
CSC 372, Spring 2015
Assignment 9

Due: Wednesday, May 6 at 23:59:59

Warm-up suggestions

Here are some built-in predicates I suggest writing just for practice: length, member, append,
numlist, sumlist, delete, reverse, and nextto.  Where applicable, like for reverse, try
writing one version that uses append and another version that instead uses the [H|T] construct to build
lists.

General advice

If you think you need to use arithmetic or something like between on the first four problems, you're
overlooking how Prolog naturally generates alternatives. Take a look at the cons-based version of pair in
my polyperim solution.

pipes.pl is the only problem on which using assert and retract is appropriate.

Use SWI Prolog!

Use SWI Prolog for this assignment.  On lectura that's swipl.

Use the tester!

Don't just "eyeball" your output—use the tester!  I'll be delighted to help you with using the tester and
understanding its output.  However, I won't have any sympathy for those who fail tests during grading
simply because they didn't want to bother with the tester

Make symbolic links for a9 and t in your assignment 9 directory on lectura, for easy access to the tester
and the data files.  (And, the tester assumes the a9 symlink is present.)  See the assignment 5 write-up for
how-to details.

About the if-then-else structure (->) and disjunction (;) 

The rules for if-then-else and disjunction are the same as for assignment 7.

Problem 1. (3 points) noconsec.pl

Write a Prolog predicate noconsec(+L) that succeeds iff (if and only iff) the list L has no consecutive
elements that are identical.  Assume that L is a list.

Restriction: You may not use nextto/3.

?- noconsec([3,1,5,4,3,4]).
true.

?- noconsec([3,1,5,4,4,3]).
false.

?- atom_chars('noon',L), noconsec(L).
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false.

?- atom_chars('nope',L), noconsec(L).
L = [n, o, p, e].

?- noconsec([1]).
true.

?- noconsec([]).
true.

Problem 2. (3 points) rotate.pl

Write a Prolog predicate rotate(+L,?R) that for an instantiated list L instantiates R to each unique list
that is a left rotation of L.  For example, the list [1,2,3] can be rotated left to produce [2,3,1] which
in turn can be rotated left again to produce [3,1,2].

?- rotate([a,b,c,d],R).
R = [a, b, c, d] ;
R = [b, c, d, a] ;
R = [c, d, a, b] ;
R = [d, a, b, c] ;
false.

?- rotate([1,2,3],L), writeln(L), fail.
[1,2,3]
[2,3,1]
[3,1,2]
false.

?- rotate([1], R).
R = [1] ;
false.

?- rotate([], R).
false.

Additionally, rotate can be asked whether the second term is a rotation of the first term:

?- rotate([a,b,c],[c,a,b]).
true ;
false.

?- rotate([a,b,c],[c,b,a]).
false.

Problem 3. (3 points) outin.pl

Write a Prolog predicate outin(+L,?R) that generates the elements of the list L in an "outside-in"
sequence: the first element, the last element, the second element, the next to last element, etc.  If the list has
an odd number of elements, the middle element is the last one generated.

Restriction: You may not use is/2.

?- outin([1,2,3,4,5],X).
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X = 1 ;
X = 5 ;
X = 2 ;
X = 4 ;
X = 3 ;
false.

?- outin([1,2,3,4],X).
X = 1 ;
X = 4 ;
X = 2 ;
X = 3 ;
false.

?- outin([1],X).
X = 1 ;
false.

?- outin([],X).
false.

Problem 4. (3 points)  btw.pl

Write a Prolog predicate btw(+L,+X,?R) that instantiates R to copies of L with X inserted between
each element in turn.

Restriction: You may not use append or between.

?- btw([1,2,3,4,5],---,R).
R = [1, ---, 2, 3, 4, 5] ;
R = [1, 2, ---, 3, 4, 5] ;
R = [1, 2, 3, ---, 4, 5] ;
R = [1, 2, 3, 4, ---, 5] ;
false.

?- btw([1,2],***,R).
R = [1, ***, 2] ;
false.

?- btw([1],***,R).
false.

?- btw([],x,R).
false.

Problem 5. (20 points)  fsort.pl

Imagine that you have a stack of pancakes of varying diameters that is represented by a list of integers. 
The list [3,1,5] represents a stack of three pancakes with diameters of 3", 1" and 5" where the 3"
pancake is on the top and the 5" pancake is on the bottom.  If a spatula is inserted below the 1" pancake
(putting the stack [3,1] on the spatula) and then flipped over, the resulting stack is [1,3,5].

