unhashable type: 'dict'

Ruby:
>> h = {}

>> h[[10,20,30]] = 3

>> h[h] = h (Ralph Griswold felt strongly that this should work!)

>> h
=> {[10, 20, 30]=>3, {...}=>{...}}

A contrast with Python

CSC 372 Fall 2022, Ruby Slide 161

A hash to work with:
>> h = {"a" => [10], 2 => [3,5,3], true => [2,5]}

Let's iterate over the key/value pairs in h:
>> h.each {|k,v| puts "k=#{k}, v=#{v}"}
k=a, v=[10]
k=2, v=[3, 5, 3]
k=true, v=[2, 5]
=> {"a"=>[10], 2=>[3, 5, 3], true=>[2, 5]}

Here's select on a Hash:
>> s = h.select {|k,v| v.size.odd? }
=> {"a"=>[10], 2=>[3, 5, 3]}

Iterators and hashes

CSC 372 Fall 2022, Ruby Slide 162

An earlier simplification: If a key is not found, nil is returned.
Full detail: If a key is not found, the default value of the hash is returned.

The default value of a hash defaults to nil but an arbitrary default value
can be specified when creating a hash with new:

>> h = Hash.new("Go Fish!") # Example from ruby-doc.org

>> h.default
=> "Go Fish!"

>> h["x"] = [1,2]

>> h["x"]
=> [1, 2]

>> h["y"]
=> "Go Fish!"

Default values

CSC 372 Fall 2022, Ruby Slide 163

Problem: write tally.rb, to tally occurrences of blank-separated "words"
on standard input.

% ruby tally.rb
to be or
not to be
^D
{"to"=>2, "be"=>2, "or"=>1, "not"=>1}

How can we approach it? (Don't peek!)

tally.rb

CSC 372 Fall 2022, Ruby Slide 164

Solution:

Use default of zero so += 1 works
counts = Hash.new 0

readlines.each do
|line|
line.split.each do

|word|
counts[word] += 1

end
end

Like puts counts.inspect
p counts

tally.rb

We want:
% ruby tally.rb
to be or
not to be
^D
{"to"=>2, "be"=>2,
"or"=>1, "not"=>1}

Contrast with while/for vs. iterators:
counts = Hash.new 0
while line = gets do

for word in line.split do
counts[word] += 1

end
end
p counts

CSC 372 Fall 2022, Ruby Slide 165

The output of tally.rb is not customer-ready!

{"to"=>2, "be"=>2, "or"=>1, "not"=>1}

Hash.sort produces an array of key/value arrays ordered by the keys, in
ascending order:

>> counts.sort
=> [["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:
Word Count
be 2
not 1
or 1
to 2

tally.rb, continued

CSC 372 Fall 2022, Ruby Slide 166

At hand:
>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:
([["Word","Count"]] + counts.sort).each do

|k,v| printf("%-7s %5s\n", k, v)
end

Notes:
• The minus in the format %-7s left-justifies, in a field of width seven.
• As a shortcut for easy alignment, the column headers are put at the start

of the array, as a fake key/value pair.
• We use %5s instead of %5d to format the counts and accommodate

"Count", too. (This works because %s causes to_s to be invoked on
the value being formatted.)

• A next step might be to size columns based on content.

tally.rb, continued
Word Count
be 2
not 1
or 1
to 2

CSC 372 Fall 2022, Ruby Slide 167

• By default, key/value pairs are sorted by keys.

• We can override that behavior with a block.

• The block is repeatedly invoked with two key/value pairs, like
["be", 2] and ["or", 1].

How does the following block affect the sort?
counts.sort do

|a,b|
r = b[1] <=> a[1]
if r != 0 then r else a[0] <=> b[0] end

end
=> [["be", 2], ["to", 2], ["not", 1], ["or", 1]]

Words with the same count are alphabetically ordered.

More on Hash sorting

CSC 372 Fall 2022, Ruby Slide 168

Let's turn tally.rb into a cross-reference program:
% cat xref.1
to be or
not to be is not
to be the question

% ruby xref.rb < xref.1
Word Lines
be 1, 2, 3
is 2
not 2
or 1
question 3
the 3
to 1, 2, 3

How can we approach it? (Don't peek!)

xref.rb

% cat tally.rb
counts = Hash.new 0

readlines.each do
|line|
line.split(" ").each do

|word|
counts[word] += 1

end
end

CSC 372 Fall 2022, Ruby Slide 169

Changes:
• Use each_with_index to get line numbers (0-based).
• Turn counts into refs, a Hash whose values are arrays.
• For each word on a line...

– If word hasn't been seen, add a key/value pair with word and an
empty array.

– Add the current line number to refs[word]

Revised:
refs = {}
readlines.each_with_index do

|line, num|
line.split(" ").each do

|word|
refs[word] = [] unless refs.member? word
refs[word] << num unless refs[word].member? num

end
end

xref.rb, continued

CSC 372 Fall 2022, Ruby Slide 170

If we add "p refs" after that loop, here's what we see:
% cat xref.1
to be or
not to be is not
to be the question

% ruby xref.rb < xref.1
{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1],
"is"=>[1], "the"=>[2], "question"=>[2]}

We want:
% ruby xref.rb < xref.1
Word Lines
be 1, 2, 3
is 2
not 2
...

xref.rb, continued

CSC 372 Fall 2022, Ruby Slide 171

At hand:
{"to"=>[0, 1, 2], "be"=>[0, 1, 2], "or"=>[0], "not"=>[1], ...

We want:
Word Lines
be 1, 2, 3
...

Let's get fancy and size the "Word" column based on the largest word:
max_len = refs.map {|k,v| k.size}.max
fmt = "%-#{max_len}s %s\n"

print fmt % ["Word", "Lines"]
refs.sort.each do

|k,v|
printf(fmt, k, v.map {|n| n+1} * ", ")

end

xref.rb, continued

CSC 372 Fall 2022, Ruby Slide 172

Ex: "%-9s %s\n"

Let's build a hash where the keys are word lengths and the values are lists
of words with that length.

For the words
"it", "and", "or"

we'd want
{2=>["it", "or"], 3=>["and"]}

First attempt:
>> h = Hash.new [] # Our hope: The initial value for each

key will be an empty list.

>> ["it", "and", "or"].each {|w| h[h.size] << w }

>> h
=> {}

A Hash.new pitfall

CSC 372 Fall 2022, Ruby Slide 173

Solution:
>> h = Hash.new { |h,k| h[k] = [] }

>> ["it", "and", "or"].each {|w| h[w.size] << w }

>> h
=> {2=>["it", "or"], 3=>["and"]}

If Hash.new is called with a block, that block is invoked when a non-
existent key is accessed.

The block is passed the Hash and the key.

What does the block above do when a key doesn't exist?
It adds a key/value pair that associates the key with a new, empty array.

Challenge: Revise xref.rb to take advantage of this behavior.

A Hash.new pitfall, continued

CSC 372 Fall 2022, Ruby Slide 174

Defining classes

CSC 372 Fall 2022, Ruby Slide 175

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of Counter:

c1 = Counter.new
c1.click
c1.click

puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click

puts c2 # Output: c2's count is 1

c2.click
puts "c2 = #{c2.count}" # Output: c2 = 2

A tally counter

CSC 372 Fall 2022, Ruby Slide 176

Here is a partial implementation of Counter:
class Counter

def initialize(label = "Counter")
...

end
...

end # Counter.rb

• Class definitions are bracketed with class and end.
• Class names must start with a capital letter.
• Unlike Java there are no filename requirements.

The initialize method is the constructor, called when new is invoked.
c1 = Counter.new
c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

Counter, continued

CSC 372 Fall 2022, Ruby Slide 177

Here is the body of initialize:

class Counter
def initialize(label = "Counter")

@count = 0
@label = label

end
...

end

Instance variables are identified by prefixing them with @. (A sigil!)

An instance variable comes into existence when it is assigned to. The
code above creates @count and @label.

Note: There are no instance variable declarations!

Just like Java, each object has its own copy of instance variables.

Counter, continued

CSC 372 Fall 2022, Ruby Slide 178

Problem: Fill in click and reset methods.

class Counter
def initialize(label = "Counter")

@count = 0
@label = label

end

def click
@count += 1

end

def reset
@count = 0

end
end

Counter, continued

CSC 372 Fall 2022, Ruby Slide 179

In Ruby:
• Only an object's methods can access its instance variables.

(An object's instance variables cannot be accessed by any other object.)

Problem: Implement count (gets the count) and to_s for Counter:
>> c1 = Counter.new "c1"
>> c1.count => 0
>> c1.click
>> c1.to_s => "c1's count is 1"

Solutions:
def count

@count
end

def to_s
"#{@label}'s count is #{@count}"

end

Counter, continued

CSC 372 Fall 2022, Ruby Slide 180

Full source for Counter thus far:
class Counter

def initialize(label = "Counter")
@count = 0; @label = label

end

def click
@count += 1

end

def reset
@count = 0

end

def count # Note the convention: count, not get_count
@count

end

def to_s
"#{@label}'s count is #{@count}"

end
end # Counter.rb

Common error: omitting an instance variable's @ sigil.

Counter, continued

CSC 372 Fall 2022, Ruby Slide 181

Consider this class: (instvar.rb)
class X

def initialize n
case n

when 1 then @x = 1
when 2 then @y = 1
when 3 then @x = @y = 1

end; end; end

What's interesting about the following?
>> X.new 1 => #<X:0x00000101176838 @x=1>
>> X.new 2 => #<X:0x00000101174970 @y=1>
>> X.new 3

Instances of a class can have differing sets of instance variables!

An interesting thing about instance variables

=> #<X:0x0000010117aaa0 @x=1, @y=1>

CSC 372 Fall 2022, Ruby Slide 182

If class X ... end has been seen and another class X ... end is
encountered, the second definition adds and/or replaces methods.

