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Thomas Kuhn's The Structure of Scientific Revolutions (1962) 
describes a paradigm as a scientific achievement that is... 
 

•  "...sufficiently unprecedented to attract an enduring group 
of adherents away from competing modes of scientific 
activity." 

•  "...sufficiently open-ended to leave all sorts of problems 
for the redefined group of practitioners to resolve." 

 
Kuhn cites works such as Newton's Principia, Lavoisier's 
Chemistry, and Lyell's Geology as serving to document 
paradigms. 

Paradigms 
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A paradigm provides a conceptual framework for 
understanding and solving problems. 
 
A paradigm has a world view, a vocabulary, and a set of 
techniques that can be applied to solve a problem. 

 (Another theme for us.) 
 
A question to keep in mind: 

What are the problems that programming paradigms 
attempt to solve? 

 
 
 

Paradigms, continued 
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From the early days of programming into the 1980s the 
dominant paradigm was procedural programming: 
 

Programs are composed of bodies of code (procedures) that 
manipulate individual data elements or structures. 

 
Much study was focused on how best to decompose a large 
computation into a set of procedures and a sequence of calls. 
 
Languages like FORTRAN, COBOL, Pascal, and C facilitate 
procedural programming. 
 
Java programs with a single class are typically examples of 
procedural programming. 
 

The procedural programming paradigm 
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In the 1990s, object-oriented programming became the 
dominant paradigm.  Problems are solved by creating systems 
of objects that interact. 
 

"Instead of a bit-grinding processor plundering data 
structures, we have a universe of well-behaved objects that 
courteously ask each other to carry out their various 
desires."—Dan Ingalls 
 

Study shifted from how to decompose computations into 
procedures to how to model systems as interacting objects. 
 
Languages like C++ and Java facilitate use of an object-
oriented paradigm. 
 
 
 

The object-oriented programming paradigm 
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The programming paradigm(s) we know affect how we 
approach problems. 
 
If we use the procedural paradigm, we'll first think about 
breaking down a computation into a series of steps. 
 
If we use the object-oriented paradigm, we'll first think about 
modeling the problem with a set of objects and then consider 
their interactions. 

The influence of paradigms 
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If a language makes it easy and efficient to use a particular 
paradigm, we say that the language supports the paradigm. 
 
What language features are required to support procedural 
programming? 
•  The ability to break programs into procedures. 

 
What language features does OO programming require, for OO 
programming as you know it? 
•  Ability to define classes that comprise data and methods 
•  Ability to specify inheritance between classes 

 
 

Language support for programming paradigms 
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Paradigms in a field of science are often incompatible. 
 Example: geocentric vs. heliocentric model of the universe 

 
Can a programming language support multiple paradigms? 

 Yes!  We can do procedural programming with Java. 
 
The programming language Leda fully supports the procedural, 
imperative, object-oriented, functional, and logic programming 
paradigms. 
 
Wikipedia's Programming_paradigm cites 60+ paradigms! 
 
But, are "programming paradigms" really paradigms by Kuhn's 
definition or are they just characteristics? 

Multiple paradigms 
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The imperative paradigm has its roots in programming at the 
machine level, usually via assembly language. 
 
Machine-level programming: 
•  Instructions change memory locations or registers 
•  Instructions alter the flow of control 

 
Programming with an imperative language: 
•  Expressions compute values based on memory contents 
•  Assignments alter memory contents 
•  Control structures guide the flow of control 

 
 
 

The imperative programming paradigm 
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Both the procedural and object-oriented paradigms typically 
make use of the imperative programming paradigm. 
 
Two fundamental characteristics of languages that support the 
imperative paradigm: 
 
•  "Variables"—data objects whose values typically change as 

execution proceeds. 
 
•  Support for iteration—a “while” control structure, for 

example.  

The imperative programming paradigm 
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Here's an imperative solution in Java to sum the integers in an 
array: 
 
    int sum(int a[]) 
    { 
        int sum = 0; 
        for (int i = 0; i < a.length; i++) 
            sum += a[i]; 
 
        return sum; 
    } 
 
The for loop causes i to vary over the indices of the array, as 
the variable sum accumulates the result. 
 
How can the above solution be improved? 
 
 

Imperative programming, continued 
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With Java's "enhanced for", also known as a for-each loop, we 
can avoid array indexing. 
 
    int sum(int a[]) 
    { 
        int sum = 0; 
        for (int val: a) 
            sum += val; 
 
        return sum; 
    } 
 
Is this an improvement?  If so, why? 
 
Can we write sum in a non-imperative way? 
 

Imperative programming, continued 
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We can use recursion instead of a loop, but...ouch! 
 
    int sum(int a[]) { return sum(a, 0); } 
     
    int sum(int a[], int i) 
    { 
        if (i == a.length) 
            return 0; 
        else 
            return a[i] + sum(a, i+1); 
    } 
 
Wrt. correctness, which of the three versions would you bet 
your job on? 

Imperative programming, continued 
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Programming paradigms can apply at different levels: 
 

•  Making a choice between procedural and object-oriented 
programming fundamentally determines the high-level structure 
of a program. 

•  The imperative paradigm is focused more on the small aspects 
of programming—how code looks at the line-by-line level. 

 
Java combines the object-oriented and imperative paradigms. 
 
The procedural and object-oriented paradigms apply to 
programming in the large.   
 
The imperative paradigm applies to programming in the small. 

Sidebar: The level of a paradigm 
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Java methods can be classified as imperative or applicative. 
 
•  An imperative method changes an object. 

"Change this." 

•  An applicative method produces a new object. 
"Make me something new from this." 
 

In some cases we have an opportunity to choose between the 
two. 

Imperative vs. applicative methods in Java 
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Consider a Java class representing a 2D point: 
 

class Point { 
    private int x, y; 
} 

 
An imperative method to translate by an x and y displacement: 
 

 public void translate(int dx, int dy) { 
        x += dx; y += dy; 
 } 
 

An applicative translate: 
 

public Point translate(int dx, int dy) { 
        return new Point(x + dx, y + dy); 
} 

 
What are the pros and cons? 
 
 

Imperative vs. applicative methods, continued 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  17	
  



Imagine a Line class, whose instances are constructed with 
two Points.  Example: Line A = new Line(p1, p2); 
 
Two blocks of code follow.  Left half of class: Look at only the 
first block.  Right half: Look at only the second block.  Raise 
your hand when you understand what Line L represents. 
 
       
 
 
 
 
 
 

Imperative vs. applicative methods, continued 
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Point end = p.clone(); 
end.translate(10,20); 
Line L = new Line(p, end); 

Line L = new Line(p, p.translate(10,20)); 

Note: Slide redone after copies! 



An expression is a sequence of symbols that can be evaluated 
to produce a value.  Here's a Java expression: 

  
 i + j * k 

 
If evaluating an expression also causes an observable change 
somewhere else, we say that expression has a side effect. 
 
Here's a Java expression with a side effect: 
 

 i + j++ * k 
 
Do these two expressions have the same value? 
 
What's the side effect? 
 

Side effects 
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Which of these Java expressions have a side effect? 
 
x = 10 
 
p1.translate(10, 20) // Consider imp. & app. cases... 
 
"testing".toUpperCase() 
 
L.add("x"), where L is an ArrayList 
 
System.out.println("Hello!") 
 

 
 

Side effects, continued 
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Side effects are a hallmark of imperative programing. 
 
Programs written in an imperative style are essentially an 
orchestration of side effects. 
 
Can we program without side effects? 

Side effects, continued 
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The Functional Paradigm 
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A key characteristic of the functional paradigm is writing 
functions that are like pure mathematical functions. 
 
Pure mathematical functions: 
 
•  Always produce the same value for given input(s) 
 
•  Have no side effects  

•  Can be combined brainlessly to produce more powerful 
functions  

Ideally, functions are specified with notation that's similar to 
what you see in math books—cases and expressions. 

 
 
 
 
 

The functional programming paradigm 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  23	
  



Other characteristics of the functional paradigm: 
 
•  Values are never changed but lots of new values are 

created. 

•  Recursion is used in place of iteration. 

•  Functions are values.  Functions are put into in data 
structures, passed to functions,  and returned from 
functions.  LOTS of temporary functions are created. 

Based on the above, how well would Java support functional 
programming?  How about C? 

 

Functional programming, continued 
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Haskell basics 
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Haskell is a pure functional programming language; it has no 
imperative features. 
 
Was designed by a committee with the goal of creating a 
standard language for research into functional programming. 
 
First version appeared in 1990.  Latest version is known as 
Haskell 2010. 
 
Is said to be non-strict—it supports lazy evaluation. 
 
It is not object-oriented in any way. 
 
My current opinion: it has a relatively large mental footprint. 

What is Haskell? 
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Website: haskell.org (sluggish as of 1/19/15) 
 All sorts of resources! 
  

Books: (on Safari, too) 
 Learn You a Haskell for Great Good!, by Miran Lipovača 
  http://learnyouahaskell.com  (Known as LYAH.) 

 
Real World Haskell, by O'Sullivan, Stewart, and Goerzen 

 http://realworldhaskell.org (I'll call it RWH.) 
 
Programming in Haskell, by Hutton 

 Note: See appendix B for mapping of non-ASCII chars! 
 

Haskell 2010 Report (I'll call it H10.) 
 http://haskell.org/definition/haskell2010.pdf 

Haskell resources 
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On lectura we can interact with Haskell by running ghci: 
 

$ ghci 
GHCi, version 7.4.1: ...more...  :? for help 
Loading package ghc-prim ... linking ... done. 
Loading package integer-gmp ... linking ... done. 
Loading package base ... linking ... done. 
>  

 
With no arguments, ghci starts a read-eval-print loop (REPL)—
expressions that we type at the prompt (>) are evaluated and the 
result is printed. 
 
Note: the standard prompt is Prelude> but I've got 

 :set prompt "> " 
in my ~/.ghci file. 
 
 
 
 
 
 

Interacting with Haskell 
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Let's try some expressions with ghci: 
 

> 3+4 
7 
 
> 3 * 4.5 
13.5 
 
> (3 > 4) || (5 < 7) 
True 
 
> 2 ^ 200 
160693804425899027554196209234116260252220299378
2792835301376 
 
> "abc" ++ "xyz" 
"abcxyz" 

 

Interacting with Haskell, continued 
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We can use :help to see available commands: 
> :help 
 Commands available from the prompt: 
   <statement>        evaluate/run <statement> 
   :                              repeat last command 
   :{\n ..lines.. \n:}\n        multiline command 
 ...lots more... 

 
The command :set +t causes types to be shown: 

> :set +t 
> 3+4 
7 
it :: Integer 
 

"::" is read as "has type". The value of the expression is 
"bound" to the name it. 

Interacting with Haskell, continued 
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We can use it in subsequent computations: 
 
> 3+4 
7 
it :: Integer 
 
> it + it * it 
56 
it :: Integer 
 
> it /= it 
False 
it :: Bool 

Interacting with Haskell, continued 
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For two assignment points of extra credit: 
 
1.  Run ghci (or WinGHCi) somewhere and try ten Haskell 

expressions with some degree of variety.  (Not just ten 
additions, for example!)  Do a :set +t at the start. 

2.  Capture the output and put it in a plain text file, eca1.txt, 
and turn it in via the eca1 D2L dropbox.  (No need for 
your name, NetID, etc. in the file.) 

Due: At the start of the next lecture after we hit this slide. 
 
Needless to say, feel free to read ahead in the slides and show 
experimentation with the following material, too. 
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Extra Credit Assignment 1 



Getting Haskell 
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You can either get Haskell for your machine or use Haskell on 
lectura. 
 
To work on your own machine, get a copy of the Haskell Platform 
for your operating system from haskell.org. 
 
On OS X, I'm using Haskell Platform 2014.2.0.0 for Mac OS X, 
64bit from www.haskell.org/platform/mac.html 
 
On Windows, use Haskell Platform 2014.2.0.0 for Windows from 
http://www.haskell.org/platform/windows.html  The 32-bit 
version should be fine but if you have trouble, (1) let me know and 
(2) go ahead and try the 64-bit version. 
 
You'll need an editor that can create plain text files.  Sublime Text is 
very popular.  
 
 
 
 

Getting Haskell 
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To work on lectura from a Windows machine, you might login with 
PuTTY.  (See following slide.) 
 
OS X, do ssh YOUR-NETID@lectura.cs.arizona.edu 
 
You might edit Haskell files on lectura with vim, emacs, or nano 
(ick!), or use something like gedit on a Linux machine in a CS lab. 
 
Alternatively, you might edit on your machine with something like 
Sublime Text and use a synchronization tool (like WinSCP on 
Windows) to keep your copy on lectura constantly up to date. 
 
If you go the route of editing on your machine and running on 
lectura, let me know if you have trouble figuring out how to do 
automatic synchronization.  It's a terrible waste of time to do a 
manual copy of any sort in the middle of your edit/run cycle. 

Using Haskell on lectura 
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If you Google for "putty", the first hit should be this: 
 

 PuTTY Download Page 
• www.chiark.greenend.org.uk/~sgtatham/

putty/download.html‎ 
 
Download putty.exe.  It's just an executable—no installer! 
 
 

Getting and running PuTTY 
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Click on putty.exe to run it.  In the dialog that opens, fill in 
lec.cs.arizona.edu for Host Name and click Open. 

PuTTY, continued 
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Login to lectura using your UA NetID.  Run ghci, and try 
some expressions: 
 
 
 
 
 
 
 
 
 
 
Go to http://cs.arizona.edu/computing/services and use 
"Reset my forgotten Unix password" if needed. 

ghci on lectura 
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When ghci starts up on Linux or OS X it looks for the file 
~/.ghci – a .ghci file in the user's home directory. 
 
Below are a couple of lines that I find handy in my ~/.ghci 
file.  The first sets the prompt and the second loads a module 
that allows functions to be printed as values, although just 
showing <function> for function values. 
 

 :set prompt "> " 
 :m +Text.Show.Functions 
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The ~/.ghci file 



The counterpart path on Windows is this: 
 %APPDATA%\ghc\ghci.conf  
  (Note: file is named ghci.conf, not .ghci!) 

 
%APPDATA% represents the location of your Application 
Data directory.  You can find that path by typing set appdata 
in a command window, like this: 
 

C:\>set appdata 
APPDATA=C:\Users\whm\Application Data 

 
Combing the two, the full path to the file would be 

 C:\Users\whm\Application Data\ghc\ghci.conf 
 
Details on .ghci and lots more can be found in 

 https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf 
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~/.ghci, continued 



Functions and function types 
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In Haskell, juxtaposition indicates a function call: 
 
> negate 3 
-3 
it :: Integer 
 
> even 5 
False 
it :: Bool 
 
> pred 'C' 
'B' 
it :: Char 
 
> signum 2 
1 
it :: Integer 

Calling functions 

Note: These functions and many 
more are defined in the Haskell 
"Prelude", which is loaded by 
default when ghci starts up. 
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ghci uses The GNU Readline library. 
 
Use TAB to complete names, ^R to incrementally 
search backwards, ^A/^E for start/end of line, etc. 
 
Lots more: 
tiswww.case.edu/php/chet/readline/rluserman.html 



Function call with juxtaposition is left-associative. 
 
signum negate 2 means (signum negate) 2 
 

> signum negate 2 
<interactive>:40:1:  -- It's an error! 
    No instance for (Num (a0 -> a0)) arising from a 
use of `signum' 
... 

 
We add parentheses to call negate 2 first: 

> signum (negate 2) 
-1 
it :: Integer 
 

Calling functions, continued 
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Function call with juxtaposition has higher precedence than any 
operator. 
 

> negate 3+4 
1 
it :: Integer 
 

negate 3 + 4 means (negate 3) + 4.  Use parens to force + first: 
 

> negate (3 + 4) 
-7 
it :: Integer 
 
> signum (negate (3 + 4)) 
-1 
it :: Integer 
 
 

Calling functions, continued 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  44	
  



Haskell's Data.Char module has a number of functions for working 
with characters. We'll use it to start learning about function types. 

> :m Data.Char   (:m(odule) loads a module) 
 
> isLower 'b' 
True 
it :: Bool 
 
> toUpper 'a' 
'A' 
it :: Char 
 
> ord 'A' 
65 
it :: Int 
 
> chr 66 
'B' 
it :: Char 

Function types 
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We can also reference a function in a 
module with a qualified name: 
 

% ghci 
GHCi, version 7.6.3: ... 
> Data.Char.ord 'G' 
71 



We can use gchi's :type command to see what the type of a 
function is: 
 

> :type isLower 
isLower :: Char -> Bool  (read -> as "to") 

 
The type Char -> Bool means that the function takes an 
argument of type Char and produces a result of type Bool. 
 
Using ghci, what are the types of toUpper, ord, and chr? 
 
We can use :browse Data.Char to see everything in the 
module. 
 

Function types, continued 
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Like most languages, Haskell requires that expressions be type-
consistent (or well-typed).  
 
