
Disruptive Programming
Language Technologies

Todd A. Proebsting
Microsoft Research

November 9, 2002

November 9, 2002 Disruptive Programming Language Technologies 2

Richard Hamming’s Snare

■  Richard Hamming’s three questions for new hires
at Bell Labs:

1.  “What are you working on?”
2.  “What’s the most important open problem in your

area?”
3.  “Why aren’t they the same?” (Ouch!)

“You and Your Research” --- Richard Hamming (1986)

November 9, 2002 Disruptive Programming Language Technologies 3

The Least Important Open Problem in
Programming Languages*

Increasing program performance via compiler
optimization

■  Moore’s Law suffices
■  Algorithms and design make the big difference

■  Challenge: Name a single significant software
product that relied on compiler optimization for
viability.

* The opinions expressed here are mine and mine alone.
Microsoft disavows any connection to them…

November 9, 2002 Disruptive Programming Language Technologies 4

The Most Important Open Problem In
Programming Languages*

Increasing Programmer Productivity
◆  Write programs correctly
◆  Write programs quickly
◆  Write programs easily

■  Why?
◆  Decreases support cost
◆  Decreases development cost
◆  Decreases time to market
◆  Increases satisfaction

*Standard disclaimer.

November 9, 2002 Disruptive Programming Language Technologies 5

Language Choice Affects Productivity

■  The center of the programmer’s universe!
◆  Core abstractions, mechanisms, services, guarantees
◆  Affect how programmers approach a task (C vs. LISP)
◆  Assumptions, expectations, patterns

o  types
o  events
o  immutable data
o  garbage collection
o  regular expressions
o  first-class functions, closures
o  …

November 9, 2002 Disruptive Programming Language Technologies 6

Language Design: C vs. LISP

■  What’s the difference between a C programmer
and a LISP programmer?
◆  A LISP programmer knows the value of everything and

the cost of nothing.
◆  A C programmer knows the cost of everything and the

value of nothing.
E.g., garbage collection, first-class functions, safety…

■  The languages encourage this thinking:
 (map fn L) vs. while (*d++ = *s++);

■  Some “value investors” are reaping strong returns
nowadays. (www.paulgraham.com)

November 9, 2002 Disruptive Programming Language Technologies 7

Programming Language Technologies:
Recent Research vs. Progress(!)

■  Recent (perpetual?) academic research:
◆  Type theory
◆  Functional programming
◆  Object-oriented programming
◆  Parallel programming
◆  Static analysis
◆  Compiler optimization

■  Recent adoption: Perl, Python, Visual Basic, Java
◆  Almost void of innovation on type theory, functional

programming, OO programming, optimization, etc!
◆  Perversely hopeful development for new language design

efforts.

November 9, 2002 Disruptive Programming Language Technologies 8

The Innovator’s Dilemma (C. Christensen)

■  “… why companies that did everything right---were
in tune with their competition, listened to their
customers, and invested aggressively in new
technologies---still lost their market leadership
when confronted with disruptive changes in
technology…”
 --- the book’s back cover

■  Why is C/C++ losing steam? J

◆  Can we use the book’s lessons to help future language
efforts? (Not the book’s intent…)

languages

November 9, 2002 Disruptive Programming Language Technologies 9

The Innovator’s Dilemma:
Cable-Actuated Excavators

■  A “disruptive” technology hydraulic mechanisms
◆  Disadvantage in primary market small, unreliable
◆  Advantage in secondary market safe, attaches to tractor
◆  Sold in small, low-margin market independent contractors

■  Established companies concentrate and innovate on primary
market; ignore secondary capacity (for excavation)

■  Timely improvements lessen disruptive technology’s
liabilities, increasing markets, market share, margins, etc.

November 9, 2002 Disruptive Programming Language Technologies 10

The Innovator’s Dilemma: C

■  A “disruptive” language safe, GC’ed interpreters
◆  Disadvantage SLOW
◆  Advantage Rapid Application Develop
◆  Sold in small, low-margin market web developers, ISV’s

 (established competitor ignored market)

■  Established companies concentrate on primary
differentiator SPEED

■  Timely improvements lessen disruptive technology’s
liabilities, increasing markets, market share, margins, etc.
 Moore’s Law (for free!)
 RAD enhancements

November 9, 2002 Disruptive Programming Language Technologies 11

Distinguishing/Disruptive Technologies:
Alleviating Real Problems

■  Perl
◆  Scripting with data structures (“duct tape”)
◆  Regular expressions

■  Visual Basic
◆  Drag-and-drop environment (Windows for the masses)
◆  Component-friendly

■  Java
◆  Browser applets

Languages yield pervasive patterns and abstractions

November 9, 2002 Disruptive Programming Language Technologies 12

An Opportunity!

■  Languages (or language technologies) that solve
real problems can succeed
◆  Even if slow
◆  Even with simple types
◆  Even without academic significance
◆  Even without rocket science
◆  If useful

■  Researchers need not despair
◆  Golden opportunity to use disruptive technology as a

Trojan Horse for disseminating research ideas

November 9, 2002 Disruptive Programming Language Technologies 13

Future Disruptive Language Technologies
(My Recurring Wish List)

■  My criteria: technology must
◆  Have disadvantages
◆  Be mostly ignored by recent PLDI

and POPL conferences
◆  Alleviate real problems…
“What does it do?”

