
Prolog 
CSC	
  372,	
  Spring	
  2015	
  

The	
  University	
  of	
  Arizona	
  
William	
  H.	
  Mitchell	
  

whm@cs	
  
	
  

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  1	
  



The name comes from "programming in logic". 
 
Developed at the University of Marseilles (France) in 1972. 
 
First implementation was in FORTRAN and led by Alain Colmeraurer. 
 
Originally intended as a tool for working with natural languages. 
 
Achieved great popularity in Europe in the late 1970s. 
 
Was picked by Japan in 1981 as a core technology for their "Fifth 
Generation Computer Systems" project. 
 
Used in IBM's Watson for NLP (Natural Language Processing). 
 
Prolog is a commercially successful language.  Many companies have 
made a business of supplying Prolog implementations, Prolog consulting, 
and/or applications in Prolog. 
 

A little background on Prolog 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  2	
  



There are no Prolog books on Safari. 
 
Here are two Prolog books that I like: 
 
   Prolog Programming in Depth, by Covington, Nute, and Vellino 

Available for free at http://www.covingtoninnovations.com/books/
PPID.pdf. That PDF is scans of pages and is not searchable. 
 
The copy at http://cs.arizona.edu/classes/cs372/spring15/covington/
ppid.pdf has had a searchable text layer added. 
 

  Programming in Prolog, 5th edition, by Clocksin and Mellish ("C&M") 
    A PDF is available via a UA library link on the Piazza resources page. 
	
  	
  	
  	
  	
  	
  (hIp://link.springer.com.ezproxy2.library.arizona.edu/book/10.1007%2F978-­‐3-­‐642-­‐55481-­‐0)	
  
 
A PDF of Dr. Collberg's Prolog slides for 372 is here: 
    http://cs.arizona.edu/classes/cs372/spring15/CollbergProlog.pdf 
 
There's no Prolog "home page" that I know of. 
 
We'll be using SWI Prolog.  More on it soon. 

Prolog resources 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  3	
  



Facts and queries 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  4	
  



A Prolog program is a collection of facts, rules, and queries.  We'll talk 
about facts first. 
 
Here is a small collection of Prolog facts: 
 

$ cat foods.pl 
food(apple). 
food(broccoli). 
food(carrot). 
food(lettuce). 
food(rice). 

 
These facts enumerate some things that are food.  We might read them in 
English like this: "An apple is food", "Broccoli is food", etc. 
 
A fact represents a piece of knowledge that the Prolog programmer deems 
to be useful.  The name food was chosen by the programmer. 
 
We can say that facts.pl holds a Prolog database or knowledgebase. 
 

Facts and queries 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  5	
  



At hand: 
$ cat foods.pl 
food(apple). 
food(broccoli). 
... 

 
food, apple, and broccoli are examples of atoms, which can be thought 
of as multi-character literals.  Atoms are not strings!  Atoms are atoms! 
 
Here are two more atoms: 

 'bell pepper' 
 'Whopper' 

 
An atom can be written without single quotes if it starts with a lower-case 
letter and contains only letters, digits, and underscores. 
 
Note the use of single quotes.  (Double quotes mean something else!) 
 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  6	
  



The Prolog examples from the slides are here: (linked on Piazza resources) 
 /cs/www/classes/cs372/spring15/pl 

 
The a5 write-up suggests making a www symlink in your 372 directory 
on lectura like this: 
 

$ cd ~/372  
$ ln -s /cs/www/classes/cs372/spring15 www 
 

Given the above you can copy foods.pl into your directory like this: 
 

$ cd ~/372 
$ cp www/pl/foods.pl  . 

 
Because a directory is specified as the destination (dot is the current 
directory), your copy will be named foods.pl, matching the source name. 
 
Note that "pl" above is is PL, for Prolog. 

Sidebar: Accessing the Prolog examples 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  7	
  



On lectura, we can start SWI Prolog and load a file of facts like this: 
 

$ swipl -l foods  (.pl suffix is assumed) 
% /home/whm/372/foods.pl compiled 0.00 sec, 8 clauses 
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6) 
... 
?-      (-? is the swipl prompt) 
 

Once the knowledgebase is loaded we can perform queries: 
?- food(carrot). 
true. 
 
?- food(pickle). 
false. 

 
Prolog responds based on the facts it has been given.  We know that pickles are 
food but Prolog doesn't know that because there's no fact that says so. 
 
A query can consist of one or more goals.  The queries above consist of one goal. 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  8	
  



Here's a fact:   food(apple). 
 
Here's a query:   food(apple). 
 
Facts and queries have the same syntax.  The interpretation depends on the 
context in which they appear. 
 
If a line is typed at the interactive ?- prompt, it is interpreted as a query. 
 
When a file is loaded with -l on the command line its contents are 
interpreted as a collection of facts. 
 
Loading a file of facts is also known as consulting the file. 
 
We'll see later that files can contain "rules", too.  Facts and rules are the 
two types of clauses in Prolog. 
 
Simple rule for now: use all-lowercase filenames with the suffix .pl (PL) 
for Prolog source files. 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  9	
  



After a .pl file has been consulted (loaded), we can query make. to cause 
any modified files to be reconsulted (reloaded), after editing the file. 
 

$ swipl -l foods.pl 
Welcome to SWI-Prolog ... 
 
?- food(pickle). 
false. 
[Edit foods.pl in a different window, and add food(pickle).] 
 
?- make. 
% /home/whm/372/foods compiled 0.00 sec, 2 clauses 
true. 
 
?- food(pickle). 
true. 
 
?- make. 
true.    (foods.pl hasn't changed since the last make) 
 
 

Sidebar: Reconsulting with make 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  10	
  



An alternative to using -l file on the command line is to consult using a 
query: 

 
$ swipl 
Welcome to SWI-Prolog ... 
 
?- [foods].  (do not include the .pl suffix) 
% foods compiled 0.00 sec, 8 clauses 
true. 

 
Consulting a file via a query is commonly shown in texts. 
 
The end result of the two methods is the same. 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  11	
  

Sidebar: Consulting via query 



How might the food information be represented in Haskell? 
food "apple"   = True 
food "broccoli"  = True 
food "carrot"   = True 
food "lettuce"   = True 
food "rice"       = True 
food  _            = False 
 
> food "apple" 
True 

 
Maybe a list would be better: 

 foods = ["apple", "broccoli", "carrot", "lettuce", "rice"] 
  
> "pickle" `elem` foods 
False 

 
How might we represent the food information in Ruby? 
 

Sidebar: food in Haskell 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  12	
  



A query like food(apple) asks if it is known that apple is a food. 
 
Speculate: What's the following query asking? 
 

?- food(Edible). 
Edible = apple <cursor is here> 

 
Watch what happens when we type semicolons: 

Edible = apple ; 
Edible = broccoli ; 
Edible = carrot ; 
... 
Edible = 'Big Mac'. 
 

What's going on? 
 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  13	
  



An alternative to specifying an atom, like apple, in a query is to specify a 
variable.  An identifier that starts with a capital letter is a Prolog variable. 
 

?- food(Edible). 
Edible = apple <cursor is here> 

 
The above query asks, "Tell me something that you know is a food." 
 
Prolog finds the first food fact, based on file order, and responds with 
Edible = apple, using the variable name specified in the query. 
 
If the user is satisfied with the answer apple, pressing <ENTER> 
terminates the query.  Prolog responds by printing a period. 
 

?- food(Edible). 
Edible = apple  .  % User hit <ENTER>; Prolog printed the period. 

 
 ?- 

 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  14	
  



If for some reason the user is not satisfied with the response apple, an alternative 
can be requested by typing a semicolon, without <ENTER>. 

?- food(Edible). 
Edible = apple ; 
Edible = broccoli ; 
Edible = carrot ; 
... 
Edible = 'Big Mac'. 
 
?-  
 

Facts are searched in the order they appear in foods.pl.  Above, the user exhausts 
all the facts by typing semicolon.  Prolog prints '.' after the last. 
 
Note that a simple set of facts lets us perform two distinct computations: 

 (1) We can ask if something is a food.   
 (2) We can ask what all the foods are. 

 
How could we make an analog for the above behavior in Java, Haskell, or Ruby? 
 
 

Facts and queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  15	
  



For two points of extra credit: 
 

(1)  Get a copy of foods.pl and try the examples just shown. 
 
(2)  Create a small database (a file of facts) about something other than food 

and demonstrate some queries with it using swipl.  Minimum: 5 facts. 
 
(3)  Copy/paste a transcript of your swipl session into a plain text file named 

facts.txt. 
 
(4)  Turn in facts.txt via the eca3 dropbox before the start of the next 

lecture. 
 
Needless to say, feel free to read ahead in the slides and show experimentation 
with the following material, too. 
 
Experiment with syntax, too.  Where can whitespace appear?  What can appear in 
a fact other than atoms like apple? 
 
Look ahead a few slides for information about installing SWI Prolog on your 
machine, or just use swipl on lectura. 

Extra credit! 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  16	
  



Unlike SWI Prolog, most Prolog implementations use "yes" and "no" to 
indicate whether an interactive query succeeds.  Here's GNU Prolog: 

% gprolog  
GNU Prolog 1.4.4 (64 bits) 
| ?- [foods]. 
compiling foods.pl for byte code... 
 
| ?- food(apple). 
yes 
 
| ?- food(pickle). 
no 
 

Most Prolog texts, including Covington and C&M use yes/no, too.  Just 
read "yes" as true. and "no" as false. 
 
Remember: we're using SWI Prolog; GNU Prolog is shown above just for 
contrast. 

Yes and no vs. true. and false. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  17	
  



One way to think about a query is that we're asking Prolog if something 
can be "proven" using the facts (and rules) it has been given. 
 
The query 

?- food(apple). 
can be thought of as asking, "Can you prove that apple is a food?" 
 
food(apple). is trivially proven because we've supplied a fact that says 
that apple is a food. 
 
The query 

?- food(pickle). 
produces false. because Prolog can't prove that pickle is a food based on 
the database (the facts) we've supplied.  (We've given it no rules, either.) 
 

"Can you prove it?" 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  18	
  



Consider again a query with a variable: 
 

?- food(F).     % Remember that an initial capital denotes a variable. 
F = apple ; 
F = broccoli ; 
F = carrot ; 
... 
F = 'Whopper' ; 
F = 'Big Mac'. 
 
?-  

The query asks, "For what values of F can you prove that F is a food?  By 
repeatedly entering a semicolon we see the full set of values for which that can be 
proven. 
 
The collection of knowledge at hand, a set of facts about what is a food, is trivial 
but Prolog is capable of finding proofs for an arbitrarily complicated body of 
knowledge expressed as facts and rules. 
 

"Can you prove it?", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  19	
  



write is one of many built-in predicates.  It outputs a value. 
?- write('Hello, world!'). 
Hello, world! 
true. 
 

Speculate: Why was "true." output, too? 
 Prolog is reporting that it's able to prove write('Hello, world!')! 

 
 A side-effect of "proving" write(X) is outputting the value of X! 

  

"Can you prove it?", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  20	
  



Getting and running SWI Prolog 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  21	
  



swi-prolog.org is the home page for SWI Prolog. 
 
On lectura, just run swipl. 
 
Downloads for Windows and OS X:  

 http://swi-prolog.org/download/stable 
 
For Windows, the non-64 bit version will be fine for our purposes: 

 SWI-Prolog 6.6.6 for Windows XP/Vista/7/8 
  Pick Typical as the Install type, .pl for file extension 

 
For OS X there's only one choice: 

 SWI-Prolog 6.6.6 for MacOSX 10.6 (Snow Leopard) and later... 
As the install page says, you'll need XQuartz 2.7.5 for the 
development tools.  The handiest tool is perhaps the graphical 
tracer, launched with the gtrace predicate.  (We'll see gtrace 
later.) 

 

Getting and running SWI Prolog 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  22	
  



SWI Prolog on Windows 
On Windows, assuming you associated .pl files with SWI Prolog, running 
foods.pl on the command line or opening foods.pl in Explorer opens a window 
running SWI Prolog and consults the file, as if [foods]. had been typed at the 
prompt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On Windows, a numbered query prompt is shown.  ("1 ?-" above) 
 
Remember: You can use make. to reconsult (reload) a file. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  23	
  



On my Mac, I have these two lines in my ~/.bashrc:  
 

alias swipl='/Applications/SWI-Prolog.app/Contents/MacOS/swipl' 
export DISPLAY=:0 

 
The swipl alias lets me type swipl at the command line prompt. 
 
The export of DISPLAY (to the "environment") avoids this error: 

?- help(write). 
true. 
 
?- [PCE fatal: @display/display: Failed to connect to X-server at 
`/private/tmp/com.apple.launchd.gfBvlvPh7y/
org.macosforge.xquartz:0': ... 

 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  24	
  

SWI Prolog on OS X 



I recommend a bash start-up file organization with two parts:   
  (1) Have a .bash_profile with only one line: 

$ cat ~/.bash_profile 
source ~/.bashrc 

 
  (2) Have all aliases, variable initializations, functions, etc. in your .bashrc: 

$ cat ~/.bashrc 
alias h="history" 
alias ll="ls -l" 
... 
alias irb="irb --prompt simple -r irb/completion" 
... 
alias swipl="/Applications/SWI-Prolog.app/Contents/MacOS/swipl" 
export DISPLAY=:0 
alias restart="source ~/.bashrc" 

 
The restart alias makes it easy to reload your .bashrc after making a change, 
like adding a new alias. 
 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  25	
  

Sidebar: bash start-up file organization 



Getting help for predicates 
To get help for a predicate, query help(predicate-name).  On Windows you'll see: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OS X will be similar, assuming you've got XQuartz 2.7.5 installed and have done 
export DISPLAY=:0, as shown on slide 24.  Or do unset DISPLAY for text-based 
help. 
 
Help will be text based on lectura, but if you login to lectura from a Linux machine 
with "ssh -X ...", you'll get window-based help there, too. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  26	
  



On all platforms a control-D or querying halt. exits SWI Prolog. 
$ swipl 
... 
 
