
Ruby

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 1	

CSC	
 372,	
 Spring	
 2014	

The	
 University	
 of	
 Arizona	

William	
 H.	
 Mitchell	

whm@cs	

	

Topic Sequence:

•  Functional programming with Haskell

•  Imperative and object-oriented programming using dynamic

typing with Ruby

•  Logic programming with Prolog

•  Whatever else in the realm of programming languages that we

find interesting and have time for.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 2	

The Big Picture

Introduction

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 3	

"A dynamic, open source programming language with a focus on
simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting
language".

I describe Ruby as a dynamically typed object-oriented language.

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese
amateur language designer", in his own words.

Ruby on Rails, a web application framework, has largely driven
Ruby's popularity.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 4	

What is Ruby?

Here is a second-hand excerpt of a posting by Matz:
"Well, Ruby was born on February 24, 1993. I was talking with
my colleague about the possibility of an object-oriented
scripting language. I knew Perl (Perl4, not Perl5), but I didn't
like it really, because it had smell of toy language (it still has).
The object-oriented scripting language seemed very promising."

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy.
Based on this belief, Ruby is designed to make programming not
only easy but also fun. It allows you to concentrate on the
creative side of programming, with less stress. If you don’t
believe me, read this book [the "pickaxe" book] and try Ruby.
I’m sure you’ll find out for yourself."

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 5	

Matz says...

There is no written standard for Ruby. The language is effectively defined
by MRI—Matz' Ruby Implementation.

The current stable version of Ruby is 2.1.0.

If you take no special steps and run ruby on lectura, you'll get version
1.8.7.

On Windows, version 1.9.3 is recommended.

OS X Mavericks has Ruby 2.0 installed. Mountain Lion has 1.8.7.

There are few significant differences between 1.9.3 and 2.X, especially
wrt. the things we'll be doing.

These slides use 1.9.3.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 6	

Version issues

The Ruby Programming Language by David Flanagan and Matz
 – Perhaps the best book on Safari that covers 1.9 (along with 1.8)
 – I'll refer to it as "RPL" .

Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic Programmers'
Guide by Dave Thomas, with Chad Fowler and Andy Hunt

 – Known as the "Pickaxe book"
 – $28 for a DRM-free PDF at pragprog.com.	

 – I'll refer to it as "PA".
 – First edition is here: hLp://ruby-­‐doc.com/docs/ProgrammingRuby/

Safari has lots of pre-1.9 books, lots of books that teach just enough Ruby
to get one into the water with Rails, and lots of "cookbooks".

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 7	

Resources

ruby-lang.org
 – Ruby's home page

ruby-doc.org
 – Documentation
 – Here's a sample path, for the String class in 1.9.3:
 http://www.ruby-doc.org/core-1.9.3/String.html

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 8	

Resources, continued

Running Ruby

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 9	

The irb command lets us evaluate Ruby expressions interactively.

irb can be run with no arguments but I usually start irb with a bash alias
that specifies using a simple prompt and activates auto-completion:

 alias irb="irb --prompt simple -r irb/completion"

On Windows you might use a batch file named irbs.bat to start with those
options. Here's mine, in the directory where I'll be working with Ruby:

W:\372\ruby>type irbs.bat
irb --prompt simple -r irb/completion

I run it by typing irbs (not just irb).

Control-D terminates irb on all platforms.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 10	

Experimenting with Ruby using irb

irb evaluates expressions as they are typed.
>> 1+2
=> 3

>> "testing" + "123"
=> "testing123"

If you put in place the .irbrc file that I supply, you can use it to reference
the last result:

>> it
=> "testing123"

>> it + it
=> "testing123testing123"

Note: To save space on the slides I'll typically not show the result line
(=> ...) when it's uninteresting.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 11	

irb, continued

If an expression is definitely incomplete, irb displays an alternate prompt:

>> 1.23 +
?> 1e5
=> 100001.23

The constant RUBY_VERSION can be used to be see what version of
Ruby is being used.

>> RUBY_VERSION
=> "1.9.3"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 12	

irb, continued

GO BACK TO SLIDE 10!

The ruby command can be used to execute Ruby source code contained in
a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!

Note that the code does not need to be enclosed in a method—"top level"
expressions are evaluated when encountered.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 13	

Executing Ruby code in a file

Windows, using a .rb file association:
W:\372\ruby>type hello.rb
puts "Hello, world!"

W:\372\ruby>hello.rb
Hello, world!

Alternatively, code can be placed in a method that is invoked by an
expression at the top level:

% cat hello2.rb
def say_hello
 puts "Hello, world!"
end

say_hello

% ruby hello2.rb
Hello, world!

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 14	

Executing Ruby code in a file, continued

Here's a program that reads lines from standard input and writes each, with
a line number, to standard output:

line_num = 1 # numlines.rb

while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1 # Ruby does not have ++ and --
end

Execution:
% ruby numlines.rb < hello2.rb
 1: def say_hello
 2: puts "Hello, world!"
 3: end
 4:
 5: say_hello

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 15	

A line-numbering program

Problem: Write a program that reads lines from standard input and writes
them in reverse order to standard output. Use only the Ruby you've already
seen.

For reference, here's the line-numbering program:

line_num = 1
while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1
end

Solution: (tac.rb)

reversed = ""
while line = gets
 reversed = line + reversed
end
puts reversed

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 16	

tac.rb

If you don't do anything special on lectura, you get an old version of Ruby.
$ irb
>> RUBY_VERSION
=> "1.8.7"
>> (control-D to exit)

To get 1.9.3, use rvm each time you login:

$ rvm 1.9
$ irb
>> RUBY_VERSION
=> "1.9.3"

$ ruby --version
ruby 1.9.3p484 (2013-11-22 revision 43786) ...

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 17	

Ruby on lectura

If you want to get the customized .irbrc file, do this:
$ cp /cs/www/classes/cs372/spring14/ruby/irbrc ~/.irbrc

Better yet, add this shell variable assignment to your ~/.bashrc
 rbdir=/cs/www/classes/cs372/spring14/ruby

Then reload your .bashrc with source ~/.bashrc and do this:

 cp $rbdir/dotirbrc ~/.irbrc

That rbdir variable will be handy for copying other files from that Ruby
directory, too.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 18	

Ruby on lectura, continued

Go to http://rubyinstaller.org/downloads/ and get
"Ruby 1.9.3-p484".

When installing, I recommend these selections:

 Install Tcl/Tk support
 Add Ruby executables to your PATH
 Associate .rb and .rbw files with this Ruby installation

You can get the customized .irbrc file here:
 hLp://www.cs.arizona.edu/classes/cs372/spring14/ruby/doSrbrc	

Copy it into the appropriate directory. On my (old) XP box, I'd do this:
	
 	
 	
 	
 c:>copy	
 doSrbrc	
 "c:\Documents	
 and	
 SeXngs\YOURUSERNAME\.irbrc"	

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 19	

Ruby on Windows

Ruby 2.0 comes with Mavericks. It should be fine for our purposes.

I installed Ruby 1.9.3 on Mountain Lion using MacPorts.

https://www.ruby-lang.org/en/installation/ shows some other
options.

To copy the customized .irbrc into place you might do this:

 scp YOUR-NETID@lectura.cs.arizona.edu:/cs/www/classes/
cs372/spring14/ruby/dotirbrc ~/.irbrc

 Note that would clobber an existing ~/.irbrc, of course!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 20	

Ruby on OS X

The examples from the slides will accumulate here:
 http://www.cs.arizona.edu/classes/cs372/spring14/ruby/
 /cs/www/classes/cs372/spring14/ruby (when on lectura)

See the second Ruby on lectura slide above for a suggested $rbdir shell
variable.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 21	

Experiment with the files!

Ruby basics

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 22	

In Ruby every value is an object.

Methods can be invoked using receiver.method(parameters...)

>> "testing".count("t") # How many "t"s are there?
 => 2

>> "testing".slice(1,3)
=> "est"

>> "testing".length()
=> 7

Repeat: In Ruby every value is an object.

What are some values in Java that are not objects?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 23	

Every value is an object

Parentheses can be omitted from an argument list:
>> "testing".count "aeiou"
=> 2

>> "testing".slice 1,3
=> "est"

If no parameters are required, the parameter list can be omitted.

>> "testing".length
=> 7

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 24	

Everything is an object, continued

Of course, "everything" includes numbers:
>> 1.2.class
=> Float

>> (10-20).class
=> Fixnum

>> 17**25
=> 5770627412348402378939569991057

>> it.succ # Remember: the custom .irbc is needed to use "it"
=> 5770627412348402378939569991058

>> it.class
=> Bignum

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 25	

Everything is an object, continued

100.__id__
100.__send__
100.abs
100.abs2
100.angle
100.arg
100.between?
100.ceil
100.chr
100.class
100.clone
100.coerce
100.conj
100.conjugate
100.define_singleton_method
100.denominator

100.display
100.div
100.divmod
100.downto
100.dup
100.enum_for
100.eql?
100.equal?
100.even?
100.extend
100.fdiv
100.floor
100.freeze
100.frozen?
100.gcd
100.gcdlcm

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 26	

Everything is an object, continued
The TAB key can be used to show completions:

>> 100.<TAB><TAB>
Display all 107 possibilities? (y or n)

We'll talk about modules later but there's a Kernel module whose methods
are available in every method and in top-level expressions.

gets, puts, printf and many more reside in Kernel.

>> puts 2,"three" # Instead of Kernel.puts 2, "three"
2
three
=> nil

>> printf "sum = %d, product = %d\n", 3+4, 3 * 4
sum = 7, product = 12
=> nil

See http://www.ruby-doc.org/core-1.9.3/Kernel.html

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 27	

Sidebar: Methods from Kernel

In Java, variables are declared to have a type.

Variables in Ruby do not have a type. Instead, type is associated with
values.

>> x=10
>> x.class
=> Fixnum

>> x="ten"
>> x.class
=> String

>> x=2**100
>> x.class
=> Bignum

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 28	

Variables have no type

Here's another way to think about this:
Every variable can hold a reference to an
object. Because every value is an object,
any variable can reference any value.

Java, C, and Haskell support static type checking.

With static type checking it's possible to determine if expressions have
type inconsistencies by statically analyzing the code.

Java and C use explicit type specifications.

Haskell uses type inferencing and, when supplied, explicit type
specifications.

Static type checking lets us guarantee that no errors of a certain class exist
without having to execute any code.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 29	

Type checking

Ruby uses dynamic type checking.There is no static analysis of the types
involved in expressions.

Consider this Ruby method:

def f x, y, z
 return x[y + z] * x.foo
end

For some combinations of types it will produce a value. For others it will
produce a TypeError.

With dynamic type checking, such methods are allowed to exist.

What are the implications for performance with dynamic typing?

What are the implications for reliability with dynamic typing?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 30	

Type checking, continued

Points for thought:

•  Dynamic type checking doesn't catch type errors until execution.

•  Can good test coverage catch type errors as well as static typing?

•  Test coverage has an additional dimension with dynamic typing: do
tests not only cover all paths but also all potential type combinations?

•  What's the prevalence of latent type errors vs. other types of errors?

•  What does the user care about?
 Software that works
 Fast enough
 Better sooner than later

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 31	

Type checking, continued

When designing a language some designers ask, "Why should feature X be
included?"

Some designers ask the opposite: "Why should feature X not be
included?"

Let's explore that question with Ruby.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 32	

Sidebar: "Why" or "Why not?"

Here are some examples of operator overloading:
>> [1,2,3] + [4,5,6] + [] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1, 3]
=> [15, 7]

>> [10, 20, 30] * "..."
=> "10...20...30"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 33	

"Why" or "Why not?", continued

What are some ways in which inclusion of a feature impacts a language?

•  Increases the "mental footprint" of the language.

•  Maybe makes the language more expressive.

•  Maybe makes the language useful for new applications.

Features come in all sizes!

"Go ahead [and add all the features you want], but for every one feature
you add, first find one to remove." —Ralph Griswold, 1982 (Icon v5)

There's a lot of science in programming language design but there's art,
too.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 34	

"Why" or "Why not?", continued

Some basic types

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 35	

nil is Ruby's "no value" value. The name nil references the only instance
of the class.

>> nil
=> nil

>> nil.class
=> NilClass

>> nil.object_id
=> 4

We'll see that Ruby uses nil in a variety of ways.

Speculate: Do uninitialized variables have the value nil?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 36	

The value nil

Instances of Ruby's String class represent character strings.

A variety of "escapes" are recognized in double-quoted literals:

>> puts "newline >\n< and tab >\t<"
newline >
< and tab > <

>> "\n\t\\".length
=> 3

>> "Newlines: octal \012, hex \xa, control-j \cj"
=> "Newlines: octal \n, hex \n, control-j \n"

Section 3.2, page 49 in RPL has the full list of escapes.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 37	

Strings and string literals

In single-quoted literals only \' and \\ are recognized as escapes:

>> puts '\n\t'!
\n\t!
=> nil!
!
>> '\n\t'.length ! # Four chars: backslash, n, backslash, t!
=> 4!
!
>> puts '\'\\'!
'\!
=> nil!
!
>> '\'\\'.length # Two characters: apostrophe, backslash !
=> 2!
!
!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 38	

String literals, continued

A "here document" is a third way to specify a literal string:
>> s = <<SomethingUnique!
 +-----+!
 | \\\ |!
 | */ |!
 | ''' |!
 +-----+!
SomethingUnique!
=> " +-----+\n | \\ |\n | */ |\n |
''' |\n +-----+\n"!

The string following << specifies a delimiter that ends the literal. It must
appear at the start of a line.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 39	

String literals, continued

Here's another way to specify string literals. See if you can discern some
rules from these examples:

>> %q{ just testin' this... }
=> " just testin' this... "

>> %Q|\n\t|
=> "\n\t"

>> %q(\u0041 is Unicode for A)
=> "\\u0041 is Unicode for A"

>> %q.test.
=> "test"

%q follows single-quote rules. %Q follows double quote rules.
Symmetrical pairs like (), {}, and <> can be used.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 40	

String literals, continued

How many ways should
there be to make a string
literal?

