
Functional
Programming with

Haskell
CSC 372, Spring 2015

The University of Arizona
William H. Mitchell

whm@cs
	

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 1	

Programming Paradigms

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 2	

Thomas Kuhn's The Structure of Scientific Revolutions (1962)
describes a paradigm as a scientific achievement that is...

•  "...sufficiently unprecedented to attract an enduring group
of adherents away from competing modes of scientific
activity."

•  "...sufficiently open-ended to leave all sorts of problems
for the redefined group of practitioners to resolve."

Kuhn cites works such as Newton's Principia, Lavoisier's
Chemistry, and Lyell's Geology as serving to document
paradigms.

Paradigms

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 3	

A paradigm provides a conceptual framework for
understanding and solving problems.

A paradigm has a world view, a vocabulary, and a set of
techniques that can be applied to solve a problem.

 (Another theme for us.)

A question to keep in mind:

What are the problems that programming paradigms
attempt to solve?

Paradigms, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 4	

From the early days of programming into the 1980s the
dominant paradigm was procedural programming:

Programs are composed of bodies of code (procedures) that
manipulate individual data elements or structures.

Much study was focused on how best to decompose a large
computation into a set of procedures and a sequence of calls.

Languages like FORTRAN, COBOL, Pascal, and C facilitate
procedural programming.

Java programs with a single class are typically examples of
procedural programming.

The procedural programming paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 5	

In the 1990s, object-oriented programming became the
dominant paradigm. Problems are solved by creating systems
of objects that interact.

"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved objects that
courteously ask each other to carry out their various
desires."—Dan Ingalls

Study shifted from how to decompose computations into
procedures to how to model systems as interacting objects.

Languages like C++ and Java facilitate use of an object-
oriented paradigm.

The object-oriented programming paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 6	

The programming paradigm(s) we know affect how we
approach problems.

If we use the procedural paradigm, we'll first think about
breaking down a computation into a series of steps.

If we use the object-oriented paradigm, we'll first think about
modeling the problem with a set of objects and then consider
their interactions.

The influence of paradigms

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 7	

If a language makes it easy and efficient to use a particular
paradigm, we say that the language supports the paradigm.

What language features are required to support procedural
programming?
•  The ability to break programs into procedures.

What language features does OO programming require, for OO
programming as you know it?
•  Ability to define classes that comprise data and methods
•  Ability to specify inheritance between classes

Language support for programming paradigms

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 8	

Paradigms in a field of science are often incompatible.
 Example: geocentric vs. heliocentric model of the universe

Can a programming language support multiple paradigms?

 Yes! We can do procedural programming with Java.

The programming language Leda fully supports the procedural,
imperative, object-oriented, functional, and logic programming
paradigms.

Wikipedia's Programming_paradigm cites 60+ paradigms!

But, are "programming paradigms" really paradigms by Kuhn's
definition or are they just characteristics?

Multiple paradigms

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 9	

The imperative paradigm has its roots in programming at the
machine level, usually via assembly language.

Machine-level programming:
•  Instructions change memory locations or registers
•  Instructions alter the flow of control

Programming with an imperative language:
•  Expressions compute values based on memory contents
•  Assignments alter memory contents
•  Control structures guide the flow of control

The imperative programming paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 10	

Both the procedural and object-oriented paradigms typically
make use of the imperative programming paradigm.

Two fundamental characteristics of languages that support the
imperative paradigm:

•  "Variables"—data objects whose values typically change as

execution proceeds.

•  Support for iteration—a “while” control structure, for

example.

The imperative programming paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 11	

Here's an imperative solution in Java to sum the integers in an
array:

 int sum(int a[])
 {
 int sum = 0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];

 return sum;
 }

The for loop causes i to vary over the indices of the array, as
the variable sum accumulates the result.

How can the above solution be improved?

Imperative programming, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 12	

With Java's "enhanced for", also known as a for-each loop, we
can avoid array indexing.

 int sum(int a[])
 {
 int sum = 0;
 for (int val: a)
 sum += val;

 return sum;
 }

Is this an improvement? If so, why?

Can we write sum in a non-imperative way?

Imperative programming, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 13	

We can use recursion instead of a loop, but...ouch!

 int sum(int a[]) { return sum(a, 0); }

 int sum(int a[], int i)
 {
 if (i == a.length)
 return 0;
 else
 return a[i] + sum(a, i+1);
 }

Wrt. correctness, which of the three versions would you bet
your job on?

Imperative programming, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 14	

Programming paradigms can apply at different levels:

•  Making a choice between procedural and object-oriented
programming fundamentally determines the high-level structure
of a program.

•  The imperative paradigm is focused more on the small aspects
of programming—how code looks at the line-by-line level.

Java combines the object-oriented and imperative paradigms.

The procedural and object-oriented paradigms apply to
programming in the large.

The imperative paradigm applies to programming in the small.

Sidebar: The level of a paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 15	

Java methods can be classified as imperative or applicative.

•  An imperative method changes an object.

"Change this."

•  An applicative method produces a new object.
"Make me something new from this."

In some cases we have an opportunity to choose between the
two.

Imperative vs. applicative methods in Java

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 16	

Consider a Java class representing a 2D point:

class Point {
 private int x, y;
}

An imperative method to translate by an x and y displacement:

 public void translate(int dx, int dy) {
 x += dx; y += dy;
 }

An applicative translate:

public Point translate(int dx, int dy) {
 return new Point(x + dx, y + dy);
}

What are the pros and cons?

Imperative vs. applicative methods, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 17	

Imagine a Line class, whose instances are constructed with
two Points. Example: Line A = new Line(p1, p2);

Two blocks of code follow. Left half of class: Look at only the
first block. Right half: Look at only the second block. Raise
your hand when you understand what Line L represents.

Imperative vs. applicative methods, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 18	

Point end = p.clone();
end.translate(10,20);
Line L = new Line(p, end);

Line L = new Line(p, p.translate(10,20));

Note: Slide redone after copies!

An expression is a sequence of symbols that can be evaluated
to produce a value. Here's a Java expression:

 i + j * k

If evaluating an expression also causes an observable change
somewhere else, we say that expression has a side effect.

Here's a Java expression with a side effect:

 i + j++ * k

Do these two expressions have the same value?

What's the side effect?

Side effects

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 19	

Which of these Java expressions have a side effect?

x = 10

p1.translate(10, 20) // Consider imp. & app. cases...

"testing".toUpperCase()

L.add("x"), where L is an ArrayList

System.out.println("Hello!")

Side effects, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 20	

Side effects are a hallmark of imperative programing.

Programs written in an imperative style are essentially an
orchestration of side effects.

Can we program without side effects?

Side effects, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 21	

The Functional Paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 22	

A key characteristic of the functional paradigm is writing
functions that are like pure mathematical functions.

Pure mathematical functions:

•  Always produce the same value for given input(s)

•  Have no side effects

•  Can be combined brainlessly to produce more powerful
functions

Ideally, functions are specified with notation that's similar to
what you see in math books—cases and expressions.

The functional programming paradigm

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 23	

Other characteristics of the functional paradigm:

•  Values are never changed but lots of new values are

created.

•  Recursion is used in place of iteration.

•  Functions are values. Functions are put into in data
structures, passed to functions, and returned from
functions. LOTS of temporary functions are created.

Based on the above, how well would Java support functional
programming? How about C?

Functional programming, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 24	

Haskell basics

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 25	

Haskell is a pure functional programming language; it has no
imperative features.

Was designed by a committee with the goal of creating a
standard language for research into functional programming.

First version appeared in 1990. Latest version is known as
Haskell 2010.

Is said to be non-strict—it supports lazy evaluation.

It is not object-oriented in any way.

My current opinion: it has a relatively large mental footprint.

What is Haskell?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 26	

Website: haskell.org (sluggish as of 1/19/15)
 All sorts of resources!

Books: (on Safari, too)
 Learn You a Haskell for Great Good!, by Miran Lipovača
 http://learnyouahaskell.com (Known as LYAH.)

Real World Haskell, by O'Sullivan, Stewart, and Goerzen

 http://realworldhaskell.org (I'll call it RWH.)

Programming in Haskell, by Hutton

 Note: See appendix B for mapping of non-ASCII chars!

Haskell 2010 Report (I'll call it H10.)
 http://haskell.org/definition/haskell2010.pdf

Haskell resources

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 27	

On lectura we can interact with Haskell by running ghci:

$ ghci
GHCi, version 7.4.1: ...more... :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
>

With no arguments, ghci starts a read-eval-print loop (REPL)—
expressions that we type at the prompt (>) are evaluated and the
result is printed.

Note: the standard prompt is Prelude> but I've got

 :set prompt "> "
in my ~/.ghci file.

Interacting with Haskell

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 28	

Let's try some expressions with ghci:

> 3+4
7

> 3 * 4.5
13.5

> (3 > 4) || (5 < 7)
True

> 2 ^ 200
160693804425899027554196209234116260252220299378
2792835301376

> "abc" ++ "xyz"
"abcxyz"

Interacting with Haskell, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 29	

We can use :help to see available commands:
> :help
 Commands available from the prompt:
 <statement> evaluate/run <statement>
 : repeat last command
 :{\n ..lines.. \n:}\n multiline command
 ...lots more...

The command :set +t causes types to be shown:

> :set +t
> 3+4
7
it :: Integer

"::" is read as "has type". The value of the expression is
"bound" to the name it.

Interacting with Haskell, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 30	

We can use it in subsequent computations:

> 3+4
7
it :: Integer

> it + it * it
56
it :: Integer

> it /= it
False
it :: Bool

Interacting with Haskell, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 31	

For two assignment points of extra credit:

1.  Run ghci (or WinGHCi) somewhere and try ten Haskell

expressions with some degree of variety. (Not just ten
additions, for example!) Do a :set +t at the start.

2.  Capture the output and put it in a plain text file, eca1.txt,
and turn it in via the eca1 D2L dropbox. (No need for
your name, NetID, etc. in the file.)

Due: At the start of the next lecture after we hit this slide.

Needless to say, feel free to read ahead in the slides and show
experimentation with the following material, too.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 32	

Extra Credit Assignment 1

Getting Haskell

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 33	

You can either get Haskell for your machine or use Haskell on
lectura.

To work on your own machine, get a copy of the Haskell Platform
for your operating system from haskell.org.

On OS X, I'm using Haskell Platform 2014.2.0.0 for Mac OS X,
64bit from www.haskell.org/platform/mac.html

On Windows, use Haskell Platform 2014.2.0.0 for Windows from
http://www.haskell.org/platform/windows.html The 32-bit
version should be fine but if you have trouble, (1) let me know and
(2) go ahead and try the 64-bit version.

You'll need an editor that can create plain text files. Sublime Text is
very popular.

Getting Haskell

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 34	

To work on lectura from a Windows machine, you might login with
PuTTY. (See following slide.)

OS X, do ssh YOUR-NETID@lectura.cs.arizona.edu

You might edit Haskell files on lectura with vim, emacs, or nano
(ick!), or use something like gedit on a Linux machine in a CS lab.

Alternatively, you might edit on your machine with something like
Sublime Text and use a synchronization tool (like WinSCP on
Windows) to keep your copy on lectura constantly up to date.

If you go the route of editing on your machine and running on
lectura, let me know if you have trouble figuring out how to do
automatic synchronization. It's a terrible waste of time to do a
manual copy of any sort in the middle of your edit/run cycle.

Using Haskell on lectura

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 35	

If you Google for "putty", the first hit should be this:

 PuTTY Download Page
• www.chiark.greenend.org.uk/~sgtatham/

putty/download.html‎

Download putty.exe. It's just an executable—no installer!

Getting and running PuTTY

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 36	

Click on putty.exe to run it. In the dialog that opens, fill in
lec.cs.arizona.edu for Host Name and click Open.

PuTTY, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 37	

Login to lectura using your UA NetID. Run ghci, and try
some expressions:

Go to http://cs.arizona.edu/computing/services and use
"Reset my forgotten Unix password" if needed.

ghci on lectura

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 38	

When ghci starts up on Linux or OS X it looks for the file
~/.ghci – a .ghci file in the user's home directory.

Below are a couple of lines that I find handy in my ~/.ghci
file. The first sets the prompt and the second loads a module
that allows functions to be printed as values, although just
showing <function> for function values.

 :set prompt "> "
 :m +Text.Show.Functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 39	

The ~/.ghci file

The counterpart path on Windows is this:
 %APPDATA%\ghc\ghci.conf
 (Note: file is named ghci.conf, not .ghci!)

%APPDATA% represents the location of your Application
Data directory. You can find that path by typing set appdata
in a command window, like this:

C:\>set appdata
APPDATA=C:\Users\whm\Application Data

Combing the two, the full path to the file would be

 C:\Users\whm\Application Data\ghc\ghci.conf

Details on .ghci and lots more can be found in

 https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 40	

~/.ghci, continued

Functions and function types

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 41	

In Haskell, juxtaposition indicates a function call:

> negate 3
-3
it :: Integer

> even 5
False
it :: Bool

> pred 'C'
'B'
it :: Char

> signum 2
1
it :: Integer

Calling functions

Note: These functions and many
more are defined in the Haskell
"Prelude", which is loaded by
default when ghci starts up.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 42	

ghci uses The GNU Readline library.

Use TAB to complete names, ^R to incrementally
search backwards, ^A/^E for start/end of line, etc.

Lots more:
tiswww.case.edu/php/chet/readline/rluserman.html

Function call with juxtaposition is left-associative.

signum negate 2 means (signum negate) 2

> signum negate 2
<interactive>:40:1: -- It's an error!
 No instance for (Num (a0 -> a0)) arising from a
use of `signum'
...

We add parentheses to call negate 2 first:

> signum (negate 2)
-1
it :: Integer

Calling functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 43	

Function call with juxtaposition has higher precedence than any
operator.