Let's confirm Counter has no label method.
>> c = Counter.new "ctr 1"

>> c.label
NoMethodError: undefined method `label' ...

Now we add a label method: (we're typing lines into irb but could load)
>> class Counter
>> def label; @label; end
>> end

>> c.label => "ctr 1"

What's an implication of this capability?
We can add methods to classes written by others!

Addition of methods

CSC 372 Fall 2022, Ruby Slide 183

Icon's unary ? operator can be used to generate a random number or select
a random value from an aggregate.

Icon Evaluator, Version 1.1
][?10

r1 := 3 (integer)

][?"abcd"
r2 := "b" (string)

I miss that. Let's add something similar to Ruby!

There's no unary ? to overload in Ruby. Instead we'll add a rand method
to Integer and String.

If we call Kernel.rand with a Integer n it returns a random Integer r
such that 0 <= r < n.

Addition of methods, continued

CSC 372 Fall 2022, Ruby Slide 184

Here is random.rb:
class Integer

def rand
Kernel.rand(self)+1

end
end

class String
def rand

self[size.rand-1] # Uses Integer.rand
end

end

>> load "random.rb"
>> 12.times { print 6.rand, " " }
2 1 2 4 2 1 4 3 4 4 6 3

>> 8.times { print "HT".rand, " " }
H H T H T T H H

Addition of methods, continued

MONKEY

PATCHING

CSC 372 Fall 2022, Ruby Slide 185

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class Y; end)
nil
=> nil

>> class Z; puts "here"; end
here
=> nil

Class definitions are executable code!

An interesting thing about class definitions

CSC 372 Fall 2022, Ruby Slide 186

At hand: A class definition is executable code. The following class
definition uses a case statement to selectively execute defs for methods.

class X
print "What methods would you like? "
gets.split.each do |m|

case m
when "f" then def f; "from f" end
when "g" then def g; "from g" end
when "h" then def h; "from h" end
end

end
end

Use:
>> load "dynmethods1.rb"
What methods would you like?
>> x = X.new => #<X:0x007fc45c0b0f40>
>> x.f => "from f"
>> x.g => "from g"
>> x.h
NoMethodError: undefined method `h' for #<X:...>

Class definitions are executable code

f g

CSC 372 Fall 2022, Ruby Slide 187

Kernel.eval parses a string containing Ruby source code and executes it.
>> s = "abc"; n = 3

>> eval "x = s * n"
=> "abcabcabc"

>> x
=> "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse
=> "cba"

Two of several details about eval and scoping:
• eval uses variables from the current scope.
• An assignment to x is reflected in the current scope.

Sidebar: Fun with eval

CSC 372 Fall 2022, Ruby Slide 188

With eval we could write a method that adds methods to Integer:

>> units("foot/feet=1,yard(s)=3,mile(s)=5280")

>> 10.yards.in_feet
=> 30.0

>> units("second(s)=1,minute(s)=60,hour(s)=3600,day(s)=86400")

>> (1.day + 9.hours + 45.minutes).in_days
=> 1.40625

Sidebar, continued

CSC 372 Fall 2022, Ruby Slide 189

mk_methods.rb prompts for a method name, parameters, and method body. It then creates that method and adds it to class X.

>> load "mk_methods.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? x
What shall it do? x[-1]
Method last(x) added to class X

What method would you like? ^D => true
>> x = X.new => #<X:0x0000010185d930>
>> x.add(3,4) => 7
>> x.last "abcd" => "d"

Here is mk_methods.rb. Note that the body of the class is a while loop.
class X

while (print "What method would you like? "; name = gets)
name.chomp!

print "Parameters? "
params = gets.chomp

print "What shall it do? "
body = gets.chomp

code = "def #{name} #{params}; #{body}; end"

eval(code)
print("Method #{name}(#{params}) added to class #{self}\n\n");

end
end

Is this a useful capability or simply fun to play with?

Sidebar, continued

CSC 372 Fall 2022, Ruby Slide 190

Does eval pose any risks?

while (print("? "); line = gets)
eval(line)

end # eval1.rb

Interaction: (input is underlined)
% ruby eval1.rb
? puts 3*5
15
? puts "abcdef".size
6
? system("date")
Sun Mar 25 23:42:58 MST 2018
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

Sidebar: Risks with eval

CSC 372 Fall 2022, Ruby Slide 191

At hand:
% ruby eval1.rb
? system("rm –rf ...")
...
? system("chmod 777 ...")
...

But, we can do those things without using Ruby!

eval gets risky when we can't trust the source of the data. Examples:
• A calculator web app calls eval with the user's input. (Bonehead!)
• A friend with a compromised system sends us a data file. (Subtle!)

It's very easy to fall victim to a variety of code-injection attacks when
using eval.

The define_method (et. al) machinery is often preferred over eval but
risks still abound!

Related topic: Ruby supports the notion of tainted data.

Sidebar, continued
while (print("? "); line = gets)

eval(line)
end # eval1.rb

CSC 372 Fall 2022, Ruby Slide 192

Like Java, Ruby provides a way to associate data and methods with a class
itself rather than each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how
many counters have been created.

class Counter
@@created = 0 # Must precede any use of @@created
def initialize(label = "Counter")

@count, @label = 0, label
@@created += 1

end
end

Note: Unaffected methods are not shown.

Class variables and methods

CSC 372 Fall 2022, Ruby Slide 193

To define a class method, simply prefix the method name with the name of
the class:

class Counter
@@created = 0
...
def Counter.created

@@created
end

end

Usage:
>> Counter.created => 0
>> c = Counter.new
>> Counter.created => 1
>> 5.times { Counter.new }
>> Counter.created => 6

Class variables and methods, continued

CSC 372 Fall 2022, Ruby Slide 194

By default, methods are public. If private appears on a line by itself,
subsequent methods in the class are private. Ditto for public.

class X
def f; puts "in f"; g end # Note: calls g

private
def g; puts "in g" end

end

Usage:
>> x = X.new
>> x.f
in f
in g
>> x.g
NoMethodError: private method `g' ...

Speculate: What are private and public? Keywords?
Methods in Module! (Module is an ancestor of Class.)

A little bit on access control

CSC 372 Fall 2022, Ruby Slide 195

If Counter were in Java, we might provide methods like void
setCount(int n) and int getCount().

Our Counter already has a count method as a "getter".

For a "setter" we implement count=, with a trailing equals sign.
def count= n

puts "count=(#{n}) called" # Just for observation (LHtLAL)
@count = n unless n < 0

end

Usage:
>> c = Counter.new
>> c.count = 10
count=(10) called
>> c
=> Counter's count is 10

Getters and setters

CSC 372 Fall 2022, Ruby Slide 196

Here's a class to represent points on a Cartesian plane:
class Point

def initialize(x, y)
@x = x
@y = y

end
def x; @x end
def y; @y end

end

Usage:
>> p1 = Point.new(3,4) => #<Point:0x..193320 @x=3, @y=4>
>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter
methods like Point.x and Point.y.

Getters and setters, continued

CSC 372 Fall 2022, Ruby Slide 197

The method attr_reader creates getter methods.

Here's an equivalent definition of Point:
class Point

def initialize(x, y)
@x = x
@y = y

end
attr_reader :x, :y # :x is a Symbol. "x" would work.

end

Usage:
>> p = Point.new(3,4)
>> p.x => 3
>> p.x = 10
NoMethodError: undefined method `x=' for #<Point: ...>

Why does p.x = 10 fail?

Getters and setters, continued

CSC 372 Fall 2022, Ruby Slide 198

If you want both getters and setters, use attr_accessor.
class Point

def initialize(x, y)
@x = x
@y = y

end
attr_accessor :x, :y

end

Usage:
>> p = Point.new(3,4)
>> p.x
=> 3
>> p.y = 10

It's important to appreciate that attr_reader and attr_accessor are
methods that create methods.

Getters and setters, continued

(What if Ruby didn't provide them?)
CSC 372 Fall 2022, Ruby Slide 199

Operator overloading

CSC 372 Fall 2022, Ruby Slide 200

In most languages at least a few operators are "overloaded"—an operator
stands for more than one operation.

C: + is used to express addition of integers, floating point numbers,
and pointer/integer pairs.

Java: + is used to express numeric addition and string concatenation.

Icon: *x produces the number of...
characters in a string
values in a list
key/value pairs in a table
results a "co-expression" has produced

Icon: 3 + "4" is 7 (addition); 3 || "4" is "34" (concatenation)

Operator overloading

CSC 372 Fall 2022, Ruby Slide 201

We've seen that Ruby operators can be expressed as method calls:
3 + 4 is 3.+(4)

Here's what subscripting means:
"abc"[2] is "abc".[](2)
"testing"[2,3] is "testing".[](2,3)

Unary operators are indicated by adding @ after the operator:
-5 is 5.-@()

!"abc" is "abc".!@()

Challenge:
Find a binary operation that can't be expressed as a method call.

Operators as methods

CSC 372 Fall 2022, Ruby Slide 202

We'll use a dimensions-only rectangle class to study overloading in Ruby:
class Rectangle

def initialize(w,h)
@width, @height = w, h

end
attr_reader :width, :height
def area; width * height; end
def inspect # irb uses inspect

"#{width} x #{height} Rectangle"
end

end

Usage:
>> r = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r.area => 12
>> r.width => 3

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 203

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b
=> 8 x 10 Rectangle

>> c = a + b + b
=> 13 x 16 Rectangle

>> (a + b + c).area
=> 546

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 204

Our vision:
>> a = Rectangle.new(3,4); b = Rectangle.new(5,6)
>> a + b => 8 x 10 Rectangle

Here's how to make it so:
class Rectangle

def + rhs
Rectangle.new(self.width + rhs.width, self.height + rhs.height)

end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on
a and passing it b as a parameter.

