Using the Tester
(and some policies on testing)
CSC 372
Last updated: September 10, 2022

The syllabus says,

For programming problems great emphasis will be placed on the ability to deliver code whose
output exactly matches the specification. Failing to achieve that will typically result in large
point deductions, sometimes the full value of the problem.

Whenever possible I'll use an automated testing tool, "the Tester”, to test your solutions for programming
problems. For each assignment I'll make available a "student set” of tests that you can run yoursdf using
the Tester. The set of tests used when grading (the "grading set") will often have additional tests. Unless
otherwise specified for a problem or an entire assignment, passing all the tests in the student set will
guarantee at least 75% of the points for a given problem. It some cases it will be higher, or even 100%,
with the student set used as the grading set. I'll call that 75% minimum the "student set guarantee”.

Unless otherwise specified or extenuating circumstances arise (such as a bonehead error on my part), the
student set will "freeze' 72 hours before the assignment’s deadline. By "freeze' | mean that no additional
tests will be added—if you pass all tests for a problem at T-72 hours, you're guaranteed at least 75% of the
points for that problem.

Test cases in the grading set are weighted. Those weights are not supplied in the student set but a rule of
thumb is that cases for basic functionality are weighted more than edge cases.

Sometimes |'ll give you a break for bonehead mistakes but ther€'s no excuse for not using the Tester.
If a student says, "l spent many hours on this and it works great, but it failed every test because | had an
extra space at the of aline.”, I'll ask, "Why didn't you use the Tester?"

The Tester ison lectura

The Tester is a collection of bash scripts, Ruby programs, an Icon program, and assorted files that are all
on lectura. Theinstructions in this document assume that you're working on lectura. (The tester will run
as-is on macOS and Cygwin but there are logistical issues to deal with, like staying in sync with the testing
configuration on lectura. See Help Wanted, below.)

You'll usethe Tester by running aN/ t est er , where N is the assignment number. For assignment 3 you'll
beusinga3/t est er. Notethat thepath, a3/ t est er, assumes that you've made an a3 symlink, as
described in the a3 write-up. For convenience, a3/t issymlinkedtoa3/ t est er but youmightdol n
-Ss a3/tester t tobeabletorunitwith./t, for example. (Remember that we're happy to help you
with UNIX stuff.)

When to use the Tester
If you're doing TDD with an xUnit tool like JUnit, it's appropriate to run tests frequently, typically after
almost every change, but that's not the intention with the Tester. | recommend that you first manually test
your code with examples from the write-up and other cases that come to mind. When things are look right
to the naked eye, then that's the time to run the Tester.

Thereisan HUnit for Haskell, as well as Hspec, QuickCheck and more, but | haven't seen anything that

Page 1

looks likely to provide more benefit than trouble for our modest needs in 372.
Quick summary of usage, for the TL ;DR crowd

With thea3 symlink in place and your solution for war mup. hs inthe current directory, you can test it
likethis:

% a3/ tester warmnup. hs
To stop it early, use”™ C (control+C). It might take more than one~ C, too.

war mup. hs isunusual because it contains many functions that aretested. You'll seethat running
a3/ tester warmnmup. hs testsall of them. That can produce a lot of useess output, especially if
you've written only one of those functions. Testing can be limited to a single function (or several) by
followingwar mup. hs witha-t:

a3/tester warmup -t | st

Y ou can also name multiple problems to be tested:

% a3/tester join cpfx warnmup

The above also shows that the. hs suffix is not required.

It's atedious time-killer to scroll back looking for the start of the Tester's output. One approachisto pipe
intol ess:

% a3/tester warmup | |ess

An alternative on macOS with Terminal isto do cnd- K before running the Tester—that clears the
scrollback, so when you scroll back, you'll be at the start of the Tester output. | don't know of a keyboard
shortcut to clear the scrollback with PUTTY but f al | 22/ bi n/ cl r isatwo-line script that clears
PUTTY's scrollback. (Let me know if you know a simpler way to do that.)

You'll probably want to test problems one at a time, as you develop them, but to test all problems you can
run the tester with no arguments. We can combine that with gr ep to simply look for failures:

% a3/tester | grep FAIL

Besureto capitalize FAI L, or usegrep -i fail,toignorecase

GREAT IDEA: Doa3/tester | grep FAIL asafinal double-check beforeyour final
a3/ turnin.

An interesting twist, an Original Thought by Chioke Aarhus, 372 Spring '16, isto discard the PASSED
lines:

% a3/tester | grep -v PASSED

Mor e detail on running the tester

For the purpose of this example well imagine that there are two more problemson a3: hel | 0. hs and
l etters. hs.