?- halt. 
$ 

 
A control-C while a query is executing will produce an Action ... ? 
prompt.  Then typing h produces a textual menu: 

?- food(X).
X = apple ^C 
Action (h for help) ? h
Options:
a:          abort      b:         break
c:          continue   e:         exit
g:          goals      t:         trace
h (?):      help

 
Use a to return to the prompt; e exits to the shell. 

Getting out of SWI Prolog 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  27	
  



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  28	
  

(intentionally blank) 



Building blocks 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  29	
  



We've seen that apple, food, and 'Big Mac' are examples of atoms. 
 
Typing an atom as a query doesn't do what we might expect! 

 
?- 'just\ntesting'. 
ERROR: toplevel: Undefined procedure: 'just\ntesting'/0 (DWIM 
could not correct goal) 
 

But we can output an atom with write. 
 
?- write('just\ntesting'). 
just 
testing 
true. 
 

Atoms composed of certain non-alphabetic characters do not require quotes: 
?- write(#$&*+-./:<=>?^~\). 
#$&*+-./:<=>?^~\ 
true. 

 

Atoms 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  30	
  



We can use the predicate atom to query whether something is an atom: 
 

?- atom(apple). 
true. 
 
?- atom('apple sauce'). 
true. 
 
?- atom(Apple). 
false. 
 
?- atom("apple"). 
false. 
 

Alternate view: "Can you prove apple is an atom?" 
 

Atoms, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  31	
  



Integer and floating point literals are numbers. 
?- number(10). 
true. 
 
?- number(3.4). 
true. 
 
?- number(3.4e100). 
true. 
 
?- number('100'). 
false. 
 

Numbers aren't atoms but they are "atomic" values. 
?- atom(100). 
false. 
 
?- atomic(100).  % Note: atomIC, not just atom. 
true. 

Numbers 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  32	
  



In Prolog, arithmetic doesn't work as you might expect: 
 

?- 3 + 4. 
ERROR: toplevel: Undefined procedure: (+)/2 (DWIM could 
not correct goal) 
 
?- Y = 4 + 5. 
Y = 4+5. 
 
?- write(3 + 4 * 5). 
3+4*5 
true. 
 

We'll learn about arithmetic later. 
 

Numbers, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  33	
  



Here are some more examples of facts: 
 

color(sky, blue).  color(grass, green). 
 
odd(1). odd(3). odd(5). 
 
number(one, 1, 'English'). 
number(uno, 1, 'Spanish'). 
number(dos, 2, 'Spanish'). 

 
We can say that the facts above define three predicates: color, odd, and 
number.   
 
It's common to refer to predicates using predicate indicators like color/2, odd/1, 
and number/3, where the number following the slash is the number of terms. 
 
number/3 above doesn't interfere with the built-in predicate number/1 (two 
slides back). 
 

Predicates, terms, and structures 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  34	
  



A term is one of the following: atom, number, structure, variable. 
 
Structures consist of a functor (always an atom) followed by one or more terms 
enclosed in parentheses. 
 
Here are examples of structures: 
 

color(grass, green) 
 
odd(1) 
 
'number'('uno', 1, 'Spanish') % 's not needed around number and uno 
 
+/-(3,4)   % functor is symbolic atom 
 
lunch(sandwich(ham), fries, drink(coke)) 

 
The structure functors are color, odd, number, +/-, and lunch, respectively. 
 
Two of the terms of the lunch structure are structures themselves. 
 
A structure can serve as a fact or a goal, depending on the context. 
 

Predicates, terms, and structures, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  35	
  



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  36	
  

(intentionally blank) 



More queries 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  37	
  



 
A new knowledgebase is to the right. 
 
A query about green things: 
 

?- color(Thing, green). 
Thing = grass ; 
Thing = broccoli ; 
Thing = lettuce. 
 

How can we state it in terms of "Can you prove...?" 
 For what things can you prove that their color is green? 

More queries 

$ cat foodcolor.pl 
...food facts not shown... 
color(sky, blue). 
color(dirt, brown). 
color(grass, green). 
color(broccoli, green). 
color(lettuce, green). 
color(apple, red). 
color(carrot, orange). 
color(rice, white). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  38	
  



How could we query for each thing and its color? 
?- color(Thing,Color). 
Thing = sky, 
Color = blue ; 
 
Thing = dirt, 
Color = brown ; 
 
Thing = grass, 
Color = green ; 
 
Thing = broccoli, 
Color = green ; 
... 

 
How can we state it in terms of "Can you prove...?" 
  For what pairs of Thing and Color can you prove color(Thing,Color)? 
 

More queries 

color(sky, blue). 
color(dirt, brown). 
color(grass, green). 
color(broccoli, green). 
color(lettuce, green). 
color(apple, red). 
color(carrot, orange). 
color(rice, white). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  39	
  



A query can contain more than one goal.   
 
Here's a query that directs Prolog to find a 
food that is green:    
 

?- food(F), color(F,green). 
F = broccoli ; 
F = lettuce ; 
false. 
 

The query has two goals separated by a 
comma, which indicates conjunction—both 
goals must succeed in order for the query to 
succeed. 
 
We might state it like this: 

"Is there an F for which you can prove 
both food(F) and color(F, green)? 

 

Queries with multiple goals 
$ cat foodcolor.pl 
food(apple).         
food(broccoli).      
food(carrot).        
food(lettuce).  
food(orange).     
food(rice).  
 
color(sky, blue). 
color(dirt, brown). 
color(grass, green). 
color(broccoli, green). 
color(lettuce, green). 
color(apple, red). 
color(carrot, orange). 
color(orange,orange). 
color(rice, white). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  40	
  



Let's see if any foods are blue: 
?- color(F,blue), food(F). 
false. 
 

Note that the ordering of the goals was 
reversed.  How might the order make a 
difference? 
 
Goals are always executed from left to right. 
 
What's the following query asking? 
   ?- food(F), color(F,F). 
 
How about this one? 
   ?- food(F), color(F,red), color(F,green). 
 
 

Queries with multiple goals, continued 
food(apple).         
food(broccoli).      
food(carrot).        
food(lettuce).  
food(orange).      
food(rice).  
 
color(sky, blue). 
color(dirt, brown). 
color(grass, green). 
color(broccoli, green). 
color(lettuce, green). 
color(apple, red). 
color(carrot, orange). 
color(orange, orange). 
color(rice, white). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  41	
  



Which of the following is meant by color(apple,red)? 
 
  All apples are red. 

  
 Some apples are red. 

 
 Some apples have a red area. 

 
 Some apples have a red area at some point in time. 

 
 A red apple has existed. 

 
Facts (and rules) are abstractions that we create for the purpose(s) at hand. 
 
An abstraction emphasizes the important and suppresses the irrelevant. 
 
Don't get bogged down by trying to perfectly model the real world! 
 
 

Sidebar: The meaning of a fact 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  42	
  



Write these queries: 
 

 Who likes baseball? 
  ?- likes(Who, baseball). 
          
 Who likes a food? 
  ?- food(F), likes(Who,F). 

 
 Who likes green foods? 

?- food(F), color(F,green), 
likes(Who,F). 

 
Who likes foods with the same color as 
foods that Mary likes? 

?- likes(mary,F), food(F), 
color(F, C), food(F2), color(F2,C), 
likes(Who,F2). 

 
 

Even more queries 
$ cat fcl.pl 
food(apple).         
...more food facts... 
 
color(sky, blue). 
...more color facts... 
 
likes(bob, carrot). 
likes(bob, apple). 
likes(joe, lettuce). 
likes(mary, broccoli). 
likes(mary, tomato). 
likes(bob, mary). 
likes(mary, joe). 
likes(joe, baseball). 
likes(mary, baseball). 
likes(jim, baseball). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  43	
  



Are any two foods the same color? 
?- food(F1), food(F2), color(F1,C), color(F2,C). 
F1 = F2, F2 = apple,  % an apple is the same color as an apple(!) 
C = red ; 
 
F1 = F2, F2 = broccoli, 
C = green ; 
... 

 
To avoid foods matching themselves we can specify "not equal" with \== 
(symbolizing a struck-through ==). 

?- food(F1), food(F2), F1 \== F2, color(F1,C), color(F2,C). 
F1 = broccoli, 
F2 = lettuce, 
C = green ; 
 
F1 = carrot, 
F2 = C, C = orange ; 
... 

Even more queries, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  44	
  



Recall that in Haskell, 3 + 4 can be written as (+) 3 4. 
 
In Prolog, these two queries are equivalent: 

 
?- abc \== xyz. 
true. 
 
?- \==(abc,xyz). 
true. 

 
In fact, the sequence abc \== xyz causes Prolog to create a structure.   
 
display/1 can be used to show a structure: 

?- display(abc \== xyz). 
\==(abc,xyz) 

 
Ultimately, abc \== xyz means "invoke the predicate named \== and 
pass it two terms, abc and xyz". 
 
 

Sidebar: Predicates in operator form 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  45	
  



display sheds a little light on the arithmetic oddities we saw earlier. 
 

?- display(1 + 2). 
+(1,2) 
true. 
 
?- display(1 + 2 * 3 - 5). 
-(+(1,*(2,3)),5) 
true. 
 

Just FYI: The predicate op/3 is used to create operators. 
?- op(200,'xf',--).  % precedence 200 postfix operator 
true. 
 
?- display(x+y--). 
+(x,--(y)) 
true. 

Sidebar, continued 

Query help(op). 
to learn more! 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  46	
  



A given body of knowledge may be represented in a variety of ways using 
Prolog facts.  Here is another way to represent the food and color 
information. 
 
What are orange foods? 

?- thing(Name, orange, yes). 
Name = carrot ; 
Name = orange. 
 

 
What things aren't foods? 

?- thing(Name, _, no). 
Name = dirt ; 
Name = grass ; 
Name = sky. 

 
The underscore designates an anonymous variable.  It indicates that any 
value matches and that we don't want to have the value associated with a 
variable (and thus displayed). 
 

Alternative representations 

thing(apple, red, yes). 
thing(broccoli, green, yes). 
thing(carrot, orange, yes). 
thing(dirt, brown, no). 
thing(grass, green, no). 
thing(lettuce, green, yes). 
thing(orange, orange, yes). 
thing(rice, white, yes). 
thing(sky, blue, no). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  47	
  



 
What is green that is not a food? 

?- thing(N,green,no). 
N = grass ; 
false. 

 
What color is lettuce? 

?- thing(lettuce,C,_). 
C = green. 

 
What foods are the same color as lettuce? 

?- thing(lettuce,C,_), thing(N,C,yes), N \== lettuce. 
C = green, 
N = broccoli ; 
false. 

 
Is thing/3 a better or worse representation of the knowledge than the 
combination of food/1 and color/2? 
 
 

Alternate representation, continued 
thing(apple, red, yes). 
thing(broccoli, green, yes). 
thing(carrot, orange, yes). 
thing(dirt, brown, no). 
thing(grass, green, no). 
thing(lettuce, green, yes). 
thing(orange, orange, yes). 
thing(rice, white, yes). 
thing(sky, blue, no). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  48	
  



Here is a predicate x defined by three facts: 
 

x(just(testing,date(5,14,2014))). 
x(10).   
x(10,20).     

 
The first fact's term is a structure but the second fact's term is a number.  
That inconsistency is not considered to be an error. 
 

?- x(V). 
V = just(testing, date(5, 14, 2014)) ; 
V = 10. 
 

Further, is it x/1 or x/2? 
?- x(A,B). 
A = 10, 
B = 20. 

Predicate/goal mismatches 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  49	
  



At hand: 
x(just(testing,date(5,14,2014))). 
x(10).  x(A,B).    

 
Here are some more queries: 

?- x(abc). 
false. 
 
?- x([1,2,3]).  % A list... 
false. 
 
?- x(a(b)). 
false. 
 

The goals in the queries have terms that are an atom, a list, and a structure.  
There's no indication that those queries are fundamentally mismatched 
with respect to the terms in the facts. 
 
Prolog says "false" in each case because nothing it knows about aligns 
with anything it's being queried about. 

Predicate/goal mismatches, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  50	
  



At hand: 
x(just(testing,date(5,14,2014))). 
x(10).  x(A,B).    

 
It's an error if there's no predicate defined that has the same number of 
terms as the goal in a query.  Alternatives are suggested. 
 

?- x(little,green,apples). 
ERROR: Undefined procedure: x/3 
ERROR:     However, there are definitions for: 
ERROR:         x/1 
ERROR:         x/2 
 

What does the following tell us? 
?- write(1,2). 
ERROR: write/2: Domain error: `stream_or_alias' expected, 
found `1' 

Predicate/goal mismatches, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  51	
  



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  52	
  

(intentionally blank) 



Unification 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  53	
  



Before talking about unification lets note that == and \== are tests.  They are 
roughly equivalent to Haskell's == and /=, and Ruby's == and !=. 
 

?- abc == 'abc'. 
true. 
 
?- 3 \== 5. 
true. 

 
Just like comparing tuples and lists in Haskell, and arrays in Ruby, structure 
comparisons in Prolog are "deep". Two structures are equal if they have the same 
functor, the same number of terms, and the terms are equal.  (Recursive def'n.) 
 

?- 3 + 4 == 4 + 3. 
false. 
 
?- abc(3 + 4 * 5) == abc(+(3,4*5)). 
true. 

== and \== are tests 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  54	
  



The = operator, which we'll read as "unify" or "unify with", provides one 
way to do unification. 
 
If a variable doesn't have a value it is said to be uninstantiated.  At the start 
of a query all variables are uninstantiated. 
 
If we unify an uninstantiated variable with a value, the variable is 
instantiated and unified with that value. 
 

?- A = 10, write(A). 
10 
A = 10. 

 
It can be read as "Unify A with 10 and write A." 
 
That might look like assignment but it is not assignment! 
 
Along with the output, "10", the value of A is shown. 
 
 
 

Unification 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  55	
  



At hand: 
 

?- A = 10, write(A). 
10 
A = 10. 

 
An instantiated variable can be unified with a value only if the value equals 
(with ==/2) whatever value the variable is already unified with. 

 
?- A = 10, write(A), A = 20, write(A). 
10 
false. 
 