What's the minimum
functionality needed?

Which would you remove?

The public_methods method shows the public methods that are
available for an object. Here are some of the methods for String:

>> "abc".public_methods.sort
=> [:!, :!=, :!~, :%, :*, :+, :<, :<<, :<=, :<=>, :==, :===, :=~,
 :>, :>=, :[], :[]=, :__id__, :__send__, :ascii_only?,
 :between?, :bytes, :bytesize, :byteslice, :capitalize, :capitalize!
, :casecmp, :center, :chars, :chomp, :chomp!, :chop, :chop!, :chr
, :class, :clear, :clone, :codepoints, :concat, :count, :crypt, :defi
ne_singleton_method, :delete, :delete!, :display, :downcase, :d
owncase!, :dump, :dup, :each_byte, :each_char, :each_codepoi
nt, :each_line, :empty?, ...

>> "abc".public_methods.length
=> 164

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 41	

String has a lot of methods

Unlike Java, Haskell, and many other languages, strings in Ruby are
mutable.

If two variables reference a string and the string is changed, the change is
reflected by both variables:

>> x = "testing"

>> y = x # x and y now reference the same instance of String

>> x.upcase!
=> "TESTING"

>> y
=> "TESTING"

Convention: If there are both applicative and imperative forms of a
method, the name of the imperative form ends with an exclamation mark.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 42	

Strings are mutable

The dup method produces a copy of a string.
>> x = "testing"
>> y = x.dup
=> "testing"

>> y.upcase!
>> y
=> "TESTING"

>> x
=> "testing"

Some objects that hold strings dup the string when the string is added to
the object.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 43	

Strings are mutable, continued

Strings can be compared with a typical set of operators:

>> s1 = "apple"

>> s2 = "testing"

>> s1 == s2
=> false

>> s1 != s2
=> true

>> s1 < s2
=> true

We'll talk about details of true and false later.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 44	

String comparisons

There is also a comparison operator.

With strings it produces -1, 0, or 1 depending on whether the first operand
is less than, equal to, or greater than the second operand.

>> "apple" <=> "testing"
=> -1

>> "testing" <=> "apple"
=> 1

>> "x" <=> "x"
=> 0

This operator is sometimes called "spaceship".

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 45	

String comparisons, continued

Subscripting a string with a number produces a one-character string.

>> s="abcd"

>> s[0] # Positions are zero-based
=> "a"

>> s[1]
=> "b"

>> s[-1] # Negative positions are counted from the right
=> "d"

>> s[100]
=> nil

Historical note: With Ruby versions prior to 1.9, "abc"[0] is 97.

Why doesn't Java provide s[n] instead of s.charAt(n)?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 46	

Substrings

A subscripted string can be the target of an assignment. A string of any
length can be assigned.

>> s = "abc"
=> "abc"

>> s[0] = 65.chr
=> "A"

>> s[1] = "tomi"

>> s
=> "Atomic"

>> s[-3] = ""

>> s
=> "Atoic"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 47	

Substrings, continued

A substring can be referenced with
 s[start, length]

>> s = "replace"

>> s[2,3]
=> "pla"

>> s[3,100]
=> "lace"

>> s[-4,3]
=> "lac"

>> s[10,10]
=> nil

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 48	

Substrings, continued

Instances of Ruby's Range class represent a range of values. Ranges can
be used to reference a substring.

>> r = 2..-2
=> 2..-2

>> r.class
=> Range

>> s = "replaced"

>> s[r]
=> "place"

>> s[r] = ""

>> s
=> "red"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 49	

Substrings with ranges

It's more common to use literal ranges with
strings:

>> s = "rebuilding"
>> s[2..-1] # the common case
=> "building"

>> s[2..-4]
=> "build"

>> s[2...-3] # three dots is "up to"
=> "build"

A substring can be the target of an assignment:
>> s = "replace"

>> s[0,2] = ""
=> ""

>> s
=> "place"

>> s[3..-1] = "naria"
=> "naria"

>> s["aria"] = "kton" # If "aria" appears, replace it (error if not).

=> "kton"

>> s
=> "plankton"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 50	

Changing substrings

In a string literal enclosed with double quotes, or specified with a "here
document", the sequence #{expr} causes interpolation of expr, an
arbitrary Ruby expression.

>> x = 10

>> y = "twenty"

>> s = "x = #{x}, y + y = #{y + y}"
=> "x = 10, y + y = twentytwenty"

>> puts "There are #{"".public_methods.length} string methods"
There are 164 string methods

>> "test #{"#{"abc".length*4}"}" # Arbitrary nesting works
=> "test 12"

It's idiomatic to use interpolation rather than concatenation to build a
string of several values.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 51	

Interpolation in string literals

With 1.9.3 on lectura, integers in the range -262 to 262-1 are represented by
instances of Fixnum. If an operation produces a number outside of that
range, the value is represented with a Bignum.

>> x = 2**62-1 => 4611686018427387903

>> x.class => Fixnum

>> x += 1 => 4611686018427387904

>> x.class => Bignum

>> x -= 1 => 4611686018427387903

>> x.class => Fixnum

Is this automatic transitioning between Fixnum and Bignum a good idea?
How do other languages handle this?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 52	

Numbers

The Float class represents floating point numbers that can be represented
by a double-precision floating point number on the host architecture.

>> x = 123.456 => 123.456

>> x.class => Float

>> x ** 0.5 => 11.111075555498667

>> x * 2e-3 => 0.24691200000000002

>> x = x / 0.0 => Infinity

>> (0.0/0.0).nan? => true

>> (0/0) => ZeroDivisionError: divided by 0

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 53	

Numbers, continued

Fixnums and Floats can be mixed. The result is a Float.

>> 10 / 5.1 => 1.9607843137254903

>> 10 % 4.5 => 1.0

>> 2**40 / 8.0 => 137438953472.0

>> it.class => Float

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 54	

Numbers, continued

Ruby has a Complex type.

>> Complex(2,3) => (2+3i)

>> Complex('i') => (0+1i)

>> it*it => (-1+0i)

There's Rational, too.

>> Rational(1,3) => (1/3)

>> it * 300 => (100/1)

>> Rational(0.5) => (1/2)

>> Rational(0.6) => (5404319552844595/9007199254740992)

>> Rational(0.015625) => (1/64)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 55	

Numbers, continued

Unlike some languages, Ruby does not automatically convert strings to
numbers and numbers to strings as needed.

>> 10 + "20"
TypeError: String can't be coerced into Fixnum

The methods to_i, to_f, and to_s are used to convert values to Fixnums,
Floats and Strings, respectively.

>> 10.to_s + "20" => "1020"

>> 10 + "20".to_f => 30.0

>> 10 + 20.9.to_i => 30

>> 33.to_<TAB><TAB>
33.to_c 33.to_f 33.to_int 33.to_s
33.to_enum 33.to_i 33.to_r

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 56	

Conversions

A sequence of values is typically represented in Ruby by an instance of
Array.

An array can be created by enclosing a comma-separated sequence of values
in square brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 2**40]
=> ["ten", 20, 30.0, 1099511627776]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 1099511627776], [[[10, 20, 30]]]]

What's a difference between Ruby arrays and Haskell lists?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 57	

Arrays

Array elements and subarrays (sometimes called slices) are specified with
a notation like that used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0] => 1

>> a[1,2] => ["two", 3.0]

>> a[-1][-2] => "c"

>> a[-1][0] << " test" => "a test"

>> a => [1, "two", 3.0, ["a test", "b", "c", "d"]]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 58	

Arrays, continued

Elements and subarrays can be assigned to. Ruby accommodates a variety
of cases; here are some:

>> a = [10, 20, 30, 40, 50, 60] => [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a => [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a => [10]

>> a[0] = [1,2,3]; a => [[1, 2, 3]]

>> a[4] = [5,6]; a => [[1, 2, 3], nil, nil, nil, [5, 6]]

>> a[0,3] = %w(}] >); a => ["}", "]", ">", nil, [5, 6]] (added)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 59	

Arrays, continued

A variety of operations are provided for arrays. Here's a sampling:
>> a = [] => []

>> a << 1; a => [1]

>> a << [2,3,4]; a => [1, [2, 3, 4]]

>> a.reverse!; a => [[2, 3, 4], 1]

>> a[0].shift => 2

>> a => [[3, 4], 1]

>> a.unshift "a","b","c" => ["a", "b", "c", [3, 4], 1]

>> a.shuffle.shuffle => ["a", [3, 4], "b", "c", 1]

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 60	

Arrays, continued

A few more array operations:
>> a = [1,2,3,4]; b = [1,3,5]

>> a + b => [1, 2, 3, 4, 1, 3, 5]

>> a - b => [2, 4]

>> a & b => [1, 3]

>> a | b => [1, 2, 3, 4, 5]

>> (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> [1..10] => [1..10]

>> it[0].class => Range

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 61	

Arrays, continued

We can compare arrays with == and !=. Elements are compared in turn,
possibly recursively.

>> [1,2,3] != [1,2] => true

>> [1,2,[3,"bcd"]] == [1,2] + [[3, "abcde"[1..-2]]] => true

>> [1,2,3] == (1..10).to_a[0,3] => true

Comparison with <=> is lexicographic but produces nil if different types
are encountered.

>> [1,2,3,4] <=> [1,2,10] => -1

>> [1,2,3,4] <=> [1,2,3,"four"] => nil

>> [[10,20],[2,30], [5,"x"]].sort => [[2, 30], [5, "x"], [10, 20]]

>> [[10,20],[5,30], [5,"x"]].sort
ArgumentError: comparison of Array with Array failed

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 62	

Comparing arrays

An array can hold a reference to itself:
>> a = [1,2,3] => [1, 2, 3]

>> a.push a
=> [1, 2, 3, [...]]

>> a.size
=> 4

>> a[-1]
=> [1, 2, 3, [...]]

>> a[-1][-1][-1]
=> [1, 2, 3, [...]]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 63	

Arrays can be cyclic

[1, 2, 3,]

a

>> a << 10
=> [1, 2, 3, [...], 10]

>> a[-2][-1]
=> 10

Control Structures

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 64	

Here is a loop to print the numbers from 1 through 10, one per line.

i=1
while i <= 10
 puts i
 i += 1
end

When i <= 10 produces false, control branches to the code following
end, if any.

The body of the while is always terminated with end, even if there's only
one expression in the body.

What's a minor problem with Ruby's syntax versus Java's use of braces to
bracket multi-line loop bodies?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 65	

The while loop

In Java, control structures like if, while, and for are driven by the result of
expressions that produce a value whose type is boolean.

C has a more flexible view: control structures consider an integer value
that is non-zero to be "true".

PHP considers zeroes, the empty string, "0", empty arrays (and more) to be
false.

Python, too, has a set of "falsey/falsy" values.

Here's the Ruby rule:

 Any value that is not false or nil is considered to be "true".

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 66	

while, continued

Remember: Any value that is not false or nil is considered to be "true".

Consider this loop, which reads lines from standard input using gets.

while line = gets
 puts line

end

gets returns a string that is the next line of the input, or nil, on end of file.

The expression line = gets has two side effects but also produces a value.

 Side effects: (1) a line is read from standard input and (2) is assigned to line.
 Value: The string assigned to line.

If the first line of the file is "one", then the first time through the loop, what's
evaluated is while "one".

The value "one" is not false or nil, so the body of the loop is executed, causing
"one" to be printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value
of the assignment, terminating the loop in turn.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 67	

while, continued

The string returned by gets has a trailing newline.* String's chomp
method removes a carriage return and/or newline from the end of a string.

Here's a program that is intended to flatten the input lines to a single line:

result = ""
while line = gets.chomp

 result += line
end
puts result

It doesn't work. What's wrong with it?

Here's the error:

% ruby while4.rb < lines.txt
while4.rb:2:in `<main>': undefined method `chomp' for
nil:NilClass (NoMethodError)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 68	

while, continued

*Unless it's the last line and the file doesn't end with a newline.

Problem: Write a while loop that prints the characters in the string s, one
per line. Don't use the length or size methods of String.

Extra credit: Don't use any variables other than s.

Solution: (while5.rb)

i = 0
while c = s[i]
 puts c
 i += 1
end

Solution with only s: (while5a.rb)
while s[0]
 puts s[0]
 s[0] = ""
end

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 69	

while, continued

Unlike Java, Ruby does pay some attention to the presence of newlines in
source code.

For example, a while loop cannot be simply written on a single line.

 while i <= 10 puts i i += 1 end # Syntax error

If we add semicolons where newlines originally were, it works:

 while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

 while i <= 10 do puts i; i+=1 end # OK. Note added "do"

Unlike Haskell and Python, indentation is never significant in Ruby.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 70	

Source code layout

Ruby considers a newline to terminate an expression, unless the
expression is definitely incomplete.

For example, the following is ok because "i <=" is definitely incomplete.

while i <=
10 do puts i; i += 1 end

Is the following ok?

while i
<= 10 do puts i; i += 1 end

Nope...
syntax error, unexpected tLEQ
<= 10 do puts i; i += 1 end
^

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 71	

Source code layout, continued

Can you think of any pitfalls that the incomplete expression rule could
produce?

Example of a pitfall: Ruby considers

x = a + b
 + c

to be two expressions: x = a + b and + c.

Rule of thumb: If breaking an expression across lines, end lines with an
operator:

 x = a + b +
 c

Alternative: Indicate continuation with a backslash at the end of the line.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 72	

Source code layout, continued

Academic writing on programming languages commonly uses the term
"statement" to denote a syntactic element that performs operation(s) but
does not produce a value.

The term "expression" is consistently used to describe a construct that
produces a value.

Ruby literature sometimes talks about the "while statement" even though
while produces a value:

>> i = 1
>> while i <= 3 do i += 1 end
=> nil

Dilemma: Should we call it the "while statement" or the "while
expression"?