Here is an example of an inconsistency: 

> chr 'x' 
<interactive>:32:5: 
   Couldn't match expected type Int with actual type Char 
   In the first argument of `chr', namely 'x' 

 
> :type chr 
chr :: Int -> Char 
 
> :type 'x' 
'x' :: Char 
 

chr requires its argument to be an Int but we gave it a Char.  We 
can say that chr 'x' is ill-typed. 

Type consistency 
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State whether each expression is well-typed and if so, its type. 
 

'a' 

isUpper 

isUpper 'a' 

not (isUpper 'a') 

not not (isUpper 'a') 

toUpper (ord 97) 

isUpper (toUpper (chr 'a')) 

isUpper (intToDigit 100) 

Type consistency, continued 

'a' :: Char 

chr :: Int -> Char 

digitToInt :: Char -> Int 

intToDigit :: Int -> Char 

isUpper :: Char -> Bool 

not :: Bool -> Bool 

ord :: Char -> Int 

toUpper :: Char -> Char 
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As we've seen, ghci provides a REPL (read-eval-print loop). 
 
What are some other languages that have a REPL available? 
 
How does a REPL help us learn a language? 
 
Is there a REPL for Java? 
 
What characteristics does a language need to support a REPL? 
 
If there's no REPL for a language, how hard is it to write one? 
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Sidebar: Using a REPL to help learn a language 



Type classes 
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Recall the negate function: 
 

> negate 5 
-5 
it :: Integer 
 
> negate 5.0 
-5.0 
it :: Double 
 

What is the type of negate?  (Is it both Integer -> Integer 
and Double -> Double??) 
 

What's the type of negate? 
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Bool, Char, and Integer are examples of Haskell types. 
 
Haskell also has type classes. A type class specifies the 
operations must be supported on a type in order for that type to 
be a member of that type class. 
 
Num is one of the many type classes defined in the Prelude. 
 
:info Num shows that for a type to be a Num, it must support 
addition, subtraction, multiplication and four functions: 
negate, abs, signNum, and fromInteger.  (The Num club!) 
 
The Prelude defines four instances of the Num type class: Int 
(word-size), Integer (unlimited size), Float and Double. 

Type classes 
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Here's the type of negate: 
 
> :type negate 
negate :: Num a => a -> a 

 
The type of negate is specified using a type variable, a. 
 
The portion a -> a specifies that negate returns a value having the 
same type as its argument. 

 "If you give me an Int, I'll give you back an Int." 
 
The portion Num a => is a class constraint.  It specifies that the 
type a must be an instance of the type class Num. 
 
How can we state the type of negate in English? 

negate accepts any value whose type is an instance of Num.  It 
returns a value of the same type. 

 

Type classes, continued 
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What type do integer literals have? 
> :type 3 
3 :: Num a => a 
 
> :type (-27)    -- Note: Parens needed! 
(-27) :: Num a => a 
 

Literals are typed with a class constraint of Num, so they can 
be used by any function that accepts Num a => a. 
 

Type classes, continued 
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Will negate 3.4 work? 
  
> :type negate 
negate :: Num a => a -> a 
 
> :type 3.4 
3.4 :: Fractional a => a 
 
> negate 3.4 
-3.4 
 

Speculate: Why does it work? 

Type classes, continued 
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Type classes, continued 

Adapted	
  from	
  hAp://en.wikibooks.org/wiki/Haskell/Classes_and_types	
  

Haskell type classes form a hierarchy.  The Prelude has these: 
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Type classes, continued 
Num	
  

Int,	
  Integer,	
  
Float,	
  Double	
  

Frac)onal	
  
Float,	
  
Double	
  

The arrow from Num to Fractional means that a Fractional can 
be used as a Num.  (What does that remind you of?) 
 
Given 

 negate :: Num a => a -> a 
and 

 5.0 :: Fractional a => a 
then 

 negate 5.0 is valid. 
 
 
 

Excerpt: 
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Type classes, continued 
What's meant by the type of pz? 
 

 pz :: (Bounded a, Fractional b) => a -> b 
 
Would pz 'a' be valid?  How about pz 5.5?  pz 7? 
 
LYAH pp. 27-33 has a good description of the Prelude's type 
classes.  ("Type Classes 101") 
 
RWH uses the term "typeclasses"—one word! 
 
 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  58	
  



In essence, negate :: Num a => a -> a describes many 
functions: 

 negate :: Integer -> Integer 
 negate :: Int -> Int 
 negate :: Float -> Float 
 negate :: Double -> Double 
 ...and more... 

 
negate is a polymorphic function.  It handles values of many 
forms. 
 
If a function's type has any type variables, it's a polymorphic 
function. 
 
How does Java handle this problem?  How about C?  C++? 

negate is polymorphic 
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More on functions 
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A function can be defined in the REPL by using let.  Example: 
 
> let double x = x * 2 
double :: Num a => a -> a 
 
> double 5 
10 
it :: Integer 
 
> double 2.7 
5.4 
it :: Double 
 
> double (double (double 1111111111111)) 
8888888888888 
it :: Integer 
 

Writing simple functions 
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More examples: 
 

> let neg x = -x 
neg :: Num a => a -> a 
 
> let isPositive x = x > 0 
isPositive :: (Num a, Ord a) => a -> Bool 
 
> let toCelsius temp = (temp - 32) * 5/9 
toCelsius :: Fractional a => a -> a 
 

The determination of types based on the operations performed is 
known as type inferencing. (More on it later!) 
 
Note: function and parameter names must begin with a lowercase 
letter or _.  (If capitalized they're assumed to be data constructors.) 

 
 

Simple functions, continued 
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We can use :: type to constrain the type inferred for a function: 
 

> let neg x = -x :: Integer 
neg :: Integer -> Integer 
 
> let isPositive x = x > (0::Integer) 
isPositive :: Integer -> Bool 
 
> let toCelsius temp = (temp - 32) * 5/(9::Double) 
toCelsius :: Double -> Double 
 

We'll use :: type to simplify some following examples. 
 

 

Simple functions, continued 
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We can put function definitions in a file.  When we do, we 
leave off the let! 
 
I've got four function definitions in the file simple.hs, as 
shown with the UNIX cat command: 
 

% cat simple.hs 
double x = x * 2 :: Integer   -- Note: no "let"! 
neg x = -x :: Integer 
isPositive x = x > (0::Integer) 
toCelsius temp = (temp - 32) * 5/(9::Double) 

 
The .hs suffix is required. 

Sidebar: loading functions from a file 
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Assuming simple.hs is in the current directory, we can load it 
with :load and see what we got with :browse. 
 

% ghci 
> :load simple 
[1 of 1] Compiling Main             ( simple.hs, interpreted ) 
Ok, modules loaded: Main. 
 
> :browse 
double :: Integer -> Integer 
neg :: Integer -> Integer 
isPositive :: Integer -> Bool 
toCelsius :: Double -> Double 

 
Note the colon in :load, and that the suffix .hs is assumed. 
 
We can use a path, like :load ~/372/hs/simple, too. 

Sidebar, continued 
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Look for ways to type less, to spend more time learning and less 
time typing! 
 
Anticipate: How might we type less when loading a file? 

> :l simple 
[1 of 1] Compiling Main             ( simple.hs, interpreted ) 
Ok, modules loaded: Main. 

 
After an initial load, :reload is sufficient: 

> :reload 
[1 of 1] Compiling Main             ( simple.hs, interpreted ) 
Ok, modules loaded: Main. 

 
Can we still type less? 
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ghci is clumsy to type!  I've got an hs alias in my ~/.bashrc: 
alias hs=ghci 

 
I specify the file I'm working with as an argument to hs. 

% hs simple 
GHCi, version 7.6.3 ... 
[1 of 1] Compiling Main             ( simple.hs, interpreted ) 
Ok, modules loaded: Main. 
> ... experiment ... 

 
After editing in a different window I use :r to reload the file. 

> :r 
[1 of 1] Compiling Main             ( simple.hs, interpreted ) 
Ok, modules loaded: Main. 
> ...experiment some more... 

 
Lather, rinse, repeat. 
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Here's a function that produces the sum of its two arguments: 
 > let add x y = x + y :: Integer 

 
Here's how we call it: (no commas or parentheses!) 

> add 3 5 
8 

 
Here is its type: 

> :type add 
add :: Integer -> Integer -> Integer 

 
The operator -> is right-associative, so the above means this: 

 add :: Integer -> (Integer -> Integer) 
 
But what does that mean? 
 

Functions with multiple arguments 
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Recall our negate function: 
> let neg x = -x :: Integer 
neg :: Integer -> Integer 

 
Here's add again, with parentheses added to show precedence: 

> let add x y = x + y :: Integer 
add :: Integer -> (Integer -> Integer) 

 
add is a function that takes an integer as an argument and 
produces a function as its result! 
 
add 3 5 means (add 3) 5 

Call add with the value 3, producing a nameless function. 
Call that nameless function with the value 5. 

 
 

Multiple arguments, continued 
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When we give a function fewer arguments than it requires, the 
result is called a partial application.  It is a function. 
 
We can bind a name to a partial application like this: 

> let plusThree = add 3 
plusThree :: Integer -> Integer 

 
The name plusThree now references a function that takes an 
Integer and returns an Integer. 
 
What will plusThree 5 produce? 

> plusThree 5 
8 
it :: Integer 

Partial application 
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At hand: 
> let add x y = x + y :: Integer 
add :: Integer -> (Integer -> Integer)  -- parens added 
 
> let plusThree = add 3 
plusThree :: Integer -> Integer 

 
 
Analogy: plusThree is like a calculator where you've clicked 
3, then +, and handed it to somebody. 
 

Partial application, continued 
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At hand: 
> let add x y = x + y :: Integer 
add :: Integer -> (Integer -> Integer)  -- parens added 

 
Another: (with parentheses added to type to aid understanding) 

> let add3 x y z = x + y + z :: Integer 
add3 :: Integer -> (Integer -> (Integer -> Integer)) 

 
These functions are said to be defined in curried form, which allows 
partial application of arguments. 
 
The idea of a partially applicable function was first described by 
Moses Schönfinkel. It was further developed by Haskell B. Curry.  
Both worked wtih David Hilbert in the 1920s.  
 
What prior use have you made of partially applied functions? 

Partial application, continued 
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Key points: 
 
•  A function with a type like Integer -> Char -> Char 

takes two arguments, an Integer and a Char.  It produces 
a Char. 

 
•  A function call like 
  f x y z 
means 
  ((f x) y) z 
and (conceptually) causes two temporary, unnamed 
functions to be created. 
 

• Calling a function with fewer arguments that it requires 
creates a partial application. 

Some key points 
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It is common practice to specify the type of a function along 
with its definition in a file. 
 
What's the ramification of the difference in these two type 
specifications? 

 
add1::Num a => a -> a -> a 
add1 x y = x + y 
 
add2::Integer -> Integer -> Integer 
add2 x y = x + y 

 
 
 

Specifying a function's type 
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A Haskell source file is a series of declarations.  Here's a file with 
two declarations: 

% cat indent1.hs 
add::Integer -> Integer -> Integer 
add x y = x + y 

 
A declaration can be continued across multiple lines by indenting 
lines more than the first line of the declaration.  These weaving 
declarations are poor style but are valid: 

add 
        :: 
   Integer-> Integer-> Integer 
add x y 
    = 
 x 
   + y 

 

Sidebar: Continuation with indentation 
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A line that starts in the same column as the previous declaration 
ends that declaration and starts a new one. 
 

% cat indent2.hs 
add::Integer -> Integer -> Integer 
add x y = 
x + y 
 
% ghci indent2 
... 
indent2.hs:3:1: 
    parse error (possibly incorrect indentation or 
mismatched brackets) 
Failed, modules loaded: none. 
 

Note that 3:1 indicates line 3, column 1. 

Indentation, continued 
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Haskell operators are simply functions that can be invoked 
with an infix form. 
 
We can use :info to find out about an operator. 

> :info (^) 
(^) :: (Num a, Integral b) => a -> b -> a 
infixr 8 ^ 

 
(Num a, Integral b) => a -> b -> a shows that the first 
operand must be a number and the second must be an integer. 
 
infixr 8 shows that it is right-associative, with priority 8.  
 
Explore ==, >, +, *,||, ^^ and **. 

Function/operator equivalence 
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To use an operator as a function, enclose it in parentheses: 
> (+) 3 4 
7 

 
Conversely, we can use a function as an operator by enclosing 
it in backquotes: 

> 3 `add` 4 
7 
 
> 11 `rem` 3 
2 
 

 
 
 

Function/operator equivalence, continued 
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Haskell lets us define custom operators. 
 
Example: (loading from a file) 

(+%) x percentage = x + x * percentage / 100 
infixl 6 +% 

 
Usage: 

> 100 +% 1 
101.0 
> 12 +% 25 
15.0 
 

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and 
non-ASCII Unicode symbols can be used in custom operators. 
 
Modules often define custom operators. 

Function/operator equivalence, continued 
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Precedence Left associative 
operators 

Non associative 
operators 

Right associative 
operators 

9 !! . 

8 ^, ^^, ** 

7 *, /, `div`, `mod`, 
`rem`, `quot` 

6 +, - 

5 :, ++ 

4 ==, /=, <, <=, 
>, >=, `elem`, 
`notElem` 

3 && 

2 || 

1 >>, >>= 

0 $, $!, `seq` 

Reference: Operators from the Prelude 

Note: From page 51 in Haskell 2010 report 
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The general form of a function definition (for now): 
 

 let name param1 param2 ... paramN = expression 
 
Problem: Define a function min3 that computes the minimum 
of three values.  The Prelude has a min function. 
 

> min3 5 2 10 
2 
 
> let min3 a b c = min a (min b c) 
min3 :: Ord a => a -> a -> a -> a 
 

Problem: Define a function eq3 that returns True if its three 
arguments are equal, False otherwise. 

More functions 
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Recall this characteristic of functional programming: 
"Ideally, functions are specified with notation that's similar 
to what you see in math books—cases and expressions." 
 

This function definition uses guards to specify three cases: 
sign x | x < 0 = -1 
            | x == 0 = 0 
            | otherwise = 1 
 

Notes: 
• No let—this definition is loaded from a file with :load 
•  sign x appears just once.  First guard might be on next line. 
•  The guard appears between | and =, and produces a Bool 
• What is otherwise?  

 

Guards 
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Problem: Using guards, define a function smaller, like min: 
> smaller 7 10 
7 
 
> smaller 'z' 'a' 
'a' 

 
Solution: 

smaller x y  
     | x <= y = x 
     | otherwise = y 

 

Guards, continued 
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Problem: Write a function weather that classifies a given 
temperature as hot if 80+, else nice if 70+, and cold otherwise. 

> weather 95 
"Hot!" 
> weather 32 
"Cold!" 
> weather 75 
"Nice" 

 
A solution that takes advantage of the fact that guards are tried 
in turn: 

weather temp | temp >= 80 = "Hot!" 
                          | temp >= 70 = "Nice" 
                          | otherwise = "Cold!" 

 
 

Guards, continued 
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Here's an example of Haskell's if-else: 
 

> if 1 < 2 then 3 else 4 
3 
 

How does this compare to the if-else in Java? 

Haskell's if-else 
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Java's if-else is a statement.  It cannot be used where a value is 
required. 
 
Java's conditional operator is the analog to Haskell's if-else. 

 1 < 2 ? 3 : 4      (Java conditional, a.k.a ternary operator) 
 
It's an expression that can be used when a value is required. 
 
Java's if-else statement has an else-less form but Haskell's if-
else does not.   Why doesn't Haskell allow it? 
 
Java's if-else vs. Java's conditional operator provides a good 
example of a statement vs. an expression. 
 
Pythoners: What's the if-else situation in Python? 

 3 if 1 < 2 else 4 

Sidebar: Java's if-else 
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What's the type of these expressions? 
 

> :type if 1 < 2 then 3 else 4 
if 1 < 2 then 3 else 4 :: Num a => a 
 
> :type if 1 < 2 then 3 else 4.0 
if 1 < 2 then 3 else 4.0 :: Fractional a => a 
 
> if 1 < 2 then 3 else '4' 
   <interactive>:12:15: 
    No instance for (Num Char) arising from the literal `3' 
 
> if 1 < 2 then 3 

 <interactive>:13:16: 
 parse error (possibly incorrect indentation or 

mismatched brackets) 

Haskell's if-else, continued 
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Which of the versions of sign below is better? 
 
sign x 
    | x < 0 = -1 
    | x == 0 = 0 
    | otherwise = 1 
 
 
sign x = if x < 0 then -1  
                             else if x == 0 then 0 

             else 1 
 
We'll later see that patterns add a third possibility for 
expressing cases. 
 
 
 

Guards vs. if-else 
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A recursive function is a function that calls itself either directly or 
indirectly. 
 
Computing the factorial of a integer (N!) is a classic example of 
recursion.  Write it in Haskell (and don't peek below!)  What is its 
type? 
 

factorial n 
    | n == 0 = 1   -- Base case, 0! is 1 
    | otherwise = n * factorial (n - 1) 
 
> :type factorial 
factorial :: (Eq a, Num a) => a -> a 
 
> factorial 40 
815915283247897734345611269596115894272000000000 

 

Recursion 
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One way to manually trace through a recursive computation is 
to underline a call, then rewrite the call with a textual 
expansion: 
 

factorial 4 
 
4 * factorial 3 
 
4 * 3 * factorial 2 
 
4 * 3 * 2 * factorial 1 
 
4 * 3 * 2 * 1 * factorial 0 
 
4 * 3 * 2 * 1 * 1 

 
 

Recursion, continued 

factorial n 
    | n == 0 = 1 
    | otherwise = n * factorial (n – 1) 
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Consider repeatedly dividing a number until the quotient is 1: 
> 28 `quot` 3  (Note backquotes to use quot as infix op.) 
9 
> it `quot` 3   (Remember that it is previous result.) 
3 
> it `quot` 3 
1 
 

Problem: Write a recursive function numDivs divisor x that 
computes the number of times x must be divided by divisor to 
reach a quotient of 1. 

> numDivs 3 28 
3 
> numDivs 2 7 
2 

 

Recursion, continued 
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A solution: 
numDivs divisor x 
    | (x `quot` divisor) < 1 = 0 
    | otherwise =  

    1 + numDivs divisor (x `quot` divisor) 
 
What is its type? 

 numDivs :: (Integral a, Num a1) => a -> a -> a1 
 
Will numDivs 2  3.4 work? 

> numDivs 2 3.4 
<interactive>:93:1: 
    No instance for (Integral a0) arising from a use of 
`numDivs' 

 

Recursion, continued 
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Example: 
> numDivs 3 28 
3 



Let's compute two partial applications of numDivs, using let to 
bind them to identifiers: 

> let f = numDivs 2 
> let g = numDivs 10 
> f 9 
3 
> g 1001 
3 

 
What are more descriptive names than f and g? 

> let floor_log2 = numDivs 2 
> floor_log2 1000 
9 
 
> let floor_log10 = numDivs 10 
> floor_log10 1000 
3 
 

Sidebar: Fun with partial applications 
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Lists 
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In Haskell, a list is a sequence of values of the same type. 
 
Here's one way to make a list.  Note the type of it for each. 

> [7, 3, 8] 
[7,3,8] 
it :: [Integer] 
 
> [1.3, 10, 4, 9.7] 
[1.3,10.0,4.0,9.7] 
it :: [Double] 
 
> ['x', 10] 
<interactive>:20:7: 
    No instance for (Num Char) arising from the literal 
`10' 
 

List basics 
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The function length returns the number of elements in a list: 
> length [3,4,5] 
3 
 
> length [] 
0 

 
What's the type of length? 

> :type length 
length :: [a] -> Int 
 

With no class constraint specified, [a] indicates that length 
operates on lists containing elements of any type. 
 

List basics, continued 
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The head function returns the first element of a list. 
> head [3,4,5] 
3 

 
What's the type of head? 

head :: [a] -> a 
 
Here's what tail does.  How would you describe it? 

> tail [3,4,5] 
[4,5] 

 
What's the type of tail? 

tail :: [a] -> [a] 

List basics, continued 
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The ++ operator concatenates two lists, producing a new list. 
 

> [3,4] ++ [10,20,30] 
[3,4,10,20,30] 
 
> it ++ it 
[3,4,10,20,30,3,4,10,20,30] 
 
> let f = (++) [1,2,3] 
> f [4,5] 
[1,2,3,4,5] 
 
> f [4,5] ++ reverse (f [4,5]) 
[1,2,3,4,5,5,4,3,2,1] 
 

List basics, continued 
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What are the types of ++ and 
reverse?	
  
 

> :type (++) 
(++) :: [a] -> [a] -> [a] 
 
> :type reverse 
reverse :: [a] -> [a] 



A range of values can be specified with a dot-dot notation: 
> [1..20] 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 
it :: [Integer] 
 
> [-5,-3..20] 
[-5,-3,-1,1,3,5,7,9,11,13,15,17,19] 
 
> length [-1000..1000] 
2001 
 
> [10..5] 
[] 
it :: [Integer] 
 

 
 

List basics, continued 
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The !! operator produces a list's Nth element, zero-based: 
 

> :type (!!) 
(!!) :: [a] -> Int -> a 
 
> [10,20..100] !! 3 
40 

 
Sadly, we can't use a negative value to index from the right. 

> [10,20..100] !! (-2) 
*** Exception: Prelude.(!!): negative index 

 
Should that be allowed? 

List basics, continued 
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Haskell lists are values and can be compared as values: 
> [3,4] == [1+2, 2*2] 
True 
 
> [3] ++ [] ++ [4] == [3,4] 
True 
 
> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6] 
True 

 
Conceptually, how many lists are created by each of the above? 
 
A programmer using a functional language writes complex 
expressions using lists (and more!) as freely as a Java 
programmer might write  f(x) * a == g(a,b) + c. 
 

Comparing lists 
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Lists are compared lexicographically: Corresponding elements 
are compared until an inequality is found. The inequality 
determines the result of the comparison. 
 
Example: 

> [1,2,3] < [1,2,4] 
True 

Why: The first two elements are equal, and 3 < 4. 
 
More examples: 

> [1,2,3] < [1,1,1,1] 
False 
> [1,2,3] > [1,2] 
True 
> [1..] < [1,3..]   -- Comparing infinite lists! 
True 

 
 
 

Comparing lists, continued 
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LATER... 



We can make lists of lists. 
> let x = [[1], [2,3,4], [5,6]] 
x :: [[Integer]] 

 
Note the type: x is a list of Integer lists. 
 
length counts elements at the top level. 

> length x 
3 

 
Recall that length :: [a] -> Int  Given that, what's the type of 
a for length x? 
 
What's the value of length (x ++ x ++ [3])? 

Lists of Lists 
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> let x = [[1], [2,3,4], [5,6]] 
 
> head x 
[1] 
 
 > tail x 
[[2,3,4],[5,6]] 
 
> x !! 1 !! 2 
4 
 
> let y = [[1..],[10,20..]] ++ [[2,3]] 
> take 5 (head (tail y)) 
[10,20,30,40,50] 

Lists of lists, continued 
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LATER... 



Strings in Haskell are simply lists of characters. 
 

> "testing" 
"testing" 
it :: [Char] 
 
> ['a'..'z'] 
"abcdefghijklmnopqrstuvwxyz" 
it :: [Char] 
 
> ["just", "a", "test"] 
["just","a","test"] 
it :: [[Char]] 
 

What's the beauty of this? 

Strings are [Char] 
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All list functions work on strings, too! 
 

> let asciiLets = ['A'..'Z'] ++ ['a'..'z'] 
asciiLets :: [Char] 
 
> length asciiLets 
52 
 
> reverse (drop 26 asciiLets) 
"zyxwvutsrqponmlkjihgfedcba" 
 
> :type elem 
elem :: Eq a => a -> [a] -> Bool 
 
> let isAsciiLet c = c `elem` asciiLets 
isAsciiLet :: Char -> Bool 
 

Strings, continued 
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The Prelude defines String as [Char] (a type synonym). 
> :info String 
type String = [Char] 
 

A number of functions operate on Strings.  Here are two: 
> :type words 
words :: String -> [String] 
 
> :type putStr 
putStr :: String -> IO () -- an "action" (more later!) 

 
What's the following doing? 

> putStr (unwords (tail (words "Just some words!"))) 
some words!it :: () 

Strings, continued 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  107	
  



What's the following expression computing? 
> length [(Data.Char.chr 0)..] 
1114112 

 
Another way: 

> length ([minBound..maxBound]::[Char]) 
1114112 

 

Strings, continued 
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Like most functional languages, Haskell's lists are "cons" lists. 
 
A "cons" list has two parts: 

 head: a value 
 tail: a list of values (possibly empty) 

 
The : ("cons") operator creates a list from a value and a list of 
values that same type (or an empty list). 

> 5 : [10, 20,30] 
[5,10,20,30] 

 
What's the type of the cons operator? 

> :type (:) 
(:) :: a -> [a] -> [a] 

"cons" lists 
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The cons (:) operation forms a new list from a value and a list. 
 
> let a = 5 
> let b = [10,20,30] 
> let c = a:b 
[5,10,20,30] 
 
> head c 
5 
 
> tail c 
[10,20,30] 
 
> let d = tail (tail c) 
> d 
[20,30] 

"cons" lists, continued 

10 

20 

30 

a 
5 

b 

5 

c 

d 
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A cons node can be referenced by multiple cons nodes. 
 
> let a = 5 
> let b = [10,20,30] 
> let c = a:b 
> let d = tail (tail c) 
[20,30] 
 
> let e=2:d 
[2,20,30] 
 
> let f=1:c 
[1,5,10,20,30] 

"cons" lists, continued 

10 

20 

30 

a 
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What are the values of the following expressions? 
> 1:[2,3] 
[1,2,3] 
 
> 1:2 
...error... 
 
> chr 97:chr 98:chr 99:[] 
"abc" 
 
> []:[] 
[[]] 
 
> [1,2]:[] 
[[1,2]] 
 
> []:[1] 
...error... 

"cons" lists, continued 
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cons is right associative 
   chr 97:(chr 98:(chr 99:[])) 



It's important to understand that tail does not create a new list.  
Instead it simply returns an existing cons node. 
 
> let a = [5,10,20,30] 
 
> let h = head a 
> h 
5 
 
> let t = tail a 
> t 
[10,20,30] 
 
> let t2 = tail (tail t) 
> t2 
[30] 

head and tail visually 

10 

20 

30 

5 

a 

t h 
5 

t2 
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What operations are likely fast with cons lists? 
 Get the head of a list 
 Get the tail of a list 
 Making a new list from a head and tail 

 
What operations are likely slower? 

 Get Nth element of a list 
 Get length of a list 

 
With cons lists, what does list concatenation involve? 

> let m=[1..10000000] 
> length (m++[0]) 
10000001 

A little on performance 
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The head of a list is a one-element list. 
 False, unless... 
 ...it's the head of a list of lists that starts with a one-element list 

The tail of a list is a list. 
 True 

The tail of an empty list is an empty list. 
 It's an error! 

length (tail (tail x)) == (length x) – 2 
 True (assuming what?) 

A cons list is essentially a singly-linked list. 
 True 

A doubly-linked list might help performance in some cases. 
 Hmm...what's the backlink for a multiply-referenced node? 

Changing an element in a list might affect the value of many lists. 
Trick question!  We can't change a list element.  We can only 
"cons-up" new lists and reference existing lists. 

True or false? 
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Here's a function that produces a list with a range of integers: 
> let fromTo first last = [first..last] 
 
> fromTo 10 15 
[10,11,12,13,14,15] 
 

Problem: Write a recursive version of fromTo that uses the 
cons operator to build up its result. 

fromTo 
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One solution: 
fromTo first last 
    | first > last = [] 
    | otherwise = first : fromTo (first+1) last 

 
Evaluation of fromTo 1 3 via substitution and rewriting: 

fromTo 1 3 
1 : fromTo (1+1) 3 
1 : fromTo 2 3 
1 : 2 : fromTo (2+1) 3 
1 : 2 : fromTo 3  3 
1 : 2 : 3 : fromTo (3+1) 3 
1 : 2 : 3 : fromTo 4 3 
1 : 2 : 3 : [] 

 
 

fromTo, continued 
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Do :set +s to get timing and memory information, and make 
some lists.  Try these: 
 

fromTo 1 10 
let f = fromTo   -- So we can type f instead of fromTo 
f 1 1000 
let f = fromTo 1  -- Note partial application 
f 1000 
let x = f 1000000 
length x 
take 5 (f 1000000) 
 

fromTo, continued 
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Excursion: 
A little bit with infinite lists 

and lazy evaluation 
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We can make an infinite list in Haskell!  Here's one way: 
> [1..] 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,2
1,22,23,24,25,26,27,28,29,30,31,32,^C 
 

Any ideas on how to make use of an infinite list? 
 
What does the following let create? 

> let nthOdd = (!!) [1,3..] 
nthOdd :: Int -> Integer 

 
A function that produces the Nth odd number, zero-based. 
 
Yes, we could say let nthOdd n = (n*2)+1 but that wouldn't 
be nearly as much fun!  (This is functional programming!) 

Infinite lists 
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Consider the following let.  Why does it complete? 
> let fives=[5,10..] 
fives :: [Integer] 

 
A simplistic answer: Haskell uses lazy evaluation.  It only 
computes as much of a value as it needs to. 
 
(The deeper answer: Haskell uses non-strict evaluation.  
Conventional languages use strict evaluation.) 
 
The function take produces the first N elements of a list. 

> take 3 fives 
[5,10,15] 
 

Haskell computes only enough elements of fives to produce a 
result for take 5. 

Infinite lists, continued 
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Here is an expression that is said to be non-terminating: 
> length fives 
...when tired of waiting...^C Interrupted. 

 
But, we can bind a name to length fives: 

> let numFives = length fives 
numFives :: Int 

 
That completes because Haskell hasn't yet needed to compute a 
value for length fives. 
 
We can get another coffee break by asking Haskell to print the 
value of numFives: 

> numFives 
...after a while...^CInterrupted. 

 
 
 
 

Lazy evaluation 
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We can use :print to explore lazy evaluation: 
> let fives = [5,10..] 
 
> :print fives 
fives = (_t2::[Integer]) 
 
> take 3 fives 
[5,10,15] 

 
What do you think :print fives will now show? 

> :print fives 
fives = 5 : 10 : 15 : (_t3::[Integer]) 
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Lazy evaluation, continued 



Speculate: Can infinite lists be concatenated? 
> let values = [1..] ++ [5,10..] ++ [1,2,3] 
> :t values 
values :: [Integer] 
 

How about this one? 
> [1..] > [1,2,3,5] 
False 

False due to lexicographic comparison—4 < 5 
 
Another one to consider: 

> let fives = [5,10..] 
> fives !! 100000000 
500000005 
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Here's one way to see how many distinct Char values exist: 
> length ([minBound..maxBound]::[Char]) 
1114112 

 
What does it mean? 

:info Char shows Char is an instance of the Bounded 
type class. 
 
Types that are instances of Bounded have minBound and 
maxBound defined. 

 
Could we do it another way? 

> length [(minBound::Char)..] 
1114112 

 

Experiment: How many Char values are there? 
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Patterns 
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Imagine a function that computes the sum of a list's elements. 
> sumElems  [1..10] 
55 
 
> :type sumElems 
sumElems :: Num a => [a] -> a 

 
Implementation: 

sumElems list 
    | null list = 0  -- null is function to test for empty list 
    | otherwise = head list + sumElems (tail list) 
 

It works but it's not idiomatic Haskell.  We should use patterns 
instead! 

(redone!)          Motivation: Summing list elements 
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In Haskell we can use patterns to bind names to elements of 
data structures. 

> let [x,y] = [10,20] 
> x 
10 
> y 
20 
 
> let [inner] = [[2,3]] 
> inner 
[2,3] 
 

Speculate: Given a list like [10,20,30] how could we use a 
pattern to bind names to the head and tail of the list? 
 

Patterns 
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20 
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(diagram added) 

x 
10 

y 
20 



We can use the cons operator in a pattern. 
> let h:t = [10,20,30] 
 
> h 
10 
 
> t 
[20,30] 

 
What values get bound by the following pattern? 

> let a:b:c:d = [10,20,30] 
> [c,b,a]    -- in a list so I could show them as a one-liner 
[30,20,10] 
 
> d     -- Why didn't I do [d,c,b,a] above? 
[] 
 

Patterns, continued 
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(diagram added) 



If some part of a structure is not of interest, we indicate that 
with an underscore, known as the wildcard pattern. 

> let _:(a:[b]):c = [[1],[2,3],[4]] 
> a 
2 
> b 
3 
> c 
[[4]] 
 

No binding is done for the wildcard pattern. 
 
The pattern mechanism is completely general—patterns can be 
arbitrarily complex. 

Patterns, continued 
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A name can only appear once in a pattern.  This is invalid: 
> let a:a:[] = [3,3] 
<interactive>:25:5: 
    Conflicting definitions for `a' 

 
When using let as we are here, a failed pattern isn't manifested 
until we try to see what's bound to a name. 

> let a:b:[] = [1] 
> a 
*** Exception: <interactive>:26:5-16: Irrefutable 
pattern failed for pattern a : b : [] 

Patterns, continued 
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Recall our non-idiomatic sumElems: 
sumElems list 
    | null list = 0  
    | otherwise = head list + sumElems (tail list) 

  
How could we redo it using patterns? 

sumElems [] = 0 
sumElems (h:t) = h + sumElems t 

 
Note that sumElems appears on both lines and that there are 
no guards.  sumElems has two clauses. (H10 4.4.3.1) 
 
The parentheses in (h:t) are required!! 

Patterns in function definitions 
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Here's a buggy version of sumElems: 
buggySum [x] = x 
buggySum (h:t) = h + buggySum t 

 
What's the bug? 

> buggySum [1..100] 
5050 
> buggySum [] 
*** Exception: slides.hs:(62,1)-(63,31): Non-exhaustive 
patterns in function buggySum 

 
If we use ghci -fwarn-incomplete-patterns, we'll get a warning 
when :loading. 

slides.hs:82:1: Warning: 
    Pattern match(es) are non-exhaustive 
    In an equation for `buggySum': Patterns not matched: [] 

Patterns in functions, continued 
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Describe in English what must be on the right hand side for a 
successful match. 
 
let (a:b:c) = ... 

A list containing at least two elements. 
Does [[1,2]] match? 
[2,3] ? 
"abc" ? 

 
let [x:xs] = ... 

 A list whose first element is a non-empty list. 
 Does words "a test" match? 
 [words "a test"] ? 

  [[]] ? 
 [[[]]] ? 
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Recursive functions on lists 
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Problem: Write len x, which returns the length of list x. 
> len [] 
0 
 
> len "testing" 
7 
 

Solution: 
len [] = 0 
len (_:t) = 1 + len t  -- since head isn't needed, use _ 

 
 

Simple recursive list processing functions 
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Problem: Write odds x, which returns a list having only the 
odd numbers from the list x.  

> odds [1..10] 
[1,3,5,7,9] 
 
 > take 10 (odds [1,4..]) 
[1,7,13,19,25,31,37,43,49,55] 

 
Handy: odd :: Integral a => a -> Bool 
Solution: 

odds [] = [] 
odds (h:t) 
    | odd h = h:odds t 
    | otherwise = odds t 

 

Simple list functions, continued 
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Problem: write isElem x vals, like elem in the Prelude. 
> isElem 5 [4,3,7] 
False 
 
> isElem 'n' "Bingo!" 
True 
 
> "quiz" `isElem` words "No quiz today!"  
True 
 

Solution: 
isElem _ [] = False  -- Why a wildcard? 
isElem x (h:t) 
    | x == h = True 
    | otherwise = x `isElem` t 

 

Simple list functions, continued 
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Problem: write a function that returns a list's maximum value. 
> maxVal "maximum" 
'x' 
 
> maxVal [3,7,2] 
7 
 
> maxVal (words "i luv this stuff") 
"this" 
 

Solution: 
maxVal [] = undefined 
maxVal [x] = x 
maxVal (x1:x2:xs) 
    | x1 >= x2 = maxVal (x1:xs) 
    | otherwise = maxVal (x2:xs) 
 

 

Simple list functions, continued 
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C programmers: Write strlen in C in a functional style.  Do 
strcmp and strchr, too! 
 
Python programmers:  In a functional style write size(x), 
which returns the number of elements in the string or list x. 
Restriction: You may not use type(). 

Sidebar: C and Python challenges 
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Tuples 
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A Haskell tuple is an ordered aggregation of two or more 
values of possibly differing types. 
 

> (1, "two", 3.0) 
(1,"two",3.0) 
it :: (Integer, [Char], Double) 
 
> (3 < 4, it) 
(True,(1,"two",3.0)) 
it :: (Bool, (Integer, [Char], Double)) 

 
What's something we can represent with a tuple that we can't 
represent with a list? 
 
 
 

Tuples 
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A function can return a tuple: 
> let pair x y = (x,y) 

 
What's the type of pair? 

pair :: t -> t1 -> (t, t1)  
-- why not a -> b -> (a,b)? 
 

Let's play... 
> pair 3 4 
(3,4) 
 
> pair (3,4) 
<function> 
 
> it 5 
((3,4),5) 

Tuples, continued 
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The Prelude has two functions that operate on 2-tuples. 
> let p = pair 30 "forty" 
p :: (Integer, [Char]) 
 
> p 
(30,"forty") 
 
> fst p 
30 
 
> snd p 
"forty" 
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Tuples, continued 



Recall: patterns used to bind names to list elements have the 
same syntax as expressions to create lists. 
 
Patterns for tuples are like that, too. 
 
Problem: Write middle, to extract a 3-tuple's second element. 

> middle ("372", "CHVEZ 405", "Mitchell") 
"CHVEZ 405" 
 
> middle (1, [2], True) 
[2] 

 
 

Tuples, continued 
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At hand: 
> middle (1, [2], True) 
[2] 
 

Solution: 
 middle (_, m, _) = m 

 
What's the type of middle? 

 middle :: (t, t1, t2) -> t1 
 
Does the following call work? 

> middle(1,[(2,3)],4) 
[(2,3)] 
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Tuples, continued 



Here's the type of zip from the Prelude: 
 zip :: [a] -> [b] -> [(a, b)] 

 
Speculate: What does zip do? 
 

> zip ["one","two","three"] [10,20,30] 
[("one",10),("two",20),("three",30)] 

 
> zip ['a'..'z'] [1..] 
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',
9),('j',10),...lots more... ('x',24),('y',25),('z',26)] 
 

What's especially interesting about the second example? 

Tuples, continued 
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Problem: Write elemPos, which returns the zero-based 
position of a value in a list, or -1 if not found. 

> elemPos 'm' ['a'..'z'] 
12 

 
Hint: Have a helper function do most of the work. 
 
Solution: 

elemPos x vals = elemPos' x (zip vals [0..]) 
 
elemPos' _ [] = -1 
elemPos' x ((val,pos):vps) 
    | x == val = pos 
    | otherwise = elemPos' x vps 
 
 

Tuples, continued 
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Consider these two functions: 
> let add_c x y = x + y     -- _c for curried arguments 
add_c :: Num a => a -> a -> a 
  
> let add_t (x,y) = x + y    -- _t for tuple argument 
add_t :: Num a => (a, a) -> a 
 

Usage: 
> add_c 3 4 
7 
 
> add_t (3,4) 
7 

  
Which is better, add_c or add_t? 

Sidebar: To curry or not to curry? 
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Important: Note the 
difference in types! 

Note: next set of slides! 



:info Eq shows many lines like this: 
... 
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
instance (Eq a, Eq b, Eq c) => Eq (a, b, c) 
instance (Eq a, Eq b) => Eq (a, b) 
 

We haven't talked about instance declarations but let's speculate: 
What's being specified by the above? 
 
instance (Eq a, Eq b, Eq c) => Eq (a, b, c) 

If values of each of the three types a, b, and c can be tested for 
equality then 3-tuples of type (a, b, c) can be tested for equality. 
 

The Ord and Bounded type classes have similar instance 
declarations. 

The Eq type class and tuples 
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Type-wise, lists are homogeneous; tuples are heterogeneous. 
 
We can write a function that handles a list of any length but a 
function that operates on a tuple specifies the arity of that tuple. 

Example: we can't write an analog for head, to return the first 
element of an arbitrary tuple. 

 
Even if values are homogeneous, using a tuple lets static type-
checking ensure that an exact number of values is being aggregated. 

Example: A 3D point could be represented with a 3-element list 
but using a 3-tuple guarantees points have three coordinates. 

 
If there were Head First Haskell it would no doubt have an 
interview with List and Tuple, each arguing their own merit. 

Lists vs. tuples 
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More on  
patterns and functions 
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Earlier in the slides the general form of a function definition was 
shown as this:  name arg1 arg2 ... argN = expression 
 
This is more accurate: 

 name pattern1 pattern2 ... patternN  
  guard1 = expression1 
  ... 
  guardN = expression N 

 
For a given name, any number of clauses like the above may be 
specified.  The set of clauses for a given name is the binding for that 
name.  (See 4.4.3 in H10.) 
 
If values in a call match the pattern(s) for a clause and a guard is 
true, the corresponding expression is evaluated.  

Function bindings, refined 
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Literal values can be part or all of a pattern. Here's a 3-clause 
binding for f: 

f 1 = 10 
f 2 = 20 
f n = n 
 

Usage: 
> f 1 
10 
 
> f 3 
3 
 

Remember: Patterns are tried in the order specified. 
 
 

Literals in patterns 

For contrast, with guards: 
f n 
  | n == 1 = 10 
  | n == 2 = 20 
  | otherwise = n 
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Here's factorial with guards: 
factorial n 
    | n == 0 = 1 
    | otherwise = n * factorial (n - 1) 

 
Here it is with a literal pattern: 

factorial 0 = 1 
factorial n = n * factorial (n - 1) 
 

Which is better? 
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Literals in patterns, continued 

REPLACE! 
parens1 c 
    | c == '(' = "left" 
    | c == ')' = "right" 
    | otherwise = "neither" 
 
parens2 '(' = "left" 
parens2 ')' = "right" 
parens2 _ = "neither" 
 



not is a function: 
> :type not 
not :: Bool -> Bool 
 
> not True 
False 

 
Problem: Using literals in patterns, define not. 
 
Solution: 

not True = False 
not _ = True   -- Using wildcard avoids comparison 

 
 

Literals in patterns, continued 
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A pattern can be:  
 

• A literal value such as 1, 'x', or True 
• An identifier (bound to a value if there's a match) 
• An underscore (the wildcard pattern) 
• A tuple composed of patterns  
• A list of patterns in square brackets (fixed size list) 
• A list of patterns constructed with : operators 
• Other things we haven't seen yet 

Note the recursion.  
 
Patterns can be arbitrarily complicated. 
 
3.17.1 in H10 shows the full syntax for patterns. 
 

Pattern construction 
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Intermediate values and/or helper functions can be defined using an 
optional where clause for a function. 
 
Here's an example to show the syntax; the computation is not 
meaningful. 

f x  
    | g x < 0 = g a + g b 
    | a > b = g b 
    | otherwise = g a * g b 
  where { 
      a = x * 5; 
      b = a * 2 + x; 
      g t = log t + a 
      } 

 
 

The where clause for functions 

The names a and b are bound to 
expressions; g is a function binding. 
 
The bindings in the where clause 
are done first (!), then the guards are 
evaluated in turn. 
 
Like variables defined in a method 
or block in Java, a, b, and g are not 
visible outside the declaration. 
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Imagine a function that counts occurrences of even and odd 
numbers in a list. 

> countEO [3,4,5] 
(1,2)       -- one even, two odds 

 
Code: 

countEO [] = (0,0)  -- no odds or evens in [] 
countEO (x:xs) 
      | odd x = (evens, odds+1) 
      | otherwise = (evens+1, odds) 
   where { 
      (evens, odds) = countEO xs  -- count tail first! 
      } 
 

Would it be awkward to write it without using where? 

where, continued 
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Imagine a function that returns every Nth value in a list: 
> everyNth 2 [10,20,30,40,50] 
[20,40] 
> everyNth 3 ['a'..'z'] -- abcdefghijklmnopqrstuvwxyz 
"cfilorux" 

 
Can we write this without a helper function? 
 
We could use zip to pair elements with positions to know that 30 is 
the third element, for example. 
> let everyNth n xs = helper n (zip xs [1..]) 

        
     [(10,1),(20,2),(30,3),(40,4),(50,5)] 

 
To learn a different technique, let's not use zip. 

where, continued 
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Let's write a version of everyNth that has an extra parameter: the 
original one-based position of the head of the list: 
 

helper _ [] pos = [] 
helper n (x:xs) pos 
    | (pos `rem` n == 0) = x : helper n xs (pos+1) 
    | otherwise = helper n xs (pos+1) 

 
We then write everyNth: 

 everyNth n xs = helper n xs 1 
 
everyNth 2 [10,20,30,40,50] would lead to these calls: 

 helper 2 [10,20,30,40,50] 1 
 helper 2 [20,30,40,50] 2  -- 2 rem 2 == 0 
 helper 2 [30,40,50] 3 
 helper 2 [40,50] 4    -- 4 rem 2 == 0 
 helper 2 [50] 5 

where, continued 
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helper function 



Let's rewrite using where to conceal helper: 
 
everyNth n xs = helper n xs 1 
    where { 
        helper _ [] pos = []; 
        helper n (x:xs) pos 
           | pos `rem` n == 0 = x : helper n xs (pos+1) 
           | otherwise = helper n xs (pos+1)  
        } 
 
Just like a Java private method, everyNth can't be accessed outside 
the body of helper. 
 
The code works, but it's repetitious!  How can we improve it? 
 

where, continued 
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Remember: DRY! 



Repetitious version: 
 everyNth n xs = helper n xs 1 
     where { 
        helper _ [] pos = []; 
        helper n (x:xs) pos 
           | pos `rem` n == 0 = x : helper n xs (pos+1) 
           | otherwise = helper n xs (pos+1) } 
 
Let's use another where to bind rest to the recursive call's result. 

everyNth n xs = helper n xs 1 
    where { 
        helper _ [] pos = []; 
        helper n (x:xs) pos 
            | pos `rem` n == 0 = x : rest 
            | otherwise = rest 
            where { rest = helper n xs (pos+1) } 
        } 

where, continued 
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This is a valid declaration with a where clause: 
 f x = a + b + g a where { a = 1; b = 2; g x = -x } 

 
The where clause has three declarations enclosed in braces and 
separated by semicolons. 
 
We can take advantage of the layout rule and write it like this 
instead: 

f x = a + b + g a 
     where 
          a = 1 
          b = 2 
          g x = -x 
 

Besides whitespace what's different about the second version? 
 
 
 

The layout rule for where (and more) 
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At hand: 
f x = a + b + g a 
     where 
          a = 1 
          b = 2 
          g x =  

   -x 
 
The absence of a brace after where activates the layout rule. 
 
The column position of the first token after where establishes 
the column in which declarations of the where must start. 
 
Note that the declaration of g is continued onto a second line; 
if the minus sign were at or left of the line, it would be an error. 

The layout rule, continued  

Another example: 
 
f x = a + b + g a where a = 1 
                                          b = 2 
                                          g x = 
                                               -x 
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Don't confuse the layout rule with indentation-based 
continuation of declarations! (See slides 75-76.) 
 
The layout rule allows omission of braces and semicolons in 
where, do, let, and of blocks.  (We'll see do and let later.) 
 
Indentation-based continuation applies 

1.  outside of where/do/let/of blocks 
2.  inside where/do/let/of blocks when the layout rule is 

triggered by the absence of an opening brace. 
 
The layout rule is also called the "off-side rule". 
 
TAB characters are assumed to have a width of 8. 
 
What other languages have rules of a similar nature? 

The layout rule, continued 
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Larger examples 
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Imagine a robot that travels on an infinite grid of cells.  Movement is 
directed by a series of one character commands: n, e, s, and w. 
  
Let's write a function travel that moves the robot about the grid and 
determines if the robot ends up where it started (i.e., it got home) or 
elsewhere (it got lost). 
 

travel 

1	
  
2	
  

R	
  

If the robot starts in square R the 
command string nnnn leaves the robot 
in the square marked 1. 
 
The string nenene leaves the robot in 
the square marked 2. 
 
nnessw and news move the robot in a 
round-trip that returns it to square R.  
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Usage: 
 

> travel "nnnn"         -­‐-­‐	
  ends	
  at	
  1	
  
"Got lost" 
 
> travel "nenene"    -­‐-­‐	
  ends	
  at	
  2 
"Got lost" 
 
> travel "nnessw" 
"Got home" 

 
How can we approach this problem? 

travel, continued 

1	
  
2	
  

R	
  

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  169	
  



One approach: 
1.  Map letters into integer 2-tuples representing X and Y 

displacements on a Cartesian plane.  
2.  Sum the X and Y displacements to yield a net displacement.  
 

Example:  
 Argument value: "nnee" 
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0) 
 Sum of tuples: (2,2)  

 
Another:  

 Argument value: "nnessw" 
 Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0) 
 Sum of tuples: (0,0)  

 

travel, continued 
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Two helpers: 
mapMove :: Char -> (Int, Int) 
mapMove 'n' = (0,1) 
mapMove 's' = (0,-1) 
mapMove 'e' = (1,0) 
mapMove 'w' = (-1,0) 
mapMove c = error ("Unknown direction: " ++ [c]) 
 
sumTuples :: [(Int,Int)] -> (Int,Int) 
sumTuples [] = (0,0) 
sumTuples ((x,y):ts) = (x + sumX, y + sumY) 
    where 
        (sumX, sumY) = sumTuples ts 
 
 

travel, continued 
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Missing case found with  
ghci	
  -­‐fwarn-­‐incomplete-­‐pa6erns	
  



travel itself: 
 

travel s 
    | disp == (0,0) = "Got home" 
    | otherwise = "Got lost" 
    where 
        makeTuples [] = [] 
        makeTuples (c:cs) = mapMove c : makeTuples cs 
         
        tuples = makeTuples s 
        disp = sumTuples tuples 
 

As is, mapMove and sumTuples (previous slide) are at the 
top level but makeTuples is hidden inside travel.  How 
should they be arranged? 

travel, continued 
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travel s 
    | disp == (0,0) = "Got home" 
    | otherwise = "Got lost" 
    where 
        tuples = makeTuples s 
        disp = sumTuples tuples 
         
        makeTuples [] = [] 
        makeTuples (c:cs) = 

  mapMove c:makeTuples cs 
                 
        mapMove 'n' = (0,1) 
        mapMove 's' = (0,-1) 
        mapMove 'e' = (1,0) 
        mapMove 'w' = (-1,0) 
         
        sumTuples [] = (0,0) 
        sumTuples ((x,y):ts) = (x + sumX, y + sumY) 
            where 
                (sumX, sumY) = sumTuples ts 
 

Sidebar: top-level vs. hidden functions 
Top-level functions can be 
tested after code is loaded 
but functions inside a 
where block are not visible. 
 
The functions at left are 
hidden in the where block 
but they can easily be 
changed to top-level using a 
shift or two with an editor. 
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New lines for mapMove and 
sumTuples not shown. (Lazy!)  



Here's an early question when planning a course: 
 "How many lectures will there be?" 

 
How should we answer that question? 
 
Write a Haskell program! 
 
But maybe that's what only a maniac would do! 
 
Should we Google for a course planning app instead? 
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Real world problem: Planning a course 



One approach: 
> classdays ...arguments... 
#1 H 1/15 
#2 T 1/20 
#3 H 1/22 
#4 T 1/27 
#5 H 1/29 
... 
 

What information do the arguments need to specify? 
First and last day 
Pattern, like M-W-F or T-H 
How about holidays? 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  175	
  

classdays 



Let's start with something simple: 
> classdays  (1,15)  (5,6)  [('H',5),('T',2)] 
#1 H 1/15 
#2 T 1/20 
#3 H 1/22 
#4 T 1/27 
#5 H 1/29 
... 
 

The first and last days are represented with (month,day) tuples. 
 
The third argument shows the pattern of class days: the first is 
a Thursday, and it's five days to the next class. 
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Arguments for classdays 



There's a Data.Time.Calendar module but writing two 
minimal date handling functions provides good practice. 

 
> toOrdinal (12,31) 
365  -- 12/31 is the last day of the year 
 
> fromOrdinal 32 
(2,1)  -- The 32nd day of the year is February 1. 
 

What's a minimal data structure that could help us? 
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)] 

 (1,31) The last day in January is the 31st day of the year 
 (7,212) The last day in July is the 212th day of the year 
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Date handling 



offsets = [(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),
(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)] 
 
toOrdinal (month, day) = days + day  
    where 
        (_,days) = offsets!!(month-1) 
 
fromOrdinal ordDay = 
        fromOrdinal' (reverse offsets) ordDay 
    where 
        fromOrdinal' ((month,lastDay):t) ordDay 
            | ordDay > lastDay = (month + 1, ordDay - lastDay) 
            | otherwise = fromOrdinal' t ordDay 
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toOrdinal and fromOrdinal 

> toOrdinal (12,31) 
365 

> fromOrdinal 32 
(2,1) 



Recall: 
> classdays  (1,15)  (5,6)  [('H',5),('T',2)] 
#1 H 1/15 
#2 T 1/20 
... 
 

Ordinals for (1,15) and (5,6) are 15 and 126, respectively. 
 
With the Thursday-Tuesday pattern we'd see the dates 
progressing like this: 

 15,   20,   22,   27,  29,  34,  36,  41, ... 
 
         +5     +2   +5  +2   +5   +2  +5  ... 
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... 



Imagine this series of calls to a helper, classdays': 
 

 
classdays' 1 15  126 [('H',5),('T',2)] 
classdays' 2  20 126 [('T',2),('H',5)] 
classdays' 3  22 126 [('H',5),('T',2)] 
classdays' 4  27  126 [('T',2),('H',5)] 
... 
classdays' 32 125 126 [('T',2),('H',5)] 
classdays' 33 127 126 [('H',5),('T',2)] 
 
What computations do we need to transform  

 classdays' 1 15  126 [('H',5),('T',2)] 
into 

 "#1 H 1/15"? 
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Desired output: 
#1 H 1/15 
#2 T 1/20 
#3 H 1/22 
#4 T 1/27 
... 
#32 T 5/5 
(none!) 



We have:  classdays' 1 15  126 [('H',5),('T',2)] 
We want:  "#1 H 1/15" 
 
A handy function: show :: Show a => a -> String 

> show 123 
"123" 

 
Let's write showOrdinal :: Integer -> [Char] 

> showOrdinal 15 
"1/15" 
 

showOrdinal ordDay = show month ++ "/" ++ show day 
    where 
        (month,day) = fromOrdinal ordDay 
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1 is lecture #1; 15 is 15th day of year  



We have:  classdays' 1 15  126 [('H',5),('T',2)] 
We want:  "#1 H 1/15" 
We wrote: 

> showOrdinal 15 
"1/15" 
 

Now we're ready for a first version of classdays': 
classdays'  
    lecNum first last ((dayOfWeek, daysToNext):_)  = 
       "#" ++ show lecNum ++ " " ++ [dayOfWeek] ++ 
       " " ++ showOrdinal first ++ "\n" 

Usage: 
> classdays' 1 15  126 [('H',5),('T',2)] 
"#1 H 1/15\n" 
> classdays' 32 125  126 [('T',2),('H',5)] 
"#32 T 5/5\n" 
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Recall: 
classdays'  1   15  126 [('H',5),('T',2)] 
classdays'  2   20  126 [('T',2),('H',5)] 
... 
classdays' 32 125 126 [('T',2),('H',5)] 
classdays' 33 127 126 [('H',5),('T',2)] 
 

Let's "cons up" list out of the results of those calls... 
> classdays' 1 15  126 [('H',5),('T',2)] :  
    classdays' 2 20  126 [('T',2),('H',2)] : 

     "...MORE..." :  -- I literally typed  "...MORE..." 
    classdays' 32 125 126 [('T',2),('H',5)] :  
    classdays' 33 127 126 [('H',5),('T',2)] : [] 
 
["#1 H 1/15\n","#2 T 1/20\n","...MORE...","#32 T 
5/5\n","#33 H 5/7\n"] 
 

How close are the contents of that list to what we need? 
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   Desired output: 
#1 H 1/15 
#2 T 1/20 
... 
#32 T 5/5 
(none!) 



At hand: 
> classdays' 1 15  126 [('H',5),('T',2)] :  
    classdays' 2 20  126 [(T',2),('H',5)] : 

     "...MORE..." :  -- I literally typed "...MORE..." 
    classdays' 32 125 126 [('T',2),('H',5)] :  
    classdays' 33 127 126 [('H',5),('T',2)] : [] 
 
["#1 H 1/15\n","#2 T 1/20\n","...MORE...","#32 T 
5/5\n","#33 H 5/7\n"] 
 

Now we're ready to write a recursive classdays': 
classdays' 
  lecNum first last ((dayOfWeek, daysToNext):pairs)  
    | first > last = [] 
    | otherwise =  ("#" ++ show lecNum ++ " " ++ 
            [dayOfWeek] ++ " " ++ showOrdinal first ++ "\n") 
       :  classdays' (lecNum+1) (first+daysToNext) last pairs 
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At hand: 
classdays' lecNum first last  
                                 ((dayOfWeek, daysToNext):pairs)  
    | first > last = [] 
    | otherwise =  

  ("#" ++ show lecNum ++ " " ++  [dayOfWeek] 
             ++ " " ++ showOrdinal first ++ "\n") 
        :  

  classdays' 
   (lecNum+1) (first+daysToNext) last pairs 

Let's try it: 
> classdays' 1 15  126 [('H',5),('T',2)] 
["#1 H 1/15\n","#2 T 1/20\n" 
*** Exception: Non-exhaustive patterns in function 
classdays' 
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What's the problem? 
> classdays' 1 15  126 [('H',5),('T',2)] 
["#1 H 1/15\n","#2 T 1/20\n" 
*** Exception: Non-exhaustive patterns ... 
 
classdays' lecNum first last  
                                 ((dayOfWeek, daysToNext):pairs)  
    | first > last = [] 
    | otherwise =  

  (...format an entry like "#1 H 1/15"...) 
        :  classdays' 

   (lecNum+1) (first+daysToNext) last pairs 
 

We ran out of pairs in [('H',5),('T',2)]!  Ideas? 
Just reverse [('H',5),('T',2)] each time instead of consuming it? 
What about a MWF schedule? [('M',2),('W',2),('F',3)] 
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How about supplying more pairs? 
> classdays' 1 15  126 [('H',5),('T',2),('H',5),('T',2)] 
["#1 H 1/15\n","#2 T 1/20\n","#3 H 1/22\n", 
"#4 T 1/27\n" 
*** Exception: Non-exhaustive patterns 
 

Would work if given enough pairs, but silly!  Ideas? 
> :t cycle 
cycle :: [a] -> [a] 
 
> cycle [('H',5),('T',2)] 
[('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',
5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',
2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',5),('T',2),('H',
5),('T',2),('H',5),...check Words with Friends...^C 
 

cycle produces a supply of pairs that will never run out! 
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Let's replace the finite two-tuple list with a list of tuples that 
infinitely repeats! 
 

> classdays' 1 15  126 (cycle [('H',5),('T',2)]) 
["#1 H 1/15\n","#2 T 1/20\n","#3 H 1/22\n", 

 ...MORE..., 
 "#30 T 4/28\n","#31 H 4/30\n","#32 T 5/5\n"] 
 

Look!  A very practical use of an infinite list! 
 
How would we handle it in Java? 
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classdays first last pattern = putStr (concat result) 
    where 
        result = classdays'  

  1 (toOrdinal first) (toOrdinal last) (cycle pattern) 
 
> classdays (1,15) (5,6) [('H',5),('T',2)] 
#1 H 1/15 
#2 T 1/20 
#3 H 1/22 
... 
#31 H 4/30 
#32 T 5/5 
(last line removed after copies) 
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classdays—Final answer 



Consider a function tally that counts character occurrences in a 
string:  
 

> tally "a bean bag"
a 3
b 2
  2
g 1
n 1
e 1

 
Note that the characters are shown in order of decreasing frequency. 
 
How can this problem be approached? 

 In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)] 
 

tally 
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{- 
incEntry c tups 
 
tups is a list of (Char, Int) tuples that indicate how many 
times a character has been seen. 
 
incEntry produces a copy of tups with the count in the 
tuple containing the character c incremented by one. 
 
If no tuple with c exists, one is created with a count of 1. 

-} 
 
incEntry::Char -> [(Char,Int)] -> [(Char,Int)] 
incEntry c [ ] = [(c, 1)] 
incEntry c ((char, count):entries) 
   | c == char = (char, count+1) : entries 
   | otherwise = (char, count) : incEntry c entries 
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[('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)] 



Calls to incEntry with 't', 'o', 'o': 
> incEntry 't' [] 
[('t',1)] 
 
> incEntry 'o' it 
[('t',1),('o',1)] 
 
> incEntry 'o' it 
[('t',1),('o',2)] 
 

tally, continued 
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-- mkentries s calls incEntry for each character 
--    in the string s 
 
mkentries :: [Char] -> [(Char, Int)] 
mkentries s = mkentries' s [] 
    where 
        mkentries' [ ] entries = entries 
        mkentries' (c:cs) entries = 
            mkentries' cs (incEntry c entries) 
 
> mkentries "tupple" 
[('t',1),('u',1),('p',2),('l',1),('e',1)] 
 
> mkentries "cocoon" 
[('c',2),('o',3),('n',1)] 
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{-  insert, isOrdered, and sort  provide an insertion sort -} 
insert v [ ] = [v] 
insert v (x:xs)  
    | isOrdered (v,x) = v:x:xs 
    | otherwise =  x:insert v xs 
    
isOrdered ((_, v1), (_, v2)) = v1 > v2 
 
sort [] = [] 
sort (x:xs) = insert x (sort xs) 
 
> mkentries "cocoon" 
[('c',2),('o',3),('n',1)] 
 
> sort it 
[('o',3),('c',2),('n',1)] 
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{- fmt_entries prints (Char, Int) tuples one per line -} 
fmt_entries [] = "" 
fmt_entries ((c, count):es) =  

 [c] ++ " " ++ (show count) ++ "\n" ++ fmt_entries es 
 
{- grand finale -} 
tally s = putStr (fmt_entries (sort (mkentries s))) 
 
> tally "cocoon" 
o 3 
c 2 
n 1 

tally, continued 

•  How does this solution exemplify functional 
programming? (slide 23) 

•  How is it like imperative programming? 

•  How is it like procedural programming (s. 5) 
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Let's run it on lectura... 
% code=/cs/www/classes/cs372/spring15/haskell 
 
% cat $code/tally.hs 
... everything we've seen before and now a main: 
main = do 
    bytes <- getContents  -- reads all of standard input 
    tally bytes 
 
% echo -n cocoon | runghc $code/tally.hs 
o 3 
c 2 
n 1 
  

Running tally from the command line 
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$code/genchars N generates N random letters: 
 

% $code/genchars 20 
KVQaVPEmClHRbgdkmMsQ 
 

Lets tally a million characters: 
 % $code/genchars 1000000 |  

  time runghc $code/tally.hs >out 
21.79user 0.24system 0:22.06elapsed 
% head -3 out 
s  19553 
V 19448 
 J  19437 

tally from the command line, continued 
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Let's try a compiled executable. 
 
% ghc --make -rtsopts tally.hs  
 
% ls -l tally 
-rwxrwxr-x 1 whm whm 1118828 Feb  1 22:41 tally 
 
% $code/genchars 1000000 | 

 time ./tally +RTS -K40000000 -RTS >out 
7.44user 0.29system 0:07.82elapsed 98%CPU 
 
Speculate: How fast would a Java version of tally run?  C? 
Python? Ruby? 

tally from the command line, continued 
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Errors 
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What syntax errors do you see in the following file? 
 

% cat synerrors.hs 
let f x = 
    | x < 0 == y + 10 
    | x != 0 = y + 20 
    otherwise = y + 30 
  where 
        g x:xs = x 
     y = 
         g [x] + 5 
   g2 x = 10 

Syntax errors 
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What syntax errors do you see in the following file? 
 

% cat synerrors.hs 
let f x = 
    | x < 0 == y + 10 
    | x != 0 = y + 20 
    otherwise = y + 30 
  where 
        g x:xs = x 
     y = 
         g [x] + 5 
   g2 x = 10 
         
         

Syntax errors, continued 

no let before 
functions in files 

no = before guards 

=, not == 
before result 

use /= for 
inequality missing | before 

otherwise 

Needs parens: 
(x:xs) 

continuation should 
be indented violates layout rule (a.k.a. off-side rule) 
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Line and column information is included in syntax errors. 
 

% cat synerror2.hs  
weather temp  | temp >= 80 = "Hot!" 
                     | temp >= 70   "Nice" 
                           | otherwise = "Cold!" 
 
% ghci synerror2.hs 
... 
[1 of 1] Compiling Main ( synerror2.hs, interpreted ) 
 
synerror2.hs:3:14: parse error on input `|' 
 

3:14 indicates an error has been detected at line 3, column 14. 
 
What's the error? 

Syntax errors, continued 
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If only concrete types are involved, type errors are typically 
easy to understand. 
 

> chr 'x' 
<interactive>:9:5: 
    Couldn't match expected type `Int' with actual  

 type `Char' 
    In the first argument of `chr', namely 'x' 
    In the expression: chr 'x' 
    In an equation for `it': it = chr 'x' 
 
> :type chr 
chr :: Int -> Char 

Type errors 
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Code: 
countEO (x:xs) 
    | odd x = (evens, odds+1) 
    | otherwise = (evens+1, odds) 
   where (evens,odds) = countEO 

 What's the error? 
 Couldn't match expected type `(t3, t4)' 
                with actual type `[t0] -> (t1, t2)' 
    In the expression: countEO 
    In a pattern binding: (evens, odds) = countEO 
 

What's the problem? 
It's expecting a tuple, (t3,t4) but it's getting a function, 
[t0] -> (t1, t2) 

 
 
 

Type errors, continued 
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How about this one? 
> length 
   No instance for (Show ([a0] -> Int)) arising from a 
       use of `print' 
    Possible fix: add an instance declaration for 

 (Show ([a0] -> Int)) 
    In a stmt of an interactive GHCi command: print it 
 
> :type print 
print :: Show a => a -> IO () 
 

Typing an expression at the ghci prompt causes it to be 
evaluated and print called with the result.  The (trivial) result 
here is a function, and functions aren't in the Show type class. 

Type errors, continued 
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Disregard!  Fixed by 
Text.Show.Functions! 



Code and error: 
f x y 
    | x == 0 = [] 
    | otherwise = f x 
 
 Couldn't match expected type `[a1]' with actual type 
 `t0 -> [a1]' 
    In the return type of a call of `f' 
    Probable cause: `f' is applied to too few arguments 
    In the expression: f x 
 

The error message is perfect in this case but in general note 
that an unexpected actual type that's a function suggests too 
few arguments are being supplied for some function. 