> negate 3+4
1
it :: Integer

negate 3 + 4 means (negate 3) + 4. Use parens to force + first:

> negate (3 + 4)
-7
it :: Integer

> signum (negate (3 + 4))
-1
it :: Integer

Calling functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 44	

Haskell's Data.Char module has a number of functions for working
with characters. We'll use it to start learning about function types.

> :m Data.Char (:m(odule) loads a module)

> isLower 'b'
True
it :: Bool

> toUpper 'a'
'A'
it :: Char

> ord 'A'
65
it :: Int

> chr 66
'B'
it :: Char

Function types

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 45	

We can also reference a function in a
module with a qualified name:

% ghci
GHCi, version 7.6.3: ...
> Data.Char.ord 'G'
71

We can use gchi's :type command to see what the type of a
function is:

> :type isLower
isLower :: Char -> Bool (read -> as "to")

The type Char -> Bool means that the function takes an
argument of type Char and produces a result of type Bool.

Using ghci, what are the types of toUpper, ord, and chr?

We can use :browse Data.Char to see everything in the
module.

Function types, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 46	

Like most languages, Haskell requires that expressions be type-
consistent (or well-typed).

Here is an example of an inconsistency:

> chr 'x'
<interactive>:32:5:
 Couldn't match expected type Int with actual type Char
 In the first argument of `chr', namely 'x'

> :type chr
chr :: Int -> Char

> :type 'x'
'x' :: Char

chr requires its argument to be an Int but we gave it a Char. We
can say that chr 'x' is ill-typed.

Type consistency

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 47	

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

Type consistency, continued

'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 48	

As we've seen, ghci provides a REPL (read-eval-print loop).

What are some other languages that have a REPL available?

How does a REPL help us learn a language?

Is there a REPL for Java?

What characteristics does a language need to support a REPL?

If there's no REPL for a language, how hard is it to write one?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 49	

Sidebar: Using a REPL to help learn a language

Type classes

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 50	

Recall the negate function:

> negate 5
-5
it :: Integer

> negate 5.0
-5.0
it :: Double

What is the type of negate? (Is it both Integer -> Integer
and Double -> Double??)

What's the type of negate?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 51	

Bool, Char, and Integer are examples of Haskell types.

Haskell also has type classes. A type class specifies the
operations must be supported on a type in order for that type to
be a member of that type class.

Num is one of the many type classes defined in the Prelude.

:info Num shows that for a type to be a Num, it must support
addition, subtraction, multiplication and four functions:
negate, abs, signNum, and fromInteger. (The Num club!)

The Prelude defines four instances of the Num type class: Int
(word-size), Integer (unlimited size), Float and Double.

Type classes

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 52	

Here's the type of negate:

> :type negate
negate :: Num a => a -> a

The type of negate is specified using a type variable, a.

The portion a -> a specifies that negate returns a value having the
same type as its argument.

 "If you give me an Int, I'll give you back an Int."

The portion Num a => is a class constraint. It specifies that the
type a must be an instance of the type class Num.

How can we state the type of negate in English?

negate accepts any value whose type is an instance of Num. It
returns a value of the same type.

Type classes, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 53	

What type do integer literals have?
> :type 3
3 :: Num a => a

> :type (-27) -- Note: Parens needed!
(-27) :: Num a => a

Literals are typed with a class constraint of Num, so they can
be used by any function that accepts Num a => a.

Type classes, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 54	

Will negate 3.4 work?

> :type negate
negate :: Num a => a -> a

> :type 3.4
3.4 :: Fractional a => a

> negate 3.4
-3.4

Speculate: Why does it work?

Type classes, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 55	

Type classes, continued

Adapted	
 from	
 hAp://en.wikibooks.org/wiki/Haskell/Classes_and_types	

Haskell type classes form a hierarchy. The Prelude has these:

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 56	

X

Type classes, continued
Num	

Int,	
 Integer,	

Float,	
 Double	

Frac)onal	

Float,	

Double	

The arrow from Num to Fractional means that a Fractional can
be used as a Num. (What does that remind you of?)

Given

 negate :: Num a => a -> a
and

 5.0 :: Fractional a => a
then

 negate 5.0 is valid.

Excerpt:

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 57	

Type classes, continued
What's meant by the type of pz?

 pz :: (Bounded a, Fractional b) => a -> b

Would pz 'a' be valid? How about pz 5.5? pz 7?

LYAH pp. 27-33 has a good description of the Prelude's type
classes. ("Type Classes 101")

RWH uses the term "typeclasses"—one word!

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 58	

In essence, negate :: Num a => a -> a describes many
functions:

 negate :: Integer -> Integer
 negate :: Int -> Int
 negate :: Float -> Float
 negate :: Double -> Double
 ...and more...

negate is a polymorphic function. It handles values of many
forms.

If a function's type has any type variables, it's a polymorphic
function.

How does Java handle this problem? How about C? C++?

negate is polymorphic

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 59	

More on functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 60	

Take	
 a
	
 break

?	

A function can be defined in the REPL by using let. Example:

> let double x = x * 2
double :: Num a => a -> a

> double 5
10
it :: Integer

> double 2.7
5.4
it :: Double

> double (double (double 1111111111111))
8888888888888
it :: Integer

Writing simple functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 61	

More examples:

> let neg x = -x
neg :: Num a => a -> a

> let isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

> let toCelsius temp = (temp - 32) * 5/9
toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed is
known as type inferencing. (More on it later!)

Note: function and parameter names must begin with a lowercase
letter or _. (If capitalized they're assumed to be data constructors.)

Simple functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 62	

We can use :: type to constrain the type inferred for a function:

> let neg x = -x :: Integer
neg :: Integer -> Integer

> let isPositive x = x > (0::Integer)
isPositive :: Integer -> Bool

> let toCelsius temp = (temp - 32) * 5/(9::Double)
toCelsius :: Double -> Double

We'll use :: type to simplify some following examples.

Simple functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 63	

We can put function definitions in a file. When we do, we
leave off the let!

I've got four function definitions in the file simple.hs, as
shown with the UNIX cat command:

% cat simple.hs
double x = x * 2 :: Integer -- Note: no "let"!
neg x = -x :: Integer
isPositive x = x > (0::Integer)
toCelsius temp = (temp - 32) * 5/(9::Double)

The .hs suffix is required.

Sidebar: loading functions from a file

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 64	

Assuming simple.hs is in the current directory, we can load it
with :load and see what we got with :browse.

% ghci
> :load simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

> :browse
double :: Integer -> Integer
neg :: Integer -> Integer
isPositive :: Integer -> Bool
toCelsius :: Double -> Double

Note the colon in :load, and that the suffix .hs is assumed.

We can use a path, like :load ~/372/hs/simple, too.

Sidebar, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 65	

Look for ways to type less, to spend more time learning and less
time typing!

Anticipate: How might we type less when loading a file?

> :l simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

After an initial load, :reload is sufficient:

> :reload
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.

Can we still type less?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 66	

Sidebar: Learning a Language

ghci is clumsy to type! I've got an hs alias in my ~/.bashrc:
alias hs=ghci

I specify the file I'm working with as an argument to hs.

% hs simple
GHCi, version 7.6.3 ...
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ... experiment ...

After editing in a different window I use :r to reload the file.

> :r
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, modules loaded: Main.
> ...experiment some more...

Lather, rinse, repeat.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 67	

Sidebar: My usual edit-run cycle

Here's a function that produces the sum of its two arguments:
 > let add x y = x + y :: Integer

Here's how we call it: (no commas or parentheses!)

> add 3 5
8

Here is its type:

> :type add
add :: Integer -> Integer -> Integer

The operator -> is right-associative, so the above means this:

 add :: Integer -> (Integer -> Integer)

But what does that mean?

Functions with multiple arguments

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 68	

Recall our negate function:
> let neg x = -x :: Integer
neg :: Integer -> Integer

Here's add again, with parentheses added to show precedence:

> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer)

add is a function that takes an integer as an argument and
produces a function as its result!

add 3 5 means (add 3) 5

Call add with the value 3, producing a nameless function.
Call that nameless function with the value 5.

Multiple arguments, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 69	

When we give a function fewer arguments than it requires, the
result is called a partial application. It is a function.

We can bind a name to a partial application like this:

> let plusThree = add 3
plusThree :: Integer -> Integer

The name plusThree now references a function that takes an
Integer and returns an Integer.

What will plusThree 5 produce?

> plusThree 5
8
it :: Integer

Partial application

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 70	

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens added

> let plusThree = add 3
plusThree :: Integer -> Integer

Analogy: plusThree is like a calculator where you've clicked
3, then +, and handed it to somebody.

Partial application, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 71	

plusThree

3
add

At hand:
> let add x y = x + y :: Integer
add :: Integer -> (Integer -> Integer) -- parens added

Another: (with parentheses added to type to aid understanding)

> let add3 x y z = x + y + z :: Integer
add3 :: Integer -> (Integer -> (Integer -> Integer))

These functions are said to be defined in curried form, which allows
partial application of arguments.

The idea of a partially applicable function was first described by
Moses Schönfinkel. It was further developed by Haskell B. Curry.
Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

Partial application, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 72	

log2 n

Key points:

•  A function with a type like Integer -> Char -> Char

takes two arguments, an Integer and a Char. It produces
a Char.

•  A function call like
 f x y z
means
 ((f x) y) z
and (conceptually) causes two temporary, unnamed
functions to be created.

• Calling a function with fewer arguments that it requires
creates a partial application.

Some key points

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 73	

Note: next set of slides!

Next: Go live!

Then, another challenge for the
socially challenged! J

It is common practice to specify the type of a function along
with its definition in a file.

What's the ramification of the difference in these two type
specifications?

add1::Num a => a -> a -> a
add1 x y = x + y

add2::Integer -> Integer -> Integer
add2 x y = x + y

Specifying a function's type

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 74	

A Haskell source file is a series of declarations. Here's a file with
two declarations:

% cat indent1.hs
add::Integer -> Integer -> Integer
add x y = x + y

A declaration can be continued across multiple lines by indenting
lines more than the first line of the declaration. These weaving
declarations are poor style but are valid:

add
 ::
 Integer-> Integer-> Integer
add x y
 =
 x
 + y

Sidebar: Continuation with indentation

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 75	

A line that starts in the same column as the previous declaration
ends that declaration and starts a new one.

% cat indent2.hs
add::Integer -> Integer -> Integer
add x y =
x + y

% ghci indent2
...
indent2.hs:3:1:
 parse error (possibly incorrect indentation or
mismatched brackets)
Failed, modules loaded: none.

Note that 3:1 indicates line 3, column 1.

Indentation, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 76	

Haskell operators are simply functions that can be invoked
with an infix form.

We can use :info to find out about an operator.

> :info (^)
(^) :: (Num a, Integral b) => a -> b -> a
infixr 8 ^

(Num a, Integral b) => a -> b -> a shows that the first
operand must be a number and the second must be an integer.

infixr 8 shows that it is right-associative, with priority 8.

Explore ==, >, +, *,||, ^^ and **.

Function/operator equivalence

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 77	

To use an operator as a function, enclose it in parentheses:
> (+) 3 4
7

Conversely, we can use a function as an operator by enclosing
it in backquotes:

> 3 `add` 4
7

> 11 `rem` 3
2

Function/operator equivalence, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 78	

Haskell lets us define custom operators.

Example: (loading from a file)

(+%) x percentage = x + x * percentage / 100
infixl 6 +%

Usage:

> 100 +% 1
101.0
> 12 +% 25
15.0

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and
non-ASCII Unicode symbols can be used in custom operators.

Modules often define custom operators.

Function/operator equivalence, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 79	

Precedence Left associative
operators

Non associative
operators

Right associative
operators

9 !! .

8 ^, ^^, **

7 *, /, `div`, `mod`,
`rem`, `quot`

6 +, -

5 :, ++

4 ==, /=, <, <=,
>, >=, `elem`,
`notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

Reference: Operators from the Prelude

Note: From page 51 in Haskell 2010 report
CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 80	

The general form of a function definition (for now):

 let name param1 param2 ... paramN = expression

Problem: Define a function min3 that computes the minimum
of three values. The Prelude has a min function.

> min3 5 2 10
2

> let min3 a b c = min a (min b c)
min3 :: Ord a => a -> a -> a -> a

Problem: Define a function eq3 that returns True if its three
arguments are equal, False otherwise.

More functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 81	

Recall this characteristic of functional programming:
"Ideally, functions are specified with notation that's similar
to what you see in math books—cases and expressions."

This function definition uses guards to specify three cases:
sign x | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

Notes:
• No let—this definition is loaded from a file with :load
•  sign x appears just once. First guard might be on next line.
•  The guard appears between | and =, and produces a Bool
• What is otherwise?

Guards

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 82	

Problem: Using guards, define a function smaller, like min:
> smaller 7 10
7

> smaller 'z' 'a'
'a'

Solution:

smaller x y
 | x <= y = x
 | otherwise = y

Guards, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 83	

Problem: Write a function weather that classifies a given
temperature as hot if 80+, else nice if 70+, and cold otherwise.

> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

A solution that takes advantage of the fact that guards are tried
in turn:

weather temp | temp >= 80 = "Hot!"
 | temp >= 70 = "Nice"
 | otherwise = "Cold!"

Guards, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 84	

Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4
3

How does this compare to the if-else in Java?

Haskell's if-else

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 85	

Java's if-else is a statement. It cannot be used where a value is
required.

Java's conditional operator is the analog to Haskell's if-else.

 1 < 2 ? 3 : 4 (Java conditional, a.k.a ternary operator)

It's an expression that can be used when a value is required.

Java's if-else statement has an else-less form but Haskell's if-
else does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good
example of a statement vs. an expression.

Pythoners: What's the if-else situation in Python?

 3 if 1 < 2 else 4

Sidebar: Java's if-else

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 86	

What's the type of these expressions?