We'll see later that the break construct can cause a while loop to produce
a value other than nil.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 73	

Expression or statement?

Ruby has operators for conjunction, disjunction, and "not" with the same
symbols as Java and C, but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false => false

>> 1 && 2 => 2

>> true && "abc"
=> "abc"

>> true && false
=> false

>> nil && 1
=> nil

Challenge: Precisely describe the rule that Ruby uses to determine the
value of a conjunction operation.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 74	

Logical operators

Disjunction is ||, also like Java. As with conjunction, the values produced
are interesting:

>> 1 || nil
=> 1

>> false || 2
=> 2

>> "abc" || "xyz"
=> "abc"

>> s = "abc"
>> s[0] || s[3]
=> "a"

>> s[4] || false
=> false
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 75	

Logical operators, continued

An exclamation mark inverts a logical value. The resulting value is true or
false.

 >> ! true => false

>> ! 1 => false

>> ! nil => true

>> ! (1 || 2) => false

>> ! ("abc"[5] || [1,2,3][10]) => true

>> ![nil] => false

There are also and, or, and not operators, but with very low precedence.
Why?

 x < 2 && y > 3 or x * y < 10 || z > 20 # instead of ...
 (x < 2 && y > 3) || (x * y < 10 || z > 20)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 76	

Logical operators, continued

Ruby supports parallel assignment. Some simple examples:

>> a, b = 10, [20, 30]

>> a => 10

>> b => [20, 30]

>> c, d = b

>> c => 20

>> d => 30

Section 4.5.5 in RPL has full details on parallel assignment. It is both
more complicated and less general than pattern matching in Haskell. (!)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 77	

Sidebar: Parallel assignment

Ruby's if-then-else looks familiar:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end * 3
=> "threethreethree"

Observations?

Speculate: Is the following valid? If so, what will it produce?

if 1 > 2 then 3 end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 78	

The if-then-else construct

If a language's if-then-else returns a value it creates an issue about the
meaning of if-then, with no else.

In Ruby, if there's no else clause and the control expression is false, nil is
produced:

>> if 1 > 2 then 3 end => nil

In the C family, if-then-else doesn't return a value.

Haskell and ML simply don't allow an else-less if.

In Icon, an expression like if 2 > 3 then 4 is said to fail. No value is
produced, and failure propagates to any enclosing expression, which in
turn fails.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like
the C family. Is that a good thing or bad thing?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 79	

if-then-else, continued

The most common Ruby coding style puts the if, the else, the end, and
the expressions of the clauses on separate lines:

if lower <= x && x <= higher or inExRange(x, rangeList) then
 puts "x is in range"
 history.add x

else
 outliers.add x

end

Note the use of the low-precedence or instead of ||.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 80	

if-then-else, continued

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Note that there is no "end" to terminate the then clauses. elsif both closes
the current then and starts a new clause.

It is not required to have a final else.

Is elsif syntactic sugar?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 81	

The elsif clause

At hand:
if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Can we shorten it by thinking less imperatively and more about values?

See 5.1.4 in RPL for Ruby's case (a.k.a. switch) expression.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 82	

elsif, continued

grade =
 if average >= 90 then "A"
 elsif average >= 80 then "B"
 elsif average >= 70 then "C"
 else "F"
 end

if and unless can be used as modifiers to indicate conditional execution.

>> total, count = 123.4, 5 # Note: parallel assignment

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0
>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:

expr1 if expr2
expr1 unless expr2

What does 'x.f if x' mean?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 83	

if and unless as modifiers

Ruby's break and next are similar to Java's break and continue.

Below is a loop that reads lines from standard input, terminating on end of
file or when a line beginning with a period is read. Each line is printed
unless the line begins with a pound sign.

while line = gets
 if line[0] == "." then
 break
 end
 if line[0] == "#" then
 next
 end
 puts line
end

Problem: Rewrite it to use if as a modifier.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 84	

break and next

while line = gets
 break if line[0] == "."
 next if line[0] == "#"
 puts line
end

Remember that while is an expression that produces the value nil when
the loop terminates.

If a while loop is exited with break expr, the value of expr is the value
of the while.

Here's a contrived example to show the mechanics of it:

% cat break2.rb
s = "x"
puts (while true do
 break s if s.size > 30
 s += s
 end)

% ruby break2.rb
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 85	

break and next, continued

Here are three examples of Ruby's for loop:
for i in 1..100 do # as with while, the do is optional
 sum += i
end

for i in [10,20,30] do
 sum += i
end

for msymbol in "x".methods do
 puts msymbol if msymbol.to_s.include? "!"
end

The "in" expression must be an object that has an each method.

In the first case, the "in" expression is a Range. In the latter two it is an
Array.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 86	

The for loop

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]]
 puts [s] * n * sep
end

Output:

1-1-1-1-1
sos
 <-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Consider the feature of supporting parallel assignment in the for.
•  How would we write the above without it?
•  What's the mental footprint of this feature?
•  What's the big deal since there's already parallel assignment?
•  Is this creeping featurism?
•  Might this be used to have array values used as method parameters?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 87	

The for loop, continued

Method definition

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 88	

Here is a simple Ruby method:

def add x, y
 return x + y
end

The keyword def indicates that a method definition follows. Next is the
method name. The parameter list follows, optionally enclosed in
parentheses. No types can be specified.

If the end of a method is reached without encountering a return, the value
of the last expression becomes the return value. Here is a more idiomatic
definition for add:

def add x, y
 x + y
end

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 89	

Method definition

As we saw in an early example, if no arguments are required, the
parameter list can be omitted:

def hello
 puts "Hello, world!"

end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 90	

Method definition, continued

One way to get methods into irb is to use load:

% cat simple.rb
def add x, y
 x + y
end

def hello
 puts "Hello, world!"
end

% irb
>> load "simple.rb" => true
>> add 3, 4 => 7
>> hello
Hello, world!
=> nil

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 91	

Method definition, continued

Alternatively, we can type a definition directly into irb.

We'll use \irb to bypass my irb alias and show the default irb prompt.

% \irb
irb(main):001:0> def add x, y
irb(main):002:1> x + y
irb(main):003:1> end
=> nil
irb(main):004:0> add 3, 4
=> 7

Note that the default prompt includes a line counter and a nesting depth.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 92	

Method definition, continued

We claim to be defining a method named add but there's no class in sight!

In Ruby, methods can be added to a class at run-time.

A freestanding method defined in irb or found in a file is associated with
an object referred to as "main", an instance of Object.

At the top level, the name self references that object.

>> [self.class, self.to_s] => [Object, "main"]

>> methods_b4 = self.methods

>> def add x,y; x+y; end => nil

>> self.methods - methods_b4 => [:add]

We can see that self has one more method after add is defined.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 93	

If add is a method, where's the class?

Recall these examples of the for loop:
for i in 1..100 do
 sum += i
end

for i in [10,20,30] do
 sum += i
end

It is only required that the "in" value be an object that has an each
method. (It doesn't need to be a subclass of Enumerable, for example.)

This is an example of duck typing, so named based on the "duck test":

If it looks like a duck, swims like a duck, and quacks like a duck, then
it probably is a duck.

For the case at hand, the value produced by the "in" expression qualifies
as a "duck" if it has an each method.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 94	

Duck typing

The key characteristic of duck typing is that we're interested only in
whether an object supports the operations we require.

With Ruby's for loop, it is only required that the in value have an each
method.

Consider this method:

def double x
 return x * 2
end

What operation(s) must x support?

Note that x * 2 actually means x.*(2) — invoke the method * on the
object x and pass it the value 2 as a parameter.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 95	

Duck typing, continued

At hand:
def double x
 return x * 2
end

>> double 10 => 20

>> double "abc" => "abcabc"

>> double [1,2,3] => [1, 2, 3, 1, 2, 3]

>> double Rational(3) => (6/1)

>> double 1..10
NoMethodError: undefined method `*' for 1..10:Range

Is it good or bad that double operates on so many different types?

Is double polymorphic?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 96	

Duck typing, continued

Recall: The key characteristic of duck typing is that we're interested only
in whether an object supports the operations we require.

Does this Java method show an example of duck typing?

 static double sumOfAreas(Shape shapes[]) {
 double area = 0.0;
 for (Shape s: shapes)

 area += s.getArea();
 return area;
 }

Does sumOfAreas only require that elements (in shapes) only need to
be able to respond to getArea(), or does it require more?

Does duck typing require a language to be dynamically typed?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 97	

Duck typing, continued

Do Haskell type classes facilitate the use of duck typing?

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 ...

Duck typing is operation-centric rather than type-centric.

Be on the watch for duck typing as we proceed with Ruby!

"If it looks like a duck, and quacks like a duck, we have at least to consider
the possibility that we have a small aquatic bird of the family Anatidae on
our hands."—Douglas Adams' Dirk Gently's Holistic Detective Agency

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 98	

Duck typing, continued

Unlike some dynamically typed languages, Ruby considers it to be an
error if the wrong number of arguments is supplied to a method.

def wrap(s, wrapper) # Parentheses are optional...
 wrapper[0] + s + wrapper[1]
end

>> wrap("testing", "<>")
=> "<testing>"

>> wrap("testing")
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "<", ">")
ArgumentError: wrong number of arguments (3 for 2)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 99	

Varying numbers of arguments

Ruby does not allow the methods of a class to be overloaded. Here's a
Java-like approach that does not work:

def wrap(s)
 wrap(s, "()")
end

def wrap(s, wrapper)
 wrapper[0] + s + wrapper[1]
end

The imagined behavior is that if wrap is called with one argument it will
call the two-argument wrap with "()" as a second argument. In fact, the
second definition of wrap simply replaces the first. (Last def wins!)

>> wrap "x"
ArgumentError: wrong number of arguments (1 for 2)

>> wrap("testing", "[]") => "[testing]"

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 100	

Varying numbers of arguments, continued

There's no intra-class method overloading but Ruby does allow default
values to be specified for arguments:

def wrap(s, wrapper = "()")
 wrapper[0] + s + wrapper[1]
end

>> wrap("abc", "<>")
=> "<abc>"

>> wrap("abc")
=> "(abc)"

Remember, parentheses are optional...
>> wrap "abc", "[]"
=> "[abc]"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 101	

Varying numbers of arguments, continued

Any number of defaulting arguments can be specified. Imagine a method
that creates a window:

def make_window(height = 500, width = 700,
 font = "Roman/12", xpos = 0, ypos = 0)
 ...
end

A variety of calls are possible. Here are some:

make_window
make_window(100, 200)
make_window(100, 200, "Courier/14")

Here's something that DOES NOT WORK:
 make_window(, , "Courier/14") # Can't omit leading arguments!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 102	

Varying numbers of arguments, continued

Different languages approach overloading and default arguments in
various ways. Here's a sampling:

Java Overloading; no default arguments
C++ Overloading and default arguments
Ruby No overloading; default arguments
Icon No overloading; no default arguments; use an idiom

How does the mental footprint of the four approaches vary?

Here is wrap in Icon:

procedure wrap(s, wrapper)
 /wrapper := "()" # if wrapper is &null, assign "()" to wrapper
 return wrapper[1] || s || wrapper[2]
end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 103	

Sidebar: A study in contrast

Java's String.format and C's printf can accept any number of arguments.

This Ruby method accepts any number of arguments and prints them:

def showargs(*args)
 puts "#{args.size} arguments"
 for i in 0...args.size do # Recall a...b is a to b-1
 puts "##{i}: #{args[i]}"
 end
end

The rule: If a parameter is prefixed with an asterisk, an array is made of all
following arguments.

>> showargs(1, "two", 3.0)
3 arguments:
#0: 1
#1: two
#2: 3.0

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 104	

Varying numbers of arguments, continued

Problem: Write a method format that interpolates argument values into a
string where percent signs are found.

>> format("x = %, y = %, z = %\n", 7, "ten", "zoo")
=> "x = 7, y = ten, z = zoo\n"

>> format("testing\n")
=> "testing\n"

Use to_s for conversion to String.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 105	

Varying numbers of arguments

def format(fmt, *args)
 result = ""
 for i in 0...fmt.size do
 if fmt[i] == "%" then
 result += args.shift.to_s
 else
 result += fmt[i]
 end
 end
 result
end

Sometimes we want to call a method with the values in an array:
def add(x,y)
 x+y
end

>> pair = [4, 3]
>> add(pair[0], pair[1]) => 7

Here's an alternative:

 >> add(*pair) => 7

The rule: In a method call, prefixing an array value with an asterisk causes
the values in the array to become a sequence of parameters.

Speculate: What will be the result of add(*[1,2,3])?

>> add(*[10,20,30])
ArgumentError: wrong number of arguments (3 for 2)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 106	

Varying numbers of arguments, continued

Recall make_window:
def make_window(height = 500, width = 700,
 font = "Roman/12", xpos = 0, ypos = 0)
 ...puts to echo the arguments...
 ...

end

Results of array-producing methods can be passed to make_window:
>> where = get_loc(...whatever...) => [50, 50]

>> make_window(100, 200, "Arial/8", *where)
 make_window(height = 100, width = 200, font = Arial/8, at = (50, 50))

>> win_spec = get_spec(...whatever...) => [100, 200, "Courier/9"]

>> make_window(*win_spec)
 make_window(height = 100, width = 200, font = Courier/9, at = (0, 0))

>> make_window(*win_spec, *where)
 make_window(height = 100, width = 200, font = Courier/9, at = (50,50))

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 107	

Varying numbers of arguments, continued

Iterators and blocks

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 108	

Some methods are iterators. An iterator that is implemented by the Array
class is each.

each iterates over the elements of the array. Example:

>> x = [10,20,30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30] # (each returns its arg but it's often not used)

The construct { puts "element" } is a block.

Array#each invokes the block once for each element of the array.

Because there are three values in x, the block is invoked three times,
printing "element" each time.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 109	

Iterators and blocks

An iterator is a method that
can invoke a block.

Iterators can pass one or more values to a block as arguments.

A block can access arguments by naming them with a parameter list, a
comma-separated sequence of identifiers enclosed in vertical bars.