In this problem you are to write a predicate fsort(+Pancakes,-Flips) that instantiates Flips to
a sequence of flip positions that will order Pancakes, an integer list, from smallest to largest, with the
largest pancake (integer) on the bottom (at the end of the list).  fsort stands for "flip sort".
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fsort does not produce a sorted list—its only result is the flip sequence.

The flip position is defined as the number of pancakes on the spatula.  In the above example the flip
position is 2.  Flips would be instantiated to [2].

Below are some examples.  Note the use of a set of case facts to show a series of examples with one
query.

% cat fsortcases.pl
case(a, [3,1,5]).
case(b, [5,4,3,2,1]).
case(c, [3,4,5,1,2]).
case(d, [5,1,3,1,4,2]).
case(e, [1,2,3,4]).
case(f, [5]).

% swipl
...
?- [fsortcases,fsort].
% fsortcases compiled 0.00 sec, 7 clauses
% fsort compiled 0.00 sec, 10 clauses
true.

?- case(_,L), fsort(L,Flips).
L = [3, 1, 5],
Flips = [2] ;

L = [5, 4, 3, 2, 1],
Flips = [5] ;

L = [3, 4, 5, 1, 2],
Flips = [3, 5, 2] ;

L = [5, 1, 3, 1, 4, 2],
Flips = [6, 2, 5, 2, 4, 3] ;

L = [1, 2, 3, 4],
Flips = [] ;

L = [5],
Flips = [].

Your solution needs only to produce a sequence of flips that results in a sorted stack; the sequences it
produces do NOT need to match the sequences shown above.  There are some requirements on the flips,
however: (1) All flips must be between 2 and the number of pancakes, inclusive.  (2) There must be no
consecutive identical flips, like [5,3,3,4]. (3)  fsort must always generate exactly one solution.  

You may assume that stacks always have at least one pancake and that pancake sizes are always greater
than zero.

"Pancake sorting" is a well-known problem.  I first encountered it in 1993's Internet Programming Contest. 
There's even a Wikipedia article about pancake sorting.  (Read it!)  I debated whether to go with this
problem because it's so well known but it's a fun problem and it's interesting to solve in Prolog, so here it
is.  I did Google up one solution but it's got some issues!  I strongly encourage you to build your Prolog
skills by solving this problem without Google's assistance—the final exam will be closed-Google!
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The clauses in my current solution have a total of seventeen goals.  I don't use is/2 at all.  I do use
max_list.  You might find nth0 and/or nth1 to be useful; if you look at the documentation closely
you'll see they can be used to extract and find values.

I've placed this problem, fsort.pl, early in the line-up in hopes of getting you thinking about it
early but don't get hung up on it.

Problem 6. (15 points)  pipes.pl

In this problem you are to write a simple command interpreter to perform manipulations on a set of named
pipes having given lengths and diameters.  (Picture pipes like you buy at Home Depot, not UNIX pipes!)
The commands are in the form of Prolog terms.  The calculator shown on slide 192 and following is a good
starting point for this problem.

The interpreter provides the following commands:

  pipes Show the current set of pipes.  The pipes are shown in alphabetical order by name.  

  weld(A, B)
The pipe named B is welded onto the pipe named A.  A and B must have the same
diameter.  After welding, A has the combined length of A and B.  Pipe B no longer exists.

  cut(A, L, B)
A section of length L is cut from the pipe named A.  The section cut off becomes a pipe
named B having the same diameter as A.  L must be less than the length of A.

  trim(A,L) A section of length L is cut from the pipe named A and discarded. L must be less than the
length of A.

  help Print a help message with a brief summary of the commands.

  echo Toggle command echo and prompting.  (See below for details on this.)

Assume that all lengths are integers.

Use a predicate such as setN to establish a set of pipes to work with:

set1 :-
    retractall(pipe(_,_,_)),
    assert(pipe(a,10,1)),
    assert(pipe(b,5,1)),
    assert(pipe(c,20,2)).

The command interpreter is started with the predicate run/0.

A session with the interpreter is shown below.  No blank lines have been inserted or deleted.

% swipl -l pipes
...

?- set1.
true.
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?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? weld(a,b).
b welded onto a

Command? pipes.
a, length: 15, diameter: 1
c, length: 20, diameter: 2

Command? trim(a,12).
12 trimmed from a

Command? pipes.
a, length: 3, diameter: 1
c, length: 20, diameter: 2

Command? cut(c,10,d).
10 cut from c to form d

Command? pipes.
a, length: 3, diameter: 1
c, length: 10, diameter: 2
d, length: 10, diameter: 2

Command? cut(c,6,c1).
6 cut from c to form c1

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
c1, length: 6, diameter: 2
d, length: 10, diameter: 2

Command? weld(d,c1).
c1 welded onto d

Command? pipes.
a, length: 3, diameter: 1
c, length: 4, diameter: 2
d, length: 16, diameter: 2
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Command? q.
true.

Your implementation must handle four errors:

Cutting or welding a pipe that doesn't exist.

Cutting with a result pipe that does exist.

Cutting the full length (or more) of a pipe with cut or trim.

Welding pipes with differing diameters.

If an error is detected, the pipes are unchanged.  Here is an example of error handling:

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Command? cut(x,10,y).
x: No such pipe

Command? weld(x,y).
x: No such pipe

Command? weld(a,x).
x: No such pipe

Command? cut(a,5,b).
b: pipe already exists

Command? cut(a,10,a2).
Cut is too long!

Command? trim(a,15).
Cut is too long!

Command? weld(a,c).
Can't weld: differing diameters

Command? pipes.
a, length: 10, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2

Don't use write('\nCommand? ') to prompt the user.  Instead, use the built-in prompt/2 to set
the prompt, like this: prompt(_, '\nCommand? ').  Then when read(X) is called,
'\nCommand? ' will automatically be printed first.

To make tester output more usable there is an echo command.  By default, the Command? prompt is
printed and the command entered is not echoed.  The echo command toggles both behaviors: entering
echo causes prompting to be turned off and echo to be turned on.  A subsequent echo command reverts
to the default behavior.  In the following example, the text typed by the user is in bold and underlined:
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?- run.

Command? cut(a,1,a2).
1 cut from a to form a2

Command? echo.
Echo turned on; prompt turned off
cut(a,1,a3).

Command: cut(a,1,a3)
1 cut from a to form a3
pipes.

Command: pipes
a, length: 8, diameter: 1
a2, length: 1, diameter: 1
a3, length: 1, diameter: 1
b, length: 5, diameter: 1
c, length: 20, diameter: 2
weld(a,a2).

Command: weld(a,a2)
a2 welded onto a
echo.

Command: echo
Echo turned off; prompt turned on
Command? q.
true.

?-
 

Hint: Manipulate an echo/0 fact with assert(echo) and retract(echo).   To produce no
prompt at all, use the built-in prompt/2 like this: prompt(_, '').

Important: to allow that manipulation of echo/0 with assert and retract you'll need to declare
echo as dynamic.  Have the following line as the first line in your pipes.pl:

:-dynamic(echo/0).

TL;DR?

The built-in help provides a quick summary:

?- run.

Command? help.
pipes -- show the current set of pipes
weld(P1,P2) -- weld P2 onto P1
cut(P1,P2Len,P2) -- cut P2Len off P1, forming P2
trim(P,Length) -- trim Length off of P
echo -- toggle command echo
help -- print this message
q -- quit

And, handle these errrors:
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     Cutting or welding a pipe that doesn't exist.
     Cutting with a result pipe that does exist.
     Cutting the full length (or more) of a pipe with cut or trim.
     Welding pipes with differing diameters.

I won't test with cases involving multiple errors, like a too-long cut that names an existing pipe as the
result.

Problem 7. (20 points)  connect.pl

In this problem you are to write a predicate connect that finds and displays a suitable sequence of cables
to connect two pieces of equipment that are some distance apart.  Each cable is specified by a three element
list.  Here is a list that represents a twelve-foot cable with a male connector on one end and a female
connector on the other:

[m,12,f]

Let's consider an example of using connect to produce a sequence of cables.  Imagine that to your left is
a piece of equipment with a male connector.  On your right, fifteen feet away, is a piece of equipment with
a female connector.  To connect the equipment you have two cables:
     •  A ten-footer with a male connector on one end and a female on the other.
     •  A seven-footer with a female connector on end and a male on the other.

The following query represents the situation described above.

?- connect([ [m,10,f], [f,7,m] ], m, 15, f).

connect's first argument is a list with the two cables.  The second, third, and fourth arguments
respectively represent the gender of the connector of the equipment on the left (male—m), the distance
between the equipment (15 feet), and the gender of the connector of the equipment on the right (female—f).

Here's the query and its result:

?- connect([ [m,10,f], [f,7,m] ], m, 15, f).
F----------MF-------M
true.