The parameter name rhs stands for "right-hand side".

Do we need self in self.width or would just width work? How about @width?

Even if somebody else had provided Rectangle, we could still overload + on it—
the lines above are additive, assuming Rectangle.freeze hasn't been done.

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 205

For reference:
def + rhs

Rectangle.new(self.width + rhs.width, self.height + rhs.height)
end

Here is a faulty implementation of rectangle addition:
def + rhs

@width += rhs.width;
@height += rhs.height

end

Let's try it...
>> a = Rectangle.new(3,4)
>> b = Rectangle.new(5,6)

>> c = a + b

>> a

What's the problem?
We're changing the attributes of the left operand instead of creating and
returning a new instance of Rectangle.

Operator overloading, continued

=> 10

=> 8 x 10 Rectangle

CSC 372 Fall 2022, Ruby Slide 206

Just like with regular methods, we have complete freedom to define what's
meant by an overloaded operator.

Here is a method for Rectangle that defines unary minus to be imperative
"rotation" (a clear violation of the Principle of Least Astonishment!)

def -@ # Note: @ suffix to indicate unary form of -
@width, @height = @height, @width
self

end

>> a = Rectangle.new(2,5) => 2 x 5 Rectangle
>> -a => 5 x 2 Rectangle
>> a => 5 x 2 Rectangle

Goofy?

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 207

At hand:
def -@

@width, @height = @height, @width
self

end

How could we get more sensible behavior, like the following?
>> a = Rectangle.new(5,2) => 5 x 2 Rectangle
>> -a => 2 x 5 Rectangle
>> a => 5 x 2 Rectangle
>> a + -a => 7 x 7 Rectangle

Solution:
def -@

Rectangle.new(height, width)
end

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 208

Problem: Implement "scaling" a rectangle by some factor. Example:
>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> b = a * 5 => 15 x 20 Rectangle
>> c = b * 0.77 => 11.55 x 15.4 Rectangle

Solution:
def * rhs

Rectangle.new(self.width * rhs, self.height * rhs)
end

What does the following do?
>> 3 * Rectangle.new(3,4)
TypeError: Rectangle can't be coerced into Integer

What's wrong?
We've implemented only Rectangle * rhs

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 209

Imagine a case where it's useful to reference width and height uniformly,
via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> a[0] => 3
>> a[1] => 4
>> a[2] RuntimeError: out of bounds

Note that a[n] is a.[](n)

Implementation:
def [] n

case n
when 0 then width
when 1 then height
else raise "out of bounds"

end
end

Operator overloading, continued

CSC 372 Fall 2022, Ruby Slide 210

A language is considered to be extensible if we can create new types that
can be used as easily as built-in types.

Does our simple Rectangle class and its overloaded operators
demonstrate that Ruby is extensible?

What would a = b + c * 2 with Rectangles look like in Java?
Maybe: Rectangle a = b.plus(c.times(2));

How about in C?
Would Rectangle a = rectPlus(b, rectTimes(c, 2)); be workable?

Haskell goes further with extensibility, allowing new operators to be
defined.

Is Ruby extensible?

CSC 372 Fall 2022, Ruby Slide 211

Ruby is not only extensible; it is also mutable—we can change the
meaning of expressions.

If we wanted to be sure that a program never used integer addition, we
could do this:

class Integer
def + x

raise "boom!"
end

end

Contrast:
• C++ is extensible, but not mutable.
• In C++ you can define the meaning of Rectangle * int but you can't

change the meaning of integer addition, as we do above.

Ruby is mutable

CSC 372 Fall 2022, Ruby Slide 212

Inheritance

CSC 372 Fall 2022, Ruby Slide 213

Here's the classic Shape/Rectangle/Circle inheritance example in Ruby:

A Shape hierarchy in Ruby

class Shape
def initialize(label)

@label = label
end

attr_reader :label
end

class Rectangle < Shape
def initialize(label, width, height)

super(label)
@width, @height = width, height

end

def area
width * height

end

def inspect
"Rectangle #{label} (#{width} x

#{height})"
end

attr_reader :width, :height
end

Rectangle < Shape
specifies inheritance.

Note that Rectangle
methods use the generated
width and height methods
rather than @width and
@height.

CSC 372 Fall 2022, Ruby Slide 214

class Circle < Shape
def initialize(label, radius)

super(label)
@radius = radius

end

attr_reader :radius

def area
Math::PI * radius * radius

end

def perimeter
Math::PI * radius * 2

end

def inspect
"Circle #{label} (r = #{radius})"

end
end

Shape, continued

Math::PI references the
constant PI in the Math class.

CSC 372 Fall 2022, Ruby Slide 215

Inheritance in Ruby has a lot of behavioral overlap with Java:

• Subclasses inherit superclass methods.

• Methods in a subclass can call superclass methods.

• Methods in a subclass override superclass methods of the same name.

• Calls to a method f resolve to f in the most-subclassed (most-
extended) class.

There are differences, too:

• Subclass methods can always access superclass fields.

• Superclass constructors aren't automatically invoked when creating
an instance of a subclass.

Similarities to inheritance in Java

CSC 372 Fall 2022, Ruby Slide 216

The abstract reserved word is used in Java to indicate that a class, method, or
interface is abstract.

Ruby does not have any language mechanism to mark a class or method as
abstract.

Some programmers put "abstract" in class names, like AbstractWindow.

A method-level practice is to have abstract methods raise an error if called:

class Shape
def area

raise "Shape#area is abstract"
end

end

There is also an abstract_method "gem" (a package of code and more):

class Shape
abstract_method :area
...

There's no abstract

CSC 372 Fall 2022, Ruby Slide 217

A common use of inheritance in Java is to let us write code in terms of a
superclass type and then use that code to operate on subclass instances.

With a Shape hierarchy in Java we might write a routine sumOfAreas:
static double sumOfAreas(Shape shapes[]) {

double area = 0.0;
for (Shape s: shapes)

area += s.getArea();
return area;
}

We can make Shape.getArea() abstract to force concrete subclasses to
implement getArea().

sumOfAreas is written in terms of Shape but works with instances of
any subclass of Shape.

Inheritance is important in Java

CSC 372 Fall 2022, Ruby Slide 218

Here is sumOfAreas in Ruby:

def sumOfAreas(shapes)
area = 0.0
for shape in shapes do

area += shape.area
end
area

end

Does it rely on inheritance in any way?

Even simpler:
sum = shapes.inject (0.0) {|acc, shape| acc + shape.area }

Dynamic typing in Ruby makes it unnecessary to require common superclasses or
interfaces to write polymorphic methods that operate on a variety of underlying
types.

Some common design patterns are simply patterns of working with inheritance
hierarchies in statically typed languages.

Inheritance is less important in Ruby

CSC 372 Fall 2022, Ruby Slide 219

Imagine an abstract class VString with two concrete subclasses:
ReplString and MirrorString.

A ReplString is created with a string and a replication count. It supports
size, substrings with [pos] and [start, len], and to_s.

>> r1 = ReplString.new("abc", 2) => ReplString(6)

>> r1.size => 6

>> r1[0] => "a"

>> r1[10] => nil

>> r1[2,3] => "cab"

>> r1.to_s => "abcabc"

Example: VString

CSC 372 Fall 2022, Ruby Slide 220

A MirrorString represents a string concatenated with a reversed copy of
itself.

>> m1 = MirrorString.new("abcdef")
=> MirrorString(12)

>> m1.to_s => "abcdeffedcba"

>> m1.size
=> 12

>> m1[3,6]
=> "deffed"

VString, continued

CSC 372 Fall 2022, Ruby Slide 221

A trivial VString implementation
class VString

def initialize(s)
@s = s

end

def [](start, len = 1)
@s[start, len]

end

def size
@s.size

end

def to_s
@s.dup

end

end

class ReplString < VString
def initialize(s, n)

super(s * n)
end

def inspect
"ReplString(#{size})"

end
end

class MirrorString < VString
def initialize(s)

super(s + s.reverse)
end

def inspect
"MirrorString(#{size})"

end
end

CSC 372 Fall 2022, Ruby Slide 222

New requirements:
A VString can be created using either a VString or a String.
A ReplString can have a very large replication count.

Will VStrings in constructors work with the implemetation as-is?
>> m2 = MirrorString.new(ReplString.new("abc",3))
NoMethodError: undefined method `reverse' for ReplString

>> r2 = ReplString.new(MirrorString.new("abc"),5)
NoMethodError: undefined method `*' for MirrorString

What's the problem?
The ReplString and MirrorString constructors use * n and .reverse

What will ReplString("abc", 2_000_000_000_000) do?

VString, continued

CSC 372 Fall 2022, Ruby Slide 223

Here's some behavior that we'd like to see:
>> s1 = ReplString.new("abc", 2_000_000_000_000)
=> ReplString("abc",2000000000000)

>> s1[0] => "a"

>> s1[-1] => "c"

>> s1[1_000_000_000] => "b"

>> s2 = MirrorString.new(s1)
=> MirrorString(ReplString("abc",2000000000000))

>> s2.size => 12000000000000

>> s2[-1] => "a"

>> s2[s2.size/2 - 3, 6] => "abccba"

VString, continued

CSC 372 Fall 2022, Ruby Slide 224

Let's review requirements:
• Both ReplString and MirrorString are subclasses of VString.
• A VString can be created using either a String or a VString.
• The ReplString replication count can be arbitrarily large.
• If vs is a VString, vs[pos] and vs[pos,len] produce Strings.
• VString#size works.
• VString#to_s "works" but is problematic with long strings.

How can we make this work?

VString, continued

CSC 372 Fall 2022, Ruby Slide 225

Let's play computer!
>> s = MirrorString.new(ReplString.new("abc",1_000_000))
=> MirrorString(ReplString("abc",1000000))

>> s.size
=> 6000000

>> s[-1]
=> "a"

>> s[3_000_000]
=> "c"

>> s[3_000_000,6]
=> "cbacba"

What data did you need to perform those computations?