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
element: 10
element: twenty
element: [30, 40]
=> [10, "twenty", [30, 40]]

The behavior of the iterator Array#each is to invoke the block with each
array element in turn.

Speculate: There isn't such a thing but what might an iterator named
every_other do?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 110	

Iterators and blocks, continued

For reference:
 [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }

Problem: Using a block, compute the sum of the numbers in an array
containing values of any type. (Use e.is_a? Numeric to decide whether e
is a number of some sort.)

>> sum = 0
>> [10, "twenty", 30].each { ??? }

>> sum => 40 Note: sum = ... inside block changes
 it outside the block. (Rules coming soon!)

>> sum = 0
>> (1..100).to_a.each { }
>> sum => 5050

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 111	

Iterators and blocks, continued

|e| sum += e if e.is_a? Numeric

Recall that the for loop requires the value of the "in" expression to have
an each method.

That leads to a choice between a for loop,

for name in "x".methods do
 puts name if name.to_s.include? "!"
end

and iteration with each,

 "x".methods.each {|name| puts name if name.to_s.include? "!" }

Which is better?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 112	

Sidebar: Iterate with each or use a for loop?

Array#each is typically used to create side effects of interest, like
printing values or changing variables but with some iterators it is the value
returned by an iterator that is of principle interest.

See if you can describe what the following iterators are doing.

>> [10, "twenty", 30].collect { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

What do these remind you of?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 113	

Iterators and blocks, continued

The block for Array#sort takes two arguments:

>> [30, 20, 10, 40].sort { |a,b| a <=> b}
=> [10, 20, 30, 40]

Speculate: what are the arguments being passed to sort's block? How
could we find out?

>> [30, 20, 10, 40].sort { |a,b| puts "call: #{a} #{b}"; a <=> b}
call: 30 10
call: 10 40
call: 30 40
call: 20 30
call: 10 20
=> [10, 20, 30, 40]

How could we reverse the order of the sort?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 114	

Iterators and blocks, continued

Problem: sort the words in a sentence by descending length.

>> "a longer try first".split.sort { }

 => ["longer", "first", "try", "a"]

Two more:

>> [10, 20, 30].inject(0) { |sum, i| sum + i }
=> 60

>> [10,20,30].inject([]) {

 |memo, element| memo << element << "---" }
=> [10, "---", 20, "---", 30, "---"]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 115	

Iterators and blocks, continued

|a,b| b.size <=> a.size

We can query the "ancestors" of a class like this:
>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

For now, we'll simply say that an object can call methods in its ancestors.

Enumerable has a number of iterators. Here are some:

>> [2,4,5].any? { |n| n.odd? } => true

>> [2,4,5].all? { |n| n.odd? } => false

>> [1,10,17,25].find { |n| n % 5 == 0 } => 10

>> ["apple", "banana", "grape"].max {

 |a,b| v = "aeiou"; a.count(v) <=> b.count(v) }
=> "banana"

The methods in Enumerable use duck typing. They require only an
each method except for min, max, and sort, which also require <=>.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 116	

Iterators in Enumerable

A simple definition of iterator:
 An iterator is a method that can invoke a block.

Many classes have one or more iterators. One way to find them is to
search their ruby-doc.org page for "block".

What will 3.times { |n| puts n } do?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 117	

Iterators abound!

>> 3.times { |n| puts n }
0
1
2
=> 3

Three more examples:

>> "abc".each { |c| puts c }
NoMethodError: undefined method `each' for "abc":String

>> "abc".each_char { |c| puts c }
a
b
c
=> "abc"

>> i = 0
>> "Mississippi".gsub("i") { (i += 1).to_s }
=> "M1ss2ss3pp4"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 118	

A few more iterators

An alternative to enclosing a block in braces is to use do/end:

a.each do
 |element|
 print "element: #{element}\n"
end

Common style is to use brackets for one-line blocks, like previous
examples, and do...end for multi-line blocks.

The opening brace or do for a block must be on the same line as the
iterator invocation. Here's an error:

a.each
 do # syntax error, unexpected keyword_do_block,

 # expecting $end
 |element|
 print "element: #{element}\n"
end

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 119	

The "do" syntax for blocks

sumnums.rb reads lines from standard input, assumes the lines consist of
integers separated by spaces, and prints their total, count, and average.

total = n = 0
STDIN.readlines().each do
 |line|
 line.split(" ").each do
 |word|
 total += word.to_i
 n += 1
 end
end
printf("total = %d, n = %d, average = %g\n",

 total, n, total / n.to_f) if n != 0

STDIN represents standard input. It is an instance of the IO class.

STDIN.readlines reads/returns all of standard input as an array of lines.

The printf format specifier %g indicates to format a floating point number and
select the better of fixed point or exponential form based on the value.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 120	

Nested blocks

% cat nums.dat
5 10 0 50

 200
1 2 3 4 5 6 7 8 9 10
% ruby sumnums.rb < nums.dat
total = 320, n = 15, average = 21.3333

Blocks raise issues with the scope of variables.

If a variable exists outside of a block, references to that variable in a block
refer to that existing variable. Example:

>> sum = 0

>> [10,20,30].each {|x| sum += x}

>> sum
=> 60

>> [10,20,30].each {|x| sum += x}

>> sum
=> 120

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 121	

Scoping issues with blocks

If a variable is created in a block, the scope of the variable is limited to the
block.

In the example below we confirm that x exists only in the block, and that
the block's parameter, e, is local to the block.

>> e = "eee"
>> x
NameError: undefined local variable or method `x' ...

>> [10,20,30].each {|e| x = e * 2; puts x}
20
...
>> x
NameError: undefined local variable or method `x' ...
>> e
=> "eee" # e's value was not changed by the block

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 122	

Scoping issues with blocks, continued

Pitfall: If we write a block that references a currently unused variable but later add
a use for that variable outside the block, it might be changed unexpectedly.

Version 1:

 a.each do
 |x|

 ...
 result = ...

end

Version 2:

result = ...
...
a.each do
 |x|

 ...
 result = ... # references/clobbers result in outer scope

end
...
...use result... # uses value of result set in block

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 123	

Scoping issues with blocks, continued

We can make variable(s) local to a block by adding them at the end of the
block's parameter list, preceded by a semicolon.

result = ...
...
a.each do
 |x; result, tmp|

 ...
 result = ... # references/clobbers result in outer scope
 # result is local to block

end
...
...use result... # uses value of result set in block

 # uses result created outside of block

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 124	

Scoping issues with blocks, continued

Writing iterators

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 125	

Recall: An iterator is a method that can invoke a block.

The yield expression invokes the block associated with the current
method invocation.

Here is a simple iterator that yields two values, a 3 and a 7:

def simple
 puts "simple: Starting..."
 yield 3
 puts "simple: Continuing..."
 yield 7
 puts "simple: Done..."
 "simple result"
end

Note the interleaving of execution between the iterator and the block.
(The puts in simple are just to show when simple is active.)
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 126	

A simple iterator

Usage:
>> simple

 { |x| puts "\tx = #{x}" }
simple: Starting...
 x = 3
simple: Continuing...
 x = 7
simple: Done...
=> "simple result"

At hand:
def simple
 puts "simple: Starting..."
 yield 3
 puts "simple: Continuing..."
 yield 7
 puts "simple: Done..."
 "simple result"
end

There's no formal parameter that corresponds to a block. The block, if any, is
implicitly referenced by yield.

The parameter of yield becomes the named parameter for the block.

Calling simple without a block produces an error on the first yield:

>> simple
simple: Starting...
LocalJumpError: no block given (yield)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 127	

A simple iterator, continued
Usage:
>> simple { |x| puts "\tx = #{x}" }
simple: Starting...
 x = 3
simple: Continuing...
 x = 7
simple: Done...
=> "simple result"

Problem: Write an iterator from_to(f, t, by) that yields the integers from f
through t in steps of by, which defaults to 1. Assume f <= n.

>> from_to(1,3) { |i| puts i }
1
2
3
=> nil

>> from_to(0,99,25) { |i| puts i }
0
25
50
75
=> nil

Parameters are passed to the iterator (the method) just like any other
method.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 128	

Write from_to

Solution:

def from_to(from, to, by = 1)
 n = from
 while n <= to do
 yield n
 n += by
 end
end

Use:

>> from_to(-5,5,1) { |i| print i, " " }
-5 -4 -3 -2 -1 0 1 2 3 4 5 => nil

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 129	

from_to, continued

If a block is to receive multiple arguments, specify them as a comma-
separated list for yield.

Imagine an iterator that produces overlapping pairs from an array:

>> elem_pairs([3,1,5,9]) { |x,y| print "x = #{x}, y = #{y}\n" }
x = 3, y = 1
x = 1, y = 5
x = 5, y = 9

Implementation:

def elem_pairs(a)
 for i in 0...(a.length-1)
 yield a[i], a[i+1]
 end
end

Speculate: What will be the result with yield [a[i], a[i+1]]? (Extra [...].)
CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 130	

More on yield

Recall that Array#select produces the elements for which the block
returns true:

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

Speculate: How is the code in select accessing the result of the block?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 131	

yield, continued

The last expression in a block becomes the value of the yield that invoked
the block.

Here's how we might implement a version of select:

def select(eachable)
 result = []
 eachable.each do
 |element|
 result << element if yield element # lots happens here!
 end
 result
end

Usage:
>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

How does this version of select differ from the previous slide's, below?
 [[1,2], "a", [3], "four"].select { |v| v.size == 1 }

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 132	

yield, continued

>> [10, "twenty", [30,40]].each { |e| puts "element: #{e}" }
>> sum = 0; [1,2,3].each { |x| sum += x }

Invokes block with each element in turn for side-effect(s). Result of
each uninteresting.

>> [10,20,30].map { |x| x * 2 } => [20, 40, 60]

Invokes block with each element in turn and returns array of block
results.

>> [2,4,5].all? { |n| n.odd? } => false

Invokes block with each element in turn; each block result
contributes to final result of true or false, possibly short-circuiting.

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 } => ["a", [3]]

Invokes block to determine membership in final result.

>> "try this first".split.sort {|a,b| b.size <=> a.size } => [...]

Invokes block an arbitrary number of times; each block result guides
further computation towards final result.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 133	

Various types of iteration side-by-side

A trio of odds and ends

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 134	

A rule in Ruby is that if an identifier begins with a capital letter, it
represents a constant.

The first assignment to a constant is considered initialization.

>> MAX_ITEMS = 100

Assigning to an already initialized constant is permitted but a warning is
generated.

>> MAX_ITEMS = 200
(irb):4: warning: already initialized constant MAX_ITEMS
=> 200

Modifying an object referenced by a constant does not produce a warning:

>> L = [10,20]
=> [10, 20]

>> L.push 30
=> [10, 20, 30]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 135	

Constants

Ruby requires class names to be constants, i.e., capitalized.

>> class b; end
SyntaxError: (irb):5: class/module name must be CONSTANT

If a method is given a name that begins with a capital letter, it can't be
found:

>> def Hello; puts "hello!" end

>> Hello
NameError: uninitialized constant Hello

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 136	

Constants, continued

There are a number of predefined constants. Here are a few:

RUBY_VERSION

 The version of Ruby that's running.

ARGV

An array holding the command line arguments, like the argument to
main in a Java program.

ENV

An object holding the "environment variables" (shown with env on
UNIX machines and set on Windows machines.)

STDIN, STDOUT

Instances of the IO class representing standard input and standard
output (the keyboard and screen, by default).

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 137	

Constants, continued

Ordinary variables are local to the method in which they're created.

Example:

def f
 puts "f: x = #{x}" # undefined local variable or method `x'
end

def g
 x = 100 # This x is visible only in g
end

x = 10 # This x is visible only at the top-level
f # in this file.
g

puts "top-level: x = #{x}"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 138	

Global variables

Variables prefixed with a $ are global, and can be referenced in any
method in any file, including top-level code.

def f
 puts "f: $x = #{$x}"
end

def g
 $x = 100
end

$x = 10
f
g

puts "top-level: $x = #{$x}"

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 139	

Global variables, continued

The code at left...
1.  Sets $x at the top-level.
2.  Accesses $x in f.
3.  Changes $x in g.
4.  Prints the final value of

$x at the top-level.

Output:

f: $x = 10
top-level: $x = 100

An identifier preceded by a colon creates an instance of Symbol.

A symbol is much like a string but a given identifier always produces the
same Symbol object.

>> s1 = :length => :length
>> s1.object_id => 7848
>> :length.object_id => 7848

In contrast, two identical string literals produce two different String
objects:

>> "length".object_id => 2164862320
>> "length".object_id => 2164856820

Symbols can be quickly compared and are immutable. They're commonly
used as keys in instances of Hash.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 140	

Symbols

A string can be turned into a symbol with .to_sym (an analog to Java's
String.intern).

>> s = "length".to_sym => :length
>> s.object_id => 7848

methods returns an array of symbols:

>> "x".methods.sort[10,30]
=> [:==, :===, :=~, :>, :>=, :[], :
[]=, :__id__, :__send__, :ascii_only?, :between?, :bytes, :bytesiz
e, :byteslice, :capitalize, :capitalize!, :casecmp, :center, :chars,
:chomp, :chomp!, :chop, :chop!, :chr, :class, :clear, :clone, :cod
epoints, :concat, :count]

For our purposes it's sufficient to simply know that :identifier is a symbol.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 141	

Symbols, continued

The Hash class

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 142	

Ruby's Hash class is similar to the Map family in Java and dictionaries in
Python. It's like an array that can be subscripted with values of any type.

The expression { } (empty curly braces) creates a Hash:

>> numbers = {} => {}

>> numbers.class => Hash

Subscripting with a key and assigning a value stores that key/value pair:

>> numbers["one"] = 1

>> numbers["two"] = 2

>> numbers => {"one"=>1, "two"=>2}

>> numbers.size => 2

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 143	

The Hash class

At hand:
>> numbers => {"one"=>1, "two"=>2}

Subscripting with a key fetches the associated value. If the key is not
found, nil is produced.