We see that a connection is possible in this case; a valid sequence of connections is shown.  Observe that
the first cable was reversed to make the connection. The number of dashes is the length of the cable. 
There's some slack in the connection—only fifteen feet needs to be spanned but the total length of the tables
is seventeen feet.  That's fine.

Note that the output has no representation of the pieces of equipment on the left and right that we're
connecting with the cables.

Only male/female connections are valid in the world of connect.pl.

In some cases, a connection cannot be made, but connect always succeeds:

?- connect([[m,10,f], [f,7,m] ], m, 25, f).
Cannot connect
true.
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?- connect([[m,10,f], [f,7,m] ], m, 15, m).
Cannot connect
true.

More examples:

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, f).
F-FM-MF-----FM----------MF---M
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 20, m).
Cannot connect
true.

?- connect([[m,1,m],[f,1,f],[m,10,m],[f,5,f],[m,3,f]], m, 10, f).
F-FM-MF-----FM----------M
true.

?- connect([[m,10,f]], m, 1, f).
F----------M
true.

IMPORTANT: The ordering of cables your solution produces for a particular connection need NOT match
that shown above.  Any valid ordering is suitable.  (A Ruby program, a9/pc.rb, analyzes the output.

Assume the arguments to connect are valid—you won't see two-element lists, non-numeric or non-
positive lengths, ends other than f and m, etc.  Assume that all lengths are integers.  Assume that the
distance to span is greater than zero.

You can approach this problem using an approach similar to that in the brick laying example in the slides. 
The built-in predicate select/3 is like getone/3 shown in the brick laying example.  You don't have
the complication of multiple rows but you will have to worry about mating the cables and trying both
orientations of cables.

Note that you do not need to use all the cables or exactly span the distance.

My current solution is around 25 goals; about a third of those are related to producing the required output.

Problem 8. (10 points)  buy.pl

In this problem the task is to print a bill of sale for a collection of items.  Several predicates provide
information about the items.  The first is item/2, which associates an item name with a description:

item(toaster, 'Deluxe Toast-a-matic').
item(antfarm, 'Ant Farm').
item(dip, 'French Onion Dip').
item(twinkies, 'Twinkies').
item(lips, 'Chicken Lips').
item(hamster, 'Hamster').
item(rocket, 'Model rocket w/ payload bay').
item(scissors, 'StaySharp Scissors').
item(rshoes, 'Running Shoes').
item(tiger, 'Sumatran tiger').
item(catnip, '50-pound bag of catnip').
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The second predicate is price/2, which associates an item name with a price in dollars:

price(toaster, 14.00).
price(antfarm, 7.95).
price(dip, 1.29).
price(twinkies, 0.75).
price(lips, 0.05).
price(hamster, 4.00).
price(rocket, 12.49).
price(scissors, 2.99).
price(rshoes, 59.99).
price(tiger, 749.95).

The third is discount/2, which associates a discount percentage with some, possibly none, of the items:

discount(antfarm, 20).
discount(lips, 40).
discount(rshoes, 10).

Finally, state law prohibits same-day purchase of some items.  dontmix/2 specifies prohibitions.  Here
are some examples:

dontmix(scissors,rshoes).
dontmix(hamster,rocket).
dontmix(tiger,catnip).

You can only ensure that any prohibited pairings are not included in a single purchase; the well-intentioned
prohibitions can be thwarted by making multiple trips to the store!

You are to write a predicate buy(+Items) that prints a bill of sale for the specified items.  If any
mutually prohibited items are in the list, that should be noted and no bill printed.

?- buy([hamster,twinkies,hamster,toaster]).
Hamster.............................4.00
Twinkies............................0.75
Hamster.............................4.00
Deluxe Toast-a-matic...............14.00
----------------------------------------
Total                             $22.75
true.

?- buy([lips,lips,lips,dip]).
Chicken Lips........................0.03
Chicken Lips........................0.03
Chicken Lips........................0.03
French Onion Dip....................1.29
----------------------------------------
Total                              $1.38
true.

?- buy([scissors,dip,rshoes]).
State law prohibits same-day purchase of "StaySharp Scissors" and
"Running Shoes".
true.

You may assume that all items named in a buy are valid and that a price exists for every item.  If several
mutually prohibited items are named in the same buy only the first conflict is noted.
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Here's the format/2 specification I use to produce the per-item lines: '~w~`.t~2f~40|~n'.  The
backquote-period sequence causes the enclosing tab to fill with periods.

a9/buyfacts.pl has a collection of facts but I may tests with other sets of facts, too.

