
CSC 372, Spring 2015
Assignment 4

Due: Tuesday, March 10 at 23:59:59

Game plan for the Ruby assignments

Due to our mid-term exam on March 12 and Spring Break the following week, I'm spreading our Ruby
work across three assignments, with the following due dates:

Assignment 4 Tuesday, March 10 (date is definite)
Assignment 5 Thursday, March 26 (date is tentative)
Assignment 6 Thursday, April 9 (date is tentative)

I think of this assignment as about a week's worth of work. It should perhaps be due on March 5 but to
give you a little flexibility I'm letting it run five days longer, until March 10. I plan to issue Assignment 5
around March 5. You might want to use some of the slack time on this assignment to get a head start on
Assignment 5.

Restrictions on longest.rb and seqwords.rb

Problems 1 and 2 have some restrictions that will hopefully lead to some creative thinking about string-
based computations. I intend them to be a challenge and learning experience, not a frustration. I suggest
that you start thinking about them as soon as possible and see what your subconscious comes up with. I
believe everyone can solve these problems on their own but if you start to get frustrated, or the time you've
budgeted starts to get short, ask me for some hints!

Problems 3 and 4, mimax and xfield, have no restrictions whatsoever.

Don't fall into the trap of thinking you must do these problems in sequence!

Use Ruby 1.9.3!

Ruby 1.9.3 is to be used for all Ruby assignments. Use "rvm 1.9" each time you login on lectura to set
things for 1.9.3. You might get a blat about "Warning! PATH is not properly set up..."
but if ruby --version shows 1.9.3, things should be fine. Here's what I see:

$ rvm 1.9
Warning! PATH is not properly set up
...lots more...
$ ruby --version
ruby 1.9.3p484 (2013-11-22 revision 43786) [x86_64-linux]

Use the tester!

Just like for assignment 3, there's a version of tester for this assignment. Don't just "eyeball" your
output—use the tester! I won't have any sympathy for those who fail tests during grading simply because
they didn't want to bother with the tester! I'll be happy to help you with using the tester and understanding
its output.

I recommend making symbolic links for a4 and t in your assignment 4 directory, for easy access to the
tester and the data files.

Page 1

Output from command-line examples is followed by a blank line

Most of the programming problems on the Haskell assignments were functions that you tested inside
ghci. All of the Ruby problems are this assignment require you to create programs that can be run from
the command line, like group.hs and avg.hs on assignment 3.

A strong convention in the UNIX world is that programs do not output a trailing blank line. Observe these
interactions, and the lack of blank lines:

$ date
Wed Feb 25 09:37:27 MST 2015
$ date | wc
 1 6 29
$ ls -ld .
drwxr-xr-x 266 whm staff 9044 Feb 25 09:19 .
$ (my prompt—bash is waiting for the next command)

In this write-up, however, output from command-line examples is followed by a blank line. Instead of the
above, you'll see this:

$ date
Wed Feb 25 09:37:27 MST 2015

$ date | wc
 1 6 29

$ ls -ld .
drwxr-xr-x 266 whm staff 9044 Feb 25 09:19 .

Another UNIX tidbit: I produce the above spacing not by editing the output but by including a newline in
my bash prompt, like this:

whm@lectura ~ 5001 % PS1="\n$ "

$ date
Wed Feb 25 09:49:17 MST 2015

$

Problem 1. (6 points) longest.rb

Write a Ruby program that reads lines from standard input and upon end of file writes the longest line to
standard output. If there are ties for the longest line, longest writes out all the lines that tie. If there is
no input, longest produces no output.

Don't overlook the restrictions below.

Here are some examples. The files lg.1 and lg.2 can be found in the a4 directory. (Make that a4
symlink!)

$ cat lg.1
a test
for
the program

Page 2

here

$ ruby longest.rb < lg.1
the program

$ cat lg.2
xx
a
yy
b
zz
$ ruby longest.rb < lg.2
xx
yy
zz

Let's use the null device and wc -c to demonstrate that if longest has no input, there's no output:

$ ruby longest.rb < /dev/null | wc -c
0

Let's use longest to explore a list of words:

$ ruby longest.rb < /usr/share/dict/words
electroencephalograph's

$ grep ^q /usr/share/dict/words | ruby longest.rb
quadrilateral's
quadruplicate's
quadruplicating
qualification's
quartermaster's
questionnaire's

$ grep ^w /usr/share/dict/words | ruby longest.rb
whatchamacallit's
wrongheadedness's

$ grep ^wo /usr/share/dict/words | ruby longest.rb
woolgathering's
worthlessness's

Restrictions:
• NO COMPARISONS, such as <, ==, !=, <=>, between?, eql?, empty?, and

String#casecmp may be used. (Any method that ends with ? should be viewed with
suspicion, as a rule.)