>> numbers["two"] => 2

>> numbers["three"] => nil

The value associated with a key can be changed via assignment. A key/
value pair can be removed with Hash#delete.

>> numbers["two"] = "1 + 1"

>> numbers.delete("one") => 1 # Returns associated value

>> numbers => {"two"=>"1 + 1"}

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 144	

Hash, continued

Here are some examples to show the flexibility of Hash.
>> h = {}

>> h[1000] = [1,2]

>> h[true] = {}

>> h[[1,2,3]] = [4]

>> h
=> {1000=>[1, 2], true=>{}, [1, 2, 3]=>[4]}

>> h[h[1000] + [3]] << 40

>> h[!h[10]]["x"] = "ten"

>> h
=> {1000=>[1, 2], true=>{"x"=>"ten"}, [1, 2, 3]=>[4, 40]}

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 145	

Hash, continued

Values that are used as keys must have a hash method that produces a
Fixnum. (Duck typing!) Any value can be the value in a key/value pair.

Inconsistencies can arise when using mutable values as keys.

>> h = {}; a = []
>> h[a] = "a"
>> a << 10
>> h[[10]] = "b"
>> h
=> {[10]=>"a", [10]=>"b"} # Oops! Identical keys!
>> h[[10]] = "new"
>> h
=> {[10]=>"a", [10]=>"new"}

Ruby treats string-valued keys as a special case and makes a copy of them.

RPL 3.4.2 has details on key handling.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 146	

Hash, continued

An earlier simplification: If a key is not found, nil is returned.
Full detail: If a key is not found, the default value of the hash is returned.

The default value of a hash defaults to nil but an arbitrary default value
can be specified when creating a hash with new:

 >> h = Hash.new("Go Fish!") # Example from ruby-doc.org

>> h.default => "Go Fish!"

>> h["x"] = [1,2]

>> h["x"] => [1, 2]

>> h["y"] => "Go Fish!"

There is also a form of Hash#new that uses a block to produce default
values. The block accepts the hash and the key as arguments.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 147	

Default values

tally.rb tallies occurrences of blank-separated "words" on standard input.
% ruby tally.rb
to be or
not to be
^D
{"to"=>2, "be"=>2, "or"=>1, "not"=>1}

How can we approach it?

counts = Hash.new(0) # Use default of zero so += 1 works
STDIN.readlines.each do
 |line|
 line.split(" ").each do
 |word|
 counts[word] += 1
 end
end
puts counts.inspect # Like p counts

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 148	

tally.rb

counts = Hash.new(0)
while line = gets do
 for word in line.split(" ") do
 counts[word] += 1
 end
end
puts counts.inspect

The output of tally.rb is not customer-ready!

 {"to"=>2, "be"=>2, "or"=>1, "not"=>1}

Hash#sort produces an array of key/value arrays ordered by the keys, in
ascending order:

>> counts.sort
=> [["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:

Word Count!
be 2!
not 1!
or 1!
to 2!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 149	

tally.rb, continued

At hand:
>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:
([["Word","Count"]] + counts.sort).each do
 |k,v| printf("%-7s %5s\n", k, v)
end

Notes:
•  The minus in the format %-7s left-justifies, in a field of width seven.
•  As a shortcut for easy alignment, the column headers are put at the start

of the array, as a fake key/value pair.
•  We use %5s instead of %5d to format the counts and accommodate

"Count", too. This works because %s causes to_s to be invoked on the
value being formatted.)

•  A next step might be to size columns based on content.
! CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 150	

tally.rb, continued
Word Count!
be 2!
not 1!
or 1!
to 2!

Hash#sort's default behavior of ordering by keys can be overridden by
supplying a block. The block is repeatedly invoked with two key/value
pairs, like ["be", 2] and ["or", 1].

Here's a block that sorts by descending count: (the second element of the
two-element arrays)

>> counts.sort { |a,b| b[1] <=> a[1] }
=> [["to", 2], ["be", 2], ["or", 1], ["not", 1]]

How we could resolve ties on counts by alphabetic ordering of the words?

counts.sort do
 |a,b|
 r = b[1] <=> a[1]
 if r != 0 then r else a[0] <=> b[0] end

end
=> [["be", 2], ["to", 2], ["not", 1], ["or", 1]]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 151	

More on Hash sorting

Imagine a hash that maps strings like "up" and "right" to x and y deltas on
a Cartesian plane:

moves = {}
moves["up"] = [0,1]
moves["down"] = [0,-1]
moves["left"] = [-1,0]
moves["right"] = [1,0]

Instead of a series of assignments we can use an initialization syntax:

 moves = {
 "up" => [0,1],
 "down" => [0,-1],
 "left" => [-1,0],
 "right" => [1,0]

 }

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 152	

Hash initialization

Symbols are commonly used instead of strings as hash keys because they're more
efficient. Here's the previous hash with symbols, albeit on one line.

>> moves =
 { :up => [0,1], :down => [0,-1], :left => [-1,0], :right => [1,0] }
=> {:up=>[0, 1], :down=>[0, -1], :left=>[-1, 0], :right=>[1, 0]}

>> moves[:up] => [0, 1]

With symbols as keys, there's an even shorter initializing form, where the colon
separates the symbol from the value:

>> moves = { up: [0,1], down: [0,-1], left: [-1,0], right: [1,0] }
=> {:up=>[0, 1], :down=>[0, -1], :left=>[-1, 0], :right=>[1, 0]}

If symbols are used as keys, be sure to convert strings before lookup.
>> s = "up"; moves[s] => nil # Key is :up, not "up"

>> moves[s.to_sym] => [0, 1]

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 153	

Hash initialization, continued

Regular Expressions

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 154	

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only
specified by unrestricted grammars.

Programming languages are usually context-free languages—they can be
specified with a context-free grammar, which has very restrictive rules.

Every Java program is a string in the context-free language that is specified by the
Java grammar.

A regular language is a very limited kind of context free language that can be
described by a regular grammar. A regular language can also be described by a
regular expression.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 155	

A little theory

A regular expression is simply a string that may contain metacharacters—
characters with special meaning.

Here is a simple regular expression:

a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:

(ab)+c*

It describes the set of strings that start with ab repeated one or more times
and followed by zero or more c's.

Some strings in the language are ab, ababc, and ababababccccccc.

The regular expression (north|south)(east|west) describes a language
with four strings: {northeast, northwest, southeast, southwest}.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 156	

A little theory, continued

Regular expressions have a sound theoretical basis and are also very
practical.

UNIX tools such as the ed editor and grep/fgrep/egrep introduced
regular expressions to a wide audience.

Many languages provide a library for working with regular expressions.
Java provides the java.util.regex package. The command man regex
produces some documentation for the C library's regular expression
routines.

Some languages, Ruby included, have a regular expression data type.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 157	

Good news and bad news

Regular expressions as covered in a theory class are relatively simple.

Regular expressions as available in many languages and libraries have
been extended far beyond their theoretical basis.

In languages like Ruby, regular expressions are truly a language within a
language.

A prior version of the "Pickaxe" book devoted four pages to its summary
of regular expressions. Four more pages sufficed to cover integers, floating
point numbers, strings, ranges, arrays, and hashes.

Entire books have been written on the subject of regular expressions. A
number of tools have been developed to help programmers create and
maintain complex regular expressions.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 158	

Good news and bad news, continued

Here is a regular expression written by Mark Cranness and posted at
RegExLib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-\x7f])
[^"\\]|\\[\x01-\x7f])*"\x20*)*(? <angle><))?((?!\.)(?>\.?[a-zA-
Z\d!#$%&'*+\-/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\
x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)
\.)(25[0-5]|2[0-4]\d|[01]?\d? \d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:
((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

My opinion: regular expressions have their place but grammar-based
parsers should be considered more often than they are, especially when an
underlying specification includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 159	

Good news and bad news, continued

One way to create a regular expression (RE) in Ruby is to use the
/pattern/ syntax, for regular expression literals.

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In a RE, a dot is a metacharacter (a character with special meaning) that
will match any (one) character.

Alphanumeric characters and some special characters simply match
themselves.

The RE /a.b.c/ matches strings that contain the five-character sequence
a<anychar>b<anychar>c, like "albacore", "barbecue",
"drawback", and "iambic".

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 160	

A simple regular expression in Ruby

The binary operator =~ is called "match".

One operand must be a string and the other must be a regular expression.
If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> "drawback" =~ /a.b.c/ => 2

>> "abc" =~ /a.b.c/ => nil

>> "abcdef" =~ /..f/
=> 3

>> "abcdef" =~ /.f./
=> nil

>> "abc" =~ /..../
=> nil

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 161	

The match operator

The UNIX grep command reads standard input or files named as
arguments and prints lines that contain a specified regular expression:

$ grep g.h.i < /usr/share/dict/words
lengthwise
$ grep l.m.n < /usr/share/dict/words | wc -l
 252 252 2825
$ grep /usr/share/dict/words
electroencephalograph's

Problem: Write a simple grep in Ruby that will handle the cases above.
Hint: #{...} interpolation works in /.../ (regular expression) literals.

while line = STDIN.gets
 puts line if line =~ /#{ARGV[0]}/
end

Speculate: What's speed-up with arg = /#{ARGV[0]}/ outside of loop?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 162	

Sidebar: rgrep.rb

After a successful match we can use some cryptically named built-in
variables to access parts of the string:

$` Is the portion of the string that precedes the match. (That's a
backquote.)

$& Is the portion of the string that was matched by the regular

expression.

$' Is the portion of the string following the match.

Example:

>> "limit=300" =~ /=/ => 5
>> $` => "limit" (left of the match)
>> $& => "=" (the match itself)
>> $' => "300" (right of the match)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 163	

The match operator, continued

Here's a handy utility routine from the Pickaxe book:
def show_match(s, re)
 if s =~ re then
 "#{$`}<<#{$&}>>#{$'}"
 else
 "no match"
 end
end

Usage:
>> show_match("limit is 300",/is/) => "limit <<is>> 300"

>> %w{albacore drawback iambic}.

 each { |w| puts show_match(w, /a.b.c/) }
<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Great idea: Put it in your .irbrc! Call it "sm", to save some typing!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 164	

The match operator, continued

As a subscript, a regular expression specifies the portion of the string, if
any, matched by it.

>> s = "testing"
>> s[/e../] = "*" => "*"
>> s
=> "t*ing"

Another example:

>> %w{albacore drawback iambic}.
 map { |w| w[/a.b.c/] = "(a.b.c)"; w }

=> ["(a.b.c)ore", "dr(a.b.c)k", "i(a.b.c)"]

If the match fails, it's an error:
>> s = "testing"
>> s[/a.b.c/] = "*"
IndexError: regexp not matched

Is an error the best behavior for this situation? (What's "best"? Most
useful?)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 165	

Regular expressions as subscripts

[characters] is a character class—a RE that matches any one of the
characters enclosed by the square brackets.

/[aeiou]/ matches a single lower-case vowel
 >> show_match("testing", /[aeiou]/) => "t<<e>>sting"

A dash between two characters in a class specification creates a range
based on the collating sequence. [0-9] matches a single digit.

[^characters] is a RE that matches any character not in the class. (It
matches the complement of the class.)

/[^0-9]/ matches a single character that is not a digit.
 >> show_match("1,000", /[^0-9]/) => "1<<,>>000"

Note that [anything] matches a single character.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 166	

Character classes

Describe what's matched by this regular expression:
 /.[a-z][0-9][a-z]./
A five character string whose middle three characters are, in order, a
lowercase letter, a digit, and a lowercase letter.

What's matched by the following?

>> show_match("A1b33s4ax1", /.[a-z][0-9][a-z]./)
=> "A1b3<<3s4ax>>1"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 167	

Character classes, continued

String#gsub does global substitution with both plain old strings and
regular expressions

>> "520-621-6613".gsub("-", "<DASH>")
=> "520<DASH>621<DASH>6613"

>> "520-621-6613".gsub(/[02468]/, "(e#)")
=> "5(e#)(e#)-(e#)(e#)1-(e#)(e#)13"

What will result from the following?

>> "5-3^2*2.0".gsub(/[-6^.]/, "_")
=> "5_3_2*2_0"

The preceding example shows that metacharacters sometimes aren't
special when used out of context.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 168	

Character classes, continued

Some frequently used character classes can be specified with \C
 \d Stands for [0-9]
 \w Stands for [A-Za-z0-9_]
 \s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented class.

Examples:

>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "BIOW 301, 10:00-10:50 MWF".gsub(/\D/, "")
=> "30110001050"

>> "buzz93@tv2000.com".gsub(/[\w\d]/,".")
=> "......@.........."

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 169	

Character classes, continued

Alternatives can be specified with a vertical bar:
>> %w{you ate a pie}.select { |s| s =~ /ea|ou|ie/ }
=> ["you", "pie"]

Parentheses can be used for grouping. Consider this regular expression:

/(two|three) (apple|biscuit)s/

It corresponds to a regular language that is a set of four strings:

{two apples, three apples, two biscuits, three biscuits}

Usage:
>> "I ate two apples." =~ /(two|three) (apple|biscuit)s/=> 6
>> "She ate three mice." =~ /(two|three) (apple|biscuit)s/ => nil

Another:
>> %w{you ate a mouse}.select { |s| s =~ /.(ea|ou|ie)./ }
=> ["mouse"]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 170	

Alternatives and grouping

Imagine a program to look through a word list for a pattern of consonants
and vowels specified on the command line, showing matches in bars.

% ruby convow.rb cvcvcvcvcvcvcvcvc < web2
c|hemicomineralogic|al
|hepatoperitonitis|
o|verimaginativenes|s

A capital letter means to match exactly that letter. e matches either
consonant or vowel.

