
Page 1 of 15

CS login: ___________ Seat Number: _____

CSc 372 Final Examination

December 14, 2006

READ THIS FIRST

Read this page now but do not turn this page until you are directed to do so. Go ahead and fill in your login and seat number.

This is a 105-minute exam with a total of 100 points of regular questions and an extra credit section.

You are allowed no reference materials whatsoever.

If you run out of room, write on the back of a page. DO NOT use sheets of your own paper.

If you have a question, raise your hand. One of us will come to you. DO NOT leave your seat!

If you have a question that can be safely resolved with a minor assumption, state the assumption and proceed. Examples:

Assuming select(?Elem, ?List, ?Remaining)

Assuming String#downcase! imperatively converts all capitals to lower case.

BE CAREFUL with assumptions that dramatically change the difficulty of a problem. If in doubt, ask a question.

Unless explicitly prohibited on a problem you may use helper functions/methods.

Don't waste time by creating solutions that are more general, more efficient, etc. than required. Take full advantage of
whatever assumptions are stated.

As a broad rule when grading, we consider whether it would be likely if the error would be easily found and fixed if one were
able to run it. For example, something like i + x instead of i + x.to_i, or forgetting a chomp will be typically a minor

deduction at worst. On the other hand, an error that possibly shows a fundamental misunderstanding, such as a yield with

no argument for a block that expects one, will often lead to a large deduction.

Feel free to use abbreviated notation such as I often use when writing on the Elmo. For example, you might use a ditto
instead of writing out the function name for each case or abbreviate a function/method name to a_b_c or ABC. Don't worry

about matching parentheses at the end of a line—just write plenty and we'll know what you mean.

You need not include any explanation in an answer if you are confident it is correct. However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that will certainly earn
no credit.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with violations may still be
worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials, or some other
distinctive mark, in the lower right hand corner of each page.

BE SURE to check that you have all 15 pages.

When you have completed the exam, enter your name on the exam sign-out log and then hand your exam to the instructor.

Page 2 of 15

Problem 1: (13 points)

In this problem you are to write a Ruby program xref.rb that prints a cross-reference table of what
identifiers appear on which lines in a Ruby program. Here is a source file:

% cat -n map.rb
 1 def map(a)
 2 map_result = []
 3 for x in a do
 4 block_result = yield x
 5 map_result << block_result
 6 end
 7 return map_result
 8 end

NOTE THAT cat-n is being used to show line numbers. The file itself does not include those numbers.

Here is what xref does with map.rb:

% ruby xref.rb < map.rb
a: 1, 3
block_result: 4, 5
map: 1
map_result: 2, 5, 7
x: 3, 4

We see that the identifier a appears on lines 1 and 3. block_result appears on lines 4 and 5, etc. A
given line number will appear only once for an identifier, no matter how many times the identifier appears
on a line.

Here are some simplifications:

Assume that $id_re is a regular expression that matches identifiers. You might use it with
String#scan:

>> "def map(a)".scan($id_re)
=> ["def", "map", "a"]

Assume that $kwds is an array of identifiers to ignore, like $kwds = ["def", "end" ...]

Recall that sorting a hash produces a list of two-element lists that are key/value pairs ordered by the
keys:

>> h = {"a", 10, "b", 20}
=> {"a"=>10, "b"=>20}

>> h.sort
=> [["a", 10], ["b", 20]]

Array#uniq returns a copy of the array with all duplicates removed.

Page 3 of 15

(Space for solution for problem 1.)

Data point: the instructor's solution is 13 lines in length. % cat -n map.rb
 1 def map(a)
 2 map_result = []
 3 for x in a do
 4 block_result = yield x
 5 map_result << block_result
 6 end
 7 return map_result
 8 end
% ruby xref.rb < map.rb
a: 1, 3
block_result: 4, 5
map: 1
map_result: 2, 5, 7
x: 3, 4

Page 4 of 15

Problem 2: (8 points)

The connect predicate on assignment 9 printed a representation of a sequence of cables. In this problem
you are to write a Ruby method parse_layout(s) that parses such a representation and returns an
array of arrays representing the cables.

>> parse_layout("M---MF-MF----M")
=> [["m", 3, "m"], ["f", 1, "m"], ["f", 4, "m"]]

>> parse_layout("F-------F")
=> [["f", 7, "f"]]

Assume that the input is well-formed, that there will always be at least one cable, and that all cables will be
at least one unit long.

Problem 3: (2 points)

Specify the contents of a Ruby source file, tptnf.rb, such that after loading it, 2+2 is not 4. Example:

>> 2 + 2 == 4
=> true

>> load "tptnf.rb"
=> true

>> 2 + 2 == 4
=> false

Hint: Don't make this a hard problem. If your solution exhibits the above behavior it will be considered
correct—behavior for all other cases is of no concern.

Page 5 of 15

Problem 4: (4 points)

The built-in Prolog predicate between(+Low, +High, -Value) instantiates Value to each integer
between Low and High, inclusive. The built-in predicate numlist(+Low, +High, -List)
instantiates List to a list of the integers between Low and High, inclusive.