The unification of the uninstantiated A with 10 succeeds, and write(A) 
succeeds, but unification of A with 20 fails because 10 == 20 fails. 
 
The query fails because its third goal, the unification A = 20, fails. 
 
In essence the query is saying A must be 10 and A must be 20.  Impossible! 
 

Unification, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  56	
  



The lifetime of a variable is the query in which it is instantiated. 
 

?- A = 10, B = 20, write(A), write(', '), write(B). 
10, 20 
A = 10, 
B = 20. 
 

If we use A, B, and (out of the blue) C in the next query, we find they are 
uninstantiated: 

 
?- write(A), write(', '), write(B), write(', '), write(C). 
_G1571, _G1575, _G1579 
true. 
 

Writing the value of an uninstantiated variable produces _G<NUMBER>. 
 
Some say bound variable and free variable for instantiated and not. 

Unification, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  57	
  



Consider the following: 
?- A = B, C = 10, C = B, write(A). 
10 
A = B, B = C, C = 10. 

 
The code above... 

 Unifies A with B (but both are still uninstantiated). 
 Unifies C (uninstantiated) with 10. 
Unifies B with C.  

Because A and B are already unified, and C is instantiated with 
10, A, B, and C now have the value 10. 

 
How will an initial instantiation for A affect the query? 

?- A = 3, A = B, C = 10, C = B, write(A). 
false. 

Unification, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  58	
  



With uninstantiated (free) variables, unification has a behavior when 
unifying with values that resembles conventional assignment. 
 
With instantiated (bound) variables, unification has a behavior when 
unifying with values that resembles comparison. 
 
Unification of uninstantiated variables seems like aliasing of some sort. 
 
But don't think of unification as assignment, comparison and aliasing 
rolled into one.  Think of unification as a distinct new concept! 
 
Another way to think about things: 

Unification is not a question or an action, it is a demand! 
 

 X = 3 is a goal that demands that X must be 3.  If not, the goal fails. 
 
Yet another: 

 Unifications create constraints that Prolog upholds. 
 
 
 
 
 

Unification, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  59	
  



Unification works with structures, too. 
?- x(A, B) = x(10,20). 
A = 10, 
B = 20. 
 
?- f(X, Y, Z) = f(just, testing,  f(a,b,c+d)). 
X = just, 
Y = testing, 
Z = f(a, b, c+d). 
 
?- f(X, Y, f(P1,P2,P3)) = f(just, testing,  f(a,b,c+d)). 
X = just, 
Y = testing, 
P1 = a, 
P2 = b, 
P3 = c+d. 

 
 
 

Unification with structures 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  60	
  



?- pair(A, A) = pair(3,5). 
false. 
 
?- pair(A, A) = pair(3,3). 
A = 3. 
 
?- lets(r,a,d,a,r) = lets(C1,C2,C3,C2,C1). 
C1 = r, 
C2 = a, 
C3 = d. 
 
?- f(X,20,Z) = f(10,Y,30),  New = f(Z,Y,X). 
X = 10, 
Z = 30, 
Y = 20, 
New = f(30, 20, 10). 

 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  61	
  

Unification with structures, continued 



Consider again this interaction: 
?- food(F). 
F = apple ; 
F = broccoli ; 
... 

 
The query food(F) causes Prolog to search for facts that unify with food(F). 
 
Prolog is able to unify food(apple) with food(F).  It then shows that F is unified 
with apple. 
 
When the user types semicolon, F is uninstantiated and the search for another fact 
to unify with food(F) resumes with the fact following food(apple). 
 
food(broccoli) is unified with food(F), F is unified with broccoli, and the user 
is presented with F = broccoli. 
 
The process continues until Prolog has found all the facts that can be unified with 
food(F) or the user is presented with a value for F that is satisfactory. 
 

Unification with structures, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  62	
  



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  63	
  

(intentionally blank) 



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  64	
  

(intentionally blank) 



Query evaluation mechanics 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  65	
  



Goals, like food(fries) or color(What, Color) can be thought of as 
having four ports: 
 
 
 
 
 
 
In the Active Prolog Tutor, Dennis Merritt describes the ports in this way: 
 

call:  Using the current variable bindings, begin to search for the 
clauses which unify with the goal. 

 
exit:  Set a place marker at the clause which satisfied the goal.  Update 

the variable table to reflect any new variable bindings.  Pass 
control to the right. 

 
redo: Undo the updates to the variable table [that were made by this 

goal].  At the place marker, resume the search for a clause which 
unifies with the goal. 

 
fail:  No (more) clauses unify, pass control to the left. 
 

Understanding query execution with the port model 

call 
fail redo 

exit 
goal 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  66	
  



Example: 
?- food(X). 
X = apple ; 
X = broccoli ; 
X = carrot ; 
X = lettuce ; 
X = rice. 
 
?- 

The port model, continued 

call 

fail redo 

exit 

food(X) 

food(apple). 
food(broccoli). 
food(carrot). 
food(lettuce). 
food(rice). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  67	
  



trace/0 activates "tracing" for a query. 
 
?- trace, food(X). 
   Call: (7) food(_G1571) ? creep 
   Exit: (7) food(apple) ? creep 
X = apple ; 
   Redo: (7) food(_G1571) ? creep 
   Exit: (7) food(broccoli) ? creep 
X = broccoli ; 
   Redo: (7) food(_G1571) ? creep 
   Exit: (7) food(carrot) ? creep 

 
 

The port model, continued 
call 

fail redo 

exit 

food(X) 

food(apple). 
food(broccoli). 
food(carrot). 
food(lettuce). 
food(rice). 

Tracing shows the transitions through each port.  The first transition is a call to 
the goal food(X).  The value shown, _G1571, stands for the uninstantiated 
variable X.  We next see that goal being exited, with X instantiated to apple.  
The user isn't satisfied with the value, and by typing a semicolon forces the redo 
port to be entered, which causes X, previously bound to apple, to be 
uninstantiated.  The next food fact, food(broccoli) is tried, instantiating X to 
broccoli, exiting the goal, and presenting X = broccoli to the user.  (etc.) 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  68	
  



The port model, continued 

call 

fail food(F) redo/fail likes(Who,F) 

exit/call 

redo/fail color(F,green) 

exit/call exit 

redo 

Who likes green foods? 
 ?- food(F), likes(Who,F), color(F,green). 

food(apple). 
food(broccoli). 
food(carrot). 
food(lettuce). 
food(orange). 
food(rice). 

color(sky, blue). 
color(dirt, brown). 
color(grass, green). 
color(broccoli, green). 
color(lettuce, green). 
color(apple, red). 
color(carrot, orange). 
color(rice, white).  

likes(bob, carrot). 
likes(bob, apple). 
likes(joe, lettuce). 
likes(mary, broccoli). 
likes(mary, tomato). 
likes(bob, mary). 
likes(mary, joe). 
likes(joe, baseball). 
likes(mary, baseball). 
likes(jim, baseball). 

Next: Trace it! 
CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  69	
  



We've seen that write/1 always succeeds and as a side effect outputs the term it is 
called with. 

 ?- write(apple), write(' '), write(pie). 
apple pie 
true. 

 
writeln/1 is similar, but appends a newline. 

?- writeln(apple), writeln(pie). 
apple 
pie 
true. 
 

nl/0 outputs a newline.  (Note the blank lines before and after middle.) 
?- nl, writeln(middle), nl. 
 
middle 
 
true. 

Producing output 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  70	
  



The predicate format/2 is much like printf in Ruby, C, and others. 
?- format('x = ~w\n', 101). 
x = 101 
true. 

 
~w is one of many format specifiers.  The "w" indicates to output the 
value using write/1. Use help(format/2) to see all the specifiers.  (Don't 
forget the /2!) 
 
If more than one value is to be output, the values must be in a list. 

?- format('label = ~w, value = ~w, x = ~w\n', ['abc', 10, 3+4]). 
label = abc, value = 10, x = 3+4 
true. 

 
We'll see more on lists later but for now note that we make a list by 
enclosing zero or more terms in square brackets.  Lists are heterogeneous, 
like Ruby arrays. 

Producing output, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  71	
  



A first attempt to print all the foods: 
 

?- food(F), format('~w is a food\n', F). 
apple is a food 
F = apple ; 
broccoli is a food 
F = broccoli ; 
carrot is a food 
F = carrot ; 
... 
 

Ick—we have to type semicolons to cycle through them! 
 
Any ideas? 

Producing output, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  72	
  



Second attempt: Force alternatives by specifying a goal that always fails. 
?- food(F),  format('~w is a food\n', F),  1 == 2. 
apple is a food 
broccoli is a food 
carrot is a food 
... 
 
 
 
 

 
This query is a loop! food(F) unifies with the first food fact and instantiates F to 
its term, the atom apple.  Then format is called, printing a string with the value 
of F interpolated.  1 == 2 always fails.  Control then moves left, into the redo port 
of format.  format doesn't erase the output but it doesn't have an alternatives 
either, so it fails, causing the redo port of food(F) to be entered.  F is 
uninstantiated and food(F) is unified with the next food fact in turn, instantiating 
F to broccoli.  The process continues, with control repeatedly moving back and 
forth until all the food facts have been tried. 

 

Producing output, continued 

call 

fail food(F) redo/fail format(...) 

exit/call 

redo/fail  1 == 2 

exit/call exit 

redo 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  73	
  



At hand: 
?- food(F),  format('~w is a food\n', F),  1 == 2. 
apple is a food 
broccoli is a food 
... 
 
 
 
 

 
The activity of moving leftwards through the goals is known as 
backtracking. 
 
We might say, "The query gets a food F, prints it, fails, and then 
backtracks to try the next food." 
 
Prolog does not analyze things far enough to recognize that it will never be 
able to "prove" what we're asking.  Instead it goes through the motions of 
trying to prove it and as side-effect, we get the output we want.  This is a 
key idiom of Prolog programming. 

Backtracking 

call 

fail food(F) redo/fail format(...) 

exit/call 

redo/fail 1 == 2 

exit/call exit 

redo 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  74	
  



At hand: 
?- food(F),  format('~w is a food\n', F),  1 == 2. 
apple is a food 
broccoli is a food 
... 
false. 

 
Predicates respond to "redo" in various ways.  With only a collection of facts for 
food/1, redo amounts to advancing to the next fact, if any.  If there is one, the 
goal exits (control goes to the right).  If not, it fails (control goes to the left). 
 
Some other possible examples of "redo" behavior: 

A sequence of redos might cause a predicate to work through a series of 
URLs to find a current data source. 
 
A geometry manager might force a collection of windows to produce a 
configuration that is mutually acceptable. 
 
A predicate might create a file when called and delete it on redo. 

 

Backtracking, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  75	
  



The predicate fail/0 always fails.  It's important to understand that an 
always-failing goal like 1 == 2 produces exhaustive backtracking but in 
practice we'd use fail instead: 

 
?- food(F), format('~w is a food\n', F), fail. 
apple is a food 
broccoli is a food 
... 
rice is a food 
false. 

 
In terms of the four-port model, think of fail as a box whose call port is 
"wired" to its fail port: 
 
 
 
 
 
 

The predicate fail 

call 

fail food(F) redo/fail format(...) 

exit/call 

redo/fail fail 

exit/call 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  76	
  



The built-in predicate between/3 can be used to instantiate a variable to 
a sequence of integer values: 

?- between(1,3,X). 
X = 1 ; 
X = 2 ; 
X = 3. 

 
Problem: Print this sequence: 

000 
001 
010 
011 
100 
101 
110 
111 
 
?- between(0,1,A),between(0,1,B),between(0,1,C), 

 format('~w~w~w\n', [A,B,C]), fail. 

Sidebar: between 

How about 
this one?   
 
10101000 
10101001 
10101010 
10101011 
10111000 
10111001 
10111010 
10111011 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  77	
  



Rules 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  78	
  



Facts are one type of Prolog clause.  The other type of clause is a rule.   
 
foods2.pl starts with a rule and is followed by the food facts: 
 

$ cat foods2.pl 
showfoods :- food(F), format('~w is a food\n', F), fail. 
 
food(apple). 
food(broccoli). 
... 

 
Even though showfoods/0 uses food/1, it can either precede or follow 
the clauses for that predicate. 
 
 
 

showfoods: a simple rule 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  79	
  

head neck body 



At hand: 
 

$ cat foods2.pl 
showfoods :- food(F), format('~w is a food\n', F), fail. 
 
food(apple). 
food(broccoli). 
... 
 

Usage: 
$ swipl -l foods2 
... 
?- showfoods. 
apple is a food 
broccoli is a food 
carrot is a food 
lettuce is a food 
orange is a food 
rice is a food 
false. 
 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  80	
  



Prolog borrows from the idea of Horn Clauses in symbolic logic.  A 
simplified definition of a Horn Clause is that it represents logic like this: 
 

 If Q1, Q2, Q3, ..., Qn, are all true, then P is true. 
 
In Prolog we might represent a three-element Horn clause with this rule: 
 

 p :- q1, q2, q3. 
 
The query 
 

 ?- p. 
 
which asks Prolog to "prove" p, causes Prolog to try and prove q1, then 
q2, and then q3.  If it can prove all three, and can therefore prove p, 
Prolog will respond with true.  (If not, then false.) 
 
Note that this is an abstract example—we haven't defined the predicates 
q1/0 et al. 

Sidebar: Horn Clauses 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  81	
  



At hand are the following rules: 
p :- q1, q2, q3. 
 
showfoods :- food(F), format('~w is a food\n', F), fail. 

 
We saw that we can print all the foods with this query: 

?- showfoods. 
apple is a food 
broccoli is a food 
carrot is a food 
... 
rice is a food 
false. 

 
In its unsuccessful attempt to "prove" showfoods, and thus trying to 
prove all three goals in the body of the showfoods rule, Prolog ends up 
doing what we want: all the foods are printed. 
 
We send Prolog on a wild goose chase to get our work done! 
 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  82	
  



Let's print all the foods three times. 
 
?- showfoods, showfoods, showfoods. 
apple is a food 
broccoli is a food 
carrot is a food 
lettuce is a food 
orange is a food 
rice is a food 
false. 