% ruby convow.rb vvvDvvv < web2
Chromat|ioideae|
Rhodobacter|ioideae|

% ruby convow.rb vvvCvvv < web2 | wc -l
24

% ruby convow.rb vvvevvv < web2 | wc -l
43

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 171	

Simple app: looking for letter patterns

Here's a solution. We loop through the command line argument and build
up a regular expression of character classes and literal characters, and then
look for lines with a match.

re = ""
ARGV[0].each_char do |char|
 re += case char # An example of Ruby's case
 when "v" then "[aeiou]"
 when "c" then "[^aeiou]"
 when "e" then "[a-z]"
 else char.downcase
 end
end

re = /#{re}/ # Transform re from String to Regexp
STDIN.each do
 |line|
 puts [$`, $&, $'] * "|" if line.chomp =~ re
end
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 172	

convow.rb

A rule we've been using but haven't formally stated is this:
 If R1 and R2 are regular expressions then R1R2 is a regular expression.
 In other words, juxtaposition is the concatenation operation for REs.

There are some postfix operators on regular expressions.

If R is a regular expression, then...

R* matches zero or more occurrences of R

R+ matches one or more occurrences of R

R? matches zero or one occurrences of R

All have higher precedence than juxtaposition.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 173	

Regular expressions have operators

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE ab*c+d describe?

 An 'a' that is followed by zero or more 'b's that are followed by one
or more 'c's and then a 'd'.

>> show_match("acd", /ab*c+d/)
=> "<<acd>>"

>> show_match("abcccc", /ab*c+d/)
=> "no match"

>> show_match("abcabccccddd", /ab*c+d/)
=> "abc<<abccccd>>dd"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 174	

Repetition with *, +, and ?

At hand:
R* matches zero or more occurrences of R
R+ matches one or more occurrences of R
R? matches zero or one occurrences of R

What does the RE -?\d+ describe?

 Integers with any number of digits

>> show_match("y is -27 initially", /-?\d+/)
=> "y is <<-27>> initially"

>> show_match("maybe --123.4e-10 works", /-?\d+/)
=> "maybe -<<-123>>.4e-10 works"

>> show_match("maybe --123.4e-10 works", /-?\d*/) # *, not +
=> "<<>>maybe --123.4e-10 works"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 175	

Repetition with *, +, and ?, continued

What does a(12|21|3)*b describe?
 Matches strings like ab, a3b, a312b, and a3123213123333b.

Write an RE to match numbers with commas, like these:

 58 4,297 1,000,000 446,744 73,709,551,616

 (\d\d\d|\d\d|\d)(,\d\d\d)* # Why is \d\d\d first?

Write an RE to match floating point literals, like these:

 1.2 .3333e10 -4.567e-30 .0001

>> %w{1.2 .3333e10 -4.567e-30 .0001}.
 each {|s| puts sm(s, /-?\d*\.\d+(e-?\d+)?/) }

<<1.2>>
<<.3333e10>>
<<-4.567e-30>>
<<.0001>>

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 176	

Repetition with *, +, and ?, continued

Note the \. to match only a period.

The operators *, +, and ? are "greedy"—each tries to match the longest
string possible, and cuts back only to make the full expression succeed.

Example:

 Given a.*b and the input 'abbb', the first attempt is:
 a matches a
 .* matches bbb
 b fails—no characters left!

 The matching algorithm then backtracks and does this:
 a matches a
 .* matches bb
 b matches b

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 177	

Repetition, continued

More examples of greedy behavior:

>> show_match("xabbbbc", /a.*b/)
=> "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/)
=> "x<<abb>>bbc"

>> show_match("xabbbbcxyzc", /ab?b?.*c/)
=> "x<<abbbbcxyzc>>"

Why are *, +, and ? greedy?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 178	

Repetition, continued

Another example of the greedy asterisk:

show_match("x + 'abc' + 'def' + y", /'.*'/)
=> "x + <<'abc' + 'def'>> + y"

We can make *, +, and ? lazy by putting a ? after them. Example:

>> show_match("x + 'abc' + 'def' + y", /'.*?'/)
=> "x + <<'abc'>> + 'def' + y"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 179	

Repetition, continued

We can use curly braces to require a specific number of repetitions:

>> sm("Call me at 555-1212!", /\d{3}-\d{4}/)
=> "Call me at <<555-1212>>!"

There are also forms with {min,max} and {min,}

>> sm("3/17/2013", /\d{1,2}\/\d{1,2}\/(\d{4}|\d{2})/)
=> "<<3/17/2013>>"

>> "31:218:7:48:292:2001".scan(/\d{3,}/) (too soon for this!)
=> ["218", "292", "2001"]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 180	

Repetition, continued

It is possible to split a string on a regular expression:
 >> " one, two,three / four".split(/[\s,\/]+/) # Note escaped slash: \/
 => ["", "one", "two", "three", "four"]

Unfortunately, leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them,
scan is a better choice:

>> " one, two,three / four".scan(/\w+/)
=> ["one", "two", "three", "four"]

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)
=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces: (alternate want/don't want)
>> " one, two,three / four".scan(/(\w+|\W+)/)
=> [[" "], ["one"], [", "], ["two"], [","], ["three"], [" / "], ["four"]]

We get an array of arrays due to the grouping. (Oops—just don't group!)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 181	

split and scan with regular expressions

Reminder: s =~ /x/ succeeds if "x" appears anywhere in s.

The metacharacter ^ is an anchor when used at the start of a RE. (At the
start of a character class it means to complement.)

^ doesn't match any characters but it constrains the following regular
expression to appear at the beginning of the string being matched against.

>> sm("this is x", /x/) => "this is <<x>>"

>> sm("this is x", /^x/) => "no match"

>> sm("this is x", /^this/) => "<<this>> is x"

What will /^x|y/ match? Hint: it's not the same as /^(x|y)/

How about /^[^0-9]/ ?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 182	

Anchors

Another anchor is $. It constrains the preceding regular expression to
appear at the end of the string.

>> sm("ending", /end$/) => "no match"
>> sm("the end", /end$/) => "the <<end>>"

Write a RE to match lines that contain only a curly brace and whitespace.

>> sm(" } ", /^\s*[{}]\s*$/) => "<< } >>"
>> sm("}", /^\s*[{}]\s*$/) => "<<}>>"
>> sm("{ e }", /^\s*[{}]\s*$/) => "no match"

Write a RE to match lines that are exactly three characters long.

>> sm("123", /^...$/) => "<<123>>"

Write a RE to match lines that are >= 3 characters long.
>> sm("123456", /^....*$/) => "<<123456>>"
>> sm("12", /^....*$/) => "no match" # Make note of .*
Good example above of everything looking like a nail when you're
talking about using a hammer! /.../ is all you need!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 183	

Anchors, continued

Recall that convow.rb on slide 172 simply does char.downcase on any
characters it doesn't recognize. downcase doesn't change ^ or $.

The command

% ruby convow.rb ^cvc$

builds this this RE

/^[^aeiou][aeiou][^aeiou]$/

Let's explore with it:

% ruby convow.rb ^cvc$ < web2 | wc -l
858
% ruby convow.rb ^vcv$ < web2 | wc -l
92
% ruby convow.rb ^vccccv$ < web2 | wc -l
15
% ruby convow.rb ^vccccccv$ < web2
|oxyphyte|

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 184	

convow.rb with anchors

What does /\w+\d+/ specify?
 One or more "word" characters followed by one or more digits.

How do the following matches differ from each other?

 line =~ /\w+\d+/

 line =~ /^\w+\d+/

 line =~ /\w+\d+$/

 line =~ /^\w+\d+$/

 line =~ /^.\w+\d+.$/

 line =~ /^.*\w+\d+$/

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 185	

Anchors, continued

A side effect of enclosing a regular expression in parentheses is that when
a match is found, a "group" is created that contains the matched text. That
"group" can be referenced later in the same regular expression.

Here's a regular expression that matches five-character palindromes, like
"civic" and "kayak":

 /(.)(.).\2\1/

Piece by piece:

(.) Match a character and save it as group 1
(.) Match a character and save it as group 2
. Match any character
\2 Match the text held by group 2
\1 Match the text held by group 1

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 186	

Groups and references

A simple test:
>> sm("Please refer to the kayak radar",/(.)(.).\2\1/)
=> "Please <<refer>> to the kayak radar"

Let's try it with scan:

>> "Please refer to the kayak radar".scan(/(.)(.).\2\1/)
=> [["r", "e"], ["k", "a"], ["r", "a"]]

scan makes arrays of arrays containing the groups. Let's put the whole
thing in a group.

>> "Please refer to the kayak radar".scan(/((.)(.).\2\1)/)
=> []

Oops! Groups are numbered based on counting left parentheses.
>> "Please refer to the kayak radar".scan(/((.)(.).\3\2)/)
=> [["refer", "r", "e"], ["kayak", "k", "a"], ["radar", "r", "a"]]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 187	

Groups and references continued

What does the regular expression (\w\w\w+).*\1.*\1 describe?
Strings with a substring of 3+ "word" characters that appears three or
more times.

What does the following program do? (Groups can be ref'd with $N.)

while line = gets
 if line =~ /(\w\w\w+).*\1.*\1/ then
 puts line
 puts line.gsub($1, "^" * $1.size).gsub(/[^^]/, " ")
 end
end

Usage:
% cat ~/372/a3/*.rb | ruby ~/372/ruby/triplematch.rb !
 strPrint = strPrint + (getString str,j) +" "!
 ^^^ ^^^ ^^^ !
 addlinetostring s1,line # equivalent to s1 += line!
 ^^^^ ^^^^ ^^^^!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 188	

Groups and references, continued

Imagine a function that rewrites simple infix operator expressions as
function calls:

>> infix_to_call("3 + 4")
=> "add(3,4)"

>> infix_to_call("limit-1500")
=> "sub(limit,1500)"

>> infix_to_call("10 mul 20")
=> "mul(10,20)"

How could we approach it?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 189	

Groups and references, continued

At hand:
>> infix_to_call("327 - 303") => "sub(327,303)"
>> infix_to_call("x div y") => "div(x,y)"

Solution:

def infix_to_call(line)
 ops =
 {"-" => "sub", "+" => "add", "mul" => "mul", "div" => "div"}
 if line =~ /^(\w+)\s*(([-+]|(mul|div)))\s*(\w+)$/ then
 fcn = ops[$2]
 return "#{fcn}(#{$1},#{$5})"
 else
 return line
 end
end

One more thing:

>> infix_to_call("endive")
=> "div(en,e)"

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 190	

Groups and references, continued

Recall String#gsub:
>> "load = max * 2".gsub(/\w/,".") => ".... = ... * ."

gsub has a one argument form that is an iterator. The match is passed to
the block. The result of the block is substituted for the match.

This method augments a string with a running sum of the numbers it holds:

>> running_sum("1 pencil, 3 erasers, 2 pens")
=> "1(1) pencil, 3(4) erasers, 2(6) pens"

def running_sum(s)
 sum = 0
 s.gsub(/\d+/) do
 sum += $&.to_i # should use block parameter!
 $& + "(%d)" % sum # string-formating operator
 end
end

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 191	

Iteration with gsub

Consider an application that reads elapsed times on standard input and
prints their total:

% ruby ttl.rb
3h
15m
4:30
^D
7:45

Multiple times can be specified per line:
% ruby ttl.rb
10m, 3:30
20m 2:15 1:01 3h
^D
10:16

How can we approach it?
CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 192	

Application: Time totaling

def main
 mins = 0
 while line = gets do
 line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }
 end
 printf("%d:%02d\n", mins / 60, mins % 60)
end

def parse_time(s)
 if s =~ /^(\d+):([0-5]\d)$/
 $1.to_i * 60 + $2.to_i
 elsif s =~ /^(\d+)([hm])$/
 if $2 == "h" then $1.to_i * 60
 else $1.to_i end
 else
 0 # return 0 for things that don't look like times
 end
end

main

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 193	

Time totaling, continued

On the first assignment's ftypes.hs the function fd was to have a type
equivalent to this:

(a, Int) -> (Int, t) -> (t, [a])

Problem: write equiv_to_fd(type) that returns true or false depending on
whether type is equivalent to that expected for fd.

>> equiv_to_fd("(t1, Int) -> (Int, t) -> (t, [t1])") => true
>> equiv_to_fd("(b, Int) -> (Int, a) -> (a, [b])") => true
>> equiv_to_fd("(a, Int) -> (Int, a) -> (a, [b])") => false

def equiv_to_fd(s)
 !! (s =~ /^\(([^,]+), Int\) -> \(Int, ([^)]+)\) -> \(\2, \[\1\]\)$/)
end

Note:

 The numerous backslash escapes for literal ()s and []s.
 Use of [^,]+ idiom to match up to the next comma. Ditto for).

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 194	

Application: ftypes.hs checker

At hand:
>> equiv_to_fd("(t1, Int) -> (Int, t) -> (t, [t1])") => true
>> equiv_to_fd("(a, Int) -> (Int, a) -> (a, [b])") => false

Solution:
def equiv_to_fd(s)
 !! (s =~ /^\(([^,]+), Int\) -> \(Int, ([^)]+)\) -> \(\2, \[\1\]\)$/)
end

Here's a version with non-greedy + instead of [^,]+ and [^)]+

def equiv_to_fd2(s)
 !! (s =~ /^\((.+?), Int\) -> \(Int, (.+?)\) -> \(\2, \[\1\]\)$/)
end

How about a generalized version, equiv_type(exp_type, act_type)?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 195	

ftypes.hs checker, continued

Our venture into regular expressions ends here but there's lots more, like...

•  Nested regular expressions
•  Named matches
•  Nested and conditional groups
•  Conditional subpatterns
•  Zero-width positive lookahead

Proverb:
A programmer decided to use regular expressions to solve a problem.
Then he had two problems.

Regular expressions are great, up to point.