 
 

Type errors, continued 
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Is there an error in the following? 
f [] = [] 
f [x] = x 
f (x:xs) = x : f xs 
 
 Occurs check: cannot construct the infinite 

 type: a0 = [a0]     ("a0 is a list of a0s"--whm) 
    In the first argument of `(:)', namely `x' 
    In the expression: x : f xs 
    In an equation for `f': f (x : xs) = x : f xs 
 

Without the second pattern, it turns into an identity function on lists: 
f [1,2,3] == [1,2,3] 
 
What's the problem? 
 
Technique: Comment out cases to find the troublemaker. 

Type errors, continued 
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What's happening here? 
> :type ord 
ord :: Char -> Int 
 
> ord 5 
<interactive>:2:5: 
    No instance for (Num Char) arising from the  

 literal `5' 
    Possible fix: add an instance declaration for 

 (Num Char) 
 

Why does that error cite (Num Char)?  It seems to be saying 
that if Char were in the Num type class the expression would 
be valid. 

Type errors, continued 
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Higher-order functions 
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A fundamental characteristic of a functional language: functions are 
values that can be used as flexibly as values of other types. 
 
This let creates a function value and binds the name add to it. 

 > let add x y = x + y 
 
 
This let binds the name plus to the value of add, whatever it is. 

 > let plus = add 
 
  
Either of the names can be used to reference the function value: 

> add 3 4 
7 
> plus 5 6 
11 

 

Functions as values 
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...code... 

add 

...code... 

add , plus 



Can functions be compared? 
> add == plus 
 
<interactive>:25:5: 
   No instance for (Eq (Integer -> Integer -> Integer)) 
      arising from a use of `==' 
In the expression: add == plus 
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Functions as values, continued 



Line by line, what are the following expressions doing? 
> let fs = [head, last] 
 
> fs 
[<function>,<function>] 
 
> let ints = [1..10] 
 
> head fs ints 
1 
 
> (fs!!1) ints 
10 

Functions as values, continued 
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Is the following valid? 
> [take, tail, init] 
Couldn't match type `[a2]' with `Int' 
    Expected type: Int -> [a0] -> [a0] 
          Actual type: [a2] -> [a2] 
    In the expression: init 
 

What's the problem?  
 take does not have the same type as tail and init. 

 
Puzzle: Make [take, tail, init] valid by adding two characters. 

> [take 5, tail, init] 
[<function>,<function>,<function>] 

Functions as values, continued 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  213	
  



Definition: A higher-order function is a function that has one 
or more arguments that are functions. 
 
twice is a higher-order function with two arguments: f and x 

 twice f x = f (f x) 
 
What does it do? 

> twice tail [1,2,3,4,5] 
[3,4,5] 
 
> tail (tail [1,2,3,4,5]) 
[3,4,5] 

 
. 
 
 

A simple higher-order function 
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At hand: 
 > let twice f x = f (f x) 
> twice tail [1,2,3,4,5] 
[3,4,5] 

 
Let's make the precedence explicit: 

> ((twice tail) [1,2,3,4,5]) 
[3,4,5] 
 

Consider a partial application... 
> let t2 = twice tail 
> t2 
<function> 
it :: [a] -> [a] 
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twice, continued 

-- like let t2 x = tail (tail x)  



At hand: 
 > let twice f x = f (f x) 
> twice tail [1,2,3,4,5] 
[3,4,5] 

 
Let's give twice a partial application! 

> twice (drop 2) [1..5] 
[5] 

 
Let's make a partial application with a partial application! 

> twice (drop 5) 
<function> 
> it ['a'..'z'] 
"klmnopqrstuvwxyz" 
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twice, continued 

Try these! 
    twice (twice (drop 3)) [1..20] 
    twice (twice (take 3)) [1..20] 



At hand: 
 twice f x = f (f x) 

 
What's the the type of twice? 

> :t twice 
twice :: (t -> t) -> t -> t 
 

Parentheses added to show precedence: 
twice :: (t -> t) -> (t -> t) 
 

        twice f  x  =  f (f x) 
 
What's the correspondence between the elements of the clause 
and the elements of the type? 

 
 
 

twice, continued 

A higher-order function is a 
function that has one or more 
arguments that are functions. 
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Recall double x = x * 2 
 
map is a Prelude function that applies a function to each 
element of a list, producing a new list: 
 

> map double [1..5] 
[2,4,6,8,10] 
 
> map length (words "a few words") 
[1,3,5] 
 
> map head (words "a few words") 
"afw" 
 

Is map a higher order function? 

The Prelude's map function 
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At hand: 
> map double [1..5] 
[2,4,6,8,10] 
 

Write it! 
 map _ [] = [] 
map f (x:xs) = f x : map f xs 

 
What is its type? 

map :: (t -> a) -> [t] -> [a] 
 
What's the relationship between the length of the input and 
output lists? 
 

map, continued 
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Mapping (via map) is applying a transformation (a function) 
to each of the values in a list, producing a new list of the same 
length. 
 

> map chr [97,32,98,105,103,32,99,97,116] 
"a big cat" 
 
> map isLetter it 
[True,False,True,True,True,False,True,True,True] 
 
> map not it 
[False,True,False,False,False,True,False,False,False] 
 
> map head (map show it) -- Note: show True is "True" 
"FTFFFTFFF" 
 
 

map, continued 
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Here's another map: 
> map weather [85,55,75] 
["Hot!","Cold!","Nice"] 
 

This is equivalent: 
> [weather 85, weather 55, weather 75] 
["Hot!","Cold!","Nice"] 

 
Because functions have no side effects, we can immediately 
turn a mapping into a parallel computation.  We might start 
each function call on a separate processor and combine the 
values when all are done. 
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Sidebar: map can go parallel 



What's the result of these? 
> map (add 5) [1..10] 
[6,7,8,9,10,11,12,13,14,15] 
 
> map (drop 1) (words "the knot was cold") 
["he","not","as","old"] 
 
> map (replicate 5) "abc" 
["aaaaa","bbbbb","ccccc"] 
 

 
 
 

map and partial applications 
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What's going on here? 
> let f = map double 
> f [1..5] 
[2,4,6,8,10] 
 
> map f [[1..3],[10..15]] 
[[2,4,6],[20,22,24,26,28,30]] 

 
Here's the above in one step: 

> map (map double) [[1..3],[10..15]] 
[[2,4,6],[20,22,24,26,28,30]] 
 

Here's one way to think about it: 
 [(map double) [1..3], (map double) [10..15]] 
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map and partial applications, cont. 



Some of the problems on the next assignment will encourage 
working with higher-order functions by prohibiting recursion! 
 
Think of it as isolating muscle groups when weight training. 
 
Here's a simple way to avoid what's prohibited: 

 Pretend that you no longer understand recursion! 
  What's a base case?  Is it related to baseball? 
  Why would a function call itself?  How's it stop? 
  Is a recursive plunge refreshing? 

 
If you were UNIX machines, I'd do chmod 0 on an 
appropriate section of your brains.  
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Now that we're good at recursion... 



Recall our traveling robot: (slide 168) 
> travel "nnee" 
"Got lost" 
 
> travel "nnss" 
"Got home" 

 
Recall our approach: 

 Argument value: "nnee" 
 Mapped to tuples: (0,1) (0,1) (1,0) (1,0) 
 Sum of tuples: (2,2)  

 
How can we solve it non-recursively? 
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travel revisited 



Recall:  
> :t mapMove 
mapMove :: Char -> (Int, Int) 
 
> mapMove 'n' 
(0,1) 

 
Now what? 

> map mapMove "nneen" 
[(0,1),(0,1),(1,0),(1,0),(0,1)] 
 

Can we sum them with map? 
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travel, continued 



We have: 
> let disps= map mapMove "nneen" 
[(0,1),(0,1),(1,0),(1,0),(0,1)] 
 

We want: (2,3) 
 
Any ideas? 

> :t fst 
fst :: (a, b) -> a 
 
> map fst disps 
[0,0,1,1,0] 
 
> map snd disps 
[1,1,0,0,1] 
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travel, continued 



We have: 
> let disps= map mapMove "nneen" 
[(0,1),(0,1),(1,0),(1,0),(0,1)] 
> map fst disps 
[0,0,1,1,0] 
> map snd disps 
[1,1,0,0,1] 
 

We want: (2,3) 
 
Ideas? 

> :t sum 
sum :: Num a => [a] -> a 
 
> (sum (map fst disps), sum (map snd disps)) 
(2,3) 
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travel, revisited 



travel :: [Char] -> [Char] 
travel s 
    | totalDisp == (0,0) = "Got home" 
    | otherwise = "Got lost" 
    where 
        disps = map mapMove s 
        totalDisp = (sum (map fst disps),  
                               sum (map snd disps)) 
 
Did we have to understand recursion to write this? 
 
A peek ahead: 

> disps 
[(0,1),(0,1),(1,0),(1,0),(0,1)] 
 
> foldr (\(x,y) (ax,ay) -> (x+ax,y+ay)) (0,0) disps 
(2,3) 
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travel—Final answer 



Instead of using map (add 5) to add 5 to the values in a list, 
we should use a section instead: (it's the idiomatic way!) 

> map (5+) [1,2,3] 
[6,7,8]   
 

More sections:   
> map (10*) [1,2,3] 
[10,20,30] 
 
> map (++"*") (words "a few words") 
["a*","few*","words*"] 
 
> map ("*"++) (words "a few words") 
["*a","*few","*words"] 
 
 

Sidebar: "sections" 
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-- [5+ 1, 5+ 2,  5+ 3] 



Sections have one of two forms: 
 

 (infix-operator value)  Examples: (+5), (/10) 
 

 (value infix-operator)  Examples: (5*), ("x"++) 
 
Iff the operator is commutative, the two forms are equivalent. 

> map (3<=) [1..4] 
[False,False,True,True] 
 
> map (<=3) [1..4] 
[True,True,True,False] 
 

Sections aren't just for map; they're a general mechanism. 
> twice (+5) 3 
13 

"sections", continued 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  231	
  

[3 <= 1, 3 <= 2, 3 <= 3, 3 <= 4] 

 [1 <= 3, 2 <= 3, 3 <= 3, 4 <= 4] 



Another higher order function in the Prelude is filter: 
> filter odd [1..10] 
[1,3,5,7,9] 
 
> filter isDigit "(800) 555-1212" 
"8005551212" 

 
What's filter doing? 
 
What is the type of filter? 

filter :: (a -> Bool) -> [a] -> [a] 
 
 
 
 

Filtering 
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More... 
>  filter (<= 5) (filter odd [1..10]) 
[1,3,5] 
 
> map (filter isDigit) ["br549", "24/7"] 
["549","247"] 
 
> filter (`elem` "aeiou") "some words here" 
"oeoee" 

 Note that (`elem` ...) is a section! 
  elem :: Eq a => a -> [a] -> Bool 
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filter, continued 



At hand: 
> filter odd [1..10] 
[1,3,5,7,9] 
 
> :t filter 
filter :: (a -> Bool) -> [a] -> [a] 
 

Let's write filter! 
myfilter _ [] = [] 
myfilter f (x:xs) 
    | f x = x : filteredTail 
    | otherwise = filteredTail 
  where 
    filteredTail = myfilter f xs 

 

filter, continued 
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filter's first argument (a function) is called a predicate because 
inclusion of each value is predicated on the result of calling 
that function with that value. 
 
Several Prelude functions use predicates.  Here are two: 

all :: (a -> Bool) -> [a] -> Bool 
> all even [2,4,6,8] 
True 
> all even [2,4,6,7] 
False 

 
dropWhile :: (a -> Bool) -> [a] -> [a] 
> dropWhile isSpace "  testing  " 
"testing  " 
> dropWhile isLetter it 
"  " 

 filter uses a predicate 
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For reference: 
> map double [1..10] 
[2,4,6,8,10,12,14,16,18,20] 
 
> filter odd [1..10] 
[1,3,5,7,9] 

 
map: 

 transforms values 
 length input == length output 

 
filter: 

 selects values 
 0 <= length output <= length input 
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map vs. filter 



We can map a section to double the numbers in a list: 
> map (*2) [1..5] 
[2,4,6,8,10] 

 
Alternatively we could use an anonymous function: 

> map (\x -> x * 2) [1..5] 
[2,4,6,8,10] 

 
What are things we can do with an anonymous function that we 
can't do with a section? 

> map (\n -> n * 3 + 7) [1..5] 
[10,13,16,19,22] 
 
> filter (\x -> head x == last x) (words "pop top suds") 
["pop","suds"] 

Anonymous functions 
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The general form: 
 \ pattern1 ... patternN -> expression 

 
Simple syntax suggestion: enclose the whole works in parentheses. 

 map (\x -> x * 2) [1..5] 
 
The typical use case for an anonymous function is a single instance 
of supplying a higher order function with a computation that can't be 
expressed with a section or partial application. 
 
Anonymous functions are also called lambdas, lambda expressions, 
and lambda abstractions. 
 
The \ character was chosen due to its similarity to λ, used in 
Lambda calculus, another system for expressing computation. 

Anonymous functions, continued 
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Imagine a program to print the longest line(s) in a file, along 
with their line numbers: 
 

% runghc longest.hs /usr/share/dict/web2
72632:formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificophilosophical
200796:tetraiodophenolphthalein
203042:thyroparathyroidectomize
 

What are some ways in which we could approach it? 

Example: longest line(s) in a file 
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Take	
  a	
  break?
	
  



Let's work with a shorter file for development testing: 
% cat longest.1
data
to
test
 

readFile in the Prelude returns the full contents of a file as a 
string: 

> readFile "longest.1" 
"data\nto\ntest\n" 

 
To avoid wading into I/O yet, let's focus on a function that 
operates on a string of characters (the full contents of a file): 

> longest "data\nto\ntest\n" 
"1:data\n3:test\n" 

 
 

longest, continued 
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Let's work through a series of transformations of the data: 
> let bytes = "data\nto\ntest\n" 
 
> let lns = lines bytes 
["data","to","test"] 
 

Note: To save space, values of let bindings are being shown 
immediately after each let. E.g., > lns is not shown above. 
 
Let's use zip3 and map length to create (length, line-number, 
line) triples: 

> let triples = zip3 (map length lns) [1..] lns 
[(4,1,"data"),(2,2,"to"),(4,3,"test")] 

longest, continued 
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We have (length, line-number, line) triples at hand: 
> triples 
[(4,1,"data"),(2,2,"to"),(4,3,"test")] 

 
Let's use sort :: Ord a => [a] -> [a] on them: 

> let sortedTriples = reverse (sort triples) 
[(4,3,"test"),(4,1,"data"),(2,2,"to")] 

 
Note that by having the line length first, triples are sorted first by 
line length, with ties resolved by line number. 
 
We use reverse to get a descending order. 
 
If line length weren't first, we'd instead use 

 Data.List.sortBy :: (a -> a -> Ordering) -> [a] -> [a] 
and supply a function that returns an Ordering. 
 

longest, continued 
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At hand: 
> sortedTriples 
[(4,3,"test"),(4,1,"data"),(2,2,"to")] 

 
We'll handle ties by using takeWhile to get all the triples with 
lines of the maximum length. 
 
Let's use a helper function to get the first element of a 3-tuple: 

> let first (len, _, _) = len 
> let maxLength = first (head sortedTriples) 
4 

 
first will be used in another place but were it not for that we 
might have used a pattern: 

 let (maxLength,_,_) = head sortedTriples 
 
 
 
 

longest, continued 
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At hand: 
> sortedTriples 
[(4,3,"test"),(4,1,"data"),(2,2,"to")] 
 
> maxLength 
4 

 
Let's use takeWhile :: (a -> Bool) -> [a] -> [a] to get the 
triples having the maximum length: 
 
> let maxTriples = takeWhile  

   (\triple -> first triple  == maxLength) sortedTriples 
[(4,3,"test"),(4,1,"data")] 

 

longest, continued 
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anonymous function for takeWhile 



At hand: 
> maxTriples 
[(4,3,"test"),(4,1,"data")] 

 
Let's map an anonymous function to turn the triples into lines 
prefixed with their line number: 
 

> let linesWithNums =  
       map (\(_,num,line) -> show num ++ ":" ++ line)    
                maxTriples 

 ["3:test","1:data"] 
 
We can now produce a ready-to-print result: 

> let result = unlines (reverse linesWithNums) 
> result 
"1:data\n3:test\n" 

 
 

longest, continued 
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Let's package up our work into a function: 
longest bytes = result 
    where 
        lns = lines bytes 
        triples = zip3 (map length lns) [1..] lns 
        sortedTriples = reverse (sort triples) 
        maxLength = first (head sortedTriples) 
        maxTriples = takeWhile  
           (\triple -> first triple  == maxLength) sortedTriples 

        linesWithNums =  
       map (\(_,num,line) -> show num ++ ":" ++ line) 
       maxTriples 

        result = unlines (reverse linesWithNums) 
 
        first (x,_,_) = x 
 

 

longest, continued 
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At hand: 
> longest "data\nto\ntest\n" 
"1:data\n3:test\n" 

 
Let's add a main that handles command-line args and does I/O: 

% cat longest.hs 
import System.Environment (getArgs) 
import Data.List (sort) 
 
longest bytes = ...from previous slide... 
         
main = do 
    args <- getArgs  -- Get command line args as list 
    bytes <- readFile (head args) 
    putStr (longest bytes) 
 

Execution: 
$ runghc longest.hs /usr/share/dict/words 
39886:electroencephalograph's 

 

longest, continued 
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Given two functions f and g, the composition of f and g is a 
function c that for all values of x, (c x) equals (f (g x)) 
 
Here is a primitive compose function that applies two 
functions in turn:  

> let compose f g x = f (g x) 
 

Its type: (How many arguments?) 
(b -> c) -> (a -> b) -> a -> c 
 
> compose init tail [1..5]    
[2,3,4] 
 
> compose signum negate 3 
-1 

Function composition 
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Haskell has a function composition operator.  It is a dot (.) 
> :t (.) 
(.) :: (b -> c) -> (a -> b) -> a -> c 
 

Its two operands are functions, and its result is a function. 
 