 
What's wrong? 
 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  83	
  



At hand: 
 

showfoods :- food(F), format('~w is a food\n', F), fail. 
 
?- showfoods, showfoods, showfoods. 
apple is a food 
broccoli is a food 
... 
rice is a food 
false. 
(Just one listing of the foods) 

 
Why does Prolog say false. after printing the foods? 
 
The showfoods rule above always fails—we can't get past the fail at the 
end! 
 
We get the output we want but because the first showfoods goal 
ultimately fails Prolog doesn't try the second two goals—it can't get past 
the first goal! 
 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  84	
  



The problem: We're using a fail to force display of all the foods but we 
want showfoods to ultimately succeed.  Any ideas? 
 

showfoods :- food(F), format('~w is a food\n', F), fail. 
showfoods. 

 
Result: 

?- showfoods. 
apple is a food 
broccoli is a food 
... 
rice is a food 
true.  % Very important: Now it says true., not false. 

 
Prolog tries the two clauses for the predicate showfoods in turn.  The first 
clause, a rule, isultimately a failure but prints the foods as a side-effect.  
Because the first clause fails, Prolog tries the second clause, a fact which 
is trivially proven. 
 
 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  85	
  



At hand: 
 

showfoods :- food(F), format('~w is a food\n', F), fail. 
showfoods. 

 
?- showfoods. 
apple is a food 
broccoli is a food 
... 
true.  % Very important: Now it says true., not false. 

 
The underlying rule: 

If a clause fails, Prolog tries the predicate's next clause.  It continues 
until a clause succeeds or no clauses remain. 

 
This is the same mechanism we've been using to go through foods, colors, 
and more. 

showfoods, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  86	
  



Here is a one-rule predicate that asks if there is a food with a particular 
color: 
    food_color(Color) :- food(F), color(F,Color).  % in foods2.pl 
 
Usage: 

?- food_color(green). 
true  

 
To prove the goal food_color(green), Prolog first searches its clauses 
for one that can be unified with the goal.  It finds a rule (above) whose 
head can be unified with the goal.  That unification causes Color to be 
instantiated to the atom green. 
 
It then attempts to prove food(F), and color(F, green) for some value F. 
 
The response true tells us that at least one green food exists, but that's all 
we know. 

Rules with arguments 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  87	
  



At hand: 
 food_color(Color) :- food(F), color(F,Color). 

 
The last slide didn't tell the whole truth.  The cursor pauses right after true: 

?- food_color(green). 
true _ (blink...blink...blink) 

 
If we type semicolons we see this: 

?- food_color(green). 
true ; 
true ; 
false. 

 
It reveals that food_color(green) is actually finding two green foods but 
we don't know what they are. 
 
A failure: 

?- food_color(blue). 
false. 

 

Rules with arguments, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  88	
  



At hand: 
 food_color(Color) :- food(F), color(F,Color). 

 
Does food_color let us do anything other than asking if there is a food 
with a particular color? 

 We can ask for all the colors of foods. 
 

?- food_color(C). 
C = red ; 
C = green ; 
C = orange ; 
C = green ; 
C = white. 

 
We get green twice because there are two green foods.  We'll later see 
ways to deal with that. 
 
 

Rules with arguments, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  89	
  



At hand: 
 food_color(Color) :- food(F), color(F,Color). 

 
?- food_color(C). 
C = red ; 
C = green ; 

 
A very important rule: 
 

When a variable is supplied in a query and it matches a fact or the 
head of a rule with a variable in the corresponding term, the two 
variables are unified.  (Instantiating one instantiates the other.) 

 
In the above case the variable C first has the value red because C in the 
query was unified with Color in the head of the rule, AND the goals in the 
body of the rule succeeded, AND Color was instantiated to red. 
 
When we type a semicolon in response to C = red, Prolog backtracks and 
ultimately comes up with green. 

Rules with arguments, continued 

These are unified 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  90	
  



At hand: 
food_color(Color) :- food(F), color(F,Color). 

 
Prolog has no analog for "return x"!  In Prolog there is no way to say 
something like this, 
 

?- Color = food_color(), writeln(Color), fail. 
 
or this, 
 

?- writeln(food_color()), fail. 
 
Instead, predicates "return" values by instantiating logical variables. 
 

?- food_color(C), writeln(C), fail. 
red 
green 
... 

 
 
 
 
 

Instantiation as "return" 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  91	
  



Some examples of instantiation as "return" with built-in predicates: 
?- atom_length(testing, Len). 
Len = 7. 
 
?- upcase_atom(testing, Caps). 
Caps = 'TESTING'. 
 
?- term_to_atom(date(10,1,1891), A). 
A = 'date(10,1,1891)'. 
 
?- term_to_atom(T, 'date(10,1,1891)'). 
T = date(10, 1, 1891). 
 
?- term_to_atom(date(M,D,Y), 'date(10,1,1891)'). 
M = 10, 
D = 1, 
Y = 1891. 

Instantiation as "return", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  92	
  



Problem: Using term_to_atom write a predicate with this behavior: 
?- swap('ten-four', R). 
R = 'four-ten'. 

 
First cut: 

swap(A, Result) :- 
 term_to_atom(T,A), 
 First-Second = T,  Swapped = Second-First,  
 term_to_atom(Swapped, Result). 

 
 How many variables are used in swap/2 above? 

 
Better: 

swap2(A, Result) :- 
 term_to_atom(First-Second, A), 
 term_to_atom(Second-First, Result). 

 
 
 

Instantiation as "return", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  93	
  



Problem: Write a predicate with these three behaviors: 
?- describe_food(apple-X). 
X = red. 
 
?- describe_food(X-green). 
X = broccoli ; 
X = lettuce ; 
false. 
 
?- describe_food(X). 
X = apple-red ; 
X = broccoli-green ; 
... 
X = orange-orange ; 
X = rice-white. 
 

Solution: 
 describe_food(Food-Color) :- food(Food), color(Food,Color). 

Instantiation as "return", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  94	
  



Recall between(1,10,X).  Here's what help(between) shows: 
 

between(+Low,	
  +High,	
  ?Value)	
  
	
  	
  	
  	
  Low	
  	
  and	
  High	
  are	
  	
  integers,	
  High	
  >=	
  Low.	
  	
  	
  If	
  Value	
  is	
  an	
  	
  integer,	
  
	
  	
  	
  	
  Low	
  =<	
  Value	
  =<	
  High.	
  When	
  Value	
  is	
  a	
  variable	
  it	
  is	
  successively	
  
	
  	
  	
  	
  bound	
  to	
  all	
  integers	
  between	
  Low	
  and	
  	
  High.	
  ...	
  

 
If an argument has a plus prefix, like +Low and +High, it means that the 
argument is an input to the predicate and must be instantiated.  A question 
mark indicates that the argument can be input or output, and thus may or 
may not be instantiated. 
 
The documentation implies that between can (1) generate values and (2) 
test for membership in a range. 

?- between(1,10,X). 
X = 1 ; 
... 
 
?- between(1,10,5). 
true. 

Sidebar: Describing predicates 

Note: This is a documentation convention; 
do not use the + and ? symbols in code! 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  95	
  



Another: 
term_to_atom(?Term,	
  ?Atom)	
  

True	
  	
  if	
  Atom	
  describes	
  a	
  	
  term	
  that	
  unifies	
  with	
  	
  Term.	
  	
  When	
  	
  
Atom	
  is	
  	
  instanbated,	
  	
  Atom	
  is	
  	
  converted	
  and	
  	
  then	
  	
  unified	
  with	
  	
  
Term.	
  ...	
  

 
Here is a successor predicate: 

succ(?Int1,	
  ?Int2)	
  
True	
  	
  if	
  Int2=	
  Int1+1	
  	
  and	
  Int1>=0.	
  	
  	
  At	
  least	
  one	
  of	
  the	
  arguments	
  
must	
  	
  be	
  instanbated	
  to	
  	
  a	
  natural	
  number.	
  ...	
  
	
  

?- succ(10,N). 
N = 11. 
 

There's no pred (predecessor) predicate.  Why? 
?- succ(N,10). 
N = 9. 

Describing predicates, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  96	
  



Here is the synopsis for format/2: 
 format(+Format, +Arguments) 

 
Speculate: What does sformat/3 do? 

 sformat(-String, +Format, +Arguments) 
 
The minus in -String indicates that the term should be an uninstantiated 
variable. 

 
?- sformat(S, 'x = ~w', 1). 
S = "x = 1". 
 
?- sformat("x = 1", 'x = ~w', 1). 
false. 

Describing predicates, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  97	
  



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  98	
  

(intentionally blank) 



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  99	
  

(intentionally blank) 



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  100	
  

(intentionally blank) 



Arithmetic 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  101	
  



We've seen that Prolog builds structures out of expressions with operators. 
 
?- display(1+2*3). 
+(1,*(2,3)) 
 
?- display(1 / 2 + (3*4)). 
+(/(1,2),*(3,4)) 
 
?- display(300.0 / X * (3+A*0.7**Y)). 
*(/(300.0,_G204),+(3,*(_G212,**(0.7,_G210)))) 

 
Unlike == and \== , there are no predicates for the arithmetic operators. 

?- \==(3,4). 
true. 
 
?- +(3,4). 
ERROR: toplevel: Undefined procedure: (+)/2 ... 

 
Question: Why are there no predicates for arithmetic operators? 

 X == Y works fine as a goal but what we would do with the result of 3 + 4? 
 There's simply no notion of expressions producing a value! 

 
 

Arithmetic 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  102	
  



The predicate is/2 evaluates a structure representing an arithmetic 
expression and unifies the result with a logical variable. 
 

?- is(X, 3+4*5). 
X = 23. 

 
is/2 is usually used as an infix operator: 
 

?- X is 3 + 4, Y is 7 * 5, Z is X / Y. 
X = 7, 
Y = 35, 
Z = 0.2. 

 
All variables in the structure being evaluated by is/2 must be instantiated: 

?- A is 3 + X. 
ERROR: is/2: Arguments are not sufficiently instantiated 

 

Arithmetic, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  103	
  



It is not possible to directly specify an arithmetic expression as an 
argument of most predicates, but we'll later see some exceptions. 
 

?- write(3+4). 
3+4 
true. 
 
?- 3+4 == 7. 
false. 
 
?- between(1, 5+5, 7). 
ERROR: between/3: Type error: `integer' expected, found 
`5+5' 

Arithmetic, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  104	
  



A full set of arithmetic operations is available.  Here are some of them: 
 
-X    negation 
X+Y   addition 
X-Y   subtraction 
X*Y   multiplication 
X/Y   division—produces float quotient 
X//Y   integer division 
X rem Y  integer remainder 
integer(X)  truncation to integer 
float(X)  conversion to float 
sign(X)  sign of X: -1, 0, or 1 

 
?- X is 77777777777777777777777*3333333333333333333333333. 
X = 259259259259259259259256640740740740740740740741. 
 
?- X is 10 // 3. 
X = 3. 
 
?- X is e ** sin(pi).   What are e and pi?  Is sin a Prolog"function"? 
X = 1.0000000000000002. 

 
 

Arithmetic, continued 

help(rem) is a quick way to open 
up the documentation section with 
the arithmetic operations. 
help(op) shows precedence. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  105	
  



Here are some predicates that use arithmetic.  Remember that we have to "return" 
values via instantiation. 
 

around(Prev,X,Next) :- Prev is X - 1, Next is X + 1. 
 
area(rectangle(W,H), A) :- A is W * H. 
 
area(circle(R), A) :- A is pi * R ** 2. 
 
length(point(X1,Y1), point(X2,Y2), Length) :-  

 Length is sqrt((X1-X2)**2+(Y1-Y2)**2). % note structure as sqrt arg! 
 
 
?- around(P ,7, N). 
P = 6, 
N = 8. 
 
?- area(circle(3),A). 
A = 28.274333882308138. 
 
?- area(rectangle(2*3,2+2),Area). 
Area = 24. 
 
?- length(point(3,0),point(0,4),Len). 
Len = 5.0. 
 

 
 

Arithmetic, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  106	
  



There are several numeric comparison operators. 
 

X =:= Y  numeric equality 
X =\= Y  numeric inequality 
X < Y   numeric less than 
X > Y   numeric greater than 
X =< Y   numeric equal or less than (NOTE the order, not <= !) 
X >= Y   numeric greater than or equal 

 
Just like is/2, they evaluate their operands.  Examples of usage: 
 

?- 3 + 5 =:= 2*3+2. 
true. 
 
?- X is 3 / 5, X > X*X. 
X = 0.6. 
 
?- X is random(10), X > 5. 
false. 
 
?- X is random(10), X > 5. 
X = 9. 
 

Note that the comparisons produce no value; they simply succeed or fail. 

Comparisons 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  107	
  



Example: Grade computation 
(and "cut") 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  108	
  

NOTE: REPLACEMENT for slide 108 



Here is grade(+Score, ?Grade): 
grade(Score, 'A') :- Score >= 90. 
grade(Score, 'B')  :- Score >= 80, Score < 90. 
grade(Score, 'C') :- Score >= 70, Score < 80. 
grade(Score, 'F')  :- Score < 70. 

 
Usage: 

?- grade(95,G). 
G = 'A' ;    (user entered semicolon) 
false. 
 
?- grade(82,G). 
G = 'B' ;    (user entered semicolon) 
false. 
 
?- grade(50,G). 
G = 'F'.     (swipl printed period) 

 
Why did the first two prompt the user? 

 There were still untried clauses for grade/2. 

Example: grade computation 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  109	
  



Here are some student facts: 
student('Ali', 85). 
student('Chris',92). 
student('Kendall', 89). 

 
Problem: write grades/0, which behaves like this: 

?- grades. 
Current Grades 
 Ali: B 
 Chris: A 
 Kendall: B 
true. 
 

Solution: 
grades :- writeln('Current Grades'), 
    student(Student,Score), grade(Score,Grade), 
    format(' ~w: ~w\n', [Student, Grade]), 
    fail. 
grades. 

 
CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  110	
  

Grade computation, continued 



Here's a new version of grade/2: 
grade(Score, 'A') :- Score >= 90. 
grade(Score, 'B') :- Score >= 80. 
grade(Score, 'C') :- Score >= 70. 
grade(_, 'F'). :- Grade = 'F'.   Note use of underscore for "don't care". 

 
Let's try grades/0 again: 

?- grades. 
Current Grades 
 Ali: B 
 Ali: C 
 Ali: F 
 Chris: A 
 Chris: B 
 Chris: C 
 Chris: F 
 Kendall: B 
 Kendall: C 
 Kendall: F 
true. 
 

What's wrong? 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  111	
  

Grade computation, continued 

Here is grades/0: 
grades :- writeln('Current Grades'), 
    student(Student,Score), grade(Score,Grade), 
    format(' ~w: ~w\n', [Student, Grade]), fail. 
grades. 

 
The old grade/2: 

grade(Score, 'A') :- Score >= 90. 
grade(Score, 'B') :- Score >= 80, Score < 90. 
grade(Score, 'C') :- Score >= 70, Score < 80. 
grade(Score, 'F') :- Score < 70. 

The fail in grades is driving grade to try subsequent 
rules.  Ali's 85 satisfies the last three rules in the new 
version of grade/2!  Chris' 92 satisfies all four! 



The predicate ! is "cut".  It's just an exclamation mark. 
 
Cut is a control predicate, like fail/0.  It affects the flow of control. 
 
When a cut is encountered in rule it means, 

"If you get to here, you have picked the right rule to produce a final 
answer for this call of this predicate." 

 
We can fix grade/2 with some cuts: 

grade(Score, 'A') :- Score >= 90, !. 
grade(Score, 'B') :- Score >= 80, !. 
grade(Score, 'C') :- Score >= 70, !. 
grade(_, 'F'). :- Grade = 'F'. 

 
The rule grade(Score, 'A') :- Score >= 90, !. says, 

 If score >= 90 then the grade is an "A", and that's my final answer. 
 
 
 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  112	
  

"Cut" 

?- grades. 
Current Grades 
 Ali: B 
 Chris: A 
 Kendall: B 
true. 



How does the behavior change if we do the cut first instead of last? 
grade(Score, 'A') :- !, Score >= 90. 
grade(Score, 'B') :- !, Score >= 80. 
grade(Score, 'C') :- !, Score >= 70. 
grade(_, 'F'). :- Grade = 'F'. 

 
 
Execution: 

?- grades. 
Current Grades 
 Chris: A 
true. 

 
Why? 

For Ali, grade(85,Grade) is called and  grade(Score, 'A') :- !, Score >= 90. 
is executed.  The cut is done first thing, commiting this rule to producing the 
final answer for grade(85, Grade).  It then fails on Score >= 90. 
 
grades then backtracks and continues with the next student, Chris. 

 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  113	
  

Cut, continued 

grades :- writeln('Current Grades'), 
    student(Student,Score),  
    grade(Score,Grade), 
    format(' ~w: ~w\n', [Student, Grade]), 
    fail. 
grades. 

student('Ali', 85). 
student('Chris',92). 
student('Kendall', 89). 



Here's one way to write max:  (Adapted from Clause and Effect by Clocksin) 
max(X, Y, X) :- X >= Y. 
max(X, Y, Y) :- X < Y. 

 
Usage: 

?- max(10,3,Max). 
Max = 10 ;   (Prolog pauses because of possible alternative.) 
false. 

 
Can we shorten it with a cut? 

max(X, Y, X) :- X >= Y, !. 
max(_, Y, Y). 
 

Usage: 
?- max(10,3,Max). 
Max = 10.   (Prolog prints period because no alternatives.) 

Cut, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  114	
  



Cuts can be used to limit backtracking in a query or a rule.   
 
Consider these facts: 
 
Queries and cuts: 

?- f(F), write(F), g(G), write(G), fail. 
 f1  g1  g2  g3  f2  g1  g2  g3  f3  g1  g2  g3  
 
?- f(F), write(F), !, g(G), write(G), fail. 
 f1  g1  g2  g3  
 
?- f(F), write(F), g(G), write(G), !, fail. 
 f1  g1  

 
Another analogy: A cut is like a door that locks behind you. 
 
There is far more to know about "cut" but for now we'll use it for only one thing: 

"If you get to here, this rule will produce a final answer for this call to this 
predicate." 

 
 
 

Cut, continued 

f(' f1 ').     f(' f2 ').       f(' f3 '). 
g(' g1 ').  g(' g2 ').   g(' g3 '). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  115	
  



The "singleton" warning(!) 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  116	
  



Here's a predicate add(+X,+Y, ?Sum): 
$ cat add.pl 
add(X, Y, Sum) :- S is X + Y. 
 

Bug: Sum is used in the head but S is used in the body! 
 
Observe what happens when we load it: 

$ swipl -l add.pl 
% /Users/whm/.plrc compiled 0.00 sec, 4 clauses 
Warning: /Users/whm/372/pl/add.pl:1: 
        Singleton variables: [Sum,S] 

 
What is Prolog telling us with that warning? 

 The variables Sum and S appear only once in the rule on line 1. 
 
Fact: If a variable appears only once in a rule, its value is never used.  
 
A singleton warning may indicate a misspelled or misnamed variable. 

 Pay attention to singleton warnings! 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  117	
  

The "singleton" warning 
Usage: 

?- add(3,4,X). 
true. 



print_stars(+N) prints N asterisks:  
?- print_stars(10).  
********** 
true.  

 
Here's a first version of it.  Does it have any singletons? 

print_stars(N) :- between(1,N,X), write('*'), fail. 
print_stars(N).  

 
Let's see... 

$ swipl -l print_stars 
... 
Warning: print_stars.pl:1: ... Singleton variables: [X] 
Warning: print_stars.pl:2: ... Singleton variables: [N] 
 

Should we worry about the warnings?  How could we eliminate them? 
print_stars(N) :- between(1,N,_), write('*'), fail. 
print_stars(_). 

 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  118	
  

Singletons, continued 



Note that singleton warnings appear before "Welcome to SWI-Prolog"! 
 

$ swipl -l print_stars.pl   (old version) 
% /Users/whm/.plrc compiled 0.00 sec, 4 clauses 
Warning: /Users/whm/372/pl/print_stars.pl:1: 
        Singleton variables: [X] 
Warning: /Users/whm/372/pl/print_stars.pl:2: 
        Singleton variables: [N] 
% /Users/whm/372/pl/print_stars.pl compiled 0.00 sec, 3 clauses 
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6) 
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam 
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free 
software, and you are welcome to redistribute it under certain 
conditions. 
Please visit http://www.swi-prolog.org for details. 
 
For help, use ?- help(Topic). or ?- apropos(Word). 
 
?-  

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  119	
  

Singleton warnings are easy to overlook! 



More with rules 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  120	
  



Here is a set of facts for parents and children: 
 
 
 
 
 
 
 
 
 
 
 

Parents and children 

male(tom). 
male(jim). 
male(bob). 
male(mike). 
male(david). 
 
female(jane). 
female(betty). 
female(mary). 
female(alice). 

parent(tom,betty). 
parent(tom,bob). 
parent(jane,betty). 
parent(jane,bob). 
parent(jim,mike). 
parent(jim,david). 
parent(betty,mike). 
parent(betty,david). 
parent(bob,alice). 
parent(mary,alice). 

Jim & Betty 

Tom & Jane 

Bob & Mary 

Alice Mike David 

? ? 

Define a rule for father(F,C). 
  father(F,C) :-  

 male(F), parent(F,C). 
 
?- father(F,betty). 
F = tom ; 
false. 
 
?- father(F,C). 
F = tom, 
C = betty ; 
F = tom, 
C = bob ; 
... 
false. 
 
?- father(F,_). 
F = tom ; 
F = tom ; 
F = jim ; 
... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  121	
  

(parents.pl) 

parents.pl 



Here is a set of facts for parents and children: 
 
 
 
 
 
 
 
 
 
 
 

Parents and children, continued 

male(tom). 
male(jim). 
male(bob). 
male(mike). 
male(david). 
 
female(jane). 
female(betty). 
female(mary). 
female(alice). 

parent(tom,betty). 
parent(tom,bob). 
parent(jane,betty). 
parent(jane,bob). 
parent(jim,mike). 
parent(jim,david). 
parent(betty,mike). 
parent(betty,david). 
parent(bob,alice). 
parent(mary,alice). 

Jim & Betty 

Tom & Jane 

Bob & Mary 

Alice Mike David 

? ? 

Define grandmother(GM,C). 
grandmother(GM,C) :-  
     female(GM), parent(GM, P),  
     parent(P, C). 
 
?- grandmother(GM,C). 
GM = jane, 
C = mike ; 
GM = jane, 
C = david ; 
GM = jane, 
C = alice ; 
false. 
 
Or, we could have defined 
mother(M,C) and written 
grandmother using mother. 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  122	
  



For who is Tom the father? 
?- father(tom,C). 
C = betty ; 
C = bob. 

 
What are all the father/daughter  
relationships? 

?- father(F,D), female(D). 
F = tom, 
D = betty ; 
F = bob, 
D = alice ; 
false. 

 
Who is the father of Jim? 

?- father(F,jim). 
false. 

Parents and children, continued 

Jim & Betty 

Tom & Jane 

Bob & Mary 

Alice Mike David 

? ? 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  123	
  



Consider an abstract set of parent/child relationships: 
 

parent(a,b).    parent(c,d). 
parent(a,c).    parent(b,f). 
parent(c,e).    parent(f,g).   

 
Here is a recursive predicate for the relationship that A is an ancestor of X. (swapped) 

ancestor(A,X) :- parent(A, X). 
ancestor(A,X) :- parent(P, X), ancestor(A,P).     Exercise: reverse these! 

 
In English: 

"A is an ancestor of X if A is the parent of X or P is the parent of X and A is 
an ancestor of P." 
 

Usage: 
 

?- ancestor(a,f).     % Is a an ancestor of f? 
true  
 
?- ancestor(c,b).     % Is c an ancestor of b? 
false. 

Recursive predicates 
a 

c b 

e 
g 

f d 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  124	
  ancestors.pl 



 
At hand: 

 parent(a,b).    parent(c,d). 
 ... 
ancestor(A,X) :- parent(A, X). 
ancestor(A,X) :- parent(P, X), ancestor(A,P). 

 
More examples: 
 

?- ancestor(c,Descendant).  % Who are the descendants of c? 
Descendant = e ; 
Descendant = d ; 
false. 

 
What's the following query asking? 
 

?- ancestor(A, e), ancestor(A,g). 
A = a ; 
false. 

 

Recursive predicates 
a 

c b 

e 
g 

f d 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  125	
  



A recursive rule can be used to perform an iterative computation. 
 
Here is a predicate that prints the integers from 1 through N: 
 

printN(0). 
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N). 

 
Usage: 

?- printN(3). 
1 
2 
3 
true . 
 

Note that we're asking if printN(3) can be proven.  The side effect of Prolog 
proving it is that the numbers 1, 2, and 3 are printed. 
 
Is printN(0). needed? 
 
Which is better—the above or using between/3? 
 

Iteration with recursion 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  126	
  



A predicate to sum the integers from 0 to N: (ignoring Gauss...) 
sumN(0,0). 
sumN(N,Sum) :- 

 N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N. 
 
Usage: 

?- sumN(4,X). 
X = 10 . 

 
Note that this predicate can't be used to determine N for a given sum: 
 

?- sumN(N, 10). 
ERROR: >/2: Arguments are not sufficiently instantiated 

 
Could we write sumN using between? 
 

More recursion 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  127	
  



Here's the correct definition for sumN: 
 
sumN(0,0). 
sumN(N,Sum) :- 

 N > 0, M is N - 1, sumN(M, Temp), Sum is Temp + N. 
 
Here is a common mistake: 
 

sumN(0,0). 
sumN(N,Sum) :- 
    N > 0, M is N - 1, sumN(M, Sum), Sum is Sum + N. 

 
Unless N is zero, Sum is Sum + N fails every time! 
 
Remember that is/2 unifies its left operand with the result of 
arithmetically evaluating its right operand.  Further remember that 
unification is neither assignment nor comparison. 

Sidebar: A common mistake with arithmetic 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  128	
  



Here's the common example of recursion—factorial computation: 
 
factorial(0,1).  
 
factorial(N,F) :-   
   N > 0,  
   N1 is N - 1,  
   factorial(N1,F1),  
   F is N * F1. 

 
The above example comes from 
     http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/2_2.html 
 
Near the bottom the page is an excellent animation of the computation 
factorial(3,X).  Try it if you don't mind dealing with a Java applet. 
 

Recursion, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  129	
  



gtrace is the graphical counterpart of trace.  Start it like this: 
?- gtrace, sumN(4,Sum). 
% The graphical front-end will be used for subsequent tracing 

 
 
 
 
 
 
 
 
 
 
 
Type space to through step goals one at a time.  Click on call stack elements to 
show bindings in that call.  The ancestor predicate makes a good demo, too. 
 
gtrace should work immediately on Windows and Macs.  On a Linux machine in 
the labs use "ssh –X ..." to login to lectura, and it should work there, too. 

Sidebar: graphical tracing with gtrace 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  130	
  



Here is a predicate that tests whether a number is odd: 
 

odd(N) :- N mod 2 =:= 1. 
 
Note that N mod 2 works because  =:= evaluates its operands. 
 
An alternative: 
 

odd(1). 
odd(N) :- odd(M), N is M + 2. 
 

How does the behavior of the two differ? 
 

Generating alternatives with recursion 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  131	
  



For reference: 
 
odd(1). 
odd(N) :- odd(M), N is M + 2. 

 
Usage: 

?- odd(5). 
true . 
 
?- odd(X). 
X = 1 ; 
X = 3 ; 
X = 5 ; 
... 

 
What does odd(2) do? 
 
How does odd(X) work? 
 

Generating alternatives, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  132	
  



Query: ?- odd(X). 
 
  odd(1). 
  odd(N) :- odd(M), N is M + 2. 
 
     
     odd(1). 
     odd(N) :- odd(M), N is M + 2. 
 
 
         odd(1). 
         odd(N) :- odd(M), N is M + 2. 
 
 
            odd(1). 
            odd(N) :- odd(M), N is M + 2. 

Generating alternatives, cont. 
odd(X) 

exit call 
fail redo 

odd(M) 
exit/call call 

fail N is M+2 
exit 
redo redo/fail 

odd(M) 
exit/call call 

fail N is M+2 
exit 
redo redo/fail 

odd(M) 
exit/call call 

fail N is M+2 
exit 
redo redo/fail 

odd(M) 
exit/call call 

fail N is M+2 
exit 
redo redo/fail 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  133	
  



For reference: 
 

odd(1).     
odd(N) :- odd(M), N is M + 2. 

 
The key point with generative predicates: 

If an alternative is requested, another activation of the predicate is 
created. 

 
As a contrast, think about how execution differs with this set of clauses: 

 
odd(1). 
odd(3).   
odd(5).    
odd(N) :- odd(M), N is M + 2. 
 

Try gtrace with both the two-clause version at the top and the four-clause 
version just above. 
 
 
 
 

Generating alternatives, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  134	
  



Lists 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  135	
  



A Prolog list can be literally specified by enclosing a comma-separated 
series of terms in square brackets: 
 

[1, 2, 3] 
 
[just, a, test, here] 
 
[1, [one], 1.0, [a,[b,['c this']]]] 

 
Note that there's no evaluation of the terms: 

?- L = [1, 2, odd(3), 4+5, atom(6)]. 
L = [1, 2, odd(3), 4+5, atom(6)]. 

 
A common mistake is entering a list literal as a query.  That's taken as a 
request to consult files! 

?- [abc, 123]. 
ERROR: source_sink `abc' does not exist ... 

 
 
 

List basics 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  136	
  



Here are some unifications with lists: 
 

?- [1,2,3] = [X,Y,Z]. 
X = 1, 
Y = 2, 
Z = 3. 
 
?- [X,Y] = [1,[2,[3,4]]].   Note unification of Y with list of lists. 
X = 1, 
Y = [2, [3, 4]]. 
 
?- [X,Y] = [1]. 
false. 
 
?- Z = [X,Y,X], X = 1, Y = [2,3].   Note that X occurs twice in Z. 
Z = [1, [2, 3], 1], 
X = 1, 
Y = [2, 3]. 

 
We'll later see a head-and-tail syntax for lists. 
 

Unification with lists 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  137	
  



Write a predicate empty(L) that succeeds iff L is an empty list.  Be sure it 
succeeds only on lists and no other types! 

empty([]). 
 

Write a predicate as123(X) that succeeds iff X is a list with one, two, or three 
identical elements. 

as123([_]). 
as123([X,X]). 
as123([X,X,X]). 
 

Usage: 
?- as123([a]), as123([b,b]), write(ok), as123([1,2,3]), write('oops'). 
ok 
false. 
 
?- as123(L). 
L = [_G2456] ; 
L = [_G2456, _G2456] ; 
L = [_G2456, _G2456, _G2456]. 

 

Unification with lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  138	
  

Not "getting it" with unification: 
as123([X]). 
as123([X,Y]) :- X = Y. 
as123([X,Y,Z]) :- X = Y, Y = Z. 



SWI Prolog has a number of built-in predicates that operate on lists.  One is nth0: 
nth0(?Index,	
  ?List,	
  ?Elem)	
  
	
  	
  	
  	
  True	
  when	
  Elem	
  is	
  	
  the	
  Index'th	
  element	
  of	
  List.	
  	
  Counbng	
  starts	
  at	
  0.	
  

 
Usage: 

?- nth0(2, [a,b,a,d,c], X).  What is the third element of [a,b,a,d,c]? 
X = a. 
 
?- nth0(0, [a,b,a,d,c], b).  Is b the first element of [a,b,a,d,c]? 
false. 
 
?- nth0(N, [a,b,a,d,c], a).  Where are a's in [a,b,a,d,c]? 
N = 0 ; 
N = 2 ; 
false. 
 
?- nth0(N, [a,b,a,d,c], X).  What are the positions and values for all? 
N = 0, 
X = a ; 
N = 1, 
X = b ; 
... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  139	
  

Built-in list-related predicates 

NOTE: nth0 makes for a good example 
here, but use indexing judiciously!  There 
are usually better alternatives! 



Recall: 
as123([_]). 
as123([X,X]). 
as123([X,X,X]). 
 

Problem: Using as123 and nth0, write a predicate with this behavior: 
 
?- f3(test, L). 
L = [test] ; 
L = [test, test] ; 
L = [test, test, test]. 
 

Solution: 
f3(X,L) :- as123(L), nth0(0, L, X). 
 

Does the order of the goals matter? 
 
More: 

?- f3(test, [test]). 
true . 
 
?- f3(test, [a,b]). 
false. 
 
 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  140	
  



What do you think length(?List, ?Len) does? 
Get the length of a list: 

?- length([10,20,30],Len). 
Len = 3  

 
And? 

 Make a list of uninstantiated variables: 
?- length(L,3). 
L = [_G907, _G910, _G913]. 

 
Speculate—what will length(L,N) do? 

?- length(L,N). 
L = [], 
N = 0 ; 
L = [_G919], 
N = 1 ; 
L = [_G919, _G922], 
N = 2 ... 

 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  141	
  



What does reverse(?List, ?Reversed) do? 
 

 Unifies a list with a reversed copy of itself. 
?- reverse([1,2,3],R). 
R = [3, 2, 1]. 
 
?- reverse([1,2,3],[1,2,3]). 
false. 

 
Write palindrome(L). 

palindrome(L) :- reverse(L,L). 
 
Speculate—what's the result of reverse(X,Y).? 

?- reverse(X,Y). 
X = Y, Y = [] ; 
X = Y, Y = [_G913] ; 
X = [_G913, _G916], 
Y = [_G916, _G913] ; 
X = [_G913, _G922, _G916], 
Y = [_G916, _G922, _G913] ; 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  142	
  



How about numlist(+Low, +High, -List)? 
?- numlist(5,10,L). 
L = [5, 6, 7, 8, 9, 10]. 

 
How can we make [7, 6, ..., 1]? 

?- numlist(1,7,L), reverse(L,R). 
L = [1, 2, 3, 4, 5, 6, 7], 
R = [7, 6, 5, 4, 3, 2, 1]. 

 
sumlist(+List, -Sum) unifies Sum with the sum of the values in List, 
which must all be numbers or structures that can be evaluated with is/2. 

 
?- numlist(1,5,L), sumlist(L,Sum). 
L = [1, 2, 3, 4, 5], 
Sum = 15. 
 
?- sumlist([1+2, 3*4, 5-6/7],X). 
X = 19.142857142857142. 
 

 
 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  143	
  



Write a predicate sumGreater(+Target, -N, -Sum) that finds the 
smallest N for which the sum of 1..N is greater than Target. 
 

?- sumGreater(50, N, Sum). 
N = 10, 
Sum = 55 . 
 
?- sumGreater(1000000, N, Sum). 
N = 1414, 
Sum = 1000405 . 

 
Let's ignore Gauss and have some fun with lists! 
 

Sidebar: Developing a list-based predicate goal-by-goal 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  144	
  



Step one: Have a goal that instantiates N to 1, 2, ... 
?- between(1, inf, N).   What's inf? 
N = 1 ; 
N = 2 ; 
N = 3 ; 
... 

 
Step two: instantiate L to lists [1], [1,2], ... 

?- between(1, inf, N), numlist(1, N, L). 
N = 1, 
L = [1] ; 
N = 2, 
L = [1, 2] ; 
N = 3, 
L = [1, 2, 3] ; 
... 

Sidebar, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  145	
  



Step three: Compute sum of 1..N. 
?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum). 
N = Sum, Sum = 1, 
L = [1] ; 
N = 2, 
L = [1, 2], 
Sum = 3 ; 
... 

 
Step four: Test sum against target value. 

?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20. 
N = 6, 
L = [1, 2, 3, 4, 5, 6], 
Sum = 21 . 
 

Note the incremental process followed, adding goals one-by-one and being 
sure the results for each step are what we expect. 

Sidebar, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  146	
  



Step four, for reference: 
?- between(1, inf, N), numlist(1,N,L), sumlist(L,Sum), Sum > 20. 
N = 6, 
L = [1, 2, 3, 4, 5, 6], 
Sum = 21 . 
 

Step five: Package as a predicate. 
$ cat sg.pl 
sumGreater(Target,N,Sum) :- 

 between(1,inf,N), numlist(1,N,L), sumlist(L,Sum), Sum > Target. 
 
% pl -l sg 
... 
?- sumGreater(1000,N,Sum). 
N = 45, 
Sum = 1035 ; 
N = 46, 
Sum = 1081 ; 

 
Is it good or bad that it produces alternatives? 
 

Sidebar, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  147	
  



Here's atom_chars(?Atom, ?Charlist): 
 

?- atom_chars(abc,L). 
L = [a, b, c]. 
 
?- atom_chars(A, [a, b, c]). 
A = abc. 

 
Problem: write rev_atom/2. 

?- rev_atom(testing,R). 
R = gnitset. 
 
?- rev_atom(testing,gnitset). 
true. 
 

 rev_atom(A,RA) :-   Note: a rule shown in the middle of queries! 
  atom_chars(A,AL), reverse(AL,RL), atom_chars(RA,RL). 

 
?- rev_atom(X, gnitset). 
ERROR: atom_chars/2: Arguments are not sufficiently instantiated 
 

 How should rev_atom's arguments be described with +, ?, and -? 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  148	
  

Problem: write eqlen(+A1,+A2), to 
test whether two atoms are the same 
length. 

?- eqlen(test,this). 
true. 
 
?- eqlen(test,it). 
false. 



msort(+List, -Sorted) unifies Sorted with a sorted copy of List: 
?- msort([3,1,7], L). 
L = [1, 3, 7]. 
 
?- atom_chars(prolog, L), msort(L,S), atom_chars(A,S). 
L = [p, r, o, l, o, g], 
S = [g, l, o, o, p, r], 
A = gloopr. 
 

If the list is heterogeneous, elements are sorted in "standard order": 
?- msort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted). 
Sorted = [1, 5, 5, abc, xyz, x(a), [1, 2]]. 

 
sort/2 is like msort/2 but also removes duplicates. 

?- sort([xyz, 5, [1,2], abc, 1, 5, x(a)], Sorted). 
Sorted = [1, 5, abc, xyz, x(a), [1, 2]]. 

 

Built-ins for lists, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  149	
  



member(?Elem, ?List) succeeds when Elem can be unified with a 
member of List. 
 
member can be used to check for membership: 

 
?- member(30, [10, twenty, 30]). 
true. 

 
member can be used to generate the members of a list: 

?- member(X, [10, twenty, 30]). 
X = 10 ; 
X = twenty ; 
X = 30. 

 
Problem: Print the numbers from 100 through 1. 

?- numlist(1,100,L), reverse(L,R), member(E,R), writeln(E), fail. 
100 
99 
... 

The member predicate 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  150	
  



Problem: Write a predicate has_vowel(+Atom) that succeeds iff Atom 
has a lowercase vowel. 

 
?- has_vowel(ack). 
true  
 
?- has_vowel(pfft). 
false. 

 
Solution: 

has_vowel(Atom) :- 
 atom_chars(Atom,Chars), 
 member(Char,Chars), 
 member(Char,[a,e,i,o,u]). 

 
Explain it! 

member, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  151	
  



Here's how the documentation describes append/3: 
?- help(append/3). 
append(?List1, ?List2, ?List1AndList2) 
    List1AndList2 is the concatenation of List1 and List2 

 
Usage: 

?- append([1,2], [3,4,5], R). 
R = [1, 2, 3, 4, 5]. 
 
?- numlist(1,4,L1), reverse(L1,L2), append(L1,L2,R). 
L1 = [1, 2, 3, 4], 
L2 = [4, 3, 2, 1], 
R = [1, 2, 3, 4, 4, 3, 2, 1]. 
 

What else can we do with append? 
 

The append predicate 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  152	
  



What will the following do? 
?- append(A, B, [1,2,3]). 
A = [], 
B = [1, 2, 3] ; 
A = [1], 
B = [2, 3] ; 
A = [1, 2], 
B = [3] ; 
A = [1, 2, 3], 
B = [] ; 
false. 

 
The query can be thought of as asking, "For what values of A and B is their 
concatenation [1,2,3]? 
 
Think of append as demanding a relationship between the three lists: List3 must 
consist of the elements of List1 followed by the elements of List2.  If List1 and 
List2 are instantiated, List3 must be their concatenation.  If only List3 is 
instantiated then List1 and List2 represent (in turn) all the possible ways to divide 
List3. 
 
 

append, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  153	
  



Let's write some more predicates using append. 
 starts_with(L, Prefix) :- 
   append(Prefix, _, L). 

 
Usage: 

?- starts_with([1,2,3,4], [1,2]). 
true. 
 
?- starts_with([1,2,3,4], L). 
L = [] ; 
L = [1] ; 
L = [1, 2] ; 
L = [1, 2, 3] ; 
L = [1, 2, 3, 4] ; 
false. 
 

append, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  154	
  



Haskell meets Prolog: 
take(L, N, Result) :- 

 length(Result,N), append(Result, _, L). 
 
?- take([1,2,3,4,5], 3, L). 
L = [1, 2, 3]. 
 
?- take([1,2,3,4,5], N, L). 
N = 0, 
L = [] ; 
N = 1, 
L = [1] ; 
N = 2, 
L = [1, 2] ; 
... 
 

drop(L, N, Result) :- 
 append(Dropped, Result, L), length(Dropped, N). 

 

append, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  155	
  



Here is a predicate that generates successive N-long chunks of a list: 
chunk(L,N,Chunk) :- 
    length(Chunk,N), append(Chunk,_,L). 
 
chunk(L,N,Chunk) :- 
    length(Junk, N), append(Junk,Rest,L), chunk(Rest,N,Chunk). 

 
Usage: 
?- chunk([1,2,3,4,5],2,L). 
L = [1, 2] ; 
L = [3, 4] ; 
false. 
 
?- numlist(1,100,L), chunk(L,5,C), sumlist(C,Sum), between(300,350,Sum). 
L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...], 
C = [61, 62, 63, 64, 65], 
Sum = 315 ; 
 
L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...], 
C = [66, 67, 68, 69, 70], 
Sum = 340 ; 
false. 

append, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  156	
  



findall can be used to create a list of values that satisfy a goal.  A simple 
example: 
 

?- findall(F, food(F), Foods). 
Foods = [apple, broccoli, carrot, lettuce, orange, rice]. 

 
SWI's documentation: 

findall(+Template,	
  :Goal,	
  -­‐Bag)	
  
Create	
  a	
  list	
  of	
  the	
  instanbabons	
  Template	
  gets	
  successively	
  	
  on	
  
backtracking	
  	
  over	
  Goal	
  	
  and	
  unify	
  the	
  result	
  with	
  Bag.	
  	
  	
  Succeeds	
  
with	
  	
  an	
  	
  empty	
  list	
  if	
  Goal	
  has	
  no	
  solubons.	
  
	
  

Template is not limited to being a single variable.  It might be a structure. 
 
The second argument can be a single goal, or several goals joined with 
conjunction. 
 
The third argument is instantiated to a list of terms whose structure is 
determined by the template.  Above, each term is just an atom. 

The findall predicate 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  157	
  



For reference: 
    findall(+Template, :Goal, -Bag) (The colon in :Goal means"meta-argument") 
 

?- findall(F, food(F), Foods). 
Foods = [apple, broccoli, carrot, lettuce, orange, rice]. 

 
Examples to show the relationship of the template and the resulting list: 

?- findall(x, food(F), Foods). 
Foods = [x, x, x, x, x, x]. 
 
?- findall(x(F), food(F), Foods). 
Foods = [x(apple), x(broccoli), x(carrot), x(lettuce), x(orange), x(rice)]. 
 
?- findall(1-F, food(F), Foods). 
Foods = [1-apple, 1-broccoli, 1-carrot, 1-lettuce, 1-orange, 1-rice]. 

 
What does findall remind you of? 
 
Important: 

findall is said to be a higher-order predicate.  It's a predicate that takes a 
predicate, food(F) in this case. 

 

findall, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  158	
  



Here's a case where the :Goal is a conjunction of two goals. 
 

?- findall(F-C, (food(F),color(F,C)), FoodsAndColors). 
FoodsAndColors = [apple-red, broccoli-green, carrot-orange, 
lettuce-green, orange-orange, rice-white]. 

 
display sheds some light on that conjunction: 

 
?- display((food(F),color(F,C))). 
,(food(_G835),color(_G835,_G838)) 
true. 

 
It's a two-term structure whose functor is ',' (just a comma). 

findall, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  159	
  



For reference: 
findall(+Template,	
  :Goal,	
  -­‐Bag)	
  

 
Describe the following computation. 

?- numlist(1,9,L), 
        findall( 
   sum(Pfx,Sum),  
   (append(Pfx,_,L), sumlist(Pfx,Sum), Sum<10),  
   Sums). 
L = [1, 2, 3, 4, 5, 6, 7, 8, 9], 
Sums = [sum([], 0), sum([1], 1), sum([1, 2], 3), sum([1, 2, 3], 6)]. 
 

Find all prefixes of the list [1, 2, 3, 4, 5, 6, 7, 8, 9] whose sum is less than 
10.  Instantiate Sums to a list of sum structures whose terms are the list 
and the sum of its elements. 

findall, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  160	
  



See https://piazza.com/class/i43g61msngm4uz?cid=213, "Three more 
append examples" for some more practice with append 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  161	
  

(no longer intentionally blank) 



Here are more findall examples.... 
 

?- findall(pos(N,X), nth0(N, [a,b,a,d,c], X), Posns). 
Posns = [pos(0, a), pos(1, b), pos(2, a), pos(3, d), pos(4, c)]. 
 
?- findall(X, (between(1,100,X),X rem 13 =:= 0), Nums). 
Nums = [13, 26, 39, 52, 65, 78, 91]. 

 
Note the following have compound goals (underlined). 

?- X=[t,e,s,t,i,n,g],V=[a,e,i,o,u], 
   findall(C, (member(C,X),member(C,V)), Common). 

X = [t, e, s, t, i, n, g], 
V = [a, e, i, o, u], 
Common = [e, i]. 
 
?- findall(Len-F, (food(F),atom_length(F,Len)), LFs). 
LFs = [5-apple, 8-broccoli, 6-carrot, 7-lettuce, 4-rice, 11-'bell pepper', 
7-'Whopper']. 
 
?- findall(Len-F, (food(F),atom_length(F,Len)), LFs), keysort(LFs,Sorted). 
LFs = [5-apple, 8-broccoli, 6-carrot, 7-lettuce, 4-rice, 11-'bell pepper', 
7-'Whopper'], 
Sorted = [4-rice, 5-apple, 6-carrot, 7-lettuce, 7-'Whopper', 8-broccoli, 
11-'bell pepper']. 

 
CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  162	
  

(no longer intentionally blank) 



CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  163	
  

(intentionally blank) 



Low-level list processing 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  164	
  

Next set of slides 



The list [1,2,3] can be specified in terms of a head and a tail, like this: 
 

[1 | [2, 3]] 
 
More generally, a list can be specified as a sequence of initial elements and 
a tail. 
 
The list [1,2,3,4] can be specified in any of these ways: 

 
[1 | [2,3,4]] 
 
[1,2 | [3,4]] 
 
[1,2,3 | [4]] 
 
[1,2,3,4 | []] 
 

 
 

Heads and tails 

Haskell equivalents: 
1:[2,3,4] 
 
1:2:[3,4] 
 
1:2:3:[4] 
 
1:2:3:4:[] 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  165	
  



Consider this unification: 
 

?- [H|T] = [1,2,3,4]. 
H = 1, 
T = [2, 3, 4]. 

 
What instantiations are produced by these unifications? 
 

?- [X, Y | T] = [1, 2, 3]. 
X = 1, 
Y = 2, 
T = [3]. 
 
?- [X, Y | T] = [1, 2]. 
X = 1, 
Y = 2, 
T = []. 
 
?- [1, 2 | [3,4]] = [H | T]. 
H = 1, 
T = [2, 3, 4]. 
 
?- A = [1], B = [A|A]. 
A = [1], 
B = [[1], 1]. 

Unifications with lists 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  166	
  



Here is a rule that describes the relationship between a list and and its head: 
 

head(L, H) :- L = [H|_]. 
 
The head of L is H if L unifies with a list whose head is H. 
 
Usage: 

?- head([1,2,3],H). 
H = 1. 
 
?- head([2],H). 
H = 2. 
 
?- head([],H). 
false. 
 
?- L = [X,X,b,c], head(L, a). 
L = [a, a, b, c], 
X = a. 

 
Can we make better use of unification and define head/2 more concisely? 

 head([H|_], H). 
  The head of a list whose head is H is H. 

 

Simple list predicates 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  167	
  



Here is one way to define the built-in member/2 predicate: 
 
member(X,L) :- L = [X|_]. 
member(X,L) :- L = [_|T], member(X, T). 

 
Usage: 

?- member(1, [2,1,4,5]). 
true ; 
false. 
 
?- member(a, [2,1,4,5]). 
false. 

 
 
 
 

Implementing member 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  168	
  



For reference: 
member(X,L) :- L = [X|_]. 
member(X,L) :- L = [_|T], member(X, T). 

 
Problem: Define member more concisely. 
 

member(X,[X|_]). 
 X is a member of the list having X as its head 

 
member(X,[_|T]) :- member(X,T). 

 X is a member of the list having T as its tail if X is a member of T 
 

Exercise: Following the example of slide 133, trace through how 
member generates elements from a list, like this: 

?- member(X, [a,b,c]). 
X = a ; 
X = b ; 
... 

 
 

member, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  169	
  



Problem: Define a predicate last(L,X) that describes the relationship 
between a list L and its last element, X. 
 

?- last([a,b,c],X). 
X = c. 
 
?- last([],X). 
false. 
 
?- last(L,last), head(L,first), length(L,2). 
L = [first, last] . 

 
last is a built-in predicate but here's how we'd write it. 

last([X],X). 
last([_|T],X) :- last(T,X). 

 
 

Implementing last 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  170	
  



Write last in terms of head/1 and reverse/2. 
 
Write htsame(?L), which succeeds iff its first and last element are the 
same. 
 
Create a list that unifies with a three-element list whose first and last 
elements are the same. 
 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  171	
  

Exercises 



Problem: Write a predicate len/2 that behaves like the built-in length/2 
 

?- len([],N). 
N = 0. 
 
?- len([a,b,c,d], N). 
N = 4. 
 
?- len(L,1). 
L = [_G901] . 
 
?- len(L,N). 
L = [], 
N = 0 ; 
L = [_G913], 
N = 1 ; 
L = [_G913, _G916], 
N = 2 ; 
... 

Implementing length 

len([], 0). 
len([_|T],Len) :- len(T,TLen), Len is TLen + 1. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  172	
  



Problem: Define a predicate allsame(L) that describes lists in which all elements 
have the same value. 
 

?- allsame([a,a,a]). 
true 
 
?- allsame([a,b,a]). 
false. 
 
?- L = [A,B,C], allsame(L), B = 7, write(L). 
[7,7,7] 
L = [7, 7, 7], 
A = B, B = C, C = 7 . 
 
?- length(L,5), allsame(L), head(L,x). 
L = [x, x, x, x, x] . 
 

Solution: 
allsame([_]). 
allsame([X,X|T]) :- allsame([X|T]). 

allsame 

Here's another way to test it: 
?- allsame(L). 
L = [_G1635] ; 
L = [_G1635, _G1635] ; 
L = [_G1635, _G1635, _G1635] ; 
... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  173	
  



Recall the description of the built-in append predicate: 
?-­‐	
  help(append/3).	
  
append(?List1,	
  ?List2,	
  ?List1AndList2)	
  
	
  	
  	
  	
  List1AndList2	
  is	
  the	
  concatenabon	
  of	
  List1	
  and	
  List2	
  

 
The usual definition of append: 
 

append([], X, X). 
append([X|L1], L2, [X|L3]) :-  append(L1, L2, L3). 

 
How does it work? 
 
Try tracing it.  To avoid getting the built-in version, define the above as myapp 
instead of append.  Then try these: 

 
?- gtrace, myapp([1,2,3,4],[a,b,c,d],X). 
?- gtrace, myapp([a,b,c,d,e,f,g],[],X). 
 

Note that all of the Exit: lines in a trace show an append relationship that's true: 
Exit: (11) myapp([], [a, b, c, d], [a, b, c, d]) ?  
Exit: (10) myapp([4], [a, b, c, d], [4, a, b, c, d]) ?  
Exit: (9) myapp([3, 4], [a, b, c, d], [3, 4, a, b, c, d]) ?  

 
 

Implementing append 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  174	
  

Actually, execution is  
maybe easier to understand 

with trace than gtrace! 



In fact, lists are structures: 
 
?- display([1,2,3]). 
.(1,.(2,.(3,[]))) 

 
Essentially, ./2 is the "cons" operation in Prolog. 
 
By default, lists are shown using the [...] notation: 
 

?- X = .(a, .(b,[])). 
X = [a, b]. 
 

We can write member/2 like this: 
 

member(X, .(X,_)). 
member(X, .(_,T)) :- member(X,T). 

 
What does the following produce? 

?- X='.'(3,4). 
X = [3|4].     

Lists are structures 

A Lisp programmer would call this a "dotted-pair". 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  175	
  



"Can't prove" 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  176	
  



The query \+goal succeeds if goal fails. 
 

?- food(computer). 
false. 
 
?- \+food(computer). 
true. 

 
An incomplete set of facts can produce oddities. 
 

?- \+food(cake). 
true. 

 
\+ is often spoken as "can't prove" or "fail if". 
 

"can't prove" 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  177	
  



Example: What foods are not green? 
 

?- food(F), \+color(F,green). 
F = apple ; 
F = carrot ; 
F = orange ; 
F = rice ; 
F = 'Big Mac'. 
 

If there's no color fact for a food, will the query above list that food? 
 
How can we see if there are any foods don't have a color fact? 

 
?- food(F), \+color(F,_). 
F = 'Big Mac'. 

"can't prove", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  178	
  



Describe the behavior of inedible/1: 
inedible(X) :- \+food(X). 

 
inedible(X) succeeds if something is not known to be a food. 

 
?- inedible(rock). 
true. 

 
What will the query ?- inedible(X). do? 

?- inedible(X). 
false. 

 

"can't prove", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  179	
  



What's the following query asking? 
?- color(X,_), \+food(X). 
X = sky ; 
X = dirt ; 
X = grass ; 
false. 
 
What are things with known colors that aren't food? 
 

Let's try reversing the goals: 
?- \+food(X), color(X,_). 
false. 

 
Why do the results differ? 
 

"can't prove", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  180	
  



Important: variables are never instantiated by a "can't prove" goal. 
 
Example: 

?- \+food(X). 
false. 

 
Consider this attempt to ask for things that aren't purple.  
 

?- \+color(Thing, purple). 
true. 
 

There are many such things but Thing is not instantiated. 
 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  181	
  

"can't prove", continued 



"cut-fail" 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  182	
  



Predicates naturally fail when a desired condition is absent but sometimes 
we want a predicate to fail when a particular condition is present. 
 
Here is a recursive predicate that succeeds iff all numbers in a list are 
positive: 

allpos([X]) :- X > 0. 
allpos([X|T]) :- X > 0, allpos(T). 

 
Another way to write it is with a "cut-fail": 
 

allpos(L) :- member(X, L), X =< 0, !, fail. 
allpos(_). 

 
Remember that a cut effectively eliminates all subsequent clauses for the 
active predicate.  If a non-positive value is found, the cut eliminates 
allpos(_). and then the rule fails.   
 
Another way to think about cut-fail: "My final answer is No!" 
 