SNOBOL4 patterns, Icon's string scanning facility, and Prolog grammars
can all recognize unrestricted languages and are far less complex than the
regular expression facility in most languages.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 196	

Lots more with regular expressions

Defining classes

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 197	

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of Counter:

c1 = Counter.new
c1.click
c1.click

puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click

puts c2 # Output: c2's count is 1

c2.click
puts "c2 = #{c2.count}" # Output: c2 = 2

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 198	

A tally counter

Here is a partial implementation of Counter:

class Counter
 def initialize(label = "Counter")
 ...
 end
 ...
end

Class definitions are bracketed with class and end. Class names must
start with a capital letter. Unlike Java there are no filename requirements.

The initialize method is the constructor, called when new is invoked.

c1 = Counter.new
c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 199	

Counter, continued

Here is the body of initialize:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when it is assigned to. The
code above creates @count and @label. (There are no instance variable
declarations.)

Just like Java, each object has its own copy of instance variables.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 200	

Counter, continued

Let's add click and reset methods, which are straightforward:
class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end

 def click
 @count += 1
 end

 def reset
 @count = 0
 end
end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 201	

Counter, continued

In Ruby the instance variables of an object cannot by accessed by any
other object.

The only way way to make the value of @count available to other objects
is via methods.

Here's a simple "getter" for the counter's count.

def count
 @count
end

Let's override Object#to_s with a to_s that produces a detailed
description:

def to_s
 return "#{@label}'s count is #{@count}"
end

In Ruby, there is simply no such thing as a public instance variable. All
access must be through methods.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 202	

Counter, continued

Full source for Counter thus far:
class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end

 def click
 @count += 1
 end

 def reset
 @count = 0
 end

 def count # Note the convention: count, not get_count
 @count
 end

 def to_s
 return "#{@label}'s count is #{@count}"
 end
end

Common error: omitting the @ on a reference to an instance variable.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 203	

Counter, continued

Consider this class: (instvar.rb)
class X
 def initialize(n)
 case n
 when 1 then @x = 1
 when 2 then @y = 1
 when 3 then @x = @y = 1
 end
 end
end

What's interesting about the following?

>> X.new 1 => #<X:0x00000101176838 @x=1>

>> X.new 2 => #<X:0x00000101174970 @y=1>

>> X.new 3 => #<X:0x0000010117aaa0 @x=1, @y=1>

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 204	

An interesting thing about instance variables

If class X ... end has been seen and another class X ... end is
encountered, the second definition adds and/or replaces methods.

Let's confirm Counter has no label method.

 >> c = Counter.new "ctr 1"

>> c.label
NoMethodError: undefined method `label' ...

Now we add a label method:
>> class Counter
>> def label; @label; end
>> end

>> c.label => "ctr 1"

What are the implications of this capability?

 We can add methods to built-in classes!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 205	

Addition of methods

In Icon, the unary ? operator can be used to generate a random number or
select a random value from an aggregate.

Icon Evaluator, Version 1.1, ? for help
][?10
 r1 := 3 (integer)
][?"abcd"
 r2 := "b" (string)

I miss that! Let's add it to Ruby.

If we call Kernel#rand with a Fixnum n it will return a random Fixnum
greater than or equal to zero and less than n.

There's no unary ? to overload in Ruby so let's just add a rand method to
Fixnum and String.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 206	

Addition of methods, continued

Here is random.rb:
class Fixnum
 def rand
 raise ArgumentError if self < 1 # Exception (just FYI)
 Kernel.rand(self)+1
 end
end

class String
 def rand
 raise ArgumentError if size == 0
 self[self.size.rand-1,1] # Uses Fixnum.rand
 end
end

>> load "random.rb" => true

>> 12.times { print 6.rand, " " } # Output: 2 1 2 4 2 1 4 3 4 4 6 3

>> 8.times { print "HT".rand, " " } # Output: H H T H T T H H

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 207	

Addition of methods, continued

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class Y; end)
nil
=> nil

>> class Z; puts "here"; end
here
=> nil

Class definitions are executable code!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 208	

An interesting thing about class definitions

A class definition is executable code. The following uses a case statement to
selectively execute defs for methods.

class X
 print "What methods would you like? "
 methods = gets.chomp
 methods.each_char do |c|
 case c
 when "f" then def f; "from f" end
 when "g" then def g; "from g" end
 when "h" then def h; "from h" end
 end
 end
end

Use:
>> load "dynmethods1.rb"
What methods would you like? fg
>> c = X.new => #<X:0x000001008ccac0>
>> c.f => "from f"
>> c.g => "from g"
>> c.h NoMethodError: undefined method `h'

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 209	

Class definitions are executable code

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc" => "abc"

>> n = 3 => 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse
=> "cba"

Note that eval uses variables from the current scope and that an assignment to x
is reflected in the current scope.

Bottom line: A Ruby program can generate code for itself.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 210	

Sidebar: Fun with eval

mk_methods.rb prompts for a method name, parameters, and method
body. It then creates that method and adds it to class X.

>> load "mk_methods.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? x
What shall it do? x[-1]
Method last(x) added to class X

What method would you like? ^D => true
>> x = X.new => #<X:0x0000010185d930>
>> x.add(3,4) => 7
>> x.last "abcd" => "d"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 211	

Sidebar, continued

Here is mk_methods.rb. Note that the body of the class is a while loop.
class X
 while (print "What method would you like? "; name = gets)
 name.chomp!

 print "Parameters? "
 params = gets.chomp

 print "What shall it do? "
 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)
 print("Method #{name}(#{params}) added to class #{self}\n\n");
 end
end

Is this a useful capability or simply fun to play with?

What risks does eval open up?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 212	

Sidebar, continued

Like Java, Ruby provides a way to associate data and methods with a class
itself rather than each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how
many counters have been created.

class Counter
 @@created = 0 # Must precede any use of @@created
 def initialize(label = "Counter")
 @count = 0; @label = label
 @@created += 1
 end
end

Note: Unaffected methods are not shown.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 213	

Class variables and methods

To define a class method, simply prefix the method name with the name of
the class:

class Counter
 @@created = 0
 ...
 def Counter.created
 return @@created
 end
end

Usage:

>> Counter.created => 0
>> c = Counter.new
>> Counter.created => 1
>> 5.times { Counter.new }
>> Counter.created => 6

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 214	

Class variables and methods, continued

By default, methods are public. If private appears on a line by itself,
subsequent methods in the class are private. Ditto for public.

class X
 def f; puts "in f"; g end # Note: calls g
 private
 def g; puts "in g" end
end

Usage:

>> x = X.new
>> x.f
in f
in g
>> x.g
NoMethodError: private method `g' ...

Speculate: What are private and public? Keywords?

 Methods in Module! (Module is an ancestor of Class.)

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 215	

A little bit on access control

If Counter were in Java, we might provide methods like void
setCount(int n) and int getCount().

We've provided our Counter with a method called count as a "getter".

For a "setter" we implement count=, with a trailing equals sign.

 def count= n
 print("count=(#{n}) called\n") # Just for observation
 @count = n unless n < 0
 end

Usage:
>> c = Counter.new
>> c.count = 10
count=(10) called
=> 10
>> c => Counter's count is 10

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 216	

Getters and setters

Here's a class to represent points on a Cartesian plane:
class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 def x; @x end
 def y; @y end
end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x00193320 @x=3, @y=4>
>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter
methods, like Point#x and Point#y.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 217	

Getters and setters, continued

The method attr_reader creates getter methods.

Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y # Could use "x" and "y" instead of
symbols
end

Usage:

>> p = Point.new(3,4)
>> p.x => 3
>> p.x = 10
NoMethodError: undefined method `x=' for #<Point: ...>

Why does p.x = 10 fail?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 218	

Getters and setters, continued

If you want both getters and setters, use attr_accessor.
class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_accessor :x, :y
end

Usage:

>> p = Point.new(3,4)
>> p.x => 3
>> p.y = 10

It's important to appreciate that attr_reader and attr_accessor are
methods that create methods. If Ruby didn't provide them, we could write
them ourselves.
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 219	

Getters and setters, continued

Operator overloading

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 220	

Most operators can be expressed as method calls.
>> 3.+(4) => 7 # 3 + 4

>> "testing".[](2,3) => "sti" # "testing"[2,3]

>> 10.==20 => false # 10 == 20

In general, expr1 op expr2 can be written as expr1.op expr2

Unary operators are indicated by adding @ after the operator:

>> 5.-@() => -5 # -5

>> "abc".!@() => false # !"abc"

What are some binary operations that might be problematic to express as a
method call?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 221	

Operators as methods

In most languages at least a few operators are "overloaded"—an operator
stands for more than one operation.

C: + is used to express addition of integers, floating point numbers,
and pointer/integer pairs.

Java: + is used to express addition and string concatenation.

Icon: *x produces the number of...

 characters in a string
 values in a list
 key/value pairs in a table
 results a "co-expression" has produced and more...

Icon: + means only addition; s1 || s2 is string concatenation

What are examples of overloading in Ruby? In Haskell?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 222	

Operator overloading

We'll use a dimensions-only rectangle class to study overloading in Ruby:
class Rectangle
 def initialize(w,h)
 @width, @height = w, h # parallel assignment
 end
 def area; @width * @height; end
 attr_reader :width, :height
 def to_s
 "%g x %g Rectangle" % [@width, @height]
 end
end

Usage:

>> r = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r.area => 12
>> r.width => 3

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 223	

Operator overloading, continued

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b => 8 x 10 Rectangle

>> c = a + b + b => 13 x 16 Rectangle

>> (a + b + c).area => 546

As shown above, what does Rectangle + Rectangle mean?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 224	

Operator overloading, continued

Our vision:
>> a = Rectangle.new(3,4); b = Rectangle.new(5,6)
>> a + b => 8 x 10 Rectangle

Here's how to make it so:

class Rectangle
 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on
a and passing it b as a parameter.

The parameter name, rhs, stands for "right-hand side".

Do we need self in self.width or would just width work? How about @width?

Even if somebody else had provided Rectangle, we could still overload + on it—
the lines above are additive, assuming Rectangle.freeze hasn't been done.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 225	

Operator overloading, continued

For reference:
def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)

 end

Here is a faulty implementation of our +, and usage of it:

def + rhs
 @width += rhs.width; @height += rhs.height
end

>> a = Rectangle.new(3,4)
>> b = Rectangle.new(5,6)

>> c = a + b => 10

>> a => 8 x 10 Rectangle

What's the problem?

We're changing the attributes of the left operand instead of creating and
returning a new instance of Rectangle.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 226	

Operator overloading, continued

Just like with regular methods, we have complete freedom to define what's
meant by an expression using an overloaded operator.

Here is a method for Rectangle that defines unary minus to be an
imperative "rotation" (a clear violation of the Principle of Least
Astonishment!)

def -@ # Note: @ suffix to indicate unary form of -
 # Use parallel assignment to swap(!)
 @width, @height = @height, @width
 self
end

>> a = Rectangle.new(2,5) => 2 x 5 Rectangle
>> -a => 5 x 2 Rectangle
>> a + -a => 4 x 10 Rectangle
>> a => 2 x 5 Rectangle

Goofy, yes?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 227	

Operator overloading, continued

At hand:
def -@ # Note: '-@' is used to indicate unary form
 # Use parallel assignment to swap(!)
 @width, @height = @height, @width
 self
end

What's a (slightly) more sensible implementation of unary -?

 def -@
 Rectangle.new(height, width)
 end

>> a = Rectangle.new(5,2) => 5 x 2 Rectangle
>> -a => 2 x 5 Rectangle
>> a => 5 x 2 Rectangle
>> a += -a; a => 7 x 7 Rectangle

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 228	

Operator overloading, continued

Consider "scaling" a rectangle by some factor. Example:
>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> b = a * 5 => 15 x 20 Rectangle
>> c = b * 0.77 => 11.55 x 15.4 Rectangle

Implementation:

 def * rhs
 Rectangle.new(self.width * rhs, self.height * rhs)
end

A problem:

>> a => 3 x 4 Rectangle
>> 3 * a
TypeError: Rectangle can't be coerced into Fixnum

What's wrong?

 We've implemented only Rectangle * Fixnum

What should a / 3 do?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 229	

Operator overloading, continued

Imagine a case where it's useful to reference width and height uniformly,
via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> a[0] => 3
>> a[1] => 4
>> a[2] RuntimeError: out of bounds

Recall that a[n] is a.[](n)

Implementation:

def [] n
 case n
 when 0 then width
 when 1 then height
 else raise "out of bounds"
 end
end

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 230	

Operator overloading, continued

A language is considered to be extensible if we can create new types that
can be used as easily as built-in types.

Do our simple Rectangle class and its overloaded operators demonstrate
that Ruby is extensible?

What would a = b + c * 2 with Rectangles look like in Java?

 Maybe: Rectangle a = b.plus().times(2);

How about in C?

 Would Rectangle a = rectPlus(b, rectTimes(c, 2)); be workable?

Haskell goes further with extensibility, allowing new operators to be
defined.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 231	

Is Ruby extensible?

Ruby is not only extensible; it is also mutable—we can change the
meaning of expressions.

For example, if we wanted to be sure that a program never used integer
addition, we could start with this:

class Fixnum
 def + x
 raise "boom!"
 end
end

What else would we need to do?

Contrast: C++ is extensible, but not mutable. For example, in C++ you can
define the meaning of Rectangle * int but you can't change the meaning
of integer addition, as we do above.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 232	

Ruby is mutable

Inheritance

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 233	

Here's the classic Shape/Rectangle/Circle inheritance example in Ruby:

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 234	

A Shape hierarchy in Ruby

class Shape
 def initialize(label)
 @label = label
 end

 attr_reader :label
end

class Rectangle < Shape
 def initialize(label, width, height)
 super(label)
 @width, @height = width, height
 end

 def area
 return width * height
 end

 def to_s
 "Rectangle #{label} (#{width} x
#{height})"
 end

 attr_reader :width, :height
end

Rectangle < Shape
specifies inheritance.

Note that Rectangle
methods use the generated
width and height methods
rather than @width and
@height.

class Circle < Shape
 def initialize(label, radius)
 super(label)
 @radius = radius
 end

 def area
 return Math::PI * radius * radius
 end

 def perimeter
 return Math::PI * radius * 2
 end

 def to_s
 "Circle #{label} (r = #{radius})"
 end

 attr_reader :radius
end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 235	

Shape, continued

Math::PI references the
constant PI in the Math class.

The abstract reserved word is used in Java to indicate that a class, method, or
interface is abstract.

Ruby does not have any language mechanism to mark a class or method as
abstract.

Some programmers put "abstract" in class names, like AbstractWindow.

A method-level practice is to have abstract methods raise an error if called:

class Shape
 def area
 raise "Shape#area is abstract"
 end
end

There is also an abstract_method "gem" (a package of code and more):

class Shape
 abstract_method :area
 ...

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 236	

There's no abstract

A common use of inheritance in Java is to let us write code in terms of a
superclass type and then use that code to operate on subclass instances.

With a Shape hierarchy in Java we might write a routine sumOfAreas:

 static double sumOfAreas(Shape shapes[]) {
 double area = 0.0;
 for (Shape s: shapes)

 area += s.getArea();
 return area;
 }

We can make Shape.getArea() abstract to force concrete subclasses to
implement getArea().

sumOfAreas is written in terms of Shape but works with instances of
any subclass of Shape.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 237	

Inheritance is important in Java

Here is sumOfAreas in Ruby:

def sumOfAreas(shapes)
 area = 0
 for shape in shapes do
 area += shape.area
 end
 area
end

Does it make any use of inheritance?

Even simpler:

 shapes.inject (0.0) {|memo,shape| memo += shape.area }

Dynamic typing in Ruby makes it unnecessary to require common superclasses or
interfaces to write polymorphic methods, which operate on a variety of underlying
types.

If you look closely, you'll find that many common design patterns are simply
patterns of working with inheritance hierarchies in statically typed languages.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 238	

Inheritance is less important in Ruby

A second use of inheritance in Java is to "hoist" common functionality
from subclasses up into a superclass. This has applicability in Ruby, too.

Shape is a poor example for hoisting—only a getter for label has been
hoisted up into Shape.

Let's consider an inheritance hierarchy where hoisting can be more useful.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 239	

Hoisting via inheritance

Imagine an abstract class XString with two concrete subclasses:
ReplString and MirrorString.

A ReplString is created with a string and a replication count. It supports
size, substrings with [pos] and [pos,len], and to_s operations.

>> r1 = ReplString.new("abc", 2) => ReplString(6)

>> r1.size => 6

>> r1[0] => "a"

>> r1[10] => nil

>> r1[2,3] => "cab"

>> r1.to_s => "abcabc"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 240	

Example: XString

A MirrorString represents a string concatenated with a reversed copy of
itself.

>> m1 = MirrorString.new("abcdef")
=> MirrorString("abcdef")

>> m1.to_s => "abcdeffedcba"

>> m1.size => 12

>> m1[3,6] => "deffed"

What's a trivial way to implement the XString/ReplString/MirrorString
hierarchy?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 241	

XString, continued

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 242	

A trivial XString implementation
class XString
 def initialize(s)
 @s = s
 end

 def [](start, len = 1)
 @s[start, len]
 end

 def size
 @s.size
 end

 def to_s
 @s.dup
 end

end

class ReplString < XString
 def initialize(s, n)
 super(s * n)
 end

 def inspect
 "ReplString(#{size})"
 end
end

class MirrorString < XString
 def initialize(s)
 super(s + s.reverse)
 end

 def inspect
 "MirrorString(#{size})"
 end
end

New requirements:
 An XString can be created using either an XString or a String.
 A ReplString can have a very large replication count.

Will XStrings in constructors work with the implemetation as-is?

>> m2 = MirrorString.new(ReplString.new("abc",3))
NoMethodError: undefined method `reverse' for ReplString

>> r2 = ReplString.new(MirrorString.new("abc"),5)
NoMethodError: undefined method `*' for MirrorString

What's the problem?

 The ReplString and MirrorString constructors use * n and .reverse

What will ReplString("abc", 1_000_000_000_000) do?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 243	

XString, continued

Here's behavior with a working version:
>> s1 = ReplString.new("abc", 2_000_000_000_000)
=> ReplString("abc",2000000000000)

>> s1[0] => "a"

>> s1[-1] => "c"

>> s1[1_000_000_000] => "b"

>> s2 = MirrorString.new(s1)
=> MirrorString(ReplString("abc",2000000000000))

>> s2.size => 12000000000000

>> s2[-1] => "a"

>> s2[s2.size/2 - 3, 6] => "abccba"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 244	

XString, continued

Let's review requirements:
•  Both ReplString and MirrorString are subclasses of XString.
•  An XString can be created using either a String or an XString.
•  The ReplString replication count can be a Bignum.
•  If xs is an XString, xs[pos] and xs[pos,len] produce Strings.
•  XString#size works, possibly producing a Bignum.
•  XString#to_s "works" but is problematic with long strings.

How can we make this work?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 245	

XString, continued

Let's play computer!
>> s = MirrorString.new(ReplString.new("abc",1_000_000))
=> MirrorString(ReplString("abc",1000000))

>> s.size
=> 6000000

>> s[-1]
=> "a"

>> s[3_000_000]
=> "c"

>> s[3_000_000,6]
=> "cbacba"

What data did you need to perform those computations?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 246	

XString, continued

To be continued,
on assignment 5!

Modules and "mixins"

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 247	

A Ruby module can be used to group related methods for organizational purposes.

Imagine a collection of methods to comfort a homesick Haskell programmer at
Camp Ruby:

module Haskell
 def Haskell.head(a)
 a[0]
 end

 def Haskell.tail(a)
 a[1..-1]
 end
 ...more...
end

>> a = [10, "twenty", 30, 40.0]
>> Haskell.head(a) => 10
>> Haskell.tail(a) => ["twenty", 30, 40.0]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 248	

Modules

In addition to providing a way to group related methods, a module can be
"included" in a class. When a module is used in this way it is called a "mixin"
because it mixes additional functionality into a class.

Here is a revised version of the Haskell module. The class methods are now
instance methods, with no parameter:

module Haskell
 def head
 self[0]
 end

 def tail
 self[1..-1]
 end
end

For contrast, here's the previous version of head:

 def Haskell.head(a)
 a[0]
 end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 249	

Modules as "mixins"

We can mix our Haskell methods into the Array class like this:
% cat mixin1.rb
require './Haskell' # loads ./Haskell.rb if not already loaded
class Array
 include Haskell
end

We can load mixin1.rb and then use .head and .tail on arrays:

% irb
>> load "mixin1.rb" => true
>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.head => 1

>> ints.tail => [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.tail.tail.head => 3

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 250	

Mixins, continued

We can add those same capabilities to String, too:
class String
 include Haskell
end

Usage:

>> s = "testing"

>> s.head => "t"
>> s.tail => "esting"
>> s.tail.tail.head => "s"

Does Java have any sort of mixin capability? What would be required to
produce a comparable effect?

In addition to the include mechanism, what other aspect of Ruby facilitates
mixins?
 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 251	

Mixins, continued

The Ruby core classes and standard library make extensive use of mixins.

The class method ancestors can be used to see the superclasses and
modules that contribute methods to a class:

>> Array.ancestors
=> [Array, Enumerable, Object, Kernel, BasicObject]

>> Fixnum.ancestors
=> [Fixnum, Integer, Numeric, Comparable, Object, Kernel,
BasicObject]

>> load "mixin1.rb"

>> Array.ancestors
=> [Array, Haskell, Enumerable, Object, Kernel, BasicObject]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 252	

Modules and superclasses

The method included_modules shows the modules that a class
includes.

>> Array.included_modules => [Haskell, Enumerable, Kernel]

>> Fixnum.included_modules => [Comparable, Kernel]

instance_methods can be used to see what methods are in a module:

>> Enumerable.instance_methods.sort =>
[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de
tect, :drop, :drop_while, :each_cons, :each_entry, ...more...

>> Comparable.instance_methods.sort
=> [:<, :<=, :==, :>, :>=, :between?]

>> Haskell.instance_methods
=> [:head, :tail]

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 253	

Modules and superclasses, continued

All classes except BasicObject include the module Kernel.

If no superclass is specified, a class subclasses Object.

Example:

>> class X; end

>> X.ancestors => [X, Object, Kernel, BasicObject]

>> X.included_modules => [Kernel]

>> X.superclass => Object

Note the inheritance structure: (And that Class and Module are classes!)
 >> Class.superclass => Module
 >> Module.superclass => Object

Expressed in Ruby: Class < Module < Object

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 254	

Modules and superclasses, continued

BasicObject is the superclass of Object.

BasicObject was introduced to provide a (nearly) blank slate for some
uses with metaprogramming.

BasicObject includes no modules.

>> Object.instance_methods.size => 57

>> BasicObject.instance_methods.size => 8

>> BasicObject.included_modules => []

We won't do anything with BasicObject.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 255	

Modules and superclasses, continued

When talking about iterators we encountered Enumerable. It's a module:
>> Enumerable.class => Module
>> Enumerable.instance_methods.sort =>
[:all?, :any?, :chunk, :collect, :collect_concat, :count, :cycle, :de
tect, :drop, :drop_while, :each_cons, :each_entry, :each_slice, :
each_with_index, :each_with_object, :entries, :find, :find_all, :f
ind_index, :first, :flat_map, :grep, :group_by, :include?, :inject,
:map, :max, :max_by, :member?, :min, :min_by, :minmax, :min
max_by, :none?, :one?, :partition, :reduce, :reject, :reverse_eac
h, :select, :slice_before, :sort, :sort_by, :take, :take_while, :to_a,
:zip]

The methods in Enumerable use duck typing, requiring only an each
method. min, max, and sort, also require <=> for values operated on.

If class implements each and includes Enumerable then all those
methods become available to instances of the class.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 256	

The Enumerable module

Here's a class whose instances simply hold three values:
class Trio
 include Enumerable
 def initialize(a,b,c); @values = [a,b,c]; end

 def each
 @values.each {|v| yield v }
 end
end

Because Trio implements each and includes Enumerable, we can do a
lot with it:

>> t = Trio.new(10, "twenty", 30)
>> t.member?(30) => true
>> t.map{|e| e * 2} => [20, "twentytwenty", 60]
>> t.partition {|e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

What would the Java equivalent be for the above?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 257	

The Enumerable module, continued

Another common mixin is Comparable. These methods,
>> Comparable.instance_methods
=> [:==, :>, :>=, :<, :<=, :between?]

are implemented in terms of <=>.

Let's compare rectangles on the basis of areas:

class Rectangle
 include Comparable
 def <=> rhs
 (self.area - rhs.area) <=> 0 # No sign/signum, it seems!?
 end
end

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 258	

The Comparable module

Usage:
>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle
>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle
>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> r1 > r2 => true

>> r1 == Rectangle.new(6,2) => true

>> r2.between?(r3,r1) => true

Is Comparable making the following work?
>> [r1,r2,r3].sort
=> [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min
=> 2 x 2 Rectangle

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 259	

Comparable, continued

In conclusion...

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 260	

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 261	

Movie!

hLp://www.madbean.com/anim/jarwars	
 	

"In computer science, type safety is the extent to which a programming
language discourages or prevents type errors."—Wikipedia

It's common to hear things like, "We should use a type-safe language like
Java or C++ instead of Ruby or Python."

Is Ruby type-safe?

 Is C?
 Is Java?

Here's my definition of a statically-typed language:

A language in which it is possible to determine if expressions have
type inconsistencies by statically analyzing the code.

Many programmers equate type-safety with static typing. Are they
equivalent?

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 262	

Type safety

How would you rank Java, Haskell, and Ruby in order of "ease of
understanding type errors"?

When do type errors typically turn up in Ruby code?

 First time the code is run?
 After a handful of tests?
 When testing complex cases?

Is an unexpectedly nil value a type error?

It is undisputed that statically-typed languages eliminate a certain class of
errors. The question is in cost vs. benefit.

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 263	

Type errors

•  Everything is an object?

•  Substring/subarray access with x[...] notation?

•  Negative indexing to access from right end of strings and arrays?

•  Modifiers? (puts x if x > y)

•  Type-less variables?

•  Lack of type specifications on formal parameters in methods?

•  Iterators and blocks?

•  Ruby's support for regular expressions?

•  Monkey patching? Adding methods to built-in classes?

•  Programmer-defined operator overloading?

•  Is programming more fun with Ruby?
CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 264	

What do you like (or not?) about Ruby?

Points for thought:

•  Dynamic type checking doesn't catch type errors until execution.

•  Can good test coverage catch type errors as well as static typing?

•  Test coverage has an additional dimension with dynamic typing: do
tests not only cover all paths but also all potential type combinations?

•  What's the prevalence of latent type errors vs. other types of errors?

•  What does the user care about?
 Software that works
 Fast enough
 Better sooner than later

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 265	

Type checking, continued

September 3, 2006:
n=1
d = Date.new(2006, 8, 22)
incs = [2,5]
pos = 0
while d < Date.new(2006, 12, 6)

 if d != Date.new(2006, 11, 23)
 printf("%s %s, #%2d\n",
 if d.cwday() == 2: "T"; else "H";end,
 d.strftime("%m/%d/%y"), n)
 n += 1
 end
 d += incs[pos % 2]
 pos += 1

end

Output:

T 08/22/06, # 1!
H 08/24/06, # 2!
T 08/29/06, # 3!
...!

CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 266	

My first practical Ruby program

If we had more time, we'd...

•  Learn about lambdas, blocks as explicit parameters, and call.

•  Play with ObjectSpace. (Try ObjectSpace.count_objects)

•  Do some metaprogramming with hooks like method_missing,

included, and inherited.

•  Experiment with internal Domain Specific Languages (DSL).

•  Look at how Ruby on Rails puts Ruby features to good use.

•  Do some graphics with FXRuby.

•  Take a peek at BDD (Behavior-Driven Development) with Cucumber
and RSpec.

 CSC	
 372	
 Spring	
 2014,	
 Ruby	
 Slide	
 267	

More with Ruby...