■  For each candidate technology: 2 slides
◆  Opportunity what’s the issue?
◆  Current solutions what’s done now
◆  Proposal sketch of language solution
◆  Disadvantages why some (many?) will scoff
◆  Unmet needs benefits to adopters

Append
Dining Philo’s

Factorial

November 9, 2002 Disruptive Programming Language Technologies 14

Candidate: Flight Data Recorders

■  Opportunity: How do you debug a program that
misbehaved after the error occured?
◆  Microsoft “Watson” experience

o  50% of crashes caused by 1% of bugs.

■  Current solutions
◆  Ad hoc attempts to reproduce error condition
◆  Examine stack trace, program state (“core dump”)

November 9, 2002 Disruptive Programming Language Technologies 15

Disruptive Flight Data Recorders

Add persistent, automatic “tracing” of function
calls, events, I/O, etc. to the language run time.
(E.g., AMOK/IDAL from IDA on CRAY-1)

■  Important disadvantages

◆  Will slow every program down
◆  Will require storage

■  Unmet needs
◆  Diagnostic data available to programmer --- 1/50 rule
◆  “Introspective” data available to program

November 9, 2002 Disruptive Programming Language Technologies 16

Candidate: Checkpoints/Undo

■  Opportunity: Programs provide checkpoint or
“undo” facilities in haphazard, unreliable ways.
(E.g., MS Outlook, TurboTax, almost all tiny apps.)

■  Current solutions:
◆  Checkpoint by saving document to a file

o  Doesn’t scale well to unbounded undo
◆  Programmatic checkpoint by saving select data to file

o  Subject to judgment (and error)
◆  Undo by saving operations and their inverse data

o  Tedious
o  Error-prone

November 9, 2002 Disruptive Programming Language Technologies 17

Disruptive Checkpoints/Undo

Make checkpointing and undo (i.e., restore
to checkpoint) primitives in the
programming language. Transactions.

■  Important disadvantages

◆  External side-effects pose limitations
(e.g., I/O)

◆  Slower than hand-crafted solution

■  Unmet needs
◆  Simplicity
◆  Automation

checkpoint X;
<random code>
restore/commit X;

November 9, 2002 Disruptive Programming Language Technologies 18

Candidate: Parsing

■  Opportunity: Parsing is common and difficult in
general.

■  Current solutions:
◆  Parser generators for subsets of CFLs
◆  Regular expressions ala Perl
◆  Roll your own parser (and cross your fingers that nobody

ever needs to maintain it)

November 9, 2002 Disruptive Programming Language Technologies 19

Disruptive Parsing

“Scannerless Generalized LR Parsing” (or Earley
parsing) could be integrated into a language

■  Important disadvantages
◆  Slow
◆  Ambiguity presents its own problems

■  Unmet needs
◆  Handle arbitrary CFL grammar
◆  Spec-driven systems adapt smoothly to change
◆  Confidence that parser meets spec

o  XML grammar has 80+ productions…

November 9, 2002 Disruptive Programming Language Technologies 20

Candidate: Constraint Solvers

■  Opportunity: Many applications have a subproblem
that involves solving (or optimizing) a system
subject to constraints
◆  Natural fit for visual layout problems (e.g., render tree

structures, resize windows, summarize maps)
◆  Natural fit for optimization problems

■  Current solutions
◆  Hand-rolled algorithms
◆  Library routines
◆  Third-party solvers
◆  Give up

November 9, 2002 Disruptive Programming Language Technologies 21

Disruptive Constraint Solvers

Integrate linear programming constraint solver (or,
better, integer programming) into a programming
language

■  Important disadvantages

◆  Slower than tailored algorithmic
solutions

■  Unmet needs
◆  Quick and dirty solutions

o  Visual layout (Interviews-Tk?)

November 9, 2002 Disruptive Programming Language Technologies 22

Candidate: Concurrent Programming

■  Opportunity: Many applications are explicitly or
implicitly concurrent or distributed
◆  Concurrency models many applications better than
“objects,” yet the world is mired in OO religion.

■  Common solutions
◆  OS threads, shared data, P(), V()
◆  Language threads, shared data, P(), V()
◆  Remote procedure calls

November 9, 2002 Disruptive Programming Language Technologies 23

Disruptive Concurrent Programming

■  Concurrent functional programming language (Erlang™?)
◆  Lightweight processes (10,000’s)
◆  Message passing

(non-blocking send, blocking receive with timeouts)
◆  Higher-order functions w/ pattern-matching dispatch
◆  Immutable data (except message queues)

■  Important disadvantages

◆  Immutable data can be slower to manipulate
◆  Doesn’t look like C++, not OO

■  Unmet needs
◆  Concurrency-Oriented Programming

o  Processes+Messages+Immutable data,
which can be reasoned about

Notable Omissions:
• Monads
• Continuations
• Lazy evaluation
• Complex type system

November 9, 2002 Disruptive Programming Language Technologies 24

A Final Prediction

■  The next big programming language will be slower
than what it replaces

■  Why?
◆  The incumbent language will have been optimized

relentlessly
◆  To replace it, the new language must offer something new

that will be valuable even if slow.

November 9, 2002 Disruptive Programming Language Technologies 25

Shameless Self-Interest

■  I manage the Programming Language Systems
group in Microsoft Research
◆  We work on programming language design and

implementation
◆  We appreciate small, simple solutions
◆  We’re a small group: Chris Fraser, Dave Hanson

and me
◆  We’re recruiting! (Full-time researchers and

interns)

■  Email: toddpro@microsoft.com

November 9, 2002 Disruptive Programming Language Technologies 26

The End