Page 2

Let'swork with asimple "hdlo" function, whose codeis correct and isinthefilehel | 0. hs:

% cat hell o. hs
hello s = "Hello, " ++ s ++ "I"

% ghci hell o. hs

Slztype hel |l o
hello :: [Char] -> [Char]

> hell o "whni
"Hel |l o, whnml"

Heres atest run with no failures:

% a3/tester hello

Test: 'ulimt -t 2; a3/tesths hello.hs ':type hello'': PASSED

Test: 'ulimt -t 2; a3/tesths hello.hs "hello "world"'': PASSED

Those two lines starting with "Test : " indicate that two tests wererun. Both passed. I've underlined
and bolded the text that shows what's actually being tested. Thefirst test, : t ype hel | o, checksthe
type of the function hel | 0. The second test runs the function, withhel 1 o "wor | d".

TheTest : linesstartwithul imt -t 2;,whichlimitsthe CPU timefor thetest to two seconds. The
text that follows that semicolon, up to the final apostrophe, is the exact command that's run for that test.
You can do a copy/paste to run it yoursef. Let'stry both of them:

% a3/tesths hello.hs ":type hello'
*Mai n> > > "TESTI NG START"

> hello :: [Char] -> [Char]

> Leavi ng GHG .

% a3/tesths hello.hs "hello "world"'
*Mai n> > > "TESTI NG START"

> "Hello, world!'\n"

> Leavi ng GHGi .

a3/ t est hs isabash script that loads the named filewith ghci and then feeds the third argument, such
as":type hell 0", intoghci .

Page 3

Note If you includetheul imt -t 2; whentryingatest, likethis,

%ulimt -t 2; a3/tesths hello.hs "hello "world"'

you'll set the CPU time limit to two seconds for all future commands in that instance of bash. If you
inadvertently do that, you'll need to log out and log in again to clear it. (An ordinary user can decrease
their CPU time limit, but cannot raiseit.)

Under standing differences reported by the Tester

If atest fails, thedi f f command is to used to show the differences between the expected output and the
actual output. "diffs" can sometimes be hard to understand. Googling for "understanding diffs* or
"deciphering diffs" turns up a lot of stuff, but here are a couple of Tester-specific examples.

Let'sintentionally break hel | o by removing thecommain™ Hel | o, ". Hereswhat the Tester
produces, with line numbers added for reference. Line 5 islong and is shown wrapped around.

% a3/tester hello. hs
[...header lines not shown...]

1. Test: 'ulimt -t 2; a3/tesths hello.hs ':type hello'': PASSED
2.
3. Test: '"ulimt -t 2; a3/tesths hello.hs "hello "world""': FAILED
4. Differences (expected/actual):
5. *** a3/master/tester.out/hello.out.02 2016-01- 28
12: 52: 52. 292586244 -0700
6. --- tester.out/hello.out.02 2016-01-28 23:22:41.190616251

-0700
7. *khkkkkhkkhkhkkhkhikkhkk*x
8. * % % 1’3 * k k%
9. *Mai n> > > "TESTI NG START"
10. ' > "Hello, world!"
11. > Leavi ng GHG .
2. --- 1,3 ----
13. *Mai n> > > "TESTI NG START"
4. ' > "Hello world!"
15. > Leavi ng GHG .

Thetypeof hel | o isunaffected by removing that comma but the output differs, so thefirst test still
passes but the second test now fails.

Lines 5 and 6 name the two files that are being "diffed" (compared). 1've underlined and bolded thefile
names. Thefirst isthefilethat contains the expected output,

a3/ master/tester.out/hello.out.02. Thesecond, t est er. out/ hel |l 0. out. 02,
contains the output produced by runninga3/t est hs hell o. hs "hello "world"' inthecurrent
directory. That directory, t est er . out , was created in the current directory by the Tester, to hold
various files created by the testing process. Needless to say, you can look at both fileswithcat , | ess,
editors, or any other tool.

The names of thefiles being compared are preceded by *** and - - - , which are used later, on lines 8 and
12, to identify the files those blocks of text comefrom. Line8s"*** 1,3 ****" meansthat what
follows arelines 1-3 from the expected output. Line12's"--- 1,3 ----" meansthat what follows are

Page 4

lines 1-3 from the actual output. (Diffsin tester output always follow the convention of showing the
expected output first and the actual output second.)

The exclamation marks on lines 10 and 14 indicate that those lines differ between the expected and actual
output. If we didn't already know what we did to break it, we might need to look close to see that the lines
differ by only a single comma.

For amoreinteresting "diff", let's work with a function named | et t er s that printsthefirst N lower-case
letters, one per line. Like the examples in the section A little output in the slides, this function directly
produces printed output using put St r rather than producing a valuethat isin turn displayed by ghci .
Here's an example of expected behavior:

|etters 4

>
a
b
c
d

Here's what the Tester shows with our buggy version, with line numbers added to aid explanation:

% a3/tester letters.hs
[...header lines not shown...]