VString, continued

To be continued,
on assignment 9!

VString stands for "virtual string"—the
hierarchy provides the illusion of very
long strings but uses very little memory.

CSC 372 Fall 2022, Ruby Slide 226

Modules and "mixins"

CSC 372 Fall 2022, Ruby Slide 227

A Ruby module can be used to group related methods for organizational purposes.

Some methods for a homesick Haskell programmer at Camp Ruby:
module Haskell

def Haskell.head a # Class method--prefixed with class name
a[0]

end

def Haskell.tail a
a[1..]

end
...more...

end

>> a = [10, "twenty", 30, 40.0]

>> Haskell.head a
=> 10

>> Haskell.tail a
=> ["twenty", 30, 40.0]

Modules

CSC 372 Fall 2022, Ruby Slide 228

A module can be "included" in a class.
• Such a module is called a "mixin" because it mixes additional

functionality into a class.

Here is a revised version of the Haskell module. The class methods are
now written as instance methods; they use self and have no parameter:

module Haskell
def head

self[0]
end

def tail
self[1..]

end
end

Modules as "mixins"

Previous version:
module Haskell

def Haskell.head(a)
a[0]

end

def Haskell.tail(a)
a[1..]

end
end

CSC 372 Fall 2022, Ruby Slide 229

We can mix our Haskell methods into the Array class like this:
% cat mixin1.rb
require './Haskell' # loads ./Haskell.rb if not already loaded
class Array

include Haskell
end

We can load mixin1.rb and then use .head and .tail on arrays:
>> load "mixin1.rb"
>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.head
=> 1

>> ints.tail
=> [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.tail.tail.head
=> 3

Mixins, continued

CSC 372 Fall 2022, Ruby Slide 230

We can add those same capabilities to String, too:
class String

include Haskell
end

Usage:
>> s = "testing"

>> s.head => "t"

>> s.tail => "esting"

>> s.tail.tail.head => "s"

In addition to the include mechanism, what other aspect of Ruby
facilitates mixins?

Duck typing! (How?)

Mixins, continued

CSC 372 Fall 2022, Ruby Slide 231

The Ruby core classes and standard library make extensive use of mixins.

The class method ancestors can be used to see the superclasses and
modules that contribute methods to a class:

>> Integer.ancestors
=> [Integer, Numeric, Comparable, Object, Kernel,
BasicObject]

>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

>> load "mixin1.rb"

>> Array.ancestors
=> [Array, Haskell, Enumerable, Object, Kernel, BasicObject]

Modules and superclasses

CSC 372 Fall 2022, Ruby Slide 232

The method included_modules shows the modules that a class
includes.

>> Array.included_modules => [Haskell, Enumerable, Kernel]

>> Integer.included_modules => [Comparable, Kernel]

instance_methods can be used to see what methods are in a module:

>> Enumerable.instance_methods.sort => [:all?, :any?,
:chunk, :collect, :collect_concat, :count, :cycle, :detect, :drop,
:drop_while, :each_cons, :each_entry, ...more...

>> Comparable.instance_methods.sort
=> [:<, :<=, :==, :>, :>=, :between?]

>> Haskell.instance_methods
=> [:head, :tail]

Modules and superclasses, continued

CSC 372 Fall 2022, Ruby Slide 233

When talking about iterators we encountered Enumerable. It's a module:
>> Enumerable.class
=> Module

>> Enumerable.instance_methods.sort => [:all?, :any?,
:chunk, :collect, :collect_concat, :count, :cycle, :detect, :drop,
:drop_while, :each_cons, :each_entry, :each_slice,
:each_with_index, :each_with_object, :entries, :find, :find_all,
:find_index, :first, :flat_map, :grep, :group_by, :include?,
:inject, :map, :max, :max_by, :member?, :min, :min_by,
:minmax, :minmax_by, :none?, :one?, :partition, :reduce,...

The methods in Enumerable use duck typing, requiring only an each
method. min, max, and sort, also require <=> for values operated on.

If a class implements each and includes Enumerable then all those
methods become available to instances of the class.

The Enumerable module

CSC 372 Fall 2022, Ruby Slide 234

Here's a class whose instances simply hold three values:
class T rio

include Enumerable
def initialize(a,b,c); @values = [a,b,c]; end

def each
@values.each {|v| yield v }

end
end

Because T rio implements each and includes Enumerable, lots of stuff works:

>> t = T rio.new(10, "twenty", 30)

>> t.member? 30 => true

>> t.map{|e| e * 2} => [20, "twentytwenty", 60]

>> t.partition {|e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

The Enumerable module, continued

CSC 372 Fall 2022, Ruby Slide 235

Another common mixin is Comparable:
>> Comparable.instance_methods
=> [:==, :>, :>=, :<, :<=, :between?]

Comparable's methods are implemented in terms of <=>.

Let's compare rectangles on the basis of area:
class Rectangle

include Comparable
def <=> rhs

(self.area - rhs.area) <=> 0
end

end

The Comparable module

CSC 372 Fall 2022, Ruby Slide 236

Usage:
>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle
>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> r1 > r2 => true

>> r1 == Rectangle.new(6,2) => true

>> r2.between?(r3,r1) => true

Is include Comparable making the following work?
>> [r1,r2,r3].sort
=> [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min
=> 2 x 2 Rectangle

Comparable, continued

CSC 372 Fall 2022, Ruby Slide 237

Some things I threw out
when I was panicked...

CSC 372 Fall 2022, Ruby Slide 238

Discernment:
Levels of support for types

CSC 372 Fall 2022, Ruby Slide 239

Language-wise, what's an implication of the following examples?

Haskell:
> :t "abc" => "abc" :: [Char]

Python:
>>> type({}) => <class 'dict'>

Ruby:
>> /.s./ =~ "test" => 1

Racket:
> (+ 3/4 1/3 1/5) => 77/60

Icon:
]['tim korb' => ' bikmort' (cset)

The respective languages have syntactic support for a particular type.

Examples

CSC 372 Fall 2022, Ruby Slide 240

A language's support for a feature can be viewed as at one of three levels:
Syntactic support
• Most languages have syntactic support for strings with "...".
• Scala and ActionScript have syntactic support for XML.
• Python has x in y and x not in y tests for membership.

Language support:
• Icon has a table type but no literal syntax, only table(default).

Library support
• Ruby has Complex '2+3i' (but Racket allows just 2+3i)
• Java and Python have classes for working with REs.

Python does have raw strings—re.match(r"\w+\(\d+\)", ...)
• C and Icon have function libraries for working with REs.

Levels of support

CSC 372 Fall 2022, Ruby Slide 241

"Why?" vs. "Why Not?"

CSC 372 Fall 2022, Ruby Slide 242

When designing a language some designers ask,
"Why should feature X be included?"

Some designers ask the opposite:
"Why should feature X not be included?"

Let's explore that question with Ruby.

"Why?" or "Why not?"

CSC 372 Fall 2022, Ruby Slide 243

A "here document" is a third way to literally specify a string in Ruby:
>> s = <<XYZZY

+-----+
| *** |
| /*/ |
| ''' |
+-----+

XYZZY
=> " +-----
+\n | *** |\n | /*/ |\n | ''' |\n
+-----+\n"

The string following << specifies a delimiter that ends the literal. (The
ending occurrence must be at the start of a line.)

"There's more than one way to do it!"—a Perl motto

More string literals!

CSC 372 Fall 2022, Ruby Slide 244

Here's another way to specify string literals. See if you can discern some
rules from these examples:

>> %q{ just testin' this... }
=> " just testin' this... "

>> %Q|\n\t|
=> "\n\t"

>> %q(\u0041 is Unicode for A)
=> "\\u0041 is Unicode for A"

>> %q.test.
=> "test"

- %q follows single-quote rules.
- %Q follows double quote rules.
- Symmetric pairs like (), {}, and <> can be used.

And that's not all!

CSC 372 Fall 2022, Ruby Slide 245

Partial summary of string literal syntax in Ruby:
>> x = 5; s = "x is #{x}"
=> "x is 5"

>> '\'\\\n\t'.length
=> 6

>> hd = <<X
just
testing
X
=> "just\ntesting\n"

>> %q{ \n \t } + %Q|\n \t | + %Q(\u0021 \u{23})
=> " \\n \\t \n \t ! #"

How much is enough?

How many ways does Haskell have to
make a string literal?

How many ways should there be to
make a string literal?

What's the minimum functionality
needed?

Which of Ruby's would you remove?

CSC 372 Fall 2022, Ruby Slide 246

Here are some examples of operator overloading:
>> [1,2,3] + [4,5,6] + [] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1, 3]
=> [15, 7]

>> [10, 20, 30] * "..."
=> "10...20...30" # "intercalation"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

"Why" or "Why not?" as applied to operator overloading

CSC 372 Fall 2022, Ruby Slide 247

What are some ways in which inclusion of a feature impacts a
language?

• Increases the "mental footprint" of the language.
o There are separate mental footprints for reading code and

writing code.

• Maybe makes the language more expressive.

• Maybe makes the language useful for new applications.

• Probably increases size of implementation and documentation.

• Might impact performance.

"Why" or "Why not?", continued

CSC 372 Fall 2022, Ruby Slide 248

Features come in all sizes!

Small: A new string literal escape sequence ("\U{65}" for "A")

Small: Supporting an operator on a new pair of types

Medium: Support for arbitrarily large integers

Small, medium or large:

• Support for operator overloading?

• Support for object-oriented programming?
Classes: An Abstract Data Type Facility for the C Language

• Support for garbage collection?

Features come in all sizes!