• The case statement may not be used.
• No arithmetic operations, such as addition, subtraction, negation, or the pred and succ

methods may be used. Imagine that arithmetic was just never invented!
• The only types you may are use are Fixnum, Bignum, and String. In particular, you may

not use arrays.

Page 3

You are permitted to employ the comparison that's implicit in control structures. For example, statements
like

while x do ... # OK
if f(x) then ... # OK

are permitted.

However, a statement such as

while x > 1 do # NOT PERMITTED!

is not permitted—it contains a comparison (x > 1).

Implementation note

The examples above show various combinations of redirection and piping with bash to supply
longest.rb with data on "standard input" but all you need to do in longest.rb is read lines with
line = gets (or whatever variable you want to use.)

Problem 2. (7 points) seqwords.rb

For this problem you are to write a Ruby program that reads a series of words from standard input, one per
line, and then prints lines with the words sequenced according to a series of specifications, also one per line
and read from standard input.

Don't overlook the restrictions below.

Here is an example with four words and three sequencing specifications, which are simply integers, one per
line.

$ cat sw.1
one
two
three
four
.
1
2
3
.
3
2
1
1
2
3
.
4
1

$ ruby seqwords.rb < sw.1
one two three
three two one one two three
four one

Page 4

Note that lines containing only a period (.) end the word list and also separate specifications. For output,
words are separated with a single blank. Here's another example:

$ cat sw.2
tick
.
1
.
1
1

$ ruby seqwords.rb < sw.2
tick
tick tick
$

Assume that there is at least one word and at least one sequencing specification. Assume that each
sequencing specification has at least one number. Assume that all entries in the sequencing specifications
are integers and in range for the list of words. Because periods separate specifications, the input will never
end with a period.

Restriction: The only types you may are use are Fixnum, Bignum, and String. In particular, you
may not use arrays.

Here is a key simplification: Assume that words are between 1 and 100,000 characters in length, inclusive.
(Note that 100_000 is a valid Fixnum literal in Ruby!)

Problem 3. (8 points) minmax.rb

Write a Ruby program that reads lines from standard input and determines which line(s) are the longest and
shortest lines in the file. The minimum and maximum lengths are output along with the line numbers of
the line(s) having that length.

$ cat mm.1
just a
test
right here
x
$ ruby minmax.rb < mm.1
Min length: 1 (4)
Max length: 10 (3)

The output indicates that the shortest line is line 4; it is one character in length. The longest line is line 3; it
is ten characters in length.

Another example:

$ cat mm.2
xxx
XX
yyy
yy
zzz
qqq

Page 5

$ ruby minmax.rb < mm.2
Min length: 2 (2, 4)
Max length: 3 (1, 3, 5, 6)

In this case, lines 2 and 4 are tied for being the shortest line. Four lines are tied for maximum length.

If the input file is empty, the program should output a single line that states "Empty file":

$ ruby minmax.rb < /dev/null
Empty file

Some examples with /usr/share/dict/words:

$ ruby minmax.rb < /usr/share/dict/words
Min length: 1 (1, 1229, 2448, 3799, 4500, 5076, 5514, 6213, 6951,
7266, 7757, 8316, 9129, 10654, 11149, 11482, 12369, 12426, 13108,
14502, 15288, 15415, 15729, 16171, 16207, 16346, 16484, 21151,
26000, 34170, 39292, 42567, 46256, 49013, 52079, 55431, 56202,
56806, 59393, 63790, 65313, 67250, 74022, 74432, 79106, 89039,
93338, 95154, 96416, 98713, 98730, 99012)
Max length: 23 (39886)

$ ruby minmax.rb < /usr/share/dict/words | wc -l
2

$ grep ^q /usr/share/dict/words | ruby minmax.rb
Min length: 1 (1)
Max length: 15 (27, 49, 52, 86, 162, 251)

Although output is shown wrapped across several lines the first invocation above produces only two lines
of output, demonstrated by piping that same output into wc -l. (I should have done $!! | wc -l)

IMPORTANT: DO NOT assume any maximum length for input lines.

You might be inclined to have some repetitious code in your minmax.rb, such as an if-then-else that
handles minimum lengths and a nearly identical if-then-else that handles maximum lengths. There are no
extra points for it for but I challenge you to produce a solution in which you DRY.

I consider even something like the following, albeit short, to be repetitious:

mins = [1]
maxs = [1]

If you think your solution has no repetition, include the following comment and I'll see if I agree.

Look! No repetition!