> :type if 1 < 2 then 3 else 4
if 1 < 2 then 3 else 4 :: Num a => a

> :type if 1 < 2 then 3 else 4.0
if 1 < 2 then 3 else 4.0 :: Fractional a => a

> if 1 < 2 then 3 else '4'
 <interactive>:12:15:
 No instance for (Num Char) arising from the literal `3'

> if 1 < 2 then 3

 <interactive>:13:16:
 parse error (possibly incorrect indentation or

mismatched brackets)

Haskell's if-else, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 87	

Which of the versions of sign below is better?

sign x
 | x < 0 = -1
 | x == 0 = 0
 | otherwise = 1

sign x = if x < 0 then -1
 else if x == 0 then 0

 else 1

We'll later see that patterns add a third possibility for
expressing cases.

Guards vs. if-else

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 88	

A recursive function is a function that calls itself either directly or
indirectly.

Computing the factorial of a integer (N!) is a classic example of
recursion. Write it in Haskell (and don't peek below!) What is its
type?

factorial n
 | n == 0 = 1 -- Base case, 0! is 1
 | otherwise = n * factorial (n - 1)

> :type factorial
factorial :: (Eq a, Num a) => a -> a

> factorial 40
815915283247897734345611269596115894272000000000

Recursion

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 89	

One way to manually trace through a recursive computation is
to underline a call, then rewrite the call with a textual
expansion:

factorial 4

4 * factorial 3

4 * 3 * factorial 2

4 * 3 * 2 * factorial 1

4 * 3 * 2 * 1 * factorial 0

4 * 3 * 2 * 1 * 1

Recursion, continued

factorial n
 | n == 0 = 1
 | otherwise = n * factorial (n – 1)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 90	

Consider repeatedly dividing a number until the quotient is 1:
> 28 `quot` 3 (Note backquotes to use quot as infix op.)
9
> it `quot` 3 (Remember that it is previous result.)
3
> it `quot` 3
1

Problem: Write a recursive function numDivs divisor x that
computes the number of times x must be divided by divisor to
reach a quotient of 1.

> numDivs 3 28
3
> numDivs 2 7
2

Recursion, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 91	

A solution:
numDivs divisor x
 | (x `quot` divisor) < 1 = 0
 | otherwise =

 1 + numDivs divisor (x `quot` divisor)

What is its type?

 numDivs :: (Integral a, Num a1) => a -> a -> a1

Will numDivs 2 3.4 work?

> numDivs 2 3.4
<interactive>:93:1:
 No instance for (Integral a0) arising from a use of
`numDivs'

Recursion, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 92	

Example:
> numDivs 3 28
3

Let's compute two partial applications of numDivs, using let to
bind them to identifiers:

> let f = numDivs 2
> let g = numDivs 10
> f 9
3
> g 1001
3

What are more descriptive names than f and g?

> let floor_log2 = numDivs 2
> floor_log2 1000
9

> let floor_log10 = numDivs 10
> floor_log10 1000
3

Sidebar: Fun with partial applications

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 93	

Lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 94	

In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list. Note the type of it for each.

> [7, 3, 8]
[7,3,8]
it :: [Integer]

> [1.3, 10, 4, 9.7]
[1.3,10.0,4.0,9.7]
it :: [Double]

> ['x', 10]
<interactive>:20:7:
 No instance for (Num Char) arising from the literal
`10'

List basics

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 95	

The function length returns the number of elements in a list:
> length [3,4,5]
3

> length []
0

What's the type of length?

> :type length
length :: [a] -> Int

With no class constraint specified, [a] indicates that length
operates on lists containing elements of any type.

List basics, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 96	

The head function returns the first element of a list.
> head [3,4,5]
3

What's the type of head?

head :: [a] -> a

Here's what tail does. How would you describe it?

> tail [3,4,5]
[4,5]

What's the type of tail?

tail :: [a] -> [a]

List basics, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 97	

The ++ operator concatenates two lists, producing a new list.

> [3,4] ++ [10,20,30]
[3,4,10,20,30]

> it ++ it
[3,4,10,20,30,3,4,10,20,30]

> let f = (++) [1,2,3]
> f [4,5]
[1,2,3,4,5]

> f [4,5] ++ reverse (f [4,5])
[1,2,3,4,5,5,4,3,2,1]

List basics, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 98	

What are the types of ++ and
reverse?	

> :type (++)
(++) :: [a] -> [a] -> [a]

> :type reverse
reverse :: [a] -> [a]

A range of values can be specified with a dot-dot notation:
> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
it :: [Integer]

> [-5,-3..20]
[-5,-3,-1,1,3,5,7,9,11,13,15,17,19]

> length [-1000..1000]
2001

> [10..5]
[]
it :: [Integer]

List basics, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 99	

The !! operator produces a list's Nth element, zero-based:

> :type (!!)
(!!) :: [a] -> Int -> a

> [10,20..100] !! 3
40

Sadly, we can't use a negative value to index from the right.

> [10,20..100] !! (-2)
*** Exception: Prelude.(!!): negative index

Should that be allowed?

List basics, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 100	

Haskell lists are values and can be compared as values:
> [3,4] == [1+2, 2*2]
True

> [3] ++ [] ++ [4] == [3,4]
True

> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]
True

Conceptually, how many lists are created by each of the above?

A programmer using a functional language writes complex
expressions using lists (and more!) as freely as a Java
programmer might write f(x) * a == g(a,b) + c.

Comparing lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 101	

Lists are compared lexicographically: Corresponding elements
are compared until an inequality is found. The inequality
determines the result of the comparison.

Example:

> [1,2,3] < [1,2,4]
True

Why: The first two elements are equal, and 3 < 4.

More examples:

> [1,2,3] < [1,1,1,1]
False
> [1,2,3] > [1,2]
True
> [1..] < [1,3..] -- Comparing infinite lists!
True

Comparing lists, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 102	

LATER...

We can make lists of lists.
> let x = [[1], [2,3,4], [5,6]]
x :: [[Integer]]

Note the type: x is a list of Integer lists.

length counts elements at the top level.

> length x
3

Recall that length :: [a] -> Int Given that, what's the type of
a for length x?

What's the value of length (x ++ x ++ [3])?

Lists of Lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 103	

> let x = [[1], [2,3,4], [5,6]]

> head x
[1]

 > tail x
[[2,3,4],[5,6]]

> x !! 1 !! 2
4

> let y = [[1..],[10,20..]] ++ [[2,3]]
> take 5 (head (tail y))
[10,20,30,40,50]

Lists of lists, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 104	

LATER...

Strings in Haskell are simply lists of characters.

> "testing"
"testing"
it :: [Char]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]

> ["just", "a", "test"]
["just","a","test"]
it :: [[Char]]

What's the beauty of this?

Strings are [Char]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 105	

All list functions work on strings, too!

> let asciiLets = ['A'..'Z'] ++ ['a'..'z']
asciiLets :: [Char]

> length asciiLets
52

> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"

> :type elem
elem :: Eq a => a -> [a] -> Bool

> let isAsciiLet c = c `elem` asciiLets
isAsciiLet :: Char -> Bool

Strings, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 106	

The Prelude defines String as [Char] (a type synonym).
> :info String
type String = [Char]

A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]

> :type putStr
putStr :: String -> IO () -- an "action" (more later!)

What's the following doing?

> putStr (unwords (tail (words "Just some words!")))
some words!it :: ()

Strings, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 107	

What's the following expression computing?
> length [(Data.Char.chr 0)..]
1114112

Another way:

> length ([minBound..maxBound]::[Char])
1114112

Strings, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 108	

Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list has two parts:

 head: a value
 tail: a list of values (possibly empty)

The : ("cons") operator creates a list from a value and a list of
values that same type (or an empty list).

> 5 : [10, 20,30]
[5,10,20,30]

What's the type of the cons operator?

> :type (:)
(:) :: a -> [a] -> [a]

"cons" lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 109	

The cons (:) operation forms a new list from a value and a list.

> let a = 5
> let b = [10,20,30]
> let c = a:b
[5,10,20,30]

> head c
5

> tail c
[10,20,30]

> let d = tail (tail c)
> d
[20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 110	

A cons node can be referenced by multiple cons nodes.

> let a = 5
> let b = [10,20,30]
> let c = a:b
> let d = tail (tail c)
[20,30]

> let e=2:d
[2,20,30]

> let f=1:c
[1,5,10,20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

2

e

1

f

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 111	

What are the values of the following expressions?
> 1:[2,3]
[1,2,3]

> 1:2
...error...

> chr 97:chr 98:chr 99:[]
"abc"

> []:[]
[[]]

> [1,2]:[]
[[1,2]]

> []:[1]
...error...

"cons" lists, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 112	

cons is right associative
 chr 97:(chr 98:(chr 99:[]))

It's important to understand that tail does not create a new list.
Instead it simply returns an existing cons node.

> let a = [5,10,20,30]

> let h = head a
> h
5

> let t = tail a
> t
[10,20,30]

> let t2 = tail (tail t)
> t2
[30]

head and tail visually

10

20

30

5

a

t h
5

t2

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 113	

Note: next set of slides!

What operations are likely fast with cons lists?
 Get the head of a list
 Get the tail of a list
 Making a new list from a head and tail

What operations are likely slower?

 Get Nth element of a list
 Get length of a list

With cons lists, what does list concatenation involve?

> let m=[1..10000000]
> length (m++[0])
10000001

A little on performance

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 114	

The head of a list is a one-element list.
 False, unless...
 ...it's the head of a list of lists that starts with a one-element list

The tail of a list is a list.
 True

The tail of an empty list is an empty list.
 It's an error!

length (tail (tail x)) == (length x) – 2
 True (assuming what?)

A cons list is essentially a singly-linked list.
 True

A doubly-linked list might help performance in some cases.
 Hmm...what's the backlink for a multiply-referenced node?

Changing an element in a list might affect the value of many lists.
Trick question! We can't change a list element. We can only
"cons-up" new lists and reference existing lists.

True or false?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 115	

Here's a function that produces a list with a range of integers:
> let fromTo first last = [first..last]

> fromTo 10 15
[10,11,12,13,14,15]

Problem: Write a recursive version of fromTo that uses the
cons operator to build up its result.

fromTo

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 116	

One solution:
fromTo first last
 | first > last = []
 | otherwise = first : fromTo (first+1) last

Evaluation of fromTo 1 3 via substitution and rewriting:

fromTo 1 3
1 : fromTo (1+1) 3
1 : fromTo 2 3
1 : 2 : fromTo (2+1) 3
1 : 2 : fromTo 3 3
1 : 2 : 3 : fromTo (3+1) 3
1 : 2 : 3 : fromTo 4 3
1 : 2 : 3 : []

fromTo, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 117	

Do :set +s to get timing and memory information, and make
some lists. Try these:

fromTo 1 10
let f = fromTo -- So we can type f instead of fromTo
f 1 1000
let f = fromTo 1 -- Note partial application
f 1000
let x = f 1000000
length x
take 5 (f 1000000)

fromTo, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 118	

Excursion:
A little bit with infinite lists

and lazy evaluation

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 119	

We can make an infinite list in Haskell! Here's one way:
> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,2
1,22,23,24,25,26,27,28,29,30,31,32,^C

Any ideas on how to make use of an infinite list?

What does the following let create?

> let nthOdd = (!!) [1,3..]
nthOdd :: Int -> Integer

A function that produces the Nth odd number, zero-based.

Yes, we could say let nthOdd n = (n*2)+1 but that wouldn't
be nearly as much fun! (This is functional programming!)

Infinite lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 120	

Consider the following let. Why does it complete?
> let fives=[5,10..]
fives :: [Integer]

A simplistic answer: Haskell uses lazy evaluation. It only
computes as much of a value as it needs to.

(The deeper answer: Haskell uses non-strict evaluation.
Conventional languages use strict evaluation.)

The function take produces the first N elements of a list.

> take 3 fives
[5,10,15]

Haskell computes only enough elements of fives to produce a
result for take 5.

Infinite lists, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 121	

Here is an expression that is said to be non-terminating:
> length fives
...when tired of waiting...^C Interrupted.

But, we can bind a name to length fives:

> let numFives = length fives
numFives :: Int

That completes because Haskell hasn't yet needed to compute a
value for length fives.

We can get another coffee break by asking Haskell to print the
value of numFives:

> numFives
...after a while...^CInterrupted.

Lazy evaluation

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 122	

We can use :print to explore lazy evaluation:
> let fives = [5,10..]

> :print fives
fives = (_t2::[Integer])

> take 3 fives
[5,10,15]

What do you think :print fives will now show?

> :print fives
fives = 5 : 10 : 15 : (_t3::[Integer])

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 123	

Lazy evaluation, continued

Speculate: Can infinite lists be concatenated?
> let values = [1..] ++ [5,10..] ++ [1,2,3]
> :t values
values :: [Integer]

How about this one?
> [1..] > [1,2,3,5]
False

False due to lexicographic comparison—4 < 5

Another one to consider:

> let fives = [5,10..]
> fives !! 100000000
500000005

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 124	

Lazy evaluation, continued

Here's one way to see how many distinct Char values exist:
> length ([minBound..maxBound]::[Char])
1114112

What does it mean?

:info Char shows Char is an instance of the Bounded
type class.

Types that are instances of Bounded have minBound and
maxBound defined.

Could we do it another way?

> length [(minBound::Char)..]
1114112

Experiment: How many Char values are there?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 125	

Patterns

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 126	

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55

> :type sumElems
sumElems :: Num a => [a] -> a

Implementation:

sumElems list
 | null list = 0 -- null is function to test for empty list
 | otherwise = head list + sumElems (tail list)

It works but it's not idiomatic Haskell. We should use patterns
instead!

(redone!) Motivation: Summing list elements

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 127	

In Haskell we can use patterns to bind names to elements of
data structures.

> let [x,y] = [10,20]
> x
10
> y
20

> let [inner] = [[2,3]]
> inner
[2,3]

Speculate: Given a list like [10,20,30] how could we use a
pattern to bind names to the head and tail of the list?