CSC 372 Fall 2022, Ruby Slide 249

https://www.stroustrup.com/classes_1982.pdf

At one of my first meetings with Ralph Griswold I put forth a
number of ideas I had for new features for Icon.

He listened patiently. When I was done he said,
"Go ahead. Add all of those you want to."

And then he added,
"But for every feature you add, first find one to remove."

What would Ralph do?

CSC 372 Fall 2022, Ruby Slide 250

There's a lot of science in programming language design but there's art,
too.

Excerpt from interview with Perl Guru Damian Conway:
Q: "What languages other than Perl do you enjoy programming in?"
A: "I'm very partial to Icon. It's so beautifully put together, so

elegantly proportioned, almost like a Renaissance painting."
http://www.pair.com/pair/current/insider/1201/damianconway.html (404 now!)

"Icon: A general purpose language known for its elegance and grace.
Designed by Ralph Griswold to be successor to SNOBOL4."

––Digibarn "Mother Tongues" chart (see Intro slides)

The art of language design

CSC 372 Fall 2022, Ruby Slide 251

• Between SNOBOL4 and Icon there was there SL5 (SNOBOL
Language 5).

• I think of SL5 as an example of the "Second System Effect". It
was never released.

• Ralph once said, "I was laying in the hospital thinking about SL5.
I felt there must be something simpler."

• That simpler thing turned out to be Icon.
o SL5 was an expansion
o Icon was a contraction

The art of language design, continued

CSC 372 Fall 2022, Ruby Slide 252

Procedure call in Icon:
][reverse("programming")

r := "gnimmargorp" (string)

][p := reverse
r := function reverse (procedure)

][p("foo")
r := "oof" (string)

Doctoral student Steve Wampler added mutual goal directed evaluation
(MGDE). A trivial example:

][3("one", 2, "III")
r := "III" (string)

][(?3)("one", 2, "III")
r := "one" (string)

Design example: invocation in Icon

CSC 372 Fall 2022, Ruby Slide 253

After a CSC 550A lecture where Ralph introduced MGDE, I asked,
"How about 'string invocation', so that "+"(3,4) would be 7?"

What do you suppose Ralph said?
"How would we distinguish between unary and binary operators?"

Solution: Discriminate based on the operand count!
]["-"(5,3)

r := 2 (integer)
]["-"(5)

r := -5 (integer)
][(?"+-")(3,4)

r := -1 (integer)
I got an OK to add string invocation to Icon.

Why did Ralph choose to allow this feature?
He felt it would increase the research potential of Icon.

Invocation in Icon, continued

CSC 372 Fall 2022, Ruby Slide 254

An interesting language design example in Ruby is parallel assignment:
>> a, b = 10, [20, 30]

>> a
=> 10

>> b
=> [20, 30]

>> c, d = b
>> [c,d]
=> [20, 30]

>> a, b, c = "800-555-1211".split "-"

>> [a,b,c]
=> ["800", "555", "1211"]

Design example: Parallel assignment

CSC 372 Fall 2022, Ruby Slide 255

How could we do a swap with parallel assignment?
>> x, y = 10, 20

>> x,y = y,x

Another way?
>> x, y = [y, x]

Contrast:
Icon has a swap operator: x :=: y

Parallel assignment, continued

CSC 372 Fall 2022, Ruby Slide 256

Speculate: Does the following work?
>> a,b,c = [10,20,30,40,50]

>> [a,b,c]
=> [10, 20, 30]

Speculate again:
>> a,*b,c = [10,20,30,40,50]

>> [a,b,c]
=> [10, [20, 30, 40], 50]

>> a,*b,*c = [10,20,30,40,50]
SyntaxError: (irb):57: syntax error, unexpected *

Section 4.5.5 in RPL has full details on parallel assignment. It is both
more complicated and less general than pattern matching in Haskell. (!)

Parallel assignment, continued

CSC 372 Fall 2022, Ruby Slide 257

In conclusion...

CSC 372 Fall 2022, Ruby Slide 258

September 3, 2006:
n=1
d = Date.new(2006, 8, 22)
incs = [2,5]
pos = 0
while d < Date.new(2006, 12, 6)

if d != Date.new(2006, 11, 23)
printf("%s %s, #%2d\n",

if d.cwday() == 2 then "T"; else "H";end,
d.strftime("%m/%d/%y"), n)

n += 1
end
d += incs[pos % 2]
pos += 1

end # classdays.rb

Output:
T 08/22/06, # 1
H 08/24/06, # 2
T 08/29/06, # 3
...

My first practical Ruby program

CSC 372 Fall 2022, Ruby Slide 259

If we had more time, we'd...
• Learn how to write iterators (slides 261-275 in ruby.pdf)

• Work with regular expressions in Ruby (slides 276-326 in ruby.pdf)

• Learn about lambdas, blocks as explicit parameters, and call.

• Do some metaprogramming with hooks like method_missing,
included, and inherited.

• Experiment with internal Domain Specific Languages (DSLs).

• Look at how Ruby on Rails puts Ruby features to good use.

• Take a peek at BDD (Behavior-Driven Development) with Cucumber
or RSpec.

More with Ruby...

CSC 372 Fall 2022, Ruby Slide 260

Writing Iterators

CSC 372 Fall 2022, Ruby Slide 261

Recall: An iterator is a method that can invoke a block.

The yield expression invokes the block associated with the current
method invocation. Arguments of yield become parameters of the block.

Here is a simple iterator that yields
two values, first a 3 and then a 7:

def simple
puts "simple: Starting..."
yield 3
puts "simple: Continuing..."
yield 7
puts "simple: Done..."
"simple result"

end

The puts in simple are used to show when simple is active. Note the
interleaving of execution between the iterator and the block.

A simple iterator

Usage:
>> simple {|x|puts "\tx = #{x}" }
simple: Starting...

x = 3
simple: Continuing...

x = 7
simple: Done...
=> "simple result"

CSC 372 Fall 2022, Ruby Slide 262

At hand:
def simple

puts "simple: Starting..."
yield 3
puts "simple: Continuing..."
yield 7
puts "simple: Done..."
"simple result"

end

There's no formal parameter that corresponds to a block. The block, if any, is
implicitly referenced by yield.

The parameter of yield becomes the named parameter for the block.

Calling simple without a block produces an error on the first yield:
>> simple
simple: Starting...
LocalJumpError: no block given (yield)

A simple iterator, continued
Usage:
>> simple { |x| puts "\tx = #{x}" }
simple: Starting...

x = 3
simple: Continuing...

x = 7
simple: Done...
=> "simple result"

CSC 372 Fall 2022, Ruby Slide 263

Problem:
Write an iterator around(x, delta) that yields (i.e., invokes its block
with) three values in turn: x-delta, x, and x+delta. It returns the
range spanned by the three values.

Examples:
>> around(5,1) { |x| puts x }
4
5
6
=> 2

>> vals = []; around(Complex(0,1),0.5) {|v| vals << v}
=> 1.0

>> vals
=> [(-0.5+1i), (0.0+1i), (0.5+1i)]

Iterators with parameters

CSC 372 Fall 2022, Ruby Slide 264

At hand:
>> around(11,2) { |v| print "#{v} " }
9 11 13 => 4

Solution:
def around(x, delta)

[-1, 0, 1].each do
|m|
yield x + m*delta

end
delta * 2

end

Note that parameters are passed to an iterator just like any other method.

Iterators with parameters, continued

CSC 372 Fall 2022, Ruby Slide 265

Problem:
Write an iterator from_to(f, t, by) that yields the integers from f
through t in steps of by, which defaults to 1. Assume f <= t.
from_to returns the number of integers yielded.

>> from_to(1,3) { |i| puts i }
1
2
3
=> 3

>> from_to(0,99,25) { |i| puts i }
0
25
50
75
=> 4

Problem: from_to

CSC 372 Fall 2022, Ruby Slide 266

Solution:

def from_to(from, to, by = 1)
n = from
results = 0
while n <= to do

yield n
n += by
results += 1

end
results

end

from_to, continued

Desired:
>> from_to(1,10,2) { |i| puts i }
1
3
5
7
9
=> 5

>> from_to(-5,5) {
|i| print i, " " }

-5 -4 -3 -2 -1 0 1 2 3 4 5 => 11

CSC 372 Fall 2022, Ruby Slide 267

To pass multiple arguments to a block, specify multiple arguments for
yield.

Imagine an iterator that produces overlapping pairs from an array:
>> elem_pairs([3,1,5,9]) { |x,y| print "x = #{x}, y = #{y}\n" }
x = 3, y = 1
x = 1, y = 5
x = 5, y = 9

Implementation:
def elem_pairs(a)

for i in 0...(a.length-1)
yield a[i], a[i+1] # yield(a[i], a[i+1]) is ok, too

end
end

yield, continued

CSC 372 Fall 2022, Ruby Slide 268

When yield passes a value to a block the result of the block becomes the
value of the yield expression.

Here is a trivial iterator to show the mechanics:
def round_trip x

r = yield x
"yielded #{x} and got back #{r}"

end

Usage:
>> round_trip(3) {|x| x * 5 } # parens around 3 are required!
=> "yielded 3 and got back 15"

>> round_trip("testing") {|x| x.size }
=> "yielded testing and got back 7"

A round-trip with yield

CSC 372 Fall 2022, Ruby Slide 269

At hand:
def round_trip(x)

r = yield x
"yielded #{x} and got back #{r}"

end

>> round_trip(3) {|x| x * 5 }
=> "yielded 3 and got back 15"

r = yield 3 {|x| x * 5 }

A round-trip with yield, continued

1. Iterator yields 3 to block. x in block becomes 3.

2. Block produces 15, which becomes value of yield 3.

3. Value of yield 3 is assigned to r.

4. round_trip returns "yielded 3 and ..." CSC 372 Fall 2022, Ruby Slide 270

Consider this iterator:
>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

>> select("testing this here".split) { |w| w.include? "e" }
=> ["testing", "here"]

What does it appear to be doing?
Producing the elements in its argument, an array, for which the block
produces true.