(a) In a non-recursive way, implement between(+Low, +High, -Value). You may use any
predicates you wish, except for between/3.

(b) In a non-recursive way, implement numlist(+Low, +High, -Value). You may use any
predicates you wish, except for numlist/3.

Incidentally, another way to think about this pair of predicates is this: (a) Using numlist, implement
between. (b) Using between, implement numlist.

Problem 5: (6 points)

Write a Prolog predicate idpfx(+List, -Prefix) that instantiates Prefix to the longest prefix of
List such that all elements of the prefix are identical. Assume that List has at least one element.
idpfx always produces exactly one result. Examples:

?- idpfx([3,3,1,5],P).
P = [3, 3]

?- idpfx([1,2,3],P).
P = [1]

?- idpfx([3,3,3,5,3],P).
P = [3, 3, 3] ;
No

Hint: Recall that the first result of the query append(A,B,[1,2]) is A = [], B = [1, 2].

You may use the predicate allsame(L) from the slides, which succeeds iff all values in L are identical.

Page 6 of 15

Problem 6: (14 points)

Write a predicate show_cost(C) that prints a description and cost of the cable C. Cables are
represented using a structure with the functor cable. The structure cable(m,2,f) represents a
2-foot cable with a male connector on one end and a female connector on the other.

A set of cost facts represents the cost of the various components. For example, the facts

cost(male, 2.0). cost(female, 3.0). cost(foot, 0.50).

indicate that male connectors are $2.00, females are $3.00 and each foot of cable costs 50 cents. The
cost of a cable is the sum of the cost of its components.

Here is a call to show_cost:

?- show_cost(cable(m,3,f)).
3-foot female to male: $6.50
Yes

IMPORTANT: If a cable has both a male and female connector, the output produced by show_cost
ALWAYS describes the cable as "...female to male...", i.e., "female" first. (A cable is NEVER
shown as "...male to female..."!)

IMPORTANT: Note that although "m" and "f" are used in the cable structure, "male" and "female"
are output in the description.

Don't worry about any sort of error checking.

Page 7 of 15

Problem 7: (7 points)

Write a predicate halves(+L,-H1,-H2) that instantiates H1 and H2 to the first and second halves of
the list L, respectively. halves fails if L has an odd number of elements. halves produces at most
one result. Examples:

?- halves([1,2,3,4], H1, H2).
H1 = [1, 2]
H2 = [3, 4]

?- halves([1,2,3], H1, H2).
No

?- halves([],H1,H2).
H1 = []
H2 = []

For three points of extra credit, use no more than three goals to implement halves. (Goals, not
clauses!)

Problem 8: (8 points)

NOTE: This problem is far harder than the eight points it is worth. It my be wise to save it for last.

RESTRICTION: You must base your solution on the "pick one (with select/3), try it, solve with

what's left" idiom shown in the slides with brick laying and also used in the instructor's solution for
connect on assignment 9. In particular, YOU MAY NOT USE the built-in permutation/2

predicate or a similar predicate that you write yourself.

Write a predicate wseq(+Words,-Seq) that finds a sequence of the atoms in Words such that the last
character of each atom is the same as the first character of the next atom. Here is a simple example:

?- wseq([pop, up],S).
S = [up, pop]

The sequence is valid because "up" ends in the same letter, "p", that "pop" starts with.

Page 8 of 15

Here is a longer example:

?- wseq([slowly,the,apples,test,extra],Seq).
Seq = [test, the, extra, apples, slowly]

wseq produces all valid sequences:

?- wseq([tic,cat],S).
S = [tic, cat] ;
S = [cat, tic] ;
No

wseq fails if there is no valid sequence:

?- wseq([tic,tac],Seq).
No

Assume that there is at least one word—wseq always succeeds in that case—and that each word has at
least one character.

Page 9 of 15

Problem 9: (2 points each; 16 points total)

Answer the following questions. A sentence or two, maybe three should be sufficient in most cases.

The expression (f 1 2) has meaning in both ML and Emacs Lisp. In Emacs Lisp it means to call the
function f with the arguments 1 and 2. Does it mean the same thing in ML? If not, what does it mean?

It's well known that thinking up names for variables and functions is not always easy and that bad names
make code harder to understand. This is sometimes called the "naming problem". It can be said that with
respect to Java, one of our three primary languages makes the naming problem worse. Another of the
three lessens the naming problem. The third is roughly neutral—it requires about as much naming as Java.
Which language is which? Briefly state why.

With the Icon programming language in mind, what's meant by the term "failure"? Show two distinct
examples of expressions that can fail or succeed depending on the values of the variables involved.

Prolog has predicates for comparison like >/2 and ==/2 but it does not have predicates for arithmetic
like, +/2 and */2. Why is that?

Which does Prolog use—compile-time type checking or run-time type checking? Or does the notion of
type-checking not really apply to Prolog? Support your answer with a brief argument.