Problem 9. (8 points)  puzzle.pl

UPDATE: See page 14 for this problem!

I'm considering a problem similar to the Zebra Puzzle shown on slides 216-214 but as of press time I don't
have a good problem ready.  By Tuesday, April 28, I'll either finalize a problem and publish an addendum
with it or scratch this problem and evenly redistribute the eight points of this problem to the four previous
problems.

Problem 10. Extra Credit observations.txt

Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your hours on a line that starts with "Hours:".  Some
students are including per-problems times, too.  That's useful and interesting data—keep it coming!—but
observations.txt should have only one line that starts with Hours:.  If you care to report per-
problem times, impress me with a good way to show that data.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed?  Speak up! 
I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for
quality, not quantity.

Turning in your work

Use the D2L Dropbox named a9 to submit a single zip file named a9.zip that contains all your work. 
If you submit more than one a9.zip, your final submission will be graded.  Here's the full list of
deliverables:

noconsec.pl
rotate.pl
outin.pl
btw.pl
fsort.pl
pipes.pl
connect.pl
buy.pl
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puzzle.pl
observations.txt (for extra credit)

 Note that all characters in the file names are lowercase.

Miscellaneous

Here's what wc shows for my current solutions, which are typically written with one goal per line for the
longer predicates.

$ wc noconsec.pl rotate.pl outin.pl btw.pl fsort.pl pipes.pl
connect.pl buy.pl
   3    8   76 noconsec.pl
   1    7   56 rotate.pl
   2    7   64 outin.pl
   2    4   82 btw.pl
  28   63  593 fsort.pl
  87  264 2607 pipes.pl
  36  116 1197 connect.pl
  24   68  768 buy.pl
 183  537 5443 total

You can use any elements of Prolog that you desire other than if-then-else (->) and disjunction (;), but the
assignment is written with the intention that it can be completed easily using only the material presented on
Prolog slides 1-224.

Point values of problems correspond directly to assignment points in the syllabus.  For example, a 10-point
problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be based
on documentation.)   In Prolog, a % is comment to end of line.  /* ... */ can be used for block
comments, just like in Java.

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension. 
See the syllabus for details.

My estimate is that it will take a typical CS junior from 10  to 12 hours to complete this assignment.

Keep in mind the point value of each problem; don't invest an inordinate amount of time in a problem
or become incredibly frustrated before you ask for a hint or help.  Remember that the purpose of the
assignments is to build understanding of the course material by applying it to solve problems.  If you reach
the eight-hour mark, regardless of whether you have specific questions, it's probably time to touch base
with me.  Give me a chance to speed you up!  My goal is that everybody gets 100% on this assignment
AND gets it done in an amount of time that is reasonable for them.

I hate to have to mention it but keep in mind that cheaters don't get a second chance.  If you give your code
to somebody else and they turn it in, you'll both likely fail the class, and more.  (See the syllabus for the
details.)
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Problem 9. (8 points)  puzzle.pl

The following logic puzzle, "Rural Mishaps", was written by Margaret Shoop.  It was published in The
Dell Book of Logic Problems #2.

"A butt by the family cow was one of the five different mishaps that befell Farmer Brown, his wife,
his daughter, his teenage son, and his farmhand one summer morning.  From the rhyme that
follows, can you determine the mishap that happened to each of the five, and the order in which the
events occurred?

"The garter snake was surprised in a patch
And bit a grown man's finger.
One person who weeded a flower bed
Received a nasty stinger.
The farmer's mishap happened first;
Son Johnny's happened third.
When Mr. Reston was kicked by the mule,
He said, "My word! My word!"
The sting of the bee was the fourth mishap
To befall our rural cast.
Neither it nor the wasp attacked Mrs. Brown
Whose mishap wasn't the last."

For puzzle.pl you are to encode as Prolog goals the pertinent information in the above rhyme and then
write a predicate mishaps/0 that uses those goals to solve the puzzle.

a9/puzzle.out shows a run of mishaps/0 with the exact output you are to produce, but you might
enjoy the challenge of solving the puzzle using Prolog before looking at the expected output.

The challenge of this problem is of course the encoding of the information as Prolog goals.  Solutions must
both produce the correct output and accurately encode the information as stated in the rhyme to earn
full credit.  The tester will check for correct output; I'll check manually for accurate encoding.
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