The "cut-fail" idiom 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  183	
  



average_taxpayer(X) :- 
    foreigner(X), !, fail. 
 
average_taxpayer(X) :- 
    spouse(X,Spouse), 
    gross_income(Spouse, SpouseIncome), 
    SpouseIncome > 3000, !, fail. 
 
average_taxpayer(X) :- 
    gross_income(X, Inc), 
    Inc > 2000, Inc =< 20_000. 
 
gross_income(X,GrossIncome) :- 
    receives_pension(X, GrossIncome), 
    GrossIncome < 5000, !, fail. 
 
gross_income(X, GrossIncome) :- 
    gross_salary(X, GrossSalary), 
    investment_income(X,InvestmentIncome), 
    GrossIncome is GrossSalary + InvestmentIncome. 
 
investment_income(X, InvestmentIncome) :- ... 

"cut-fail", continued 

Straight from Clocksin and Mellish, p.91 

A person is not an average taxpayer if 
they are a foreigner. 

A person is not an average taxpayer 
if they've got a spouse and the 
spouse makes over 3000. 

A person is an average taxpayer if 
their income is between 2000 and 20,000. 

A person is not considered to have a 
gross income if they receive a pension 
of less than 5000. 

A cut says, "If you get this 
far, you've picked the right 
rule for this goal." – C&M 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  184	
  



Here's how we could implement \+ (can't prove) using the higher-order 
predicate call/1 and a cut-fail: 
 

cant_prove(G) :- call(G), !, fail. 
cant_prove(_). 

 
Usage: 
 

?- cant_prove(food(apple)). 
false. 
 
?- cant_prove(food(computer)). 
true. 
 
?- cant_prove(color(_,purple)). 
true. 
 

Is cant_prove a higher-order predicate? 

"cut-fail", continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  185	
  



Database (knowledgebase) 
manipulation 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  186	
  



A Prolog program is a database of facts and rules. 
 
The database can be changed dynamically by adding facts with assert/1 
and deleting facts with retract/1. 
 
A predicate to establish that certain things are foods: 

makefoods :- 
    assert(food(apple)),  
    assert(food(broccoli)),  assert(food(carrot)),     
    assert(food(lettuce)),  assert(food(rice)). 

 
Evaluating makefoods adds facts to the database: 

?- food(F).  ("positive-control" test—be sure no foods already!) 
ERROR: toplevel: Undefined procedure: food/1 
 
?- makefoods. 
true. 
 
?- findall(F,food(F),L). 
L = [apple, broccoli, carrot, lettuce, rice]. 
 

 
 

assert and retract 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  187	
  



A fact can be "removed" with retract: 
?- retract(food(carrot)). 
true. 
 
?- food(carrot). 
false. 
 

retractall removes all matching facts. 
?- retractall(food(_)). 
true. 
 
?- food(X). 
false. 

 

assert and retract, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  188	
  



If we query makefoods multiple times, it makes multiple sets of food 
facts. 

?- makefoods. 
true. 
 
?- makefoods. 
true. 
 
?- findall(F,food(F),Foods). 
Foods = [apple, broccoli, carrot, lettuce, rice, apple, broccoli, 
carrot, lettuce|...]. 
 

Let's start makefoods with a retractall to get a clean slate every time. 
 

makefoods :- 
 retractall(food(_)), 
 assert(food(apple)), 
 assert(food(broccoli)), assert(food(carrot)), 
 assert(food(lettuce)), assert(food(rice)). 

 
 

assert and retract, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  189	
  



Important: asserts and retracts are not undone with backtracking. 
 

?- assert(f(1)), assert(f(2)), fail. 
false. 
 
?- f(X). 
X = 1 ; 
X = 2. 
 
?- retract(f(1)), fail. 
false. 
 
?- f(X).  A redo of retract(f(1)) did not restore f(1). 
X = 2. 

 
There is no ability to directly change a fact.  Instead, a fact is changed by 
retracting it and then asserting it with different terms. 
 

assert and retract, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  190	
  



A rule to remove foods of a given color (assuming the color/2 facts are 
present): 

rmfood(C) :- food(F), color(F,C), 
    retract(food(F)), 
    write('Removed '), write(F), nl, fail. 

 
Usage: 

?- rmfood(green). 
Removed broccoli 
Removed lettuce 
false. 
 
?- findall(F, food(F), L). 
L = [apple, carrot, rice]. 

 
The color facts are not affected—color(broccoli, green) and 
color(lettuce,green) still exist.  
 

assert and retract, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  191	
  



Here's a very simple calculator: 
 

?- calc. 
> print. 
0 
> add(20). 
> sub(7). 
> print. 
13 
> set(40). 
> print. 
40 
> exit. 
true. 
 

Note that the commands themselves are Prolog terms. 
 
Code is in www/pl/calc.pl 

A simple calculator 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  192	
  



A loop that reads and prints terms: 
calc0 :- prompt(_, '> '),  
  repeat, read(T), format('Read ~w~n', T), T = exit, !. 

 
Interaction: 

?- calc0. 
> a. 
Read a 
> ab(c,d,e). 
Read ab(c,d,e) 
> exit. 
Read exit 
true. 
 

How does the loop work? 
 
prompt/2 sets the prompt that's printed when read/1 is called. 
 
repeat/0 always succeeds.  If repeat is backtracked into, it simply sends control 
back to the right.  (Think of its redo port being wired to its exit port.) 
 
The predicate read(-X) reads a Prolog term and unifies it with X. 

 

Simple calculator, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  193	
  



Partial implementation:        
init :- 

 retractall(value(_)), 
 assert(value(0)). 

 
do(set(V)) :- 

 retract(value(_)), 
 assert(value(V)). 

 
do(print) :- value(V), writeln(V). 
 
do(exit). 
 
calc :- 

 init, prompt(_, '> '), 
 repeat, read(T), do(T), T = exit, !. 

 
How can add(N) and sub(N) be implemented?  (No repetitious code, 
please!) 

Simple calculator, continued 

?- calc. 
> print. 
0 
> add(20). 
> sub(7). 
> print. 
13 
> set(40). 
> print. 
40 
> exit. 
true. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  194	
  



add and subtract: 
 

do(add(X)) :-  
 value(V0), 
 V is V0 + X,  
 do(set(V)). 

 
do(sub(X0)) :-  

 X is -X0, 
 do(add(X)). 

 
Tangent: Could sub be shortened to the following? 
 

 do(sub(X)) :- do(add(-X)). 
 
Try add(3+4*5), too. 
 
Exercise: Add double and halve commands. 

Simple calculator, continued 

Is this a nested call to set(V)?! 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  195	
  



We can use facts like we might use a Java map or a Ruby hash. 
 
Imagine a word tallying program in Prolog: 

 
?- tally. 
|: to be or 
|: not to be ought not 
|: to be the question 
|: (Empty line ends the input.) 
 
-- Results -- 
be          3 
not         2 
or          1 
ought       1 
question    1 
the         1 
to          3 
true. 

Word tally 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  196	
  



read_line_to_codes produces a list of ASCII character codes for a line of input. 
 
?- read_line_to_codes(user_input, Codes). 
|: ab CD 12 
Codes = [97, 98, 32, 67, 68, 32, 49, 50]. 
 
?- read_line_to_codes(user_input, Codes). 
|: (hit ENTER) 
Codes = []. 

 
atom_codes can be used to form an atom from a list of codes. 

?- atom_codes(Atom, [97, 98, 10, 49, 50]). 
Atom = 'ab\n12'. 

 
readline reads a line and produces an atom. 

readline(Line) :-  
 read_line_to_codes(user_input, Codes), 
 atom_codes(Line, Codes). 

 
?- readline(Line). 
|: a test of this 
Line = 'a test of this'. 

 

Input handling for tally 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  197	
  



Let's use word(Word, Count) facts to maintain counts.  Let's write a 
count(Word) predicate to create and update word/2 facts. 
 
Example of operation: 

 
?- retractall(word(_,_)). 
true. 
 
?- count(test). 
true. 
 
?- word(W,C). 
W = test, 
C = 1. 
 
?- count(this), count(test), count(now). 
true. 
 
?- findall(W-C, word(W,C), L). 
L = [this-1, test-2, now-1]. 

Counting words 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  198	
  



For reference: 
?- retractall(word(_,_)). 
 
?- count(test), count(this), count(test), count(now). 
 
?- findall(W-C, word(W,C), L). 
L = [this-1, test-2, now-1]. 

 
Problem: implement count 

count(Word) :- 
 word(Word,Count0), 
 retract(word(Word,_)), 
 Count is Count0+1, 
 assert(word(Word,Count)), !. 

 
count(Word) :- assert(word(Word,1)). 

 
 

count implementation 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  199	
  



tally clears the counts then loops, reading lines and processing each. 
tally :- 
    retractall(word(_,_)), 
    repeat, 
        readline(Line), 
        do_line(Line), 
        Line == '', !,    note that '' is an empty atom 
        show_counts. 

 
How does tally terminate? 
 
do_line breaks up a line into words and calls count on each word. 

do_line(''). 
do_line(Line) :- 
        atomic_list_concat(Words, '  ', Line),   % splits Line on blanks 
        member(Word, Words), 
        count(Word), fail. 
do_line(_). 

 

Top-level and a helper 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  200	
  



keysort/2 sorts a list of A-B structures on the value of the A terms. 
 
?- keysort([zoo-3, apple-1, noon-4],L). 
L = [apple-1, noon-4, zoo-3]. 
 

With keysort in hand we're ready to write 
show_counts. 

 
show_counts :-  

 writeln('\n-- Results --'), 
 findall(W-C, word(W,C), Pairs), 
 keysort(Pairs, Sorted), 
 member(W-C, Sorted), 
 format('~w~t~12|~w~n', [W,C]), fail. 

show_counts.  
 

Full source is in www/pl/tally.pl 

Showing the counts 

-- Results -- 
be          3 
not         2 
or          1 
ought       1 
question    1 
the         1 
to          3 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  201	
  



What's a key difference between using Prolog facts and maps/hashes/etc. 
to maintain word counts? 
 
A hash or map can be passed around as a value, but Prolog facts are 
fundamentally objects with global scope.  The collection of word/2 facts 
can be likened to a Ruby global, like $words = {} 
 
If we wanted to maintain multiple tallies simultaneously we could add an 
id of some sort to word facts. 
 
Example: We might tally word counts for quotations in a document 
separately from word counts for body content.  Calls to count might look 
like this, 

 count(Type, Word) 
 
and create facts like these: 

word(quotes, testing, 3) 
word(body, testing, 10) 

Facts vs. Java maps, Ruby hashes, etc. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  202	
  



Consider a stack of blocks, each of which is uniquely labeled with a letter: 
 
 
 
 
 
 
 
This arrangement could be represented with these facts: 
 
 
 
 
 
 
Problem: Define a predicate clean that will print a sequence of blocks to remove 
from the floor such that no block is removed until nothing is on it. 
 
A suitable sequence of removals for the above diagram is: a, c, e, b, d, f, g.  
Another is a, b, c, d, e, f, g. 
 
 

Example: Unstacking blocks 

a b 

c d 

g f e 

floor 

on(a,c).  on(c,e).  on(e,floor). 
on(a,d).  on(c,f).  on(f,floor). 
on(b,d).  on(d,f).  on(g,floor). 

   on(d,g). 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  203	
  



Here's one solution: (blocks.pl) 
 

removable(B) :- \+on(_,B). 
 
remove(B) :- 

 removable(B), 
 retractall(on(B,_)), 
 format('Remove ~w\n', B). 
       

remove(B) :-  
 on(Above,B), 
 remove(Above), 
 remove(B). 

 
clean :- on(B,floor), remove(B), clean, !. 
clean :- \+on(_,_). 
 

How long would in be in Java or Ruby? 
 
Can we tighten it up? 

 

Unstacking blocks, continued 

a b 

c d 

g f e 

floor 

?- clean. 
Remove a 
Remove c 
Remove e 
Remove b 
Remove d 
Remove f 
Remove g 
true. 

on(a,c).  on(a,d).  on(b,d). ... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  204	
  



A more concise solution: 
 

clean :- 
 on(Block,_), \+on(_,Block), 
 format('Remove ~w\n',  Block), 
 retractall(on(Block,_)), clean, !. 

 
clean :- \+on(_,_). 
 

Output: 
?- clean. 
Remove a 
Remove b 
Remove c 
Remove d 
Remove e 
Remove f 
Remove g 
true. 

 

Unstacking blocks, continued 

a b 

c d 

g f e 

floor 

Previous sequence: 
?- clean. 
Remove a 
Remove c 
Remove e 
Remove b 
Remove d 
Remove f 
Remove g 
true. 

on(a,c).  on(a,d).  on(b,d). ... 

Find a block that's on something 
and that has nothing on it, and 
remove it. 
 
Recurse, continuing as long as 
there's a block that's on 
something. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  205	
  



Brick laying puzzle 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  206	
  



Consider six bricks of lengths 7, 5, 6, 4, 3, and 5. One way they can be laid into 
three rows of length 10 is like this:  
 
 
 
 
 
Problem: Write a predicate laybricks that produces a suitable sequence of bricks 
for three rows of a given length: 
 

?- laybricks([7,5,6,4,3,5],10,Rows). 
Rows = [[7, 3], [5, 5], [6, 4]] ; 
Rows = [[7, 3], [5, 5], [4, 6]] ; 
Rows = [[7, 3], [6, 4], [5, 5]] . 
 
?- laybricks([7,5,6,4,3,5],12,Rows). 
false. 
 

In broad terms, how can we approach this problem?  
 

Brick laying 

7 3 

5 5 

6 4 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  207	
  



Here is a helper predicate getone(X, List, Remaining) that produces in 
Remaining a copy of List with X removed: 
 

getone(X, [X|T], T). 
getone(X, [H|T], [H|N]) :- getone(X, T, N). 

 
Usage: 

?- getone(X,[a,b,a,d],R). 
X = a, 
R = [b, a, d] ; 
 
X = b, 
R = [a, a, d] ; 
 
X = a, 
R = [a, b, d] ; 
 
X = d, 
R = [a, b, a] ; 
false. 
 

Helper getone 

?- getone(a,[a,b,a],R). 
R = [b, a] ; 
R = [a, b] ; 
false. 
 
?- getone(a,[a,b,c,a],R). 
R = [b, c, a] ; