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Richard Hamming’s Snare 

■  Richard Hamming’s three questions for new hires 
at Bell Labs: 

1.  “What are you working on?” 
2.  “What’s the most important open problem in your 

area?” 
3.  “Why aren’t they the same?”  (Ouch!) 

 
 
“You and Your Research”  --- Richard Hamming (1986) 
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The Least Important Open Problem in 
Programming Languages* 

Increasing program performance via compiler 
optimization 

 
■  Moore’s Law suffices 
■  Algorithms and design make the big difference 

■  Challenge:  Name a single significant software 
product that relied on compiler optimization for 
viability. 

* The opinions expressed here are mine and mine alone.  
Microsoft disavows any connection to them… 
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The Most Important Open Problem In 
Programming Languages* 

Increasing Programmer Productivity 
◆  Write programs correctly 
◆  Write programs quickly 
◆  Write programs easily 

■  Why? 
◆  Decreases support cost 
◆  Decreases development cost 
◆  Decreases time to market 
◆  Increases satisfaction 

 
*Standard disclaimer. 
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Language Choice Affects Productivity 

■  The center of the programmer’s universe! 
◆  Core abstractions, mechanisms, services, guarantees 
◆  Affect how programmers approach a task (C vs. LISP) 
◆  Assumptions, expectations, patterns 

o  types 
o  events 
o  immutable data  
o  garbage collection 
o  regular expressions  
o  first-class functions, closures 
o  … 
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Language Design:  C vs. LISP 

■  What’s the difference between a C programmer 
and a LISP programmer? 
◆  A LISP programmer knows the value of everything and 

the cost of nothing. 
◆  A C programmer knows the cost of everything and the 

value of nothing. 
E.g., garbage collection, first-class functions, safety… 

■  The languages encourage this thinking: 
 (map fn L)  vs.  while (*d++ = *s++); 

■  Some “value investors” are reaping strong returns 
nowadays.        (www.paulgraham.com) 
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Programming Language Technologies: 
Recent Research vs. Progress(!) 

■  Recent (perpetual?) academic research: 
◆  Type theory 
◆  Functional programming 
◆  Object-oriented programming 
◆  Parallel programming 
◆  Static analysis 
◆  Compiler optimization 
 

■  Recent adoption:  Perl, Python, Visual Basic, Java 
◆  Almost void of innovation on type theory, functional 

programming, OO programming, optimization, etc! 
◆  Perversely hopeful development for new language design 

efforts. 
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The Innovator’s Dilemma (C. Christensen) 

■  “… why companies that did everything right---were 
in tune with their competition, listened to their 
customers, and invested aggressively in new 
technologies---still lost their market leadership 
when confronted with disruptive changes in 
technology…” 
    --- the book’s back cover 

 
■  Why is C/C++ losing steam? J 

◆  Can we use the book’s lessons to help future language 
efforts?          (Not the book’s intent…) 

languages 
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The Innovator’s Dilemma: 
Cable-Actuated Excavators 

■  A “disruptive” technology   hydraulic mechanisms 
◆  Disadvantage in primary market  small, unreliable 
◆  Advantage  in secondary market  safe, attaches to tractor 
◆  Sold in small, low-margin market  independent contractors 

■  Established companies concentrate and innovate on primary 
market; ignore secondary   capacity (for excavation) 

■  Timely improvements lessen disruptive technology’s 
liabilities, increasing markets, market share, margins, etc. 



November 9, 2002 Disruptive Programming Language Technologies 10 

The Innovator’s Dilemma:  C 

■  A “disruptive” language   safe, GC’ed interpreters 
◆  Disadvantage    SLOW 
◆  Advantage    Rapid Application Develop 
◆  Sold in small, low-margin market  web developers, ISV’s 

 (established competitor ignored market) 

■  Established companies concentrate on primary 
differentiator    SPEED 

■  Timely improvements lessen disruptive technology’s 
liabilities, increasing markets, market share, margins, etc. 
      Moore’s Law (for free!) 
      RAD enhancements 
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Distinguishing/Disruptive Technologies: 
Alleviating Real Problems 

■  Perl 
◆  Scripting with data structures (“duct tape”) 
◆  Regular expressions 

■  Visual Basic 
◆  Drag-and-drop environment (Windows for the masses) 
◆  Component-friendly 

■  Java 
◆  Browser applets  

Languages yield pervasive patterns and abstractions 
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An Opportunity! 

■  Languages (or language technologies) that solve 
real problems can succeed 
◆  Even if slow 
◆  Even with simple types 
◆  Even without academic significance 
◆  Even without rocket science 
◆  If useful 

■  Researchers need not despair 
◆  Golden opportunity to use disruptive technology as a 

Trojan Horse for disseminating research ideas 
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Future Disruptive Language Technologies 
(My Recurring Wish List) 

■  My criteria: technology must 
◆  Have disadvantages 
◆  Be mostly ignored by recent PLDI 

and POPL conferences 
◆  Alleviate real problems… 
“What does it do?” 