1. Test: 'ulimt -t 2; a3/tesths letters.hs '"letters 4'': FAlILED

2. Differences (expected/actual):
3. *** a3/nmaster/tester.out/letters.out.01 2016-01-28
12: 58: 44. 406350815 -0700
4, --- tester.out/letters.out.01 2016-01-28 23:25:53. 772537760

-0700

kkhkkkkhkkhkhkkkkkhkhkk*k

* % % 1,6 * k% %

5
6.
7. *Mai n> > > "TESTI NG START"
8
9

I > a
. b
10. - ¢
11. d
12. > Leavi ng GHG .
13, --- 1,8 ----
14. *Mai n> > > "TESTI NG START"
5. ! >
16. ! a
17. ! X
18. b
19. d
20. + Done!

21. > Leavi ng GHG .
Weseeinlinelthatl ett ers 4 istheHaskel expression that's being tested.

Lines 3 and 4 identify the two files being diffed. Note that line 3 wraps around. Blocks from the expected
output will be identified with * * * ; blocks from the actual output will be identified with - - - .

Page 5

The exclamation marks on line 8 and lines 15-17 show that those sections apparently correspond to each
other but their content differs.

The minus sign on line 10 shows that theré's a line in the expected output, with just a”c", that doesn't
appear in the actual output.

The plus sign on line 20 shows that there's alinein the actual output, "Done! ", that doesn't appear in the
expected output.

If we have trouble understanding a diff, it often helps to directly examine the files being diffed. Herésthe
file with the expected outpuit:

% cat a3/ master/tester.out/letters.out.O01
*Mai n> > > "TESTI NG START"

> a

b
c
d
> Leavi ng GHG .

Here's what was actually output when tested:

% cat tester.out/letters.out.01
*Mai n> > > "TESTI NG START"

aoTX® Vv
§J
®

> Leévi ng GHC .

Of course, instead of looking at the file with the actual output, we could try manually running the exact
command the tester ran:

% a3/tesths letters.hs '"letters 4'
*Mai n> > > "TESTI NG START"

aoTX® Vv
§J
®

> Leavi ng GHG .

For complex differences you might open the expected and actual files in side-by-side windows in an editor.
A simple form of that is provided by vi ndi f f: (type: g<ENTER> TWICE to get out!)

% vindi ff a3/ master/tester.out/letters.out.01l tester.out/letters.out.01

It's not shown in the examples above but following thedi f f output is a line showing the names of thefiles
that were diffed:

Test: 'ulimt -t 2; a3/tesths letters.hs '"letters 4'': FAILED
Di fferences (expected/actual):

Page 6

+ Done!
> Leavi ng GHG .

Files diffed:
a3/ master/tester.out/letters.out.0l1 tester.out/letters. out. 01

That's provided so you can sdect the whole line with multiple clicks, typevi ndi f f or some other
command and then paste both file names onto that line.

pr - ml provides a simple side-by-side display of two files:

% pr -nT a3/ master/tester.out/letters.out.0l tester.out/letters.out.O01

*Mai n> > > "TESTI NG START" *Mai n> > > "TESTI NG START"
> a >
b a
c X
d b
> Leaving CHG . d
Done!

> Leaving GHCO .
di ff -y, which produces a side-by-side diff, is sometimes useful.

If di ff isclaiming adifference but the text looks identical, the problem might be trailing whitespace or
embedded non-printable characters, like NULs (ASCII code 0). Problems like that can be turned up by
pipingintocat - A:

% a3/tester hello | cat -A

Exceeding the time limit—handled poorly...

A bug in arecursive function can produce infinite recursion. Infinite recursion will cause the test's time
limit to be exceeded and the test will bekilled. Sadly, the Tester doesn't provide any clear evidence of the
time limit being exceeded. Here's what we seefor a diff with aversion of hel | o that infinitely recurses:

Test: 'ulimt -t 2; a3/tesths hello.hs "hello "world"'': FAILED

Di fferences (expected/actual):

***x g3/ master/tester.out/hello.out.02 2016- 01- 28

12: 52:52. 292586244 -0700

--- tester.out/hello.out.02 2016-01-28 23:36:23.020876709 -0700

EIR I P S I b b b b b I b
* % % 1’3 * % % %
*Mai n> > > "TESTI NG START"
I > "Hello, world!\n"
I > Leaving GHC .
ee 1,2 ----
*Mai n> > > "TESTI NG START"
I >
\' No newline at end of file

Note two things: (1) The actual output doesn't end with"Leavi ng GHC . " (2) di ff saystherésno
newline at the end of thefile. The combination of those two things typically indicates the time limit was
exceeded.

A good next step is to try the command yoursdf, without atime limit. Let'stry it outside the Tester:

Page 7

% a3/tesths hello.hs "hello "world"'
...wait a while...give up...hit ~C

Thetime limits set for tests are usually far more than what's needed but in rare cases you may find that

your solution is simply slow, and that it does complete when run outside the Tester. If so, let usknow. If
it's not outrageously slow, we might just bump up the time limit on the test.

Help Wanted
If you know Ruby and would like to hep make some improvements on the Tester, let me know. The Ruby

codeisina3/ rt est er, if you'd like to see what you might be dealing with, which ain't pretty, but
works.

Page 8