> let numwords = length  .  words 
 
> numwords "just testing this" 
3 

Composition, continued 
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Problem: Using composition create a function that returns the 
next-to-last element in a list: 

> ntl [1..5] 
4 
 
> ntl "abc" 
'b' 
 

Solution: 
 > let ntl = head  .  tail  .  reverse 
 

Another? 
> let ntl = head  .  reverse  .  init 
 

Composition, continued 
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Problem: Create a function to remove the digits from a string: 
> rmdigits "Thu Feb  6 19:13:34 MST 2014" 
"Thu Feb   :: MST " 

 
Solution: 

> let rmdigits = filter (not  .  isDigit) 
 

Given the following, describe f: 
> let f = (*2) . (+3) 
 
> map f [1..5] 
[8,10,12,14,16] 

 
Would an anonymous function be a better choice? 

Composition, continued 
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Given the following, what's the type of numwords? 
> :type words 
words :: String -> [String] 
 
> :type length 
length :: [a] -> Int 
 
> let numwords = length . words 

 
Type: 

 numwords :: String -> Int 
 
Assuming a composition is valid, the type is based only on the input 
of the rightmost function and the output of the leftmost function.  
 

 (.) :: (b -> c) -> (a -> b) -> a -> c 

Composition, continued 
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Recall rmdigits: 
> rmdigits "Thu Feb  6 19:13:34 MST 2014" 
"Thu Feb   :: MST " 

 
What the difference between these two bindings for rmdigits? 

rmdigits s = filter (not  .  isDigit) s 
 
rmdigits  = filter (not  .  isDigit) 
 

The latter declaration is in point-free style. (Look, no ss!) 
 
A point-free binding of a function f has NO parameters! 
 
Is the following a point-free function binding or a partial 
application? 

 t5 = take 5 
 
 

Point-free style 
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Problem: Using point-free style, bind len to a function that works 
like the Prelude's length. 
 
Hint: 

> :t const 
const :: a -> b -> a 
 
> const 10 20 
10 
 
> const [1] "foo" 
[1] 
 

Solution: 
len = sum . map (const 1) 
 

See also: Tacit programming on Wikipedia 
 
 

Point-free style, continued 
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Hocus pocus with 
higher-order functions 
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What's this function doing? 
f  a = g 
    where 
        g  b = a + b 

 
Type? 

 f :: Num a => a -> a -> a 
 
Interaction: 

> let f ' = f 10 
> f ' 20 
30 
 
> f 3 4 
7 

 

Mystery function 
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Consider this claim: 
A function definition in curried form, which is idiomatic in 
Haskell, is really just syntactic sugar. 

 
Compare these two completely equivalent declarations for add: 

 add x y = x + y 
 

 add x = add' 
  where 
   add' y = x + y 

 
The result of the call add 5  is essentially this function: 

 add' y = 5 + y 
 
The combination of the code for add' and the binding for x is 
known as a closure.  It contains what's needed for execution. 
 
 

DIY Currying 
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A language construct that makes 
something easier to express but 
doesn't add a new capability is 
called syntactic sugar.  



DIY currying in JavaScript 
JavaScript doesn't provide the syntactic sugar of curried 
function definitions but we can do this: 

function add(x) { 
  return function (y) { return x + y } 
     } 

Try it in Chrome! 
 
View>Developer>	
  
JavaScript	
  Console 
brings up the 
console. 
 
Type in the code for 
add	
  on one line. 
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>>> def add(x): 
...           return lambda y: x + y 
...  
 
>>> f = add(5) 
 
>>> type(f) 
<type 'function'> 
 
>>> map(f, [10,20,30]) 
[15, 25, 35] 

DIY currying in Python 
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Here's another mystery function: 
 

> let m f x y = f y x 
 
> :type m 
m :: (t1 -> t2 -> t) -> t2 -> t1 -> t 
 

Can you devise a call to m? 
> m add 3 4 
7 
 
> m (++) "a" "b" 
"ba" 

 
What is m doing?  What could m be useful for? 
 

Another mystery function 
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At hand: 
 m f x y = f y x 
  

 m is actually a Prelude function named flip: 
> :t flip 
flip :: (a -> b -> c) -> b -> a -> c 
 
> flip take [1..10] 3 
[1,2,3] 
 
> let ftake = flip take 
> ftake [1..10] 3 
[1,2,3] 

 
Any ideas on how to use it? 

flip 
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At hand: 
 flip f x y = f y x 

 
> map (flip take "Haskell") [1..7] 
["H","Ha","Has","Hask","Haske","Haskel","Haskell"] 

 
Problem: write a function that behaves like this: 

> f 'a' 
["a","aa","aaa","aaaa","aaaaa",... 
 

Solution: 
 > let f x = map (flip replicate x) [1..] 

 

flip, continued 
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From assignment 1: 
> splits "abcd" 
[("a","bcd"),("ab","cd"),("abc","d")] 
 

Many students have noticed the Prelude's splitAt: 
> splitAt 2 [10,20,30,40] 
([10,20],[30,40]) 
 

Problem: Write splits using higher order functions but no 
explicit recursion. 
 
Solution: 

splits list = map (flip splitAt list) [1..(length list - 1)] 

flip, continued 
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$ is the "application operator".  Note what :info shows: 
> :info ($) 
($) :: (a -> b) -> a -> b  
infixr 0 $  -- right associative infix operator with very 
     -- low precedence 

 
The following declaration of $ uses an infix syntax: 

f $ x  =  f x   -- Equivalent: ($) f x = f x 
 
Usage: 

> negate $ 3 + 4 
-7 
 

What's the point of it? 

The $ operator 
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$ is a low precedence, right associative operator that applies a 
function to a value: 

 f $ x  =  f x 
 
Because + has higher precedence than $ the expression 

 negate $ 3 + 4 
 groups like this: 

 negate $ (3 + 4) 
 
How does the following expression group? 

 filter (>3) $ map length $ words "up and down" 
 

 filter (>3) (map length (words "up and down")) 
 
 
 
 
 
 
 

The $ operator, continued 
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Problem: We're given a function whose argument is a two-tuple 
but we wish it were curried so we could use a partial 
application of it. 

g :: (Int, Int) -> Int 
g (x,y) = x^2 + 3*x*y + 2*y^2 
 
> g (3,4) 
77 

 
Solution: Curry it with curry from the Prelude! 

> map (curry g 3) [1..10] 
[20,35,54,77,104,135,170,209,252,299] 

 
Your problem: Write curry! 

Currying the uncurried 
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At hand: 
> g (3,4) 
77 
> map (curry g 3) [1..10] 
[20,35,54,77,104,135,170,209,252,299] 

 
Here's curry, and use of it: 

 curry :: ((a, b) -> c) -> (a -> b -> c)  (latter parens added to help) 
 curry f x y = f (x,y) 
 
> let cg = curry g 
> :type cg 
cg :: Int -> Int -> Int 
 
> cg 3 4 
77 
 

Currying the uncurried, continued 
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At hand: 
 curry :: ((a, b) -> c) -> (a -> b -> c)  (parentheses added) 
 curry f x y = f (x, y) 

 
> map (curry g 3) [1..10] 
[20,35,54,77,104,135,170,209,252,299] 

 
The key: (curry g 3) is a partial application of curry! 
 

 Call: curry g 3 
 

 Dcl:  curry f  x y = f  (x,  y) 
           = g (3, y) 

 
 

Currying the uncurried, continued 
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At hand: 
 curry :: ((a, b) -> c) -> (a -> b -> c)  (parentheses added) 
 curry f x y = f (x, y) 

 
> map (curry g 3) [1..10] 
[20,35,54,77,104,135,170,209,252,299] 

 
Let's get flip into the game! 

> map (flip (curry g) 4) [1..10] 
[45,60,77,96,117,140,165,192,221,252] 

 
The counterpart of curry is uncurry: 

> uncurry (+) $ (3,4) uncurry (+) (3,4) 
7 

Currying the uncurried, continued 
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function curry(f) { 
 return function(x) { 
  return function (y) { return f(x,y) } 

           } 
      } 
 

A curry function for JavaScript 
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Folding 
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Note: next set of slides! 

QUIZ! 



We can reduce a list by a binary operator by inserting that operator 
between the elements in the list: 
 
[1,2,3,4] reduced by + is 1 + 2 + 3 + 4 
 
["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def" 
 
Imagine a function reduce that does reduction by an operator. 

> reduce (+) [1,2,3,4] 
10 
 
> reduce (++) ["a","bc","def"] 
"abcdef" 
 
> reduce max [10,2,4]  
10 
 
> map (reduce max) (permutations [10,2,4]) 
[10,10,10,10,10,10]  -- permutations is from Data.List 
 

Reduction 
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 -- think of	
  10 `max` 2 `max` 4 



At hand: 
> reduce (+) [1,2,3,4] 
10 

 
An implementation of reduce: 

reduce _ [] = undefined 
reduce _ [x] = x 
reduce op (x:xs) = x `op` reduce op xs 
 

Does reduce + [1,2,3,4] do 
 ((1 + 2) + 3) + 4 

or 
 1 + (2 + (3 + 4)) 

? 
 
In general, when would the grouping matter? 

Reduction, continued 
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In the Prelude there's no reduce but there is foldl1 and foldr1. 
 

>	
  foldl1	
  (/)	
  [1,2,3]	
  
0.16666666666666666	
   	
  -­‐-­‐	
  leZ	
  associa[ve:	
  (1	
  /	
  2)	
  /	
  3	
  
	
  
>	
  foldr1	
  (/)	
  [1,2,3] 	
   	
   	
  -­‐-­‐	
  right	
  associa[ve:	
  1	
  /	
  (2	
  /	
  3)	
  
1.5	
  

 
Here's the type of foldr1: 

	
  foldr1	
  ::	
  (a	
  -­‐>	
  a	
  -­‐>	
  a)	
  -­‐>	
  [a]	
  -­‐>	
  a	
  
 
Here's the type of a related function, foldr (no "1"): 

 foldr	
  ::	
  (a	
  -­‐>	
  b	
  -­‐>	
  b)	
  -­‐>	
  b	
  -­‐>	
  [a]	
  -­‐>	
  b	
  
 
What are the differences between the two? 

  

foldl1 and foldr1	
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For reference: 
foldr1	
  ::	
  (a	
  -­‐>	
  a	
  -­‐>	
  a)	
  -­‐>	
  [a]	
  -­‐>	
  a	
  
foldr	
  ::	
  (a	
  -­‐>	
  b	
  -­‐>	
  b)	
  -­‐>	
  b	
  -­‐>	
  [a]	
  -­‐>	
  b	
  
	
  

Use: 
>	
  foldr1	
  (+)	
  [1..4]	
  
10	
  
	
  
>	
  foldr	
  (+)	
  0	
  [1..4]	
  
10	
  
	
  
>	
  foldr	
  (+)	
  0	
  [] 	
  -­‐-­‐	
  Empty	
  list	
  is	
  excep[on	
  with	
  foldr1	
  
0	
  

foldr1 vs. foldr	
  

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  275	
  



For reference: 
foldr1	
  ::	
  (a	
  -­‐>	
  a	
  -­‐>	
  a)	
  -­‐>	
  [a]	
  -­‐>	
  a	
  	
  -­‐-­‐	
  reduction, like 1+2+3+4 
foldr	
  ::	
  (a	
  -­‐>	
  b	
  -­‐>	
  b)	
  -­‐>	
  b	
  -­‐>	
  [a]	
  -­‐>	
  b	
  	
  -­‐-­‐	
  something different... 
	
  

To aid understanding, here's a folding function written with the 
names elem (element) and acm (accumulated value). 

>	
  foldr	
  (\elem	
  acm	
  -­‐>	
  acm	
  +	
  elem)	
  0	
  [1..4]	
  	
  
10	
  
	
  

Here's the BIG DEAL with foldr: it can fold a list of values into 
a different type! 

	
  
>	
  foldr	
  (\elem	
  acm	
  -­‐>	
  show	
  elem	
  ++	
  "."	
  ++	
  acm)	
  "<"	
  [1..4]	
  
"1.2.3.4.<"	
  
	
  

Another way to think about it: 1	
  `f`	
  (2	
  `f`	
  (3	
  `f`	
  (4	
  `f`	
  "<"))) 	
   

foldr1 vs. foldr, continued 
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-­‐-­‐	
  IMPORTANT: Numbers in; [Char] out! 

initial value for acm	
  

The folding function 



Fill in the blank, creating a folding function that can be used to 
compute the length of a list: 

>	
  foldr	
  (\	
  ______________	
  )	
  0	
  [10,20,30]	
  
3	
  
 

Solution: 
>	
  let	
  len	
  =	
  foldr	
  (\elem	
  acm	
  -­‐>	
  acm	
  +	
  1)	
  0	
  
>	
  len	
  ['a'..'z']	
  
26	
  
 

Problem: Define map	
  in terms of foldr. 
>	
  let	
  mp	
  f	
  =	
  foldr	
  (\elem	
  acm	
  -­‐>	
  f	
  elem	
  :	
  acm)	
  []	
  
>	
  mp	
  toUpper	
  "test"	
  
"TEST"	
  

 
 

Folding 
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Recall our even/odd counter 
>	
  countEO	
  [3,4,7,9]	
  
(1,3)	
  
	
  

Define it terms of foldr! 
>	
  let	
  eo	
  =	
  foldr	
  (\val	
  (e,o)	
  -­‐>	
  

	
   	
   	
   	
   	
  if	
  even	
  val	
  then	
  (e+1,o)	
  else	
  (e,o+1))	
  (0,0)	
  
>	
  eo	
  [3,4,7,9]	
  
(1,3)	
  
	
  
>	
  eo	
  []	
  
(0,0)	
  
	
  

Strictly FYI: Instead of if/else we could have used Haskell's case: 
>	
  let	
  eo	
  =	
  myfoldr	
  (\val	
  (e,o)	
  -­‐>	
  	
  

	
  case	
  even	
  val	
  of	
  {True	
  -­‐>	
  (e+1,o);	
  False	
  -­‐>	
  (e,o+1)})	
  (0,0)	
  
 

Folding, continued 
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initial value for acm	
  



Here's a definition for foldr.  We're using a type specification with 
multicharacter type variables to help know which is which: 
 

foldr	
  ::	
  (val	
  -­‐>	
  acm	
  -­‐>	
  acm)	
  -­‐>	
  acm	
  -­‐>	
  [val]	
  -­‐>	
  acm	
  
foldr	
  f	
  acm	
  []	
  =	
  acm	
  
foldr	
  f	
  acm	
  (val:vals)	
  =	
  f	
  val	
  (	
  foldr	
  f	
  acm	
  vals	
  )	
  

 
When loaded, we see this: 

>	
  :t	
  foldr	
  
foldr	
  ::	
  (val	
  -­‐>	
  acm	
  -­‐>	
  acm)	
  -­‐>	
  acm	
  -­‐>	
  [val]	
  -­‐>	
  acm	
  
	
  
>	
  foldr	
  (\val	
  acm	
  -­‐>	
  acm	
  ++	
  val)	
  "?"	
  (	
  words	
  "a	
  test	
  here"	
  )	
  
"?heretesta"	
  

 
IMPORTANT: There's NO connection between the type variable 
names and the names in functions.   We might have done this 
instead:  foldr	
  (\v	
  a	
  -­‐>	
  a	
  ++	
  v)	
  ... 
 

Folding, continued 
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Problem: Write reverse in terms of a foldr.	
  
	
  
A solution, but with an issue: 

	
  rv1	
  =	
  foldr	
  (\val	
  acm	
  -­‐>	
  acm	
  ++	
  [val])	
  []	
  
	
  
The issue: ++ is relatively expensive wrt. cons. 
 
By definition, foldr operates like this: 

	
  foldr	
  f	
  zero	
  [x1,	
  x2,	
  ...,	
  xn]	
  ==	
  x1	
  `f`	
  (x2	
  `f`	
  ...	
  (xn	
  `f`	
  zero)...)  
	
  
The first application of f is with the last element and the "zero" 
value, but the first cons would need to be with the first element 
of the list. 

Folding, continued 
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The counterpart of foldr	
  is foldl.  Compare their meanings: 
 

foldr	
  f	
  zero	
  [x1,	
  x2,	
  ...,	
  xn]	
  ==	
  x1	
  `f`	
  (x2	
  `f`	
  ...	
  (xn	
  `f`	
  zero)...)	
  	
  
	
  
foldl	
  f	
  zero	
  [x1,	
  x2,	
  ...,	
  xn]	
  ==	
  (...((zero	
  `f`	
  x1)	
  `f`	
  x2)	
  `f`...)`f`	
  xn	
  
	
  

Their types, with long type variables: 
	
  foldr	
  ::	
  (val	
  -­‐>	
  acm	
  -­‐>	
  acm)	
  -­‐>	
  acm	
  -­‐>	
  [val]	
  -­‐>	
  acm	
  

	
  
	
  foldl	
  ::	
  (acm	
  -­‐>	
  val	
  -­‐>	
  acm)	
  -­‐>	
  acm	
  -­‐>	
  [val]	
  -­‐>	
  acm	
  

 
Problem: Write reverse in terms of foldl. 

>	
  let	
  rev	
  =	
  foldl	
  (\acm	
  val	
  -­‐>	
  val:acm)	
  []	
  
>	
  rev	
  "tes[ng"	
  
"gnitset"	
  

Folding, continued 
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Note the "zeros" 



Recall paired from assignment 2: 
> paired "((())())" 
True 

 
Can we implement paired with a fold? 
 

counter (-1) _ = -1 
counter total '(' = total + 1 
counter total ')' = total - 1 
counter total _ = total 
 
paired s = foldl counter 0 s == 0 
 

Point-free: 
paired = (0==) . foldl counter 0 
 
 

Folding, continued 
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Data.List.partition partitions a list based on a predicate: 
 

> partition isLetter "Thu Feb 13 16:59:03 MST 2014" 
("ThuFebMST","  13 16:59:03  2014") 
 
> partition odd [1..10] 
([1,3,5,7,9],[2,4,6,8,10]) 
 

Write it using a fold! 
sorter f val (pass, fail) = 
    if f val then (val:pass, fail)  -- ML escapee from 2006! 
                else (pass, val:fail) 
     
partition f = foldr (sorter f) ([],[]) 

 

Folding, continued 
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map: 
 transforms values 
 length input == length output 

 
filter: 

 selects values 
 0 <= length output <= length input 

 
folding 

 Input: A list of values and an initial value for accumulator 
 Output: A value of any type and complexity 

 
True or false? 

Any operation that processes a list can be expressed in a 
terms of a fold, perhaps with a simple wrapper. 
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map vs. filter vs. folding 



Far-fetched folding: 
 

Refrigerators in Gould-Simpson to 
 ((grams fat, grams protein, grams carbs), calories) 

 
Keyboards in Gould-Simpson to 

 [("a", #), ("b", #), ..., ("@2", #), ("CMD", #)]  
 
[Backpack] to  

 (# pens, pounds of paper,  
  [(title, author, [page #s with the word "computer")]) 

 
[Furniture] 

to a structure of 3D vertices representing a convex hull 
that could hold any single piece of furniture. 
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We can fold a list of anythings into anything! 



The challenge: Write a function such that f val acm can do the work for 
you.  Think about the "zero" value.  Imagine a series of calls.  
 
foldr does the rest!  (For foldl, it's f acm val.) 
 
> foldr (\val acm ->  

 if  val `elem` "aeiou" then acm+1 else acm) 0 "ate" 
2 
 
> foldr (\val acm@(n, vows) ->  

 if  val `elem` "aeiou" then (n+1, val:vows) else acm) (0,[]) "ate" 
(2,"ae") 
 
vowelPositions s = reverse result  
   where (_,result,_) =  

          foldl (\acm@(n, vows,pos) val ->  -- NOTE: now foldl! 
        if  val `elem` "aeiou" then (n, (val,pos):vows,pos+1) 
                  else (n,vows,pos+1)) (0,[],0) s 

 
> vowelPositions "Down to Rubyville!" 
[('o',1),('o',6),('u',9),('i',13),('e',16)] 
 

The challenge of folding 
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scans	
  are	
  similar	
  to	
  folds	
  but	
  all	
  intermediate	
  values	
  are	
  produced:	
  
 
> scanl (+) 0 [1..5] 
[0,1,3,6,10,15] 
 
> let scanEO = scanl (\(e,o) val -> 
                    if even val then (e+1,o) else (e,o+1)) (0,0) 
 
> scanEO [1,3,5,6,7,9] 
[(0,0),(0,1),(0,2),(0,3),(1,3),(1,4),(1,5)] 
	
  

Replacement for slide "Scans"! 



User-defined types 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  287	
  



A new type can be created with a data declaration. 
 
Here's a simple Shape type whose instances represent circles or 
rectangles: 
 

data Shape = 
    Circle Double |   -- just a radius 
    Rect Double Double  -- width and height 

  deriving Show 
 
The shapes have dimensions but no position. 
 
Circle and Rect are data constructors. 
 
"deriving Show" declares Shape to be an instance of the Show type 
class, so that values can be shown using some simple, default rules. 
 
Shape is called an algebraic type because instances of Shape are built 
using other types. 

A Shape type 
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Instances of Shape are created by calling the data constructors: 
 
> let r1 = Rect 3 4 
> r1 
Rect 3.0 4.0 
 
> let r2 = Rect 5 3 
 
> let c1 = Circle 2 
 
> let shapes = [r1, r2, c1] 
 
> shapes 
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0] 
 

Lists must be homogeneous—why are both Rects and Circles 
allowed in the same list? 

Shape, continued 

data Shape = 
    Circle Double | 
    Rect Double Double 

   deriving Show 
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The data constructors are just functions—we can use all our 
function-fu with them! 

 
> :t Circle 
Circle :: Double -> Shape 
 
> :t Rect 
Rect :: Double -> Double -> Shape 
 
> map Circle [2,3] ++ map (Rect 3) [10,20] 
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0] 

  

Shape, continued 

data Shape = 
    Circle Double | 
    Rect Double Double 

   deriving Show 
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Functions that operate on algebraic types use patterns based on their data 
constructors. 
 

area (Circle r) = r ** 2 * pi 
area (Rect w h) = w * h 

 
Usage: 

> r1 
Rect 3.0 4.0 
 
> area r1 
12.0 
 
> shapes 
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0] 
 
> map area shapes 
[12.0,15.0,12.566370614359172] 
 
> sum $ map area shapes 
39.56637061435917 

 

Shape, continued 

data Shape = 
    Circle Double | 
    Rect Double Double 

   deriving Show 
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Let's make the Shape type an instance of the Eq type class. 
 
What does Eq require? 

> :info Eq 
class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 

 
Let's say that two shapes are equal if their areas are equal.  (Iffy!) 

instance Eq Shape where 
    (==) r1 r2 = area r1 == area r2 

 
Usage: 

> Rect 3 4 == Rect 6 2 
True 
 
> Rect 3 4 == Circle 2 
False 

Shape, continued 

Default definitions from Eq: 
(==) a b = not $ a /= b 
(/=)  a b = not $ a == b 
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Let's see if we can find the biggest shape: 
> maximum shapes 
 No instance for (Ord Shape) arising from a use of 
`maximum' 
    Possible fix: add an instance declaration for (Ord 
Shape) 

 
What's in Ord? 

> :info Ord 
class Eq a => Ord a where 
  compare :: a -> a -> Ordering 
  (<) :: a -> a -> Bool 
  (>=) :: a -> a -> Bool 
  (>) :: a -> a -> Bool 
  (<=) :: a -> a -> Bool 
  max :: a -> a -> a 
  min :: a -> a -> a 

 

Shape, continued 

Eq a => Ord a requires 
would-be Ord classes to be 
instances of Eq.  (Done!) 
 
Like == and /= with Eq, the 
operators are implemented in 
terms of each other. 
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Let's make Shape an instance of the Ord type class: 
instance Ord Shape where 
    (<) r1 r2 = area r1 < area r2   -- < and <= are sufficient 
    (<=) r1 r2 = area r1 <= area r2 

 
Usage: 

> shapes 
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0] 
 
> map area shapes 
[12.0,15.0,12.566370614359172] 
 
> maximum shapes 
Rect 5.0 3.0 
 
> Data.List.sort shapes 
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0] 
 

Note that we didn't need to write functions like sumOfAreas or 
largestShape—we can express those in terms of existing operations 

Shape, continued 
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Here's all the Shape code: (in shape.hs) 
data Shape = 
    Circle Double | 
    Rect Double Double 
        deriving Show 
 
area (Circle r) = r ** 2 * pi 
area (Rect w h) = w * h 
 
instance Eq Shape where 
    (==) r1 r2 = area r1 == area r2 
 
instance Ord Shape where 
    (<) r1 r2 = area r1 < area r2 
    (<=) r1 r2 = area r1 <= area r2 
 

What would be needed to add a Figure8 shape and a perimeter 
function? 
 
How does this compare to a Shape/Circle/Rect hierarchy in Java? 

Shape all in one place 
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Let's look at the compare function: 
> :t compare 
compare :: Ord a => a -> a -> Ordering 
 

Ordering is a simple algebraic type, with only three values: 
> :info Ordering 
data Ordering = LT | EQ | GT 
 
> [r1,r2] 
[Rect 3.0 4.0,Rect 5.0 3.0] 
 
> compare r1 r2 
LT 
 
> compare r2 r1 
GT 
 

What do you suppose Bool really is? 
> :info Bool 
data Bool = False | True 

Two simple algebraic types 
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Here's an algebraic type for a binary tree: 
data Tree a = Node a (Tree a) (Tree a)   -- tree.hs 
                      | Empty 

                      deriving Show 
 
The a is a type variable.  Our Shape type used Double values but Tree 
can hold values of any type! 
 

> let t1 = Node 9 (Node 6 Empty Empty) Empty 
> t1 
Node 9 (Node 6 Empty Empty) Empty 
 
> let t2 = Node 4 Empty t1 
> t2 
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty) 

A binary tree 

4 

9 

6 

t1 

t2 
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Here's a function that inserts values, maintaining an ordered tree: 
insert Empty v = Node v Empty Empty 
insert (Node x left right) value 
    | value <= x = (Node x (insert left value) right) 
    | otherwise = (Node x left (insert right value)) 
 

Let's insert some values... 
> let t = Empty 
> insert t 5 
Node 5 Empty Empty 
 
> insert it 10 
Node 5 Empty (Node 10 Empty Empty) 
 
> insert it 3 
Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty) 
 

How many Nodes are constructed by each of the insertions? 
 

 

Tree, continued 

5 

10 3 
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Here's an in-order traversal that produces a list of values: 
inOrder Empty = [] 
inOrder (Node val left right) = 

 inOrder left ++ [val] ++ inOrder right 
 

What's an easy way to insert a bunch of values? 
> let t = foldl insert Empty [3,1,9,5,20,17,4,12] 
> inOrder t 
[1,3,4,5,9,12,17,20] 
 
> inOrder $ foldl insert Empty "tim korb" 
" bikmort" 
 
> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2] 
[Rect 1.0 2.0,Circle 1.0,Rect 3.0 4.0] 

Tree, continued 
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Here's an interesting type: 
> :info Maybe 
data Maybe a = Nothing | Just a 

 
Speculate: What's the point of it? 
 
Here's a function that uses it: 

> :t Data.List.find 
Data.List.find :: (a -> Bool) -> [a] -> Maybe a 

 
How could we use it? 

> find even [3,5,6,8,9] 
Just 6 
 
> find even [3,5,9] 
Nothing 
 
> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"} 
"oops!" 

 
 

Maybe 

CSC	
  372	
  Spring	
  2015,	
  Haskell	
  Slide	
  300	
  



 A little I/O 
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Consider this function declaration 
f2 x = a + b + c 
    where 
        a = f x 
        b = g x 
        c = h x 

 
Haskell guarantees that the order of the where clause bindings is 
inconsequential—those three lines can be in any order. 
 
What enables that guarantee? 
 

(Pure) Haskell functions depend only on the argument value. For 
a given value of x, f x always produces the same result. 

 
You can shuffle the bindings of any function's where clause without 
changing the function's behavior!  (Try it with longest, slide 233.) 

Sequencing 

a = f x 
c = h x 
b = g x 

c = h x 
b = g x 
a = f x 
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Imagine a getInt function, which reads an integer from standard 
input (e.g., the keyboard). 
 
Can the where clause bindings in the following function be done in 
any order? 

f x = r 
    where 
        a = getInt 
        b = getInt 
        r = a * 2 + b + x 
 

The following is not valid syntax but ignoring that, is it reorderable? 
greet name = "" 
    where 
        putStr "Hello, " 
        putStr name 
        putStr "!\n" 
 

 

I/O and sequencing 
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One way we can specify that operations are to be performed in 
a specific sequence is to use a do: 

% cat io2.hs 
main = do 
    putStrLn "Who goes there?" 
    name <- getLine 
    let greeting = "Hello, " ++ name ++ "!" 
    putStrLn greeting 

 
Interaction: 

% runghc io2.hs 
Who goes there? 
whm (typed) 
Hello, whm! 

I/O and sequencing, continued 
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Here's the type of putStrLn: 
 

putStrLn :: String -> IO ()  ("unit", (), is the no-value value) 
 
The type IO x represents an interaction with the outside world that 
produces a value of type x.  Instances of IO x are called actions. 
 
When an action is evaluated the corresponding outside-world 
activity is performed. 

> let hello = putStrLn "hello!"  (Note: no output here!) 
hello :: IO ()        (Type of hello is an action.) 
 
> hello 
hello!   (Evaluating hello, an action, caused output.) 
it :: () 

 
 
 
 
 
 

Actions 
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The value of getLine is an action that reads a line: 
getLine :: IO String 

 
We can evaluate the action, causing the line to be read, and 
bind a name to the string produced: 

> s <- getLine 
testing 
 
> s 
"testing" 

 
Note that getLine is not a function! 
 

Actions, continued 
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Recall io2.hs: 
main = do 
    putStrLn "Who goes there?" 
    name <- getLine 
    let greeting = "Hello, " ++ name ++ "!" 
    putStrLn greeting 

 
Note the type: main :: IO ().  We can say that main is an 
action.  Evaluating main causes interaction with the outside 
world. 

> main 
Who goes there? 
hello? 
Hello, hello?! 

Actions, continued 
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A pure function (1) always produces the same result for a given 
argument value, and (2) has no side effects. 
 
Is this a pure function? 

twice :: String -> IO () 
twice s = do 
    putStr s 
    putStr s 
 

twice "abc" will always produce the same value, an action 
that if evaluated will cause "abcabc" to be output. 

Is it pure? 
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We want to use pure functions whenever possible but we want 
to be able to do I/O, too.   
 
In general, evaluating an action produces side effects. 
 
Here's the Haskell solution for I/O in a nutshell: 

Actions can evaluate other actions and pure functions but 
pure functions don't evaluate actions. 
 

Recall longest.hs from 233-234: 
longest bytes = result where ...lots... 
main = do 
    args <- getArgs -- gets command line arguments 
    bytes <- readFile (head args) 
    putStr (longest bytes) 
 

 

The Haskell solution for I/O 
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In conclusion... 
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If we had a whole semester to study functional programming, here's what 
might be next: 
 

•  Infinite data structures (like let x = 1:x) 

•  How lazy/non-strict evaluation works 

•  Implications and benefits of referential transparency (which means 
that the value of a given expression is always the same). 

•  Functors (structures that can be mapped over) 

•  Monoids (a set of things with a binary operation over them) 

•  Monads (for representing sequential computations) 

•  Zippers (a structure for traversing and updating another structure) 

•  And more! 

Jeremiah Nelson and Matt Gautreau are great local resources for Haskell! 

If we had a whole semester... 
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Recursion and techniques with higher-order functions can be used in most 
languages.  Some examples: 
 
JavaScript, Python, PHP, all flavors of Lisp, and lots of others: 

Functions are "first-class" values; anonymous functions are supported. 
 
C 

Pass a function pointer to a recursive function that traverses a data 
structure. 

 
C# 

Excellent support for functional programming with the language itself, 
and LINQ, too. 

  
Java 8 

 Lambda expressions are in! 
 
OCaml 

"an industrial strength programming language supporting functional, 
imperative and object-oriented styles" – OCaml.org 
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html 

 

Even if you never use Haskell again... 
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Killer Quiz! 
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