Problem: Write it!

Round trips with yield

CSC 372 Fall 2022, Ruby Slide 271

At hand:
>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

Solution:
def select array

result = []

for element in array
if yield element then

result << element
end

end

result
end

Round trips with yield, continued

What does the iterator/block interaction
look like?

Iterator Block
if yield [1,2] then # [1,2].size == 1

Do nothing with [1,2]

if yield "a" then # "a".size == 1
Add "a" to result

if yield [3] then # [3] .size == 1
Add [3] to result

if yield "four" then #"four".size == 1
Do nothing with "four"

CSC 372 Fall 2022, Ruby Slide 272

Is select limited to arrays?

>> select(1..10) {|n| n.odd? && n > 5 }
=> [7, 9]

Why do we see that behavior?
Because for var in x works for any x that
has an each method. (Duck typing!)

What's a better name than array for select's
parameter?

iterable (?)
eachable (?)

Round trips with yield, continued
def select array

result = []
for element in array

if yield element then
result << element

end
end

result
end

CSC 372 Fall 2022, Ruby Slide 273

Round trips with yield, continued
What's the difference between our select,

select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }

And Ruby's Array.select?
[[1,2], "a", [3], "four"].select { |v| v.size == 1 }

• Ruby's Array.select is a method of Array.
• Our select is added to the object "main".

CSC 372 Fall 2022, Ruby Slide 274

Sidebar: Ruby vs. Haskell
def select array

result = []
for element in array

if yield element then
result << element

end
end

result
end

>> select(["just","a", "test"]) { |x| x.size == 4 }
=> ["just", "test"]

Which is better?

select _ [] = []
select f (x:xs)

| f x = x : select f xs
| otherwise = select f xs

> select (\x -> length x == 4) ["just","a", "test"]
["just","test"]

CSC 372 Fall 2022, Ruby Slide 275

Regular Expressions

CSC 372 Fall 2022, Ruby Slide 276

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:
Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only be
specified by unrestricted grammars.

An example of a context-sensitive language is all strings of the form anbncn.

Programming languages are usually context-free languages—they can be
specified with context-free grammars, which have restrictive rules.

• Every Java program is a string in the infinite context-free language that is
specified by the Java grammar.

A regular language is a very limited kind of context free language that can be
described by a regular grammar.

• A regular language can also be described by a regular expression.

A little theory

CSC 372 Fall 2022, Ruby Slide 277

https://linguistics.arizona.edu/user/noam-chomsky

A regular expression is simply a string that may contain metacharacters—
characters with special meaning.

Here is a simple regular expression:
a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:
(ab)+c*

It describes the set of strings that start with ab repeated one or more times
and followed by zero or more c's.

Examples: ab, ababc, and ababababccccccc.

The regular expression (north|south)(east|west) describes a language
with four strings: {northeast, northwest, southeast, southwest}.

A little theory, continued

CSC 372 Fall 2022, Ruby Slide 278

Regular expressions have a sound theoretical basis and are also very
practical.

UNIX tools such as the ed editor and the grep family introduced regular
expressions to a wide audience.

Most current editors and IDEs support regular expressions in searches.

Many languages provide a library for working with regular expressions.
• Java provides the java.util.regex package.
• The command man regex shows the interface for POSIX regular

expression routines, usable in C.

Some languages, Ruby included, have a regular expression type.

Good news and bad news

CSC 372 Fall 2022, Ruby Slide 279

Regular expressions as covered in a theory class are relatively simple.

Regular expressions as available in many languages and libraries have
been extended far beyond their theoretical basis.

In languages like Ruby, regular expressions are truly a language within a
language.

An edition of the "Pickaxe" book devoted four pages to its summary of
regular expressions.
• Four more pages sufficed to cover integers, floating point numbers,

strings, ranges, arrays, and hashes.

Entire books have been written on the subject of regular expressions.

A number of tools have been developed to help programmers create and
maintain complex regular expressions.

Good news and bad news, continued

CSC 372 Fall 2022, Ruby Slide 280

Here is a regular expression written by Mark Cranness and posted at
RegExLib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-
\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-
/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\ x7f])*")@(((?!-
)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)\.)(25[0-
5]|2[0-4]\d|[01]?\d? \d)){4}|[a-zA-Z\d\-]*[a-zA-
Z\d]:((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

My opinion: regular expressions are good for simple tasks but grammar-
based parsers should be favored as complexity rises, especially when an
underlying specification includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.

Good news and bad news, continued

CSC 372 Fall 2022, Ruby Slide 281

One way to create a regular expression (RE) in Ruby is to use the
/regexp/ syntax, for regular expression literals.

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In a RE, a dot is a metacharacter (a character with special meaning) that
will match any (one) character.

Letters, numbers, and some special characters simply match themselves.

The RE /a.b.c/ describes a language of five character strings of this form:
a<anychar>b<anychar>c

Some words containing strings in that language:
"albacore", "barbecue", "drawback", and "iambic".

A simple regular expression in Ruby

CSC 372 Fall 2022, Ruby Slide 282

The Ruby binary operator =~ is called "match".

One operand must be a string and the other must be a regular expression.
If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> "drawback" =~ /a.b.c/ => 2

>> "abc" =~ /a.b.c/ => nil

>> "abcdef" =~ /..f/
=> 3

>> "abcdef" =~ /.f./
=> nil

>> "abc" =~ /..../
=> nil

The match operator

CSC 372 Fall 2022, Ruby Slide 283

Problem: Write in Ruby a trivial version of the UNIX grep command.

Usage:
$ ruby rgrep.rb g.h.i < /usr/share/dict/words
lengthwise

$ ruby rgrep.rb l.m.n < /usr/share/dict/words | wc -l
252

$ ruby rgrep.rb < /usr/share/dict/words
electroencephalograph's

Hint: #{...} interpolation works in /.../ (regular expression) literals:
>> s = "ab"
>> /#{s}-#{s.reverse}/ =~ "cab-bat"
=> 1

Sidebar: rgrep.rb

CSC 372 Fall 2022, Ruby Slide 284

Desired:
$ ruby rgrep.rb g.h.i < /usr/share/dict/words
lengthwise

Solution:
while line = STDIN.gets # STDIN so "g.h.i" isn't opened for input

puts line if line =~ /#{ARGV[0]}/
end

rgrep.rb, continued

CSC 372 Fall 2022, Ruby Slide 285

After a successful match using =~ we can use some cryptically named
predefined global variables to access parts of the string:

$` Is the portion of the string that precedes the match. (That's a
backquote—ASCII code 96.)

$& Is the portion of the string that was matched by the regular
expression.

$' Is the portion of the string following the match.

Example:
>> "limit=300" =~ /=/ => 5
>> $` => "limit" (left of the match)
>> $& => "=" (the match itself)
>> $' => "300" (right of the match)

The match operator, continued

CSC 372 Fall 2022, Ruby Slide 286

Here's a handy utility routine from the Pickaxe book:
def show_match(s, re)

if s =~ re then
"#{$`}<<#{$&}>>#{$'}"

else
"no match"

end
end

Usage:
>> show_match("limit is 300", /is/)
=> "limit <<is>> 300"

>> %w{albacore drawback iambic}.
each { |w| puts show_match(w, /a.b.c/) }

<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Great idea: Put it in your .irbrc! Call it "sm", to save some typing!

The match operator, continued

CSC 372 Fall 2022, Ruby Slide 287

When learning a language look for opportunities to use the language to
learn about the language.

With show_match we're using Ruby to learn about Ruby regular
expressions.

When teaching Icon I wrote a procedure named snapshot() to explore
Icon's string scanning facility. A simple example:

]["testing" ? while move(3) do snapshot()
&subject = t e s t i n g
&pos = 4 |

&subject = t e s t i n g
&pos = 7 |

Failure

LHtLaL: write learning tools!

CSC 372 Fall 2022, Ruby Slide 288

[characters] is a character class—a RE that matches any one of the
characters enclosed by the square brackets.

/[aeiou]/ matches a single lower-case vowel
>> show_match("testing", /[aeiou]/)
=> "t<<e>>sting"

A dash between two characters in a class specification creates a range
based on the collating sequence. [0-9] matches a single digit.

>> show_match("Testing 1, 2, 3...", /[0-9]/)
=> "Testing <<1>>, 2, 3..."

>> show_match("Take five!", /[0-9]/)
=> "no match"

Character classes

CSC 372 Fall 2022, Ruby Slide 289

[^characters] is a RE that matches any single character not in the class.
(It matches the complement of the class.)

/[^0-9]/ matches a single character that is not a digit.
>> show_match("1,000", /[^0-9]/)
=> "1<<,>>000"

For any RE we can ask,
What is the shortest string the RE can match? What is the longest?

What is the shortest string that [A-Za-z345] can match? The longest?
One for both! [anything] always has a one-character match!

Character classes

CSC 372 Fall 2022, Ruby Slide 290

Describe what's matched by this regular expression:
/.[a-z][0-9][a-z]./

A five character string whose middle three characters are, in order, a
lowercase letter, a digit, and a lowercase letter.

In the following, which portion of the string is matched, if any?
>> show_match("A1b33s4ax1", /.[a-z][0-9][a-z]./)
=> "A1b3<<3s4ax>>1"

Character classes, continued

CSC 372 Fall 2022, Ruby Slide 291

String.gsub does global substitution with both plain old strings and
regular expressions

>> "520-621-6613".gsub("-", "<DASH>")
=> "520<DASH>621<DASH>6613"

>> "B3WF5-NPH41-MVXRP-67C9J-J8A9M".
gsub(/[A-Z][0-9]/, "<LD>")

=> "<LD>W<LD>-NP<LD>1-MVXRP-67<LD>J-<LD><LD>M"

Character classes, continued

CSC 372 Fall 2022, Ruby Slide 292

Some frequently used character classes can be specified with \C
\d Stands for [0-9]
\w Stands for [A-Za-z0-9_]
\s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented class.

Examples:
>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "ILC 119, 15:30-16:45 MW".gsub(/\D/, "")
=> "11915301645"

>> "buzz93@tv-2000.com".gsub(/[\w-]/,"*")
=> "******@*******.***"

Character classes, continued

CSC 372 Fall 2022, Ruby Slide 293

Preceding an RE metacharacter with a backslash suppresses its meaning.

>> show_match("123.456", /.\../)
=> "12<<3.4>>56"

>> "5-3^2*2.0".gsub(/[\^.\-6]/, "_")
=> "5_3_2*2_0"

>> show_match("x1 = y2[3] + z4", /\[\d\]/)
=> "x1 = y2<<[3]>> + z4"

An old technique with regular expressions is to take advantage of the fact
that some metacharacters only have meaning when used in certain
positions:

>> "5-3^2*2.0".gsub(/[-6^.]/, "_")
=> "5_3_2*2_0"

Backslashes suppress special meaning

CSC 372 Fall 2022, Ruby Slide 294

Alternatives can be specified with a vertical bar:

>> show_match("a green box", /red|green|blue/)
=> "a <<green>> box"

>> %w{you ate a pie}.select { |s| s =~ /ea|ou|ie/ }
=> ["you", "pie"]

Alternatives

CSC 372 Fall 2022, Ruby Slide 295

Parentheses can be used for grouping. Speculate: What regular language
corresponds to the following regular expression?

/(two|three) (apple|biscuit)s/

{two apples, three apples, two biscuits, three biscuits}

Usage:
>> "I ate two apples." =~ /(two|three) (apple|biscuit)s/
=> 6

>> "She ate three mice." =~ /(two|three) (apple|biscuit)s/
=> nil

Another:
>> %w{you ate a mouse}.select { |s| s =~ /.(ea|ou|ie)./ }
=> ["mouse"]

Alternatives and grouping

CSC 372 Fall 2022, Ruby Slide 296

Problem: Read a list of words and print words that contain a specified
pattern of consonants and vowels.

% ruby convow.rb cvcvcvcvcvcvcvcvc < web2
c|hemicomineralogic|al
|hepatoperitonitis|
o|verimaginativenes|s

• A capital letter means to match exactly that letter, in lowercase.
• An e matches either consonant or vowel.

% ruby convow.rb vvvDvvv < web2
Chromat|ioideae|
Rhodobacter|ioideae|

% ruby convow.rb vvvCvvv < web2 | wc -l
24

% ruby convow.rb vvvevvv < web2 | wc -l
43

Simple app: looking for letter patterns

web2 is in fall22

CSC 372 Fall 2022, Ruby Slide 297

Solution: Loop through the command line argument's characters and build
up a regular expression of character classes and literal characters. Then
look for lines with a match.

re = ""
ARGV[0].each_char do |char|

re += case char # An example of Ruby's case
when "v" then "[aeiou]"
when "c" then "[^aeiou]"
when "e" then "[a-z]"
else char.downcase

end
end
puts re
re = /#{re}/ # Transform re from String to Regexp
STDIN.each do

|line|
puts [$`, $&, $'] * "|" if line.chomp =~ re

end

convow.rb

$ ruby convow.rb cvc
[^aeiou][aeiou][^aeiou]

$ ruby convow.rb cEEcc
[^aeiou]ee[^aeiou][^aeiou]

CSC 372 Fall 2022, Ruby Slide 298

A rule we've been using but haven't formally stated is this:
If R1 and R2 are regular expressions then R1R2 is a regular expression.
In other words, juxtaposition is the concatenation operation for REs.

There are also postfix operators on regular expressions.

If R is a regular expression, then...

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

All have higher precedence than juxtaposition.

*, +, and ? are commonly called quantifiers but PA doesn't use that term.

There are regular expression operators

CSC 372 Fall 2022, Ruby Slide 299

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE ab*c+d describe?
An 'a' that is followed by zero or more 'b's that are followed by one
or more 'c's and then a 'd'.

>> show_match("acd", /ab*c+d/)
=> "<<acd>>"

>> show_match("abcccc", /ab*c+d/)
=> "no match"

>> show_match("abcabccccddd", /ab*c+d/)
=> "abc<<abccccd>>dd"

The *, +, and ? quantifiers

CSC 372 Fall 2022, Ruby Slide 300

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE -?\d+ describe?
Integers with any number of digits

>> show_match("y is -27 initially", /-?\d+/)
=> "y is <<-27>> initially"

>> show_match("maybe --123.4e-10 works", /-?\d+/)
=> "maybe -<<-123>>.4e-10 works"

>> show_match("maybe --123.4e-10 works", /-?\d*/) # *, not +
=> "<<>>maybe --123.4e-10 works"

The *, +, and ? quantifiers, continued

CSC 372 Fall 2022, Ruby Slide 301

What does a(12|21|3)*b describe?
Matches strings like ab, a3b, a312b, and a3123213123333b.

Write an RE to match numbers with commas, like these:
58 4,297 1,000,000 446,744 73,709,551,616

(\d?\d?\d)(,\d\d\d)*
-- Alan Smith, Spring '16

The *, +, and ? quantifiers, continued

CSC 372 Fall 2022, Ruby Slide 302

Write an RE to match floating point literals, like these:
1.2 .3333e10 -4.567e-30 .0001

>> %w{1.2 .3333e10 -4.567e-30 .0001}.
each {|s| puts show_match(s, / /) }

<<1.2>>
<<.3333e10>>
<<-4.567e-30>>
<<.0001>>

Piece by piece:
-? Maybe a minus sign
\d*\.\d+ Zero or more digits, decimal point, one or more digits
(

e-? e possibly followed by a minus sign
\d+ One or more digits

)? Maybe!

The *, +, and ? quantifiers, continued

-?\d*\.\d+(e-?\d+)?

CSC 372 Fall 2022, Ruby Slide 303

The operators *, +, and ? are "greedy"—each tries to match the longest
string possible, and cuts back only to make the full expression succeed.

Example:
Given a.*b and the input 'abbb', the first attempt is:

a matches a
.* matches bbb
b fails—no characters left!

The matching algorithm then backtracks and does this:
a matches a
.* matches bb
b matches b

*, +, and ? are greedy!

CSC 372 Fall 2022, Ruby Slide 304

More examples of greedy behavior:

>> show_match("xabbbbc", /a.*b/)
=> "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/)
=> "x<<abb>>bbc"

>> show_match("xabbbbcxyzc", /ab?b?.*c/)
=> "x<<abbbbcxyzc>>"

Why are *, +, and ? greedy?

*, +, and ? are greedy, continued

CSC 372 Fall 2022, Ruby Slide 305

In the following we'd like to match just 'abc' but the greedy asterisk goes
too far:

show_match("x + 'abc' + 'def' + y", /'.*'/)
=> "x + <<'abc' + 'def'>> + y"

We can make * lazy by putting ? after it, causing it to match only as much
as needed to make the full expression match. Example:

>> show_match("x + 'abc' + 'def' + y", /'.*?'/)
=> "x + <<'abc'>> + 'def' + y"

?? and +? are supported, too. The three are also called reluctant
quantifiers.

Lazy/reluctant quantifiers

CSC 372 Fall 2022, Ruby Slide 306

From the previous slide:
>> show_match("x + 'abc' + 'def' + y", /'.*?'/)
=> "x + <<'abc'>> + 'def' + y"

Years ago, before reluctant quantifiers were introduced, a complemented
character class was used to stop at the next occurrence of a character:

>> show_match("x + 'abc' + 'def' + y", /'[^']+'/)
=> "x + <<'abc'>> + 'def' + y"

A common language design trade-off is what primitives to provide vs. how
many idioms/techniques users must master.

TODO: Example: C has relatively few rules but they must be well-
understood.

Sidebar: primitives vs. idioms

CSC 372 Fall 2022, Ruby Slide 307

Here is a complete summary of Icon's string scanning facility: (81 words)

http://www.rexegg.com/regex-quickstart.html:1,352 words

https://docs.microsoft.com/en-us/dotnet/standard/base-
types/regular-expression-language-quick-reference: 2,091 words

But, there are many idioms and techniques that need to be mastered to use
Icon's string scanning mechanism effectively.

Sidebar, continued

Functions that produce positions to be used with tab(n):
many(cs) produces position after run of characters in cs
upto(cs) generates positions of characters in cs
find(s) generates positions of s
match(s) produces position after s, if s is next
any(cs) produces position after a character in cs
bal(s, cs1, cs2, cs3)

similar to upto(cs), but used with "balanced" strings.
Other functions:

pos(n) tests if &pos is equivalent to n
move(n) advances &pos by n

expr1 ? expr2 scans expr1 with expr2

CSC 372 Fall 2022, Ruby Slide 308

http://www.rexegg.com/regex-quickstart.html
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

We can use curly braces to require a specific number of repetitions:
>> show_match("Call me at 555-1212!", /\d{3}-\d{4}/)
=> "Call me at <<555-1212>>!"

An inclusive range can be specified with R{min,max}:
>> mdy = /\d{1,2}-\d{1,2}-(\d{4}|\d{2})/

>> show_match("3-17-2018", mdy)
=> "<<3-17-2018>>"

>> show_match("12-1-99", mdy)
=> "<<12-1-99>>"

>> show_match("7-555-99", mdy)
=> "no match"

Speculate: What do R{,n} and R{n,} specify?

Specific numbers of repetitions

CSC 372 Fall 2022, Ruby Slide 309

We can split a string using a regular expression:
>> " one, two,three / four".split(/[\s,\/]+/) # w.s., commas, slashes
=> ["", "one", "two", "three", "four"]

Note that leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them,
scan is a better choice:

>> " one, two,three / four".scan(/\w+/)
=> ["one", "two", "three", "four"]

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)
=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces:
>> " one, two,three / four".scan(/\w+|\W+/)
=> [" ", "one", ", ", "two", ",", "three", " / ", "four"]

split and scan with regular expressions

CSC 372 Fall 2022, Ruby Slide 310

Reminder: s =~ /x/ succeeds if "x" appears anywhere in s.

The metacharacter ^ is an anchor when used at the start of a RE. (At the
start of a character class it means to complement.)

^ doesn't match any characters but it constrains the following regular
expression to appear at the beginning of the string being matched against.

>> show_match("this is x", /^x/) => "no match"

>> show_match("this is x", /^this/) => "<<this>> is x"

What will /^x|y/ match? Hint: it's not the same as /^(x|y)/

What does /^.[^0-9]/ match?

Anchors

CSC 372 Fall 2022, Ruby Slide 311

Another anchor is $. It constrains the preceding regular expression to
appear at the end of the string.

>> show_match("ending", /end$/)
=> "no match"

>> show_match("the end", /end$/)
=> "the <<end>>"

What does /\d+$/ match?
Strings that end with one or more digits.

Can /\d+$/ be shortened?
/\d$/

Anchors, continued

CSC 372 Fall 2022, Ruby Slide 312

We can combine the ^ and $ anchors to fully specify a string.

Problem: Write a RE to match lines with only a curly brace and (maybe)
whitespace. (Recall that \s matches a single character of whitespace.)

>> show_match(" } ",)
=> "<< } >>"

Using grep, print lines in Ruby source files that are exactly three
characters long.

% grep ^...$ *.rb

Anchors, continued

/^\s*[{}]\s*$/

CSC 372 Fall 2022, Ruby Slide 313

What does /\w+\d+/ specify?
One or more "word" characters followed by one or more digits.

How do the following matches differ from each other?

line =~ /\w+\d+/

line =~ /^\w+\d+/

line =~ /\w+\d+$/

line =~ /^\w+\d+$/

line =~ /^.\w+\d+.$/

line =~ /^.*\w+\d+$/

Anchors, continued

CSC 372 Fall 2022, Ruby Slide 314

Imagine a program that's reading dozens of large data files whose lines
start with first names, like "Mary". We're getting drowned by the data.

for fname in files
f = open(fname)
while line = f.gets

...lots of processing to build a data structure, bdata...
end
p bdata # outputs way too much to easily analyze!!

We could edit some data files down to a few names. Could we achieve the
same effect more easily using regular expressions?

for fname in files
f = open(fname)
while line = f.gets

next unless line =~ /^(John|Dana|Mary),/
...processing... # toomuch.rb

Sidebar: Dealing with too much input

Could do a more
sophisticated filtering, too!

CSC 372 Fall 2022, Ruby Slide 315

Recall that convow.rb earlier simply does char.downcase on any
characters it doesn't recognize. downcase doesn't change ^ or $.

The command
% ruby convow.rb ^cvc$

builds this this RE, which matches only three-letter cvc words:
/^[^aeiou][aeiou][^aeiou]$/

Let's explore with it:
% ruby convow.rb ^cvc$ < web2 | wc -l
858
% ruby convow.rb ^vccccv$ < web2 | wc -l
15
% ruby convow.rb ^vccccccv$ < web2
|oxyphyte|

Sidebar: convow.rb with anchors

CSC 372 Fall 2022, Ruby Slide 316

The following regular expression uses three named groups to capture the
elements of a binary arithmetic expression

>> re = /(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

After a successful match, the predefined global $~, an instance of
MatchData, shows us the groups:

>> re =~ "What is 100+23?"
=> 8

>> $~
=> #<MatchData "100+23" lhs:"100" op:"+" rhs:"23">

>> $~["lhs"]
=> "100"

Named groups are sometimes called named backreferences or named
captures.

Named groups

CSC 372 Fall 2022, Ruby Slide 317

At hand:
/(?<lhs>\d+)(?<op>[+\-*\/])(?<rhs>\d+)/

Important: Named groups must always be enclosed in parentheses.

Consider the difference in these two REs:
/x(?<n>\d+)/

Matches strings like "x10" and "testx7ing"

/x?<n>\d+/
Matches strings like "<n>10", "ax<n>10", "testx<n>10ing"

Design lesson:
"(?" in a RE originally had no meaning, so it provided an opportunity
for extension without breaking any existing REs.

For a pitfall/feature, see NAMED CAPTURES AND LOCAL VARIABLES
in RPL.

Named groups, continued

CSC 372 Fall 2022, Ruby Slide 318

http://proquest.safaribooksonline.com.ezproxy1.library.arizona.edu/book/web-development/ruby/9780596516178/9dot-the-ruby-platform/regexps?uicode=uariz

Consider an application that reads elapsed times on standard input and
prints their total:

% ruby ttl.rb
3h
15m
4:30
^D
7:45

Multiple times can be specified per line, separated by spaces and commas.
% ruby ttl.rb
10m, 3:30
20m 2:15 1:01 3h
^D
10:16

How can we approach it? (Don't peek!)

Application: Time totaling

CSC 372 Fall 2022, Ruby Slide 319

def main
mins = 0
while line = gets do

line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }
end
printf("%d:%02d\n", mins / 60, mins % 60)

end

def parse_time(s)
if s =~ /^(?<hours>\d+):(?<mins>[0-5]\d)$/

$~["hours"].to_i * 60 + $~["mins"].to_i
elsif s =~ /^(?<n>\d+)(?<which>[hm])$/

n = $~["n"].to_i
if $~["which"] == "h" then n * 60

else n end
else

0 # return 0 for things that don't look like times
end

end
main

Time totaling, continued

CSC 372 Fall 2022, Ruby Slide 320

Problem:
Write a method pt(s) that takes a string like "[(10,'a'),(3,'x'),(7,'o')]"
and returns an array with the sum of the numbers and a concatenation
of the letters. If s is malformed, nil is returned.

Examples:
>> pt "[(10,'a'),(3,'x'),(7,'o')]"
=> [20, "axo"]

>> pt "[(100,'c')]"
=> [100, "c"]

>> pt "[(10,'x'),(5,7,'y')]"
=> nil

>> pt "[(10,'x'),(5,'y'),]"
=> nil

Example: consuming a string

CSC 372 Fall 2022, Ruby Slide 321

Desired:
>> pt "[(10,'a'),(3,'x'),(7,'o')]"
=> [20, "axo"]

Approach:
1. Remove outer brackets: "(10,'a'),(3,'x'),(7,'o')"
2. Append a comma: "(10,'a'),(3,'x'),(7,'o')," (Why?!)
3. Recognize (NUM,LET), and replace with ""
4. Repeat 3. until failure
5. If nothing left but an empty string, success!

Important: By appending that comma we produce a simple repetition,
(tuple,)+

rather than
tuple (,tuple)*

Example, continued

CSC 372 Fall 2022, Ruby Slide 322

Solution:
def pt(s) # process_tuples.rb

if s =~ /^\[(?<tuples>.*)\]$/ then
tuples = $~["tuples"] + ","
sum, lets = 0, ""
tuples.gsub!(/\((?<num>\d+),'(?<let>[a-z])'\),/) do

sum += $~["num"].to_i
lets << $~["let"]
"" # block result--replaces matched string in tuples

end
if tuples.empty? then

[sum,lets]
end

end
end

Example, continued

Approach:
1. Remove outer brackets
2. Append a comma
3. Recognize (NUM,LET), and replace with ""
4. Repeat 3. until failure
5. If nothing left but an empty string, success!

CSC 372 Fall 2022, Ruby Slide 323

Imagine a simple calculator that accepts input lines such as these:
x=7
yval=x+10*x
x+yval+z

Here's a very repetitious RE that recognizes those lines above:
valid_line = /^([a-zA-Z][a-zA-Z\d]*=)?([a-zA-Z][a-zA-
Z\d]*|\d+)([-+*\/]([a-zA-Z][a-zA-Z\d]*|\d+))*$/

Let's use some intermediate variables to build that same RE.
var = /[a-z][a-z\d]*/i # trailing "i": case insensitive

expr = /(#{var}|\d+)/

op = /[-+*\/]/

valid_line = /^(#{var}=)?#{expr}(#{op}#{expr})*$/

Avoiding repetitious REs

CSC 372 Fall 2022, Ruby Slide 324

Good news:
Lots of programs support regular expressions:
• The grep family (global/regular expression/print, derived from the
ed editor.)

• Most editors and IDEs
• MySQL has REGEXP and RLIKE operators
• Lots more...

Most programming languages have some sort of support for regular
expressions.

Bad news:
• "Core" RE primitives are very consistently supported but the

farther you get from that core, the less consistent support becomes.

• There's deliberate variation, too. Example: grep, egrep, and
egrep -P regular expressions differ.

Good news and bad news

CSC 372 Fall 2022, Ruby Slide 325

Our look at regular expressions ends here but there's lots more, like...
• Back references––/(.)(.).\2\1/ matches 5-character palindromes
• Nested regular expressions
• Nested and conditional groups
• Conditional subpatterns
• Zero-width positive lookahead
• Matching strings with newlines (\A, \Z, \z)

Proverb:
A programmer decided to use regular expressions to solve a problem.
Then the programmer had two problems.

• Regular expressions are great, up to a point.

• SNOBOL4 patterns, Icon's string scanning facility, and Prolog
grammars can all recognize unrestricted languages and are far less
complex than the regular expression facility in most languages.

Lots more with regular expressions

Groups can be accessed in
code with $1, $2, ...

CSC 372 Fall 2022, Ruby Slide 326