Problem 4. (16 points) xfield.rb

For this problem you are going to create your own version of a Ruby tool that I use every day: xfield.

Here's a man-style description of xfield. Detailed examples follow.

SYNOPSIS:
xfield [-dC] [-sSEPARATOR] [FIELDNUM|TEXT]...

Page 6

xfield extracts fields of data from standard input. Field numbers are one-based and may be
negative to specify counting from the right. If a field number is out of bounds, "<NONE>" is output in
place of actual data. Unlike its weaker ancestor, cut(1), xfield allows fields to be specified in
any order and appear more than once.

Fields are delimited by one or more spaces by default but an alternate character to delimit fields can be
specified with -dC. Tabs separate output fields by default but -sSEPARATOR can be used to specify
an alternate separator, which must be at least one character in length. There may be multiple -d and -
s specifications, in any order, but they must appear before any field number or text specifications. If
there are multiple specifications for either -d or -s, the last one of each "wins".

If a textual argument (not a number) falls between two field specifications (two numbers), that text is
used instead of the separator.

Input lines are assumed to end with a newline. If there are no input lines, xfield produces no
output.

If no fields are specified, the message "xfield: no fields specified" is printed, and
xfield calls exit 1 to terminate execution. (exit is a Kernel method.)

xfield is able to handle an input stream of any length. (Hint: Don't do something like read all the
input lines into memory and then process them—they might not fit!)

The behavior of xfield is undefined in cases that are not specifically addressed by this write-up or
exercised with the tester. That means that any non-malicious behavior is ok—run-time errors, curious
results, etc., are not a surprise if the user misuses xfield.

Some detailed examples of xfield in operation follow. Here is an input file:

$ cat xf.1
one 1 1.0
two 2 2.0
three 3 3.0
four 4 4.0
twenty 20 20.0

The English text and the real numbers can be extracted like this:

$ ruby xfield.rb 1 3 < xf.1
one 1.0
two 2.0
three 3.0
four 4.0
twenty 20.0
$

xfield can be used to reorder fields:

$ ruby xfield.rb 3 2 1 < xf.1
1.0 1 one
2.0 2 two
3.0 3 three
4.0 4 four
20.0 20 twenty

Page 7

xfield supports negative indexing, just like Ruby arrays:

$ ruby xfield.rb -1 1 < xf.1
1.0 one
2.0 two
3.0 three
4.0 four
20.0 twenty

$ ruby xfield.rb -1 1 2 -2 < xf.1
1.0 one 1 1
2.0 two 2 2
3.0 three 3 3
4.0 four 4 4
20.0 twenty 20 20

If a field reference is out of bounds, the string "<NONE>" is output:

$ ruby xfield.rb 1 10 2 < xf.1
one <NONE> 1
two <NONE> 2
three <NONE> 3
four <NONE> 4
twenty <NONE> 20

The -s flag specifies an output separator to use instead of tab.

$ ruby xfield.rb -s... 1 3 1 <xf.1
one...1.0...one
two...2.0...two
three...3.0...three
four...4.0...four
twenty...20.0...twenty

To extract login ids and real names (and room/phone) from oldpasswd, an excerpt from an ancient
/etc/passwd, one might use -d: to specify that a colon is the delimiter:

$ ruby xfield.rb -d: 1 5 < oldpasswd
wnj Bill Joy,457E,7780
dmr Dennis Ritchie
ken Ken Thompson
mike Mike Karels
carl Carl Smith,508-21E,6258
joshua Josh Goldstein

Note that the -s and -d options are single arguments—there's no space between -s or -d and the
following string.

Non-numeric arguments other than the -s and -d flags are considered to be text to be included in
each output line. If a textual argument (not a number) falls between two field specifications (two
numbers), that text is used instead of the separator:

$ ruby xfield.rb int= 2 ", real=" 3 ", english=" 1 < xf.1
int=1, real=1.0, english=one
int=2, real=2.0, english=two

Page 8

int=3, real=3.0, english=three
int=4, real=4.0, english=four
int=20, real=20.0, english=twenty

Note the use of quotation marks to form an argument that contains blanks. The shell strips off the
quotation marks so that the resulting arguments passed to the program do not have quotes. See the
Implementation notes for xfield section below for more on this.

Here's that text-argument-overrides-separator rule again:

If a textual argument (not a number) falls between two field specifications (two numbers), that text is
used instead of the separator:

Here are some more examples showing that rule in action:

$ cat xf.2
one two three four

$ ruby xfield.rb -s. 1 2 3 < xf.2
one.two.three

$ ruby xfield.rb -s. A 1 2 3 B C < xf.2
Aone.two.threeBC

$ ruby xfield.rb -s. A 1 B C 2 3 D < xf.2
AoneBCtwo.threeD

$ ruby xfield.rb -s. A 1 B C 2 D 3 E < xf.2
AoneBCtwoDthreeE

Below are some cases that bring all the elements into play.

$ cat xf.3
xxxxxxxAxxxxxxxxxxBxC
DxExF
xG1xG2
xxxxHIxxxJKxxxLMNxxxOPQRSx

$ ruby xfield.rb -dx -s- 1 2 3 < xf.3
A-B-C
D-E-F
G1-G2-<NONE>
HI-JK-LMN

$ ruby xfield.rb -dx -s- -1 ... -2 -3 @ < xf.3
C...B-A@
F...E-D@
G2...G1-<NONE>@
OPQRS...LMN-JK@

$ ruby xfield.rb -s/ -de 1 2 < xf.1
on/ 1 1.0
two 2 2.0/<NONE>
thr/ 3 3.0
four 4 4.0/<NONE>
tw/nty 20 20.0

Page 9

If there are no input lines, xfield produces no output:

$ ruby xfield.rb -s/ -d: 1 x 2 3 < /dev/null

Implementation notes for xfield

gets vs. STDIN.gets

The gets method does a little more than simply reading lines from standard input. If command line
arguments are specified, gets will consider those arguments to be file names. It will then try to open
those files and produce the lines from each in turn. That's really handy in some cases but it gets in the
way for xfield. To avoid this behavior, don't use line = gets to read lines. Instead, do this:

while line = STDIN.gets do

This limits gets to the contents of standard input.

Delimiter-specific behavior in String#split

I'm astounded by the fact that split behaves differently when the delimiter is a space:

>> " a b c ".split(" ")
=> ["a", "b", "c"]

>> ".a..b..c.".split(".")
=> ["", "a", "", "b", "", "c"]

Command line argument handling

The command line arguments specified when a Ruby program is run are made available as strings in
ARGV, an array. Here is echo.rb, a Ruby program that prints the command line arguments:

printf("%d arguments:\n", ARGV.length)
for i in 0...ARGV.length do # 0...N is 0..N-1
 printf("argument %d is '%s'\n", i, ARGV[i])
end

Execution:

$ ruby echo.rb -s -s2 -abc x y
5 arguments:
argument 0 is '-s'
argument 1 is '-s2'
argument 2 is '-abc'
argument 3 is 'x'
argument 4 is 'y'

Unescaped quotes and backslashes specified on the command line are processed and fully consumed
by the shell so that the program doesn't "see" them. Example:

$ ruby echo.rb int= 2 ", real=" 3 ", english="
5 arguments:
argument 0 is 'int='
argument 1 is '2'

Page 10

argument 2 is ', real='
argument 3 is '3'
argument 4 is ', english='

$ ruby echo.rb " " ' x ' \ \y\ ""
4 arguments:
argument 0 is ' '
argument 1 is ' x '
argument 2 is ' y '
argument 3 is ''

The shell does provide some mechanisms to allow quotes and backslashes to be transmitted in arguments:

$ ruby echo.rb '"' \\x\\
2 arguments:
argument 0 is '"'
argument 1 is '\x\'

Additionally, the shell intercepts the < and > redirection operators—the program never sees those
operators or their accompanying filename argument:

$ ruby echo.rb 1 2 3 < lg.1
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'

$ ruby echo.rb 1 2 3 < lg.1 >out
$ cat out
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'
$

The above examples were produced with a UNIX shell; but you'll see similar behavior when working on the
Windows command line, although backslashes are handled differently.

BOTTOM LINE: Don't add code to your solution that attempts to process those shell
metacharacters—that's the job of the shell, not your program!

An admonishment/HINT about argument handling

I've seen many students turn command line argument handling into an incredibly complicated mess. Don't
do that! Here's an easy way to process arguments in xfield: Iterate over the elements in ARGV. If the
argument starts with "-s" or "-d" then save the rest of the string for later use. If argument.to_i
produces something other than zero, then add the value (as an integer) to an array that specifies what's to
be printed for each line. If argument.to_i produces zero, add argument to that same array. That's
about 15 lines of simple code.

Note that Ruby's ARGV is the counterpart to args in a Java declaration like void main(String
args[]), but unlike Java, the name ARGV is fixed.

A HINT on handling the textual argument/separator rule

Page 11

One way to handle the textual argument/separator rule is to simply make a pass over the argument array
and if two consecutive numbers are encountered, put the separator between them, as if the user had done
that in the first place. For example, if the separator is ".", the specification

1 3 x 4 x -2 1

would be transformed into

1 . 3 x 4 x -2 . 1

A hint in a hint: Think about representing the above specification with this Ruby array:

[0, ".", 2, "x", 3, "x", -2, ".", 0]

Note the combination of integers and strings.

A lesson in LHtLaL

Recall that xfield's output fields are separated by a single tab. (Use "\t".) Let's demonstrate that by
using a couple of ruby command line options:

% ruby xfield.rb 1 3 <xf.1 | ruby -n -e 'puts $_.inspect'
"one\t1.0\n"
"two\t2.0\n"
"three\t3.0\n"
"four\t4.0\n"
"twenty\t20.0\n"

Use man ruby to learn about those -n and -e options! $_ is a predefined global variable that holds
"The last string read by the Kernel methods gets and readline." (from RPL)

Here's the lesson in LHtLaL: I could have used cat -A to see those tabs but I chose to build my Ruby
skills by learning about -n, -e, and $_.

MID-TERM HINT: I'll ask you what LHtLaL stands for. Answer: Learning How to Learn a Language.

Problem 5. (3 points) hudak.txt

In The Haskell School of Expression Paul Hudak writes,

"The best news is that Haskell's type system will tell you if your program is well-typed before you run
it. This is a big advantage because most programming errors are manifested as typing errors."

Do agree or disagree with his claim that "most programming errors are manifested as typing errors"? For
ths problem you to present an argument based on your full experience as a programmer that either supports
his claim or refutes it. (Do not argue both sides!) Take all your programming experience into account, not
just 372!

As usual, I'm looking for quality, not quantity but as a ballpark figure I imagine 200-400 words, as
reported by wc -w, will be needed for a thoughtful answer.

As always, the .txt suffix on hudak.txt should be enough to tell you that I'm wanting a plain ASCII
text file, not a Word document, PDF, etc.

Page 12

Problem 6. (ZERO POINTS) support.txt

If a language claims to support a particular paradigm then we expect an implementation of the language to
be very good at supporting the techniques and methods that are espoused by the paradigm. For example, a
computation like sum [1..10000000] demonstrates that Haskell is very good at recursion. How does
Ruby fare with supporting recursive computations?

Problem 7. (ZERO POINTS) errors.txt

I've done a significant amount of work with over thirty languages and of them all I've found Haskell's type
errors to be the most difficult type errors to understand. Is your experience similar to mine? What is it that
makes Haskell's errors so difficult to understand? Do you have any ideas for improving this sad situation?

Problem 8. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!
I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Interesting!" as two points, and "Wow!" as three points. I'm looking for
quality, not quantity.

Turning in your work

Use the D2L Dropbox named a4 to submit a single zip file named a4.zip that contains all your work.
If you submit more than one a4.zip, your final submission will be graded. Here's the full list of
deliverables:

longest.rb
seqwords.rb
minmax.rb
xfield.rb
hudak.txt
support.txt (zero points!)
errors.txt (zero points!)
observations.txt (for extra credit)

DO NOT SUBMIT INDIVIDUAL FILES—submit a file named a4.zip that contains each of the
above files.

 Note that all characters in the file names are lowercase.

Page 13

Miscellaneous

Restrictions not withstanding, you can use any elements of Ruby that you desire, but the assignment is
written with the intention that it can be completed easily using only the material presented on the slides
prior to the Iterators and blocks section (around slide 130).

If you're worried about whether a solution meets the restrictions, mail it to me—I'll be happy to look it
over. But don't wait too long; there may be a crunch at the end.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point
problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be based
on documentation.) A # is comment to end of line, unless in a string literal or regular expression. There's
no Ruby analog for /* ... */ in Java and {- ... -} in Haskell but you can comment out multiple
lines by making them an embedded document—lines bracketed with =begin/=end starting in column 1.
Example:

=begin
 Just some

comments here.
=end

Stupid, huh? I agree!

RPL 2.1.1 has more on comments.

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension.
See the syllabus for details.

My estimate is that it will take a typical CS junior from 5 to 7 hours to complete this assignment.

Keep in mind the point value of each problem; don't invest an inordinate amount of time in a problem
or become incredibly frustrated before you ask for a hint or help. Remember that the purpose of the
assignments is to build understanding of the course material by applying it to solve problems. If you reach
the five-hour mark, regardless of whether you have specific questions, it's probably time to touch base with
me. Give me a chance to speed you up! My goal is that everybody gets 100% on this assignment AND
gets it done in an amount of time that is reasonable for them.

I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code
to somebody else and they turn it in, you'll both likely fail the class, and more. (See the syllabus for the
details.)

Page 14