■  For each candidate technology:  2 slides 
◆  Opportunity   what’s the issue? 
◆  Current solutions  what’s done now 
◆  Proposal    sketch of language solution 
◆  Disadvantages   why some (many?) will scoff 
◆  Unmet needs   benefits to adopters 

Append 
Dining Philo’s 

Factorial 
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Candidate: Flight Data Recorders 

■  Opportunity:  How do you debug a program that 
misbehaved after the error occured? 
◆  Microsoft “Watson” experience 

o  50% of crashes caused by 1% of bugs. 

■  Current solutions 
◆  Ad hoc attempts to reproduce error condition 
◆  Examine stack trace, program state (“core dump”) 
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Disruptive Flight Data Recorders 

Add persistent, automatic “tracing” of function 
calls, events, I/O, etc. to the language run time. 
(E.g., AMOK/IDAL from IDA on CRAY-1) 

 
■  Important disadvantages 

◆  Will slow every program down 
◆  Will require storage 

■  Unmet needs 
◆  Diagnostic data available to programmer --- 1/50 rule 
◆  “Introspective” data available to program 
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Candidate:  Checkpoints/Undo 

■  Opportunity:  Programs provide checkpoint or 
“undo” facilities in haphazard, unreliable ways. 
(E.g., MS Outlook, TurboTax, almost all tiny apps.) 

■  Current solutions: 
◆  Checkpoint by saving document to a file 

o  Doesn’t scale well to unbounded undo 
◆  Programmatic checkpoint by saving select data to file 

o  Subject to judgment (and error) 
◆  Undo by saving operations and their inverse data 

o  Tedious 
o  Error-prone 
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Disruptive Checkpoints/Undo 

Make checkpointing and undo (i.e., restore 
to checkpoint) primitives in the 
programming language.  Transactions. 

 
■  Important disadvantages 

◆  External side-effects pose limitations 
(e.g., I/O) 

◆  Slower than hand-crafted solution 

■  Unmet needs 
◆  Simplicity 
◆  Automation 

checkpoint X; 
<random code> 
restore/commit X; 
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Candidate:  Parsing 

■  Opportunity:  Parsing is common and difficult in 
general. 

■  Current solutions: 
◆  Parser generators for subsets of CFLs 
◆  Regular expressions ala Perl 
◆  Roll your own parser (and cross your fingers that nobody 

ever needs to maintain it) 
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Disruptive Parsing 

“Scannerless Generalized LR Parsing” (or Earley 
parsing) could be integrated into a language 

■  Important disadvantages 
◆  Slow 
◆  Ambiguity presents its own problems 

■  Unmet needs 
◆  Handle arbitrary CFL grammar 
◆  Spec-driven systems adapt smoothly to change 
◆  Confidence that parser meets spec 

o  XML grammar has 80+ productions… 
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Candidate:  Constraint Solvers 

■  Opportunity: Many applications have a subproblem 
that involves solving (or optimizing) a system 
subject to constraints 
◆  Natural fit for visual layout problems (e.g., render tree 

structures, resize windows, summarize maps) 
◆  Natural fit for optimization problems 
 

■  Current solutions 
◆  Hand-rolled algorithms 
◆  Library routines 
◆  Third-party solvers 
◆  Give up 
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Disruptive Constraint Solvers 

Integrate linear programming constraint solver (or, 
better, integer programming) into a programming 
language 

 
■  Important disadvantages 

◆  Slower than tailored algorithmic 
solutions 

■  Unmet needs 
◆  Quick and dirty solutions 

o  Visual layout (Interviews-Tk?) 
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Candidate:  Concurrent Programming 

■  Opportunity: Many applications are explicitly or 
implicitly concurrent or distributed 
◆  Concurrency models many applications better than 
“objects,” yet the world is mired in OO religion. 

 

■  Common solutions 
◆  OS threads, shared data, P(), V() 
◆  Language threads, shared data, P(), V() 
◆  Remote procedure calls 
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Disruptive Concurrent Programming 

■  Concurrent functional programming language   (Erlang™?) 
◆  Lightweight processes (10,000’s) 
◆  Message passing 

(non-blocking send, blocking receive with timeouts) 
◆  Higher-order functions w/ pattern-matching dispatch 
◆  Immutable data (except message queues) 

 
■  Important disadvantages 

◆  Immutable data can be slower to manipulate 
◆  Doesn’t look like C++, not OO 

■  Unmet needs 
◆  Concurrency-Oriented Programming 

o  Processes+Messages+Immutable data,  
which can be reasoned about 

Notable Omissions: 
• Monads 
• Continuations 
• Lazy evaluation 
• Complex type system 
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A Final Prediction 

■  The next big programming language will be slower 
than what it replaces 

■  Why? 
◆  The incumbent language will have been optimized 

relentlessly 
◆  To replace it, the new language must offer something new 

that will be valuable even if slow. 
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Shameless Self-Interest 

■  I manage the Programming Language Systems 
group in Microsoft Research 
◆  We work on programming language design and 

implementation 
◆  We appreciate small, simple solutions 
◆  We’re a small group:  Chris Fraser, Dave Hanson 

and me 
◆  We’re recruiting! (Full-time researchers and 

interns) 

■  Email:  toddpro@microsoft.com 
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The End 