Patterns

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 128	

10

20

2

3

inner

(diagram added)

x
10

y
20

We can use the cons operator in a pattern.
> let h:t = [10,20,30]

> h
10

> t
[20,30]

What values get bound by the following pattern?

> let a:b:c:d = [10,20,30]
> [c,b,a] -- in a list so I could show them as a one-liner
[30,20,10]

> d -- Why didn't I do [d,c,b,a] above?
[]

Patterns, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 129	

10

20

30

h
10

t

(diagram added)

If some part of a structure is not of interest, we indicate that
with an underscore, known as the wildcard pattern.

> let _:(a:[b]):c = [[1],[2,3],[4]]
> a
2
> b
3
> c
[[4]]

No binding is done for the wildcard pattern.

The pattern mechanism is completely general—patterns can be
arbitrarily complex.

Patterns, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 130	

A name can only appear once in a pattern. This is invalid:
> let a:a:[] = [3,3]
<interactive>:25:5:
 Conflicting definitions for `a'

When using let as we are here, a failed pattern isn't manifested
until we try to see what's bound to a name.

> let a:b:[] = [1]
> a
*** Exception: <interactive>:26:5-16: Irrefutable
pattern failed for pattern a : b : []

Patterns, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 131	

Recall our non-idiomatic sumElems:
sumElems list
 | null list = 0
 | otherwise = head list + sumElems (tail list)

How could we redo it using patterns?

sumElems [] = 0
sumElems (h:t) = h + sumElems t

Note that sumElems appears on both lines and that there are
no guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!

Patterns in function definitions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 132	

Here's a buggy version of sumElems:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

What's the bug?

> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31): Non-exhaustive
patterns in function buggySum

If we use ghci -fwarn-incomplete-patterns, we'll get a warning
when :loading.

slides.hs:82:1: Warning:
 Pattern match(es) are non-exhaustive
 In an equation for `buggySum': Patterns not matched: []

Patterns in functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 133	

Describe in English what must be on the right hand side for a
successful match.

let (a:b:c) = ...

A list containing at least two elements.
Does [[1,2]] match?
[2,3] ?
"abc" ?

let [x:xs] = ...

 A list whose first element is a non-empty list.
 Does words "a test" match?
 [words "a test"] ?

 [[]] ?
 [[[]]] ?

 CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 134	

Practice

Recursive functions on lists

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 135	

Problem: Write len x, which returns the length of list x.
> len []
0

> len "testing"
7

Solution:
len [] = 0
len (_:t) = 1 + len t -- since head isn't needed, use _

Simple recursive list processing functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 136	

Problem: Write odds x, which returns a list having only the
odd numbers from the list x.

> odds [1..10]
[1,3,5,7,9]

 > take 10 (odds [1,4..])
[1,7,13,19,25,31,37,43,49,55]

Handy: odd :: Integral a => a -> Bool
Solution:

odds [] = []
odds (h:t)
 | odd h = h:odds t
 | otherwise = odds t

Simple list functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 137	

Problem: write isElem x vals, like elem in the Prelude.
> isElem 5 [4,3,7]
False

> isElem 'n' "Bingo!"
True

> "quiz" `isElem` words "No quiz today!"
True

Solution:
isElem _ [] = False -- Why a wildcard?
isElem x (h:t)
 | x == h = True
 | otherwise = x `isElem` t

Simple list functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 138	

Problem: write a function that returns a list's maximum value.
> maxVal "maximum"
'x'

> maxVal [3,7,2]
7

> maxVal (words "i luv this stuff")
"this"

Solution:
maxVal [] = undefined
maxVal [x] = x
maxVal (x1:x2:xs)
 | x1 >= x2 = maxVal (x1:xs)
 | otherwise = maxVal (x2:xs)

Simple list functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 139	

C programmers: Write strlen in C in a functional style. Do
strcmp and strchr, too!

Python programmers: In a functional style write size(x),
which returns the number of elements in the string or list x.
Restriction: You may not use type().

Sidebar: C and Python challenges

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 140	

Tuples

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 141	

Take	
 a
	
 break

?	

A Haskell tuple is an ordered aggregation of two or more
values of possibly differing types.

> (1, "two", 3.0)
(1,"two",3.0)
it :: (Integer, [Char], Double)

> (3 < 4, it)
(True,(1,"two",3.0))
it :: (Bool, (Integer, [Char], Double))

What's something we can represent with a tuple that we can't
represent with a list?

Tuples

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 142	

A function can return a tuple:
> let pair x y = (x,y)

What's the type of pair?

pair :: t -> t1 -> (t, t1)
-- why not a -> b -> (a,b)?

Let's play...
> pair 3 4
(3,4)

> pair (3,4)
<function>

> it 5
((3,4),5)

Tuples, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 143	

The Prelude has two functions that operate on 2-tuples.
> let p = pair 30 "forty"
p :: (Integer, [Char])

> p
(30,"forty")

> fst p
30

> snd p
"forty"

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 144	

Tuples, continued

Recall: patterns used to bind names to list elements have the
same syntax as expressions to create lists.

Patterns for tuples are like that, too.

Problem: Write middle, to extract a 3-tuple's second element.

> middle ("372", "CHVEZ 405", "Mitchell")
"CHVEZ 405"

> middle (1, [2], True)
[2]

Tuples, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 145	

At hand:
> middle (1, [2], True)
[2]

Solution:
 middle (_, m, _) = m

What's the type of middle?

 middle :: (t, t1, t2) -> t1

Does the following call work?

> middle(1,[(2,3)],4)
[(2,3)]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 146	

Tuples, continued

Here's the type of zip from the Prelude:
 zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do?

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10),...lots more... ('x',24),('y',25),('z',26)]

What's especially interesting about the second example?

Tuples, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 147	

Problem: Write elemPos, which returns the zero-based
position of a value in a list, or -1 if not found.

> elemPos 'm' ['a'..'z']
12

Hint: Have a helper function do most of the work.

Solution:

elemPos x vals = elemPos' x (zip vals [0..])

elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
 | x == val = pos
 | otherwise = elemPos' x vps

Tuples, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 148	

Consider these two functions:
> let add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> let add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a

Usage:
> add_c 3 4
7

> add_t (3,4)
7

Which is better, add_c or add_t?

Sidebar: To curry or not to curry?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 149	

Important: Note the
difference in types!

Note: next set of slides!

:info Eq shows many lines like this:
...
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

We haven't talked about instance declarations but let's speculate:
What's being specified by the above?

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

If values of each of the three types a, b, and c can be tested for
equality then 3-tuples of type (a, b, c) can be tested for equality.

The Ord and Bounded type classes have similar instance
declarations.

The Eq type class and tuples

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 150	

Type-wise, lists are homogeneous; tuples are heterogeneous.

We can write a function that handles a list of any length but a
function that operates on a tuple specifies the arity of that tuple.

Example: we can't write an analog for head, to return the first
element of an arbitrary tuple.

Even if values are homogeneous, using a tuple lets static type-
checking ensure that an exact number of values is being aggregated.

Example: A 3D point could be represented with a 3-element list
but using a 3-tuple guarantees points have three coordinates.

If there were Head First Haskell it would no doubt have an
interview with List and Tuple, each arguing their own merit.

Lists vs. tuples

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 151	

More on
patterns and functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 152	

Earlier in the slides the general form of a function definition was
shown as this: name arg1 arg2 ... argN = expression

This is more accurate:

 name pattern1 pattern2 ... patternN
 guard1 = expression1
 ...
 guardN = expression N

For a given name, any number of clauses like the above may be
specified. The set of clauses for a given name is the binding for that
name. (See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is
true, the corresponding expression is evaluated.

Function bindings, refined

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 153	

Literal values can be part or all of a pattern. Here's a 3-clause
binding for f:

f 1 = 10
f 2 = 20
f n = n

Usage:
> f 1
10

> f 3
3

Remember: Patterns are tried in the order specified.

Literals in patterns

For contrast, with guards:
f n
 | n == 1 = 10
 | n == 2 = 20
 | otherwise = n

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 154	

Here's factorial with guards:
factorial n
 | n == 0 = 1
 | otherwise = n * factorial (n - 1)

Here it is with a literal pattern:

factorial 0 = 1
factorial n = n * factorial (n - 1)

Which is better?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 155	

Literals in patterns, continued

REPLACE!
parens1 c
 | c == '(' = "left"
 | c == ')' = "right"
 | otherwise = "neither"

parens2 '(' = "left"
parens2 ')' = "right"
parens2 _ = "neither"

not is a function:
> :type not
not :: Bool -> Bool

> not True
False

Problem: Using literals in patterns, define not.

Solution:

not True = False
not _ = True -- Using wildcard avoids comparison

Literals in patterns, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 156	

A pattern can be:

• A literal value such as 1, 'x', or True
• An identifier (bound to a value if there's a match)
• An underscore (the wildcard pattern)
• A tuple composed of patterns
• A list of patterns in square brackets (fixed size list)
• A list of patterns constructed with : operators
• Other things we haven't seen yet

Note the recursion.

Patterns can be arbitrarily complicated.

3.17.1 in H10 shows the full syntax for patterns.

Pattern construction

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 157	

Intermediate values and/or helper functions can be defined using an
optional where clause for a function.

Here's an example to show the syntax; the computation is not
meaningful.

f x
 | g x < 0 = g a + g b
 | a > b = g b
 | otherwise = g a * g b
 where {
 a = x * 5;
 b = a * 2 + x;
 g t = log t + a
 }

The where clause for functions

The names a and b are bound to
expressions; g is a function binding.

The bindings in the where clause
are done first (!), then the guards are
evaluated in turn.

Like variables defined in a method
or block in Java, a, b, and g are not
visible outside the declaration.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 158	

Imagine a function that counts occurrences of even and odd
numbers in a list.

> countEO [3,4,5]
(1,2) -- one even, two odds

Code:

countEO [] = (0,0) -- no odds or evens in []
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where {
 (evens, odds) = countEO xs -- count tail first!
 }

Would it be awkward to write it without using where?

where, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 159	

Imagine a function that returns every Nth value in a list:
> everyNth 2 [10,20,30,40,50]
[20,40]
> everyNth 3 ['a'..'z'] -- abcdefghijklmnopqrstuvwxyz
"cfilorux"

Can we write this without a helper function?

We could use zip to pair elements with positions to know that 30 is
the third element, for example.
> let everyNth n xs = helper n (zip xs [1..])

 [(10,1),(20,2),(30,3),(40,4),(50,5)]

To learn a different technique, let's not use zip.

where, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 160	

Let's write a version of everyNth that has an extra parameter: the
original one-based position of the head of the list:

helper _ [] pos = []
helper n (x:xs) pos
 | (pos `rem` n == 0) = x : helper n xs (pos+1)
 | otherwise = helper n xs (pos+1)

We then write everyNth:

 everyNth n xs = helper n xs 1

everyNth 2 [10,20,30,40,50] would lead to these calls:

 helper 2 [10,20,30,40,50] 1
 helper 2 [20,30,40,50] 2 -- 2 rem 2 == 0
 helper 2 [30,40,50] 3
 helper 2 [40,50] 4 -- 4 rem 2 == 0
 helper 2 [50] 5

where, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 161	

161,163s/everyNthWithPos/helper/g

helper function

Let's rewrite using where to conceal helper:

everyNth n xs = helper n xs 1
 where {
 helper _ [] pos = [];
 helper n (x:xs) pos
 | pos `rem` n == 0 = x : helper n xs (pos+1)
 | otherwise = helper n xs (pos+1)
 }

Just like a Java private method, everyNth can't be accessed outside
the body of helper.

The code works, but it's repetitious! How can we improve it?

where, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 162	

Remember: DRY!

Repetitious version:
 everyNth n xs = helper n xs 1
 where {
 helper _ [] pos = [];
 helper n (x:xs) pos
 | pos `rem` n == 0 = x : helper n xs (pos+1)
 | otherwise = helper n xs (pos+1) }

Let's use another where to bind rest to the recursive call's result.

everyNth n xs = helper n xs 1
 where {
 helper _ [] pos = [];
 helper n (x:xs) pos
 | pos `rem` n == 0 = x : rest
 | otherwise = rest
 where { rest = helper n xs (pos+1) }
 }

where, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 163	

This is a valid declaration with a where clause:
 f x = a + b + g a where { a = 1; b = 2; g x = -x }

The where clause has three declarations enclosed in braces and
separated by semicolons.

We can take advantage of the layout rule and write it like this
instead:

f x = a + b + g a
 where
 a = 1
 b = 2
 g x = -x

Besides whitespace what's different about the second version?

The layout rule for where (and more)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 164	

At hand:
f x = a + b + g a
 where
 a = 1
 b = 2
 g x =

 -x

The absence of a brace after where activates the layout rule.

The column position of the first token after where establishes
the column in which declarations of the where must start.

Note that the declaration of g is continued onto a second line;
if the minus sign were at or left of the line, it would be an error.

The layout rule, continued

Another example:

f x = a + b + g a where a = 1
 b = 2
 g x =
 -x

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 165	

Don't confuse the layout rule with indentation-based
continuation of declarations! (See slides 75-76.)

The layout rule allows omission of braces and semicolons in
where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1.  outside of where/do/let/of blocks
2.  inside where/do/let/of blocks when the layout rule is

triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?

The layout rule, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 166	

Larger examples

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 167	

Imagine a robot that travels on an infinite grid of cells. Movement is
directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and
determines if the robot ends up where it started (i.e., it got home) or
elsewhere (it got lost).

travel

1	

2	

R	

If the robot starts in square R the
command string nnnn leaves the robot
in the square marked 1.

The string nenene leaves the robot in
the square marked 2.

nnessw and news move the robot in a
round-trip that returns it to square R.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 168	

Usage:

> travel "nnnn" -­‐-­‐	
 ends	
 at	
 1	

"Got lost"

> travel "nenene" -­‐-­‐	
 ends	
 at	
 2
"Got lost"

> travel "nnessw"
"Got home"

How can we approach this problem?

travel, continued

1	

2	

R	

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 169	

One approach:
1.  Map letters into integer 2-tuples representing X and Y

displacements on a Cartesian plane.
2.  Sum the X and Y displacements to yield a net displacement.

Example:
 Argument value: "nnee"
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
 Sum of tuples: (2,2)

Another:

 Argument value: "nnessw"
 Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
 Sum of tuples: (0,0)

travel, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 170	

Two helpers:
mapMove :: Char -> (Int, Int)
mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)
mapMove c = error ("Unknown direction: " ++ [c])

sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

travel, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 171	

Missing case found with
ghci	
 -­‐fwarn-­‐incomplete-­‐pa6erns	

travel itself:

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 makeTuples [] = []
 makeTuples (c:cs) = mapMove c : makeTuples cs

 tuples = makeTuples s
 disp = sumTuples tuples

As is, mapMove and sumTuples (previous slide) are at the
top level but makeTuples is hidden inside travel. How
should they be arranged?

travel, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 172	

travel s
 | disp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 tuples = makeTuples s
 disp = sumTuples tuples

 makeTuples [] = []
 makeTuples (c:cs) =

 mapMove c:makeTuples cs

 mapMove 'n' = (0,1)
 mapMove 's' = (0,-1)
 mapMove 'e' = (1,0)
 mapMove 'w' = (-1,0)

 sumTuples [] = (0,0)
 sumTuples ((x,y):ts) = (x + sumX, y + sumY)
 where
 (sumX, sumY) = sumTuples ts

Sidebar: top-level vs. hidden functions
Top-level functions can be
tested after code is loaded
but functions inside a
where block are not visible.

The functions at left are
hidden in the where block
but they can easily be
changed to top-level using a
shift or two with an editor.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 173	

New lines for mapMove and
sumTuples not shown. (Lazy!)

Here's an early question when planning a course:
 "How many lectures will there be?"

How should we answer that question?

Write a Haskell program!

But maybe that's what only a maniac would do!

Should we Google for a course planning app instead?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 174	

Real world problem: Planning a course

One approach:
> classdays ...arguments...
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
#5 H 1/29
...

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 175	

classdays

Let's start with something simple:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
#5 H 1/29
...

The first and last days are represented with (month,day) tuples.

The third argument shows the pattern of class days: the first is
a Thursday, and it's five days to the next class.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 176	

Arguments for classdays

There's a Data.Time.Calendar module but writing two
minimal date handling functions provides good practice.

> toOrdinal (12,31)
365 -- 12/31 is the last day of the year

> fromOrdinal 32
(2,1) -- The 32nd day of the year is February 1.

What's a minimal data structure that could help us?
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

 (1,31) The last day in January is the 31st day of the year
 (7,212) The last day in July is the 212th day of the year

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 177	

Date handling

offsets = [(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

toOrdinal (month, day) = days + day
 where
 (_,days) = offsets!!(month-1)

fromOrdinal ordDay =
 fromOrdinal' (reverse offsets) ordDay
 where
 fromOrdinal' ((month,lastDay):t) ordDay
 | ordDay > lastDay = (month + 1, ordDay - lastDay)
 | otherwise = fromOrdinal' t ordDay

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 178	

toOrdinal and fromOrdinal

> toOrdinal (12,31)
365

> fromOrdinal 32
(2,1)

Recall:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
...

Ordinals for (1,15) and (5,6) are 15 and 126, respectively.

With the Thursday-Tuesday pattern we'd see the dates
progressing like this:

 15, 20, 22, 27, 29, 34, 36, 41, ...

 +5 +2 +5 +2 +5 +2 +5 ...

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 179	

...

Imagine this series of calls to a helper, classdays':

classdays' 1 15 126 [('H',5),('T',2)]
classdays' 2 20 126 [('T',2),('H',5)]
classdays' 3 22 126 [('H',5),('T',2)]
classdays' 4 27 126 [('T',2),('H',5)]
...
classdays' 32 125 126 [('T',2),('H',5)]
classdays' 33 127 126 [('H',5),('T',2)]

What computations do we need to transform

 classdays' 1 15 126 [('H',5),('T',2)]
into

 "#1 H 1/15"?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 180	

Desired output:
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5
(none!)

We have: classdays' 1 15 126 [('H',5),('T',2)]
We want: "#1 H 1/15"

A handy function: show :: Show a => a -> String

> show 123
"123"

Let's write showOrdinal :: Integer -> [Char]

> showOrdinal 15
"1/15"

showOrdinal ordDay = show month ++ "/" ++ show day
 where
 (month,day) = fromOrdinal ordDay

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 181	

1 is lecture #1; 15 is 15th day of year

We have: classdays' 1 15 126 [('H',5),('T',2)]
We want: "#1 H 1/15"
We wrote:

> showOrdinal 15
"1/15"

Now we're ready for a first version of classdays':
classdays'
 lecNum first last ((dayOfWeek, daysToNext):_) =
 "#" ++ show lecNum ++ " " ++ [dayOfWeek] ++
 " " ++ showOrdinal first ++ "\n"

Usage:
> classdays' 1 15 126 [('H',5),('T',2)]
"#1 H 1/15\n"
> classdays' 32 125 126 [('T',2),('H',5)]
"#32 T 5/5\n"

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 182	

Recall:
classdays' 1 15 126 [('H',5),('T',2)]
classdays' 2 20 126 [('T',2),('H',5)]
...
classdays' 32 125 126 [('T',2),('H',5)]
classdays' 33 127 126 [('H',5),('T',2)]

Let's "cons up" list out of the results of those calls...
> classdays' 1 15 126 [('H',5),('T',2)] :
 classdays' 2 20 126 [('T',2),('H',2)] :

 "...MORE..." : -- I literally typed "...MORE..."
 classdays' 32 125 126 [('T',2),('H',5)] :
 classdays' 33 127 126 [('H',5),('T',2)] : []

["#1 H 1/15\n","#2 T 1/20\n","...MORE...","#32 T
5/5\n","#33 H 5/7\n"]

How close are the contents of that list to what we need?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 183	

 Desired output:
#1 H 1/15
#2 T 1/20
...
#32 T 5/5
(none!)

At hand:
> classdays' 1 15 126 [('H',5),('T',2)] :
 classdays' 2 20 126 [(T',2),('H',5)] :

 "...MORE..." : -- I literally typed "...MORE..."
 classdays' 32 125 126 [('T',2),('H',5)] :
 classdays' 33 127 126 [('H',5),('T',2)] : []

["#1 H 1/15\n","#2 T 1/20\n","...MORE...","#32 T
5/5\n","#33 H 5/7\n"]

Now we're ready to write a recursive classdays':
classdays'
 lecNum first last ((dayOfWeek, daysToNext):pairs)
 | first > last = []
 | otherwise = ("#" ++ show lecNum ++ " " ++
 [dayOfWeek] ++ " " ++ showOrdinal first ++ "\n")
 : classdays' (lecNum+1) (first+daysToNext) last pairs

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 184	

At hand:
classdays' lecNum first last
 ((dayOfWeek, daysToNext):pairs)
 | first > last = []
 | otherwise =

 ("#" ++ show lecNum ++ " " ++ [dayOfWeek]
 ++ " " ++ showOrdinal first ++ "\n")
 :

 classdays'
 (lecNum+1) (first+daysToNext) last pairs

Let's try it:
> classdays' 1 15 126 [('H',5),('T',2)]
["#1 H 1/15\n","#2 T 1/20\n"
*** Exception: Non-exhaustive patterns in function
classdays'

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 185	

What's the problem?
> classdays' 1 15 126 [('H',5),('T',2)]
["#1 H 1/15\n","#2 T 1/20\n"
*** Exception: Non-exhaustive patterns ...

classdays' lecNum first last
 ((dayOfWeek, daysToNext):pairs)
 | first > last = []
 | otherwise =

 (...format an entry like "#1 H 1/15"...)
 : classdays'

 (lecNum+1) (first+daysToNext) last pairs

We ran out of pairs in [('H',5),('T',2)]! Ideas?
Just reverse [('H',5),('T',2)] each time instead of consuming it?
What about a MWF schedule? [('M',2),('W',2),('F',3)]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 186	

How about supplying more pairs?
> classdays' 1 15 126 [('H',5),('T',2),('H',5),('T',2)]
["#1 H 1/15\n","#2 T 1/20\n","#3 H 1/22\n",
"#4 T 1/27\n"
*** Exception: Non-exhaustive patterns

Would work if given enough pairs, but silly! Ideas?
> :t cycle
cycle :: [a] -> [a]

> cycle [('H',5),('T',2)]
[('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',
5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',
2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',
5),('T',2),('H',5),...check Words with Friends...^C

cycle produces a supply of pairs that will never run out!
CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 187	

Let's replace the finite two-tuple list with a list of tuples that
infinitely repeats!

> classdays' 1 15 126 (cycle [('H',5),('T',2)])
["#1 H 1/15\n","#2 T 1/20\n","#3 H 1/22\n",

 ...MORE...,
 "#30 T 4/28\n","#31 H 4/30\n","#32 T 5/5\n"]

Look! A very practical use of an infinite list!

How would we handle it in Java?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 188	

classdays first last pattern = putStr (concat result)
 where
 result = classdays'

 1 (toOrdinal first) (toOrdinal last) (cycle pattern)

> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
...
#31 H 4/30
#32 T 5/5
(last line removed after copies)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 189	

classdays—Final answer

Consider a function tally that counts character occurrences in a
string:

> tally "a bean bag"
a 3
b 2
 2
g 1
n 1
e 1

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

 In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

tally

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 190	

{-
incEntry c tups

tups is a list of (Char, Int) tuples that indicate how many
times a character has been seen.

incEntry produces a copy of tups with the count in the
tuple containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.

-}

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [] = [(c, 1)]
incEntry c ((char, count):entries)
 | c == char = (char, count+1) : entries
 | otherwise = (char, count) : incEntry c entries

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 191	

[('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

Calls to incEntry with 't', 'o', 'o':
> incEntry 't' []
[('t',1)]

> incEntry 'o' it
[('t',1),('o',1)]

> incEntry 'o' it
[('t',1),('o',2)]

tally, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 192	

-- mkentries s calls incEntry for each character
-- in the string s

mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
 where
 mkentries' [] entries = entries
 mkentries' (c:cs) entries =
 mkentries' cs (incEntry c entries)

> mkentries "tupple"
[('t',1),('u',1),('p',2),('l',1),('e',1)]

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 193	

{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]
insert v (x:xs)
 | isOrdered (v,x) = v:x:xs
 | otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []
sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 194	

{- fmt_entries prints (Char, Int) tuples one per line -}
fmt_entries [] = ""
fmt_entries ((c, count):es) =

 [c] ++ " " ++ (show count) ++ "\n" ++ fmt_entries es

{- grand finale -}
tally s = putStr (fmt_entries (sort (mkentries s)))

> tally "cocoon"
o 3
c 2
n 1

tally, continued

•  How does this solution exemplify functional
programming? (slide 23)

•  How is it like imperative programming?

•  How is it like procedural programming (s. 5)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 195	

Let's run it on lectura...
% code=/cs/www/classes/cs372/spring15/haskell

% cat $code/tally.hs
... everything we've seen before and now a main:
main = do
 bytes <- getContents -- reads all of standard input
 tally bytes

% echo -n cocoon | runghc $code/tally.hs
o 3
c 2
n 1

Running tally from the command line

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 196	

$code/genchars N generates N random letters:

% $code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million characters:
 % $code/genchars 1000000 |

 time runghc $code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
% head -3 out
s 19553
V 19448
 J 19437

tally from the command line, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 197	

Let's try a compiled executable.

% ghc --make -rtsopts tally.hs

% ls -l tally
-rwxrwxr-x 1 whm whm 1118828 Feb 1 22:41 tally

% $code/genchars 1000000 |

 time ./tally +RTS -K40000000 -RTS >out
7.44user 0.29system 0:07.82elapsed 98%CPU

Speculate: How fast would a Java version of tally run? C?
Python? Ruby?

tally from the command line, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 198	

Errors

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 199	

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

Syntax errors

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 200	

What syntax errors do you see in the following file?

% cat synerrors.hs
let f x =
 | x < 0 == y + 10
 | x != 0 = y + 20
 otherwise = y + 30
 where
 g x:xs = x
 y =
 g [x] + 5
 g2 x = 10

Syntax errors, continued

no let before
functions in files

no = before guards

=, not ==
before result

use /= for
inequality missing | before

otherwise

Needs parens:
(x:xs)

continuation should
be indented violates layout rule (a.k.a. off-side rule)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 201	

Line and column information is included in syntax errors.

% cat synerror2.hs
weather temp | temp >= 80 = "Hot!"
 | temp >= 70 "Nice"
 | otherwise = "Cold!"

% ghci synerror2.hs
...
[1 of 1] Compiling Main (synerror2.hs, interpreted)

synerror2.hs:3:14: parse error on input `|'

3:14 indicates an error has been detected at line 3, column 14.

What's the error?

Syntax errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 202	

If only concrete types are involved, type errors are typically
easy to understand.

> chr 'x'
<interactive>:9:5:
 Couldn't match expected type `Int' with actual

 type `Char'
 In the first argument of `chr', namely 'x'
 In the expression: chr 'x'
 In an equation for `it': it = chr 'x'

> :type chr
chr :: Int -> Char

Type errors

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 203	

Code:
countEO (x:xs)
 | odd x = (evens, odds+1)
 | otherwise = (evens+1, odds)
 where (evens,odds) = countEO

 What's the error?
 Couldn't match expected type `(t3, t4)'
 with actual type `[t0] -> (t1, t2)'
 In the expression: countEO
 In a pattern binding: (evens, odds) = countEO

What's the problem?
It's expecting a tuple, (t3,t4) but it's getting a function,
[t0] -> (t1, t2)

Type errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 204	

How about this one?
> length
 No instance for (Show ([a0] -> Int)) arising from a
 use of `print'
 Possible fix: add an instance declaration for

 (Show ([a0] -> Int))
 In a stmt of an interactive GHCi command: print it

> :type print
print :: Show a => a -> IO ()

Typing an expression at the ghci prompt causes it to be
evaluated and print called with the result. The (trivial) result
here is a function, and functions aren't in the Show type class.

Type errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 205	

Disregard! Fixed by
Text.Show.Functions!

Code and error:
f x y
 | x == 0 = []
 | otherwise = f x

 Couldn't match expected type `[a1]' with actual type
 `t0 -> [a1]'
 In the return type of a call of `f'
 Probable cause: `f' is applied to too few arguments
 In the expression: f x

The error message is perfect in this case but in general note
that an unexpected actual type that's a function suggests too
few arguments are being supplied for some function.

Type errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 206	

Is there an error in the following?
f [] = []
f [x] = x
f (x:xs) = x : f xs

 Occurs check: cannot construct the infinite

 type: a0 = [a0] ("a0 is a list of a0s"--whm)
 In the first argument of `(:)', namely `x'
 In the expression: x : f xs
 In an equation for `f': f (x : xs) = x : f xs

Without the second pattern, it turns into an identity function on lists:
f [1,2,3] == [1,2,3]

What's the problem?

Technique: Comment out cases to find the troublemaker.

Type errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 207	

What's happening here?
> :type ord
ord :: Char -> Int

> ord 5
<interactive>:2:5:
 No instance for (Num Char) arising from the

 literal `5'
 Possible fix: add an instance declaration for

 (Num Char)

Why does that error cite (Num Char)? It seems to be saying
that if Char were in the Num type class the expression would
be valid.

Type errors, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 208	

Higher-order functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 209	

Note: next set of slides!

Take	
 a
	
 break

?	

A fundamental characteristic of a functional language: functions are
values that can be used as flexibly as values of other types.

This let creates a function value and binds the name add to it.

 > let add x y = x + y

This let binds the name plus to the value of add, whatever it is.

 > let plus = add

Either of the names can be used to reference the function value:

> add 3 4
7
> plus 5 6
11

Functions as values

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 210	

...code...

add

...code...

add , plus

Can functions be compared?
> add == plus

<interactive>:25:5:
 No instance for (Eq (Integer -> Integer -> Integer))
 arising from a use of `=='
In the expression: add == plus

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 211	

Functions as values, continued

Line by line, what are the following expressions doing?
> let fs = [head, last]

> fs
[<function>,<function>]

> let ints = [1..10]

> head fs ints
1

> (fs!!1) ints
10

Functions as values, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 212	

Is the following valid?
> [take, tail, init]
Couldn't match type `[a2]' with `Int'
 Expected type: Int -> [a0] -> [a0]
 Actual type: [a2] -> [a2]
 In the expression: init

What's the problem?
 take does not have the same type as tail and init.

Puzzle: Make [take, tail, init] valid by adding two characters.

> [take 5, tail, init]
[<function>,<function>,<function>]

Functions as values, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 213	

Definition: A higher-order function is a function that has one
or more arguments that are functions.

twice is a higher-order function with two arguments: f and x

 twice f x = f (f x)

What does it do?

> twice tail [1,2,3,4,5]
[3,4,5]

> tail (tail [1,2,3,4,5])
[3,4,5]

.

A simple higher-order function

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 214	

At hand:
 > let twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's make the precedence explicit:

> ((twice tail) [1,2,3,4,5])
[3,4,5]

Consider a partial application...
> let t2 = twice tail
> t2
<function>
it :: [a] -> [a]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 215	

twice, continued

-- like let t2 x = tail (tail x)

At hand:
 > let twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's give twice a partial application!

> twice (drop 2) [1..5]
[5]

Let's make a partial application with a partial application!

> twice (drop 5)
<function>
> it ['a'..'z']
"klmnopqrstuvwxyz"

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 216	

twice, continued

Try these!
 twice (twice (drop 3)) [1..20]
 twice (twice (take 3)) [1..20]

At hand:
 twice f x = f (f x)

What's the the type of twice?

> :t twice
twice :: (t -> t) -> t -> t

Parentheses added to show precedence:
twice :: (t -> t) -> (t -> t)

 twice f x = f (f x)

What's the correspondence between the elements of the clause
and the elements of the type?

twice, continued

A higher-order function is a
function that has one or more
arguments that are functions.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 217	

Recall double x = x * 2

map is a Prelude function that applies a function to each
element of a list, producing a new list:

> map double [1..5]
[2,4,6,8,10]

> map length (words "a few words")
[1,3,5]

> map head (words "a few words")
"afw"

Is map a higher order function?

The Prelude's map function

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 218	

At hand:
> map double [1..5]
[2,4,6,8,10]

Write it!
 map _ [] = []
map f (x:xs) = f x : map f xs

What is its type?

map :: (t -> a) -> [t] -> [a]

What's the relationship between the length of the input and
output lists?

map, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 219	

Mapping (via map) is applying a transformation (a function)
to each of the values in a list, producing a new list of the same
length.

> map chr [97,32,98,105,103,32,99,97,116]
"a big cat"

> map isLetter it
[True,False,True,True,True,False,True,True,True]

> map not it
[False,True,False,False,False,True,False,False,False]

> map head (map show it) -- Note: show True is "True"
"FTFFFTFFF"

map, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 220	

Here's another map:
> map weather [85,55,75]
["Hot!","Cold!","Nice"]

This is equivalent:
> [weather 85, weather 55, weather 75]
["Hot!","Cold!","Nice"]

Because functions have no side effects, we can immediately
turn a mapping into a parallel computation. We might start
each function call on a separate processor and combine the
values when all are done.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 221	

Sidebar: map can go parallel

What's the result of these?
> map (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]

> map (drop 1) (words "the knot was cold")
["he","not","as","old"]

> map (replicate 5) "abc"
["aaaaa","bbbbb","ccccc"]

map and partial applications

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 222	

What's going on here?
> let f = map double
> f [1..5]
[2,4,6,8,10]

> map f [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's the above in one step:

> map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's one way to think about it:
 [(map double) [1..3], (map double) [10..15]]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 223	

map and partial applications, cont.

Some of the problems on the next assignment will encourage
working with higher-order functions by prohibiting recursion!

Think of it as isolating muscle groups when weight training.

Here's a simple way to avoid what's prohibited:

 Pretend that you no longer understand recursion!
 What's a base case? Is it related to baseball?
 Why would a function call itself? How's it stop?
 Is a recursive plunge refreshing?

If you were UNIX machines, I'd do chmod 0 on an
appropriate section of your brains.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 224	

Now that we're good at recursion...

Recall our traveling robot: (slide 168)
> travel "nnee"
"Got lost"

> travel "nnss"
"Got home"

Recall our approach:

 Argument value: "nnee"
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
 Sum of tuples: (2,2)

How can we solve it non-recursively?

 CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 225	

travel revisited

Recall:
> :t mapMove
mapMove :: Char -> (Int, Int)

> mapMove 'n'
(0,1)

Now what?

> map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]

Can we sum them with map?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 226	

travel, continued

We have:
> let disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]

We want: (2,3)

Any ideas?

> :t fst
fst :: (a, b) -> a

> map fst disps
[0,0,1,1,0]

> map snd disps
[1,1,0,0,1]

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 227	

travel, continued

We have:
> let disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
> map fst disps
[0,0,1,1,0]
> map snd disps
[1,1,0,0,1]

We want: (2,3)

Ideas?

> :t sum
sum :: Num a => [a] -> a

> (sum (map fst disps), sum (map snd disps))
(2,3)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 228	

travel, revisited

travel :: [Char] -> [Char]
travel s
 | totalDisp == (0,0) = "Got home"
 | otherwise = "Got lost"
 where
 disps = map mapMove s
 totalDisp = (sum (map fst disps),
 sum (map snd disps))

Did we have to understand recursion to write this?

A peek ahead:

> disps
[(0,1),(0,1),(1,0),(1,0),(0,1)]

> foldr (\(x,y) (ax,ay) -> (x+ax,y+ay)) (0,0) disps
(2,3)

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 229	

travel—Final answer

Instead of using map (add 5) to add 5 to the values in a list,
we should use a section instead: (it's the idiomatic way!)

> map (5+) [1,2,3]
[6,7,8]

More sections:
> map (10*) [1,2,3]
[10,20,30]

> map (++"*") (words "a few words")
["a*","few*","words*"]

> map ("*"++) (words "a few words")
["*a","*few","*words"]

Sidebar: "sections"

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 230	

-- [5+ 1, 5+ 2, 5+ 3]

Sections have one of two forms:

 (infix-operator value) Examples: (+5), (/10)

 (value infix-operator) Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.

> map (3<=) [1..4]
[False,False,True,True]

> map (<=3) [1..4]
[True,True,True,False]

Sections aren't just for map; they're a general mechanism.
> twice (+5) 3
13

"sections", continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 231	

[3 <= 1, 3 <= 2, 3 <= 3, 3 <= 4]

 [1 <= 3, 2 <= 3, 3 <= 3, 4 <= 4]

Another higher order function in the Prelude is filter:
> filter odd [1..10]
[1,3,5,7,9]

> filter isDigit "(800) 555-1212"
"8005551212"

What's filter doing?

What is the type of filter?

filter :: (a -> Bool) -> [a] -> [a]

Filtering

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 232	

More...
> filter (<= 5) (filter odd [1..10])
[1,3,5]

> map (filter isDigit) ["br549", "24/7"]
["549","247"]

> filter (`elem` "aeiou") "some words here"
"oeoee"

 Note that (`elem` ...) is a section!
 elem :: Eq a => a -> [a] -> Bool

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 233	

filter, continued

At hand:
> filter odd [1..10]
[1,3,5,7,9]

> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Let's write filter!
myfilter _ [] = []
myfilter f (x:xs)
 | f x = x : filteredTail
 | otherwise = filteredTail
 where
 filteredTail = myfilter f xs

filter, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 234	

filter's first argument (a function) is called a predicate because
inclusion of each value is predicated on the result of calling
that function with that value.

Several Prelude functions use predicates. Here are two:

all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]
True
> all even [2,4,6,7]
False

dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing "
> dropWhile isLetter it
" "

 filter uses a predicate

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 235	

For reference:
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]

> filter odd [1..10]
[1,3,5,7,9]

map:

 transforms values
 length input == length output

filter:

 selects values
 0 <= length output <= length input

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 236	

map vs. filter

We can map a section to double the numbers in a list:
> map (*2) [1..5]
[2,4,6,8,10]

Alternatively we could use an anonymous function:

> map (\x -> x * 2) [1..5]
[2,4,6,8,10]

What are things we can do with an anonymous function that we
can't do with a section?

> map (\n -> n * 3 + 7) [1..5]
[10,13,16,19,22]

> filter (\x -> head x == last x) (words "pop top suds")
["pop","suds"]

Anonymous functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 237	

The general form:
 \ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.

 map (\x -> x * 2) [1..5]

The typical use case for an anonymous function is a single instance
of supplying a higher order function with a computation that can't be
expressed with a section or partial application.

Anonymous functions are also called lambdas, lambda expressions,
and lambda abstractions.

The \ character was chosen due to its similarity to λ, used in
Lambda calculus, another system for expressing computation.

Anonymous functions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 238	

Imagine a program to print the longest line(s) in a file, along
with their line numbers:

% runghc longest.hs /usr/share/dict/web2
72632:formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificophilosophical
200796:tetraiodophenolphthalein
203042:thyroparathyroidectomize

What are some ways in which we could approach it?

Example: longest line(s) in a file

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 239	

Take	
 a	
 break?
	

Let's work with a shorter file for development testing:
% cat longest.1
data
to
test

readFile in the Prelude returns the full contents of a file as a
string:

> readFile "longest.1"
"data\nto\ntest\n"

To avoid wading into I/O yet, let's focus on a function that
operates on a string of characters (the full contents of a file):

> longest "data\nto\ntest\n"
"1:data\n3:test\n"

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 240	

Let's work through a series of transformations of the data:
> let bytes = "data\nto\ntest\n"

> let lns = lines bytes
["data","to","test"]

Note: To save space, values of let bindings are being shown
immediately after each let. E.g., > lns is not shown above.

Let's use zip3 and map length to create (length, line-number,
line) triples:

> let triples = zip3 (map length lns) [1..] lns
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 241	

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

Let's use sort :: Ord a => [a] -> [a] on them:

> let sortedTriples = reverse (sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

Note that by having the line length first, triples are sorted first by
line length, with ties resolved by line number.

We use reverse to get a descending order.

If line length weren't first, we'd instead use

 Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a]
and supply a function that returns an Ordering.

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 242	

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

We'll handle ties by using takeWhile to get all the triples with
lines of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:

> let first (len, _, _) = len
> let maxLength = first (head sortedTriples)
4

first will be used in another place but were it not for that we
might have used a pattern:

 let (maxLength,_,_) = head sortedTriples

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 243	

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength
4

Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the
triples having the maximum length:

> let maxTriples = takeWhile

 (\triple -> first triple == maxLength) sortedTriples
[(4,3,"test"),(4,1,"data")]

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 244	

anonymous function for takeWhile

At hand:
> maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines
prefixed with their line number:

> let linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 ["3:test","1:data"]

We can now produce a ready-to-print result:

> let result = unlines (reverse linesWithNums)
> result
"1:data\n3:test\n"

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 245	

Let's package up our work into a function:
longest bytes = result
 where
 lns = lines bytes
 triples = zip3 (map length lns) [1..] lns
 sortedTriples = reverse (sort triples)
 maxLength = first (head sortedTriples)
 maxTriples = takeWhile
 (\triple -> first triple == maxLength) sortedTriples

 linesWithNums =
 map (\(_,num,line) -> show num ++ ":" ++ line)
 maxTriples

 result = unlines (reverse linesWithNums)

 first (x,_,_) = x

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 246	

At hand:
> longest "data\nto\ntest\n"
"1:data\n3:test\n"

Let's add a main that handles command-line args and does I/O:

% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do
 args <- getArgs -- Get command line args as list
 bytes <- readFile (head args)
 putStr (longest bytes)

Execution:
$ runghc longest.hs /usr/share/dict/words
39886:electroencephalograph's

longest, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 247	

Given two functions f and g, the composition of f and g is a
function c that for all values of x, (c x) equals (f (g x))

Here is a primitive compose function that applies two
functions in turn:

> let compose f g x = f (g x)

Its type: (How many arguments?)
(b -> c) -> (a -> b) -> a -> c

> compose init tail [1..5]
[2,3,4]

> compose signum negate 3
-1

Function composition

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 248	

Haskell has a function composition operator. It is a dot (.)
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Its two operands are functions, and its result is a function.

> let numwords = length . words

> numwords "just testing this"
3

Composition, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 249	

Problem: Using composition create a function that returns the
next-to-last element in a list:

> ntl [1..5]
4

> ntl "abc"
'b'

Solution:
 > let ntl = head . tail . reverse

Another?
> let ntl = head . reverse . init

Composition, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 250	

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

Solution:

> let rmdigits = filter (not . isDigit)

Given the following, describe f:
> let f = (*2) . (+3)

> map f [1..5]
[8,10,12,14,16]

Would an anonymous function be a better choice?

Composition, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 251	

Given the following, what's the type of numwords?
> :type words
words :: String -> [String]

> :type length
length :: [a] -> Int

> let numwords = length . words

Type:

 numwords :: String -> Int

Assuming a composition is valid, the type is based only on the input
of the rightmost function and the output of the leftmost function.

 (.) :: (b -> c) -> (a -> b) -> a -> c

Composition, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 252	

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

What the difference between these two bindings for rmdigits?

rmdigits s = filter (not . isDigit) s

rmdigits = filter (not . isDigit)

The latter declaration is in point-free style. (Look, no ss!)

A point-free binding of a function f has NO parameters!

Is the following a point-free function binding or a partial
application?

 t5 = take 5

Point-free style

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 253	

Problem: Using point-free style, bind len to a function that works
like the Prelude's length.

Hint:

> :t const
const :: a -> b -> a

> const 10 20
10

> const [1] "foo"
[1]

Solution:
len = sum . map (const 1)

See also: Tacit programming on Wikipedia

Point-free style, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 254	

Hocus pocus with
higher-order functions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 255	

What's this function doing?
f a = g
 where
 g b = a + b

Type?

 f :: Num a => a -> a -> a

Interaction:

> let f ' = f 10
> f ' 20
30

> f 3 4
7

Mystery function

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 256	

Consider this claim:
A function definition in curried form, which is idiomatic in
Haskell, is really just syntactic sugar.

Compare these two completely equivalent declarations for add:

 add x y = x + y

 add x = add'
 where
 add' y = x + y

The result of the call add 5 is essentially this function:

 add' y = 5 + y

The combination of the code for add' and the binding for x is
known as a closure. It contains what's needed for execution.

DIY Currying

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 257	

A language construct that makes
something easier to express but
doesn't add a new capability is
called syntactic sugar.

DIY currying in JavaScript
JavaScript doesn't provide the syntactic sugar of curried
function definitions but we can do this:

function add(x) {
 return function (y) { return x + y }
 }

Try it in Chrome!

View>Developer>	

JavaScript	
 Console
brings up the
console.

Type in the code for
add	
 on one line.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 258	

>>> def add(x):
... return lambda y: x + y
...

>>> f = add(5)

>>> type(f)
<type 'function'>

>>> map(f, [10,20,30])
[15, 25, 35]

DIY currying in Python

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 259	

Here's another mystery function:

> let m f x y = f y x

> :type m
m :: (t1 -> t2 -> t) -> t2 -> t1 -> t

Can you devise a call to m?
> m add 3 4
7

> m (++) "a" "b"
"ba"

What is m doing? What could m be useful for?

Another mystery function

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 260	

At hand:
 m f x y = f y x

 m is actually a Prelude function named flip:
> :t flip
flip :: (a -> b -> c) -> b -> a -> c

> flip take [1..10] 3
[1,2,3]

> let ftake = flip take
> ftake [1..10] 3
[1,2,3]

Any ideas on how to use it?

flip

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 261	

At hand:
 flip f x y = f y x

> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:

> f 'a'
["a","aa","aaa","aaaa","aaaaa",...

Solution:
 > let f x = map (flip replicate x) [1..]

flip, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 262	

From assignment 1:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]

Many students have noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write splits using higher order functions but no
explicit recursion.

Solution:

splits list = map (flip splitAt list) [1..(length list - 1)]

flip, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 263	

$ is the "application operator". Note what :info shows:
> :info ($)
($) :: (a -> b) -> a -> b
infixr 0 $ -- right associative infix operator with very
 -- low precedence

The following declaration of $ uses an infix syntax:

f $ x = f x -- Equivalent: ($) f x = f x

Usage:

> negate $ 3 + 4
-7

What's the point of it?

The $ operator

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 264	

$ is a low precedence, right associative operator that applies a
function to a value:

 f $ x = f x

Because + has higher precedence than $ the expression

 negate $ 3 + 4
 groups like this:

 negate $ (3 + 4)

How does the following expression group?

 filter (>3) $ map length $ words "up and down"

 filter (>3) (map length (words "up and down"))

The $ operator, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 265	

Problem: We're given a function whose argument is a two-tuple
but we wish it were curried so we could use a partial
application of it.

g :: (Int, Int) -> Int
g (x,y) = x^2 + 3*x*y + 2*y^2

> g (3,4)
77

Solution: Curry it with curry from the Prelude!

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Your problem: Write curry!

Currying the uncurried

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 266	

At hand:
> g (3,4)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Here's curry, and use of it:

 curry :: ((a, b) -> c) -> (a -> b -> c) (latter parens added to help)
 curry f x y = f (x,y)

> let cg = curry g
> :type cg
cg :: Int -> Int -> Int

> cg 3 4
77

Currying the uncurried, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 267	

At hand:
 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

 Call: curry g 3

 Dcl: curry f x y = f (x, y)
 = g (3, y)

Currying the uncurried, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 268	

At hand:
 curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
 curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Let's get flip into the game!

> map (flip (curry g) 4) [1..10]
[45,60,77,96,117,140,165,192,221,252]

The counterpart of curry is uncurry:

> uncurry (+) $ (3,4) uncurry (+) (3,4)
7

Currying the uncurried, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 269	

function curry(f) {
 return function(x) {
 return function (y) { return f(x,y) }

 }
 }

A curry function for JavaScript

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 270	

Folding

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 271	

Note: next set of slides!

QUIZ!

We can reduce a list by a binary operator by inserting that operator
between the elements in the list:

[1,2,3,4] reduced by + is 1 + 2 + 3 + 4

["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"

Imagine a function reduce that does reduction by an operator.

> reduce (+) [1,2,3,4]
10

> reduce (++) ["a","bc","def"]
"abcdef"

> reduce max [10,2,4]
10

> map (reduce max) (permutations [10,2,4])
[10,10,10,10,10,10] -- permutations is from Data.List

Reduction

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 272	

 -- think of	
 10 `max` 2 `max` 4

At hand:
> reduce (+) [1,2,3,4]
10

An implementation of reduce:

reduce _ [] = undefined
reduce _ [x] = x
reduce op (x:xs) = x `op` reduce op xs

Does reduce + [1,2,3,4] do
 ((1 + 2) + 3) + 4

or
 1 + (2 + (3 + 4))

?

In general, when would the grouping matter?

Reduction, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 273	

In the Prelude there's no reduce but there is foldl1 and foldr1.

>	
 foldl1	
 (/)	
 [1,2,3]	

0.16666666666666666	
 	
 -­‐-­‐	
 leZ	
 associa[ve:	
 (1	
 /	
 2)	
 /	
 3	

	

>	
 foldr1	
 (/)	
 [1,2,3] 	
 	
 	
 -­‐-­‐	
 right	
 associa[ve:	
 1	
 /	
 (2	
 /	
 3)	

1.5	

Here's the type of foldr1:

	
 foldr1	
 ::	
 (a	
 -­‐>	
 a	
 -­‐>	
 a)	
 -­‐>	
 [a]	
 -­‐>	
 a	

Here's the type of a related function, foldr (no "1"):

 foldr	
 ::	
 (a	
 -­‐>	
 b	
 -­‐>	
 b)	
 -­‐>	
 b	
 -­‐>	
 [a]	
 -­‐>	
 b	

What are the differences between the two?

foldl1 and foldr1	

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 274	

For reference:
foldr1	
 ::	
 (a	
 -­‐>	
 a	
 -­‐>	
 a)	
 -­‐>	
 [a]	
 -­‐>	
 a	

foldr	
 ::	
 (a	
 -­‐>	
 b	
 -­‐>	
 b)	
 -­‐>	
 b	
 -­‐>	
 [a]	
 -­‐>	
 b	

	

Use:
>	
 foldr1	
 (+)	
 [1..4]	

10	

	

>	
 foldr	
 (+)	
 0	
 [1..4]	

10	

	

>	
 foldr	
 (+)	
 0	
 [] 	
 -­‐-­‐	
 Empty	
 list	
 is	
 excep[on	
 with	
 foldr1	

0	

foldr1 vs. foldr	

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 275	

For reference:
foldr1	
 ::	
 (a	
 -­‐>	
 a	
 -­‐>	
 a)	
 -­‐>	
 [a]	
 -­‐>	
 a	
 	
 -­‐-­‐	
 reduction, like 1+2+3+4
foldr	
 ::	
 (a	
 -­‐>	
 b	
 -­‐>	
 b)	
 -­‐>	
 b	
 -­‐>	
 [a]	
 -­‐>	
 b	
 	
 -­‐-­‐	
 something different...
	

To aid understanding, here's a folding function written with the
names elem (element) and acm (accumulated value).

>	
 foldr	
 (\elem	
 acm	
 -­‐>	
 acm	
 +	
 elem)	
 0	
 [1..4]	
 	

10	

	

Here's the BIG DEAL with foldr: it can fold a list of values into
a different type!

	

>	
 foldr	
 (\elem	
 acm	
 -­‐>	
 show	
 elem	
 ++	
 "."	
 ++	
 acm)	
 "<"	
 [1..4]	

"1.2.3.4.<"	

	

Another way to think about it: 1	
 `f`	
 (2	
 `f`	
 (3	
 `f`	
 (4	
 `f`	
 "<"))) 	

foldr1 vs. foldr, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 276	

-­‐-­‐	
 IMPORTANT: Numbers in; [Char] out!

initial value for acm	

The folding function

Fill in the blank, creating a folding function that can be used to
compute the length of a list:

>	
 foldr	
 (\	

)	
 0	
 [10,20,30]	

3	

Solution:
>	
 let	
 len	
 =	
 foldr	
 (\elem	
 acm	
 -­‐>	
 acm	
 +	
 1)	
 0	

>	
 len	
 ['a'..'z']	

26	

Problem: Define map	
 in terms of foldr.
>	
 let	
 mp	
 f	
 =	
 foldr	
 (\elem	
 acm	
 -­‐>	
 f	
 elem	
 :	
 acm)	
 []	

>	
 mp	
 toUpper	
 "test"	

"TEST"	

Folding

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 277	

Recall our even/odd counter
>	
 countEO	
 [3,4,7,9]	

(1,3)	

	

Define it terms of foldr!
>	
 let	
 eo	
 =	
 foldr	
 (\val	
 (e,o)	
 -­‐>	

	
 	
 	
 	
 	
 if	
 even	
 val	
 then	
 (e+1,o)	
 else	
 (e,o+1))	
 (0,0)	

>	
 eo	
 [3,4,7,9]	

(1,3)	

	

>	
 eo	
 []	

(0,0)	

	

Strictly FYI: Instead of if/else we could have used Haskell's case:
>	
 let	
 eo	
 =	
 myfoldr	
 (\val	
 (e,o)	
 -­‐>	
 	

	
 case	
 even	
 val	
 of	
 {True	
 -­‐>	
 (e+1,o);	
 False	
 -­‐>	
 (e,o+1)})	
 (0,0)	

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 278	

initial value for acm	

Here's a definition for foldr. We're using a type specification with
multicharacter type variables to help know which is which:

foldr	
 ::	
 (val	
 -­‐>	
 acm	
 -­‐>	
 acm)	
 -­‐>	
 acm	
 -­‐>	
 [val]	
 -­‐>	
 acm	

foldr	
 f	
 acm	
 []	
 =	
 acm	

foldr	
 f	
 acm	
 (val:vals)	
 =	
 f	
 val	
 (
 foldr	
 f	
 acm	
 vals	
)	

When loaded, we see this:

>	
 :t	
 foldr	

foldr	
 ::	
 (val	
 -­‐>	
 acm	
 -­‐>	
 acm)	
 -­‐>	
 acm	
 -­‐>	
 [val]	
 -­‐>	
 acm	

	

>	
 foldr	
 (\val	
 acm	
 -­‐>	
 acm	
 ++	
 val)	
 "?"	
 (
 words	
 "a	
 test	
 here"	
)	

"?heretesta"	

IMPORTANT: There's NO connection between the type variable
names and the names in functions. We might have done this
instead: foldr	
 (\v	
 a	
 -­‐>	
 a	
 ++	
 v)	
 ...

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 279	

Problem: Write reverse in terms of a foldr.	

	

A solution, but with an issue:

	
 rv1	
 =	
 foldr	
 (\val	
 acm	
 -­‐>	
 acm	
 ++	
 [val])	
 []	

	

The issue: ++ is relatively expensive wrt. cons.

By definition, foldr operates like this:

	
 foldr	
 f	
 zero	
 [x1,	
 x2,	
 ...,	
 xn]	
 ==	
 x1	
 `f`	
 (x2	
 `f`	
 ...	
 (xn	
 `f`	
 zero)...)
	

The first application of f is with the last element and the "zero"
value, but the first cons would need to be with the first element
of the list.

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 280	

The counterpart of foldr	
 is foldl. Compare their meanings:

foldr	
 f	
 zero	
 [x1,	
 x2,	
 ...,	
 xn]	
 ==	
 x1	
 `f`	
 (x2	
 `f`	
 ...	
 (xn	
 `f`	
 zero)...)	
 	

	

foldl	
 f	
 zero	
 [x1,	
 x2,	
 ...,	
 xn]	
 ==	
 (...((zero	
 `f`	
 x1)	
 `f`	
 x2)	
 `f`...)`f`	
 xn	

	

Their types, with long type variables:
	
 foldr	
 ::	
 (val	
 -­‐>	
 acm	
 -­‐>	
 acm)	
 -­‐>	
 acm	
 -­‐>	
 [val]	
 -­‐>	
 acm	

	

	
 foldl	
 ::	
 (acm	
 -­‐>	
 val	
 -­‐>	
 acm)	
 -­‐>	
 acm	
 -­‐>	
 [val]	
 -­‐>	
 acm	

Problem: Write reverse in terms of foldl.

>	
 let	
 rev	
 =	
 foldl	
 (\acm	
 val	
 -­‐>	
 val:acm)	
 []	

>	
 rev	
 "tes[ng"	

"gnitset"	

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 281	

Note the "zeros"

Recall paired from assignment 2:
> paired "((())())"
True

Can we implement paired with a fold?

counter (-1) _ = -1
counter total '(' = total + 1
counter total ')' = total - 1
counter total _ = total

paired s = foldl counter 0 s == 0

Point-free:
paired = (0==) . foldl counter 0

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 282	

Data.List.partition partitions a list based on a predicate:

> partition isLetter "Thu Feb 13 16:59:03 MST 2014"
("ThuFebMST"," 13 16:59:03 2014")

> partition odd [1..10]
([1,3,5,7,9],[2,4,6,8,10])

Write it using a fold!
sorter f val (pass, fail) =
 if f val then (val:pass, fail) -- ML escapee from 2006!
 else (pass, val:fail)

partition f = foldr (sorter f) ([],[])

Folding, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 283	

map:
 transforms values
 length input == length output

filter:

 selects values
 0 <= length output <= length input

folding

 Input: A list of values and an initial value for accumulator
 Output: A value of any type and complexity

True or false?

Any operation that processes a list can be expressed in a
terms of a fold, perhaps with a simple wrapper.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 284	

map vs. filter vs. folding

Far-fetched folding:

Refrigerators in Gould-Simpson to
 ((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to

 [("a", #), ("b", #), ..., ("@2", #), ("CMD", #)]

[Backpack] to

 (# pens, pounds of paper,
 [(title, author, [page #s with the word "computer")])

[Furniture]

to a structure of 3D vertices representing a convex hull
that could hold any single piece of furniture.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 285	

We can fold a list of anythings into anything!

The challenge: Write a function such that f val acm can do the work for
you. Think about the "zero" value. Imagine a series of calls.

foldr does the rest! (For foldl, it's f acm val.)

> foldr (\val acm ->

 if val `elem` "aeiou" then acm+1 else acm) 0 "ate"
2

> foldr (\val acm@(n, vows) ->

 if val `elem` "aeiou" then (n+1, val:vows) else acm) (0,[]) "ate"
(2,"ae")

vowelPositions s = reverse result
 where (_,result,_) =

 foldl (\acm@(n, vows,pos) val -> -- NOTE: now foldl!
 if val `elem` "aeiou" then (n, (val,pos):vows,pos+1)
 else (n,vows,pos+1)) (0,[],0) s

> vowelPositions "Down to Rubyville!"
[('o',1),('o',6),('u',9),('i',13),('e',16)]

The challenge of folding

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 286	

	

scans	
 are	
 similar	
 to	
 folds	
 but	
 all	
 intermediate	
 values	
 are	
 produced:	

> scanl (+) 0 [1..5]
[0,1,3,6,10,15]

> let scanEO = scanl (\(e,o) val ->
 if even val then (e+1,o) else (e,o+1)) (0,0)

> scanEO [1,3,5,6,7,9]
[(0,0),(0,1),(0,2),(0,3),(1,3),(1,4),(1,5)]
	

Replacement for slide "Scans"!

User-defined types

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 287	

A new type can be created with a data declaration.

Here's a simple Shape type whose instances represent circles or
rectangles:

data Shape =
 Circle Double | -- just a radius
 Rect Double Double -- width and height

 deriving Show

The shapes have dimensions but no position.

Circle and Rect are data constructors.

"deriving Show" declares Shape to be an instance of the Show type
class, so that values can be shown using some simple, default rules.

Shape is called an algebraic type because instances of Shape are built
using other types.

A Shape type

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 288	

Instances of Shape are created by calling the data constructors:

> let r1 = Rect 3 4
> r1
Rect 3.0 4.0

> let r2 = Rect 5 3

> let c1 = Circle 2

> let shapes = [r1, r2, c1]

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

Lists must be homogeneous—why are both Rects and Circles
allowed in the same list?

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 289	

The data constructors are just functions—we can use all our
function-fu with them!

> :t Circle
Circle :: Double -> Shape

> :t Rect
Rect :: Double -> Double -> Shape

> map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 290	

Functions that operate on algebraic types use patterns based on their data
constructors.

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

Usage:

> r1
Rect 3.0 4.0

> area r1
12.0

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> sum $ map area shapes
39.56637061435917

Shape, continued

data Shape =
 Circle Double |
 Rect Double Double

 deriving Show

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 291	

Let's make the Shape type an instance of the Eq type class.

What does Eq require?

> :info Eq
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

Let's say that two shapes are equal if their areas are equal. (Iffy!)

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

Usage:

> Rect 3 4 == Rect 6 2
True

> Rect 3 4 == Circle 2
False

Shape, continued

Default definitions from Eq:
(==) a b = not $ a /= b
(/=) a b = not $ a == b

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 292	

Let's see if we can find the biggest shape:
> maximum shapes
 No instance for (Ord Shape) arising from a use of
`maximum'
 Possible fix: add an instance declaration for (Ord
Shape)

What's in Ord?

> :info Ord
class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Shape, continued

Eq a => Ord a requires
would-be Ord classes to be
instances of Eq. (Done!)

Like == and /= with Eq, the
operators are implemented in
terms of each other.

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 293	

Let's make Shape an instance of the Ord type class:
instance Ord Shape where
 (<) r1 r2 = area r1 < area r2 -- < and <= are sufficient
 (<=) r1 r2 = area r1 <= area r2

Usage:

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> maximum shapes
Rect 5.0 3.0

> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]

Note that we didn't need to write functions like sumOfAreas or
largestShape—we can express those in terms of existing operations

Shape, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 294	

Here's all the Shape code: (in shape.hs)
data Shape =
 Circle Double |
 Rect Double Double
 deriving Show

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

instance Eq Shape where
 (==) r1 r2 = area r1 == area r2

instance Ord Shape where
 (<) r1 r2 = area r1 < area r2
 (<=) r1 r2 = area r1 <= area r2

What would be needed to add a Figure8 shape and a perimeter
function?

How does this compare to a Shape/Circle/Rect hierarchy in Java?

Shape all in one place

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 295	

Let's look at the compare function:
> :t compare
compare :: Ord a => a -> a -> Ordering

Ordering is a simple algebraic type, with only three values:
> :info Ordering
data Ordering = LT | EQ | GT

> [r1,r2]
[Rect 3.0 4.0,Rect 5.0 3.0]

> compare r1 r2
LT

> compare r2 r1
GT

What do you suppose Bool really is?
> :info Bool
data Bool = False | True

Two simple algebraic types

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 296	

Here's an algebraic type for a binary tree:
data Tree a = Node a (Tree a) (Tree a) -- tree.hs
 | Empty

 deriving Show

The a is a type variable. Our Shape type used Double values but Tree
can hold values of any type!

> let t1 = Node 9 (Node 6 Empty Empty) Empty
> t1
Node 9 (Node 6 Empty Empty) Empty

> let t2 = Node 4 Empty t1
> t2
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)

A binary tree

4

9

6

t1

t2

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 297	

Here's a function that inserts values, maintaining an ordered tree:
insert Empty v = Node v Empty Empty
insert (Node x left right) value
 | value <= x = (Node x (insert left value) right)
 | otherwise = (Node x left (insert right value))

Let's insert some values...
> let t = Empty
> insert t 5
Node 5 Empty Empty

> insert it 10
Node 5 Empty (Node 10 Empty Empty)

> insert it 3
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)

How many Nodes are constructed by each of the insertions?

Tree, continued

5

10 3

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 298	

Here's an in-order traversal that produces a list of values:
inOrder Empty = []
inOrder (Node val left right) =

 inOrder left ++ [val] ++ inOrder right

What's an easy way to insert a bunch of values?
> let t = foldl insert Empty [3,1,9,5,20,17,4,12]
> inOrder t
[1,3,4,5,9,12,17,20]

> inOrder $ foldl insert Empty "tim korb"
" bikmort"

> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]
[Rect 1.0 2.0,Circle 1.0,Rect 3.0 4.0]

Tree, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 299	

Here's an interesting type:
> :info Maybe
data Maybe a = Nothing | Just a

Speculate: What's the point of it?

Here's a function that uses it:

> :t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a

How could we use it?

> find even [3,5,6,8,9]
Just 6

> find even [3,5,9]
Nothing

> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"}
"oops!"

Maybe

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 300	

 A little I/O

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 301	

Consider this function declaration
f2 x = a + b + c
 where
 a = f x
 b = g x
 c = h x

Haskell guarantees that the order of the where clause bindings is
inconsequential—those three lines can be in any order.

What enables that guarantee?

(Pure) Haskell functions depend only on the argument value. For
a given value of x, f x always produces the same result.

You can shuffle the bindings of any function's where clause without
changing the function's behavior! (Try it with longest, slide 233.)

Sequencing

a = f x
c = h x
b = g x

c = h x
b = g x
a = f x

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 302	

Imagine a getInt function, which reads an integer from standard
input (e.g., the keyboard).

Can the where clause bindings in the following function be done in
any order?

f x = r
 where
 a = getInt
 b = getInt
 r = a * 2 + b + x

The following is not valid syntax but ignoring that, is it reorderable?
greet name = ""
 where
 putStr "Hello, "
 putStr name
 putStr "!\n"

I/O and sequencing

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 303	

One way we can specify that operations are to be performed in
a specific sequence is to use a do:

% cat io2.hs
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Interaction:

% runghc io2.hs
Who goes there?
whm (typed)
Hello, whm!

I/O and sequencing, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 304	

Here's the type of putStrLn:

putStrLn :: String -> IO () ("unit", (), is the no-value value)

The type IO x represents an interaction with the outside world that
produces a value of type x. Instances of IO x are called actions.

When an action is evaluated the corresponding outside-world
activity is performed.

> let hello = putStrLn "hello!" (Note: no output here!)
hello :: IO () (Type of hello is an action.)

> hello
hello! (Evaluating hello, an action, caused output.)
it :: ()

Actions

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 305	

The value of getLine is an action that reads a line:
getLine :: IO String

We can evaluate the action, causing the line to be read, and
bind a name to the string produced:

> s <- getLine
testing

> s
"testing"

Note that getLine is not a function!

Actions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 306	

Recall io2.hs:
main = do
 putStrLn "Who goes there?"
 name <- getLine
 let greeting = "Hello, " ++ name ++ "!"
 putStrLn greeting

Note the type: main :: IO (). We can say that main is an
action. Evaluating main causes interaction with the outside
world.

> main
Who goes there?
hello?
Hello, hello?!

Actions, continued

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 307	

A pure function (1) always produces the same result for a given
argument value, and (2) has no side effects.

Is this a pure function?

twice :: String -> IO ()
twice s = do
 putStr s
 putStr s

twice "abc" will always produce the same value, an action
that if evaluated will cause "abcabc" to be output.

Is it pure?

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 308	

We want to use pure functions whenever possible but we want
to be able to do I/O, too.

In general, evaluating an action produces side effects.

Here's the Haskell solution for I/O in a nutshell:

Actions can evaluate other actions and pure functions but
pure functions don't evaluate actions.

Recall longest.hs from 233-234:
longest bytes = result where ...lots...
main = do
 args <- getArgs -- gets command line arguments
 bytes <- readFile (head args)
 putStr (longest bytes)

The Haskell solution for I/O

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 309	

In conclusion...

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 310	

If we had a whole semester to study functional programming, here's what
might be next:

•  Infinite data structures (like let x = 1:x)

•  How lazy/non-strict evaluation works

•  Implications and benefits of referential transparency (which means
that the value of a given expression is always the same).

•  Functors (structures that can be mapped over)

•  Monoids (a set of things with a binary operation over them)

•  Monads (for representing sequential computations)

•  Zippers (a structure for traversing and updating another structure)

•  And more!

Jeremiah Nelson and Matt Gautreau are great local resources for Haskell!

If we had a whole semester...

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 311	

Recursion and techniques with higher-order functions can be used in most
languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:

Functions are "first-class" values; anonymous functions are supported.

C

Pass a function pointer to a recursive function that traverses a data
structure.

C#

Excellent support for functional programming with the language itself,
and LINQ, too.

Java 8

 Lambda expressions are in!

OCaml

"an industrial strength programming language supporting functional,
imperative and object-oriented styles" – OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Even if you never use Haskell again...

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 312	

Killer Quiz!

CSC	
 372	
 Spring	
 2015,	
 Haskell	
 Slide	
 313	