Page 10 of 15

Ruby's designer elected to have string[n] produce a integer character code instead of a one-character
string. Ignoring possible performance considerations write a brief argument either in favor of this design
decision or against it.

Write a simple Ruby method that takes advantage of duck typing and briefly explain how duck typing
allows the code to be simpler, or more expressive, or etc.

What is meant by the term "syntactic sugar"?

Problem 10: (1 point each; 4 points total)

Characterize each statement below as true or false.

____ The instructor prefers the term "scripting language" to categorize languages like Icon, Perl, Python,
and Ruby.

____ In Icon, the expression write(1 to 10) prints the numbers from 1 through 10.

____ The Prolog fact p([A,B,C]) indicates that p(X) is true iff X is a three-element list whose values
are all different.

____ The regular expression /[a-z][x][123]/ can be written more concisely.

Page 11 of 15

Problem 11: (18 points)

Answer any one, two or three of the following questions. If you choose to answer only one you'll need to
have about three times as much depth or breadth as if you address all three.

Question 1:

Choose one of our three primary languages and take the position that it should be used to replace
Java in CSc 127A/B. Present an argument in favor of this replacement. Your argument should
point out aspects of your chosen language, and possibly the accompanying environment, that
facilitate teaching fundamental concepts of programming and creation of interesting programming
assignments. Also identify the greatest weakness of using the language in an introductory class and
then address how to minimize the impact of that weakness.

Do not bother to address the fact that the replacement is not Java and therefore wouldn't take
advantage of high school AP programs, be as widely accepted in industry, etc.

This question can be successfully answered using any of the three languages—you don't need to
pick the one that you might think the instructor would pick.

Question 2:

A fundamental choice in a programming language is whether it does type checking when source
code is compiled. Some languages forego analysis of types at compile time and instead only detect
type mismatches when the code is executed. Programmers have a variety of opinions of the merit
of the two approaches. Some favor compile-time checking for all software development; some
avoid compile-time type checking like the plague. Describe your preferred position on the type-
checking question and provide a rationale for it. Your position need not be polar—you might favor
compile-time checking in some cases and not in others.

Question 3:

A programming language can be thought of as a system for describing computation. There are
many examples of descriptive systems in the world but few if any descriptive realms have the
variety of choices that are available in the realm of programming languages. What has motivated
computer scientists to create so many different programming languages?

Page 12 of 15

(Space for essay question responses.)

Page 13 of 15

Problem 12: (6 points, EXTRA CREDIT)

Using the parsing idiom supported by Prolog's rule notation, write a predicate parse(S) that parses a
simple Ruby string subscripting expression and outputs a line representing a method call that performs the
same computation.

?- parse('s[1]').
s.charAt(1)
Yes

?- parse('line[10,20]').
line.substr(10,20)
Yes

parse(S) fails if S is anything other than a subscripting expression of one of the two forms above.

Assume the indexing values are integers, as shown in the examples above.

Assume you have a grammar rule id(Ident) that recognizes an identifier and instantiates Ident to
atom, like 's' and 'line' for the above.

Assume you have a grammar rule digits(Digits) that recognizes a sequence of digits and
instantiates Digits to an atom consisting of the digits, just like in listsum on assignment 9.

Page 14 of 15

Extra Credit Section (one half-point each unless otherwise indicated)

(1) What programming language in the SNOBOL/Icon family was developed between SNOBOL4 and
Icon?

(2) Name a programming language that allegedly supports more than seven (7) programming paradigms.

(3) Order these languages by age, oldest to youngest: Java, Icon, Lisp, ML, Ruby, Scala.

(4) (2 points) Write an ML function eq(L1,L2) of type 'a list * 'a list -> bool that
returns true iff the lists L1 and L2 are equal. Be sure to accommodate lists that contain lists.

(5) Imagining that Ruby has Icon's notion of failure, rewrite the following code to take advantage of
failure:

for i in 0...len
c = self[start+i]

 if c then
 r += c.chr
 end
end

(6) What is a connection of sorts between Java and constraint programming?

(7) In three words or less, describe Icon in terms of the languages we studied this semester.

(8) In three words or less, describe Scala in terms of the languages we studied this semester.

Page 15 of 15

(9) The names Java, Ruby and Icon are not acronyms. Create a humorous acronym for each that is
somehow related to the language, like Lisp: Lost In Stupid Parentheses. (1/2 point each)

(10) (1 point) In SWI-Prolog the query ?- X. produces an "Easter Egg" that alludes to a well-known
book. What is the title of that book?

(11) Who was the central character in the short film Jarwars Episode III, Revenge of the <T>?

(12) According to assigned reading, the only well-known scholarly paper published by Bill Gates
concerned what problem?

(13) On every lecture day the instructor ate breakfast at Millie's Pancake House. Estimate the total
number of pancakes he consumed at Millie's during those breakfasts.

(14) (2 points) In any language you wish, write a program to read this exam as plain text on standard
input and output the total number of points for all the regular problems, i.e., don't worry about this
extra credit section. Hint: Here's a 0-point solution: puts 100

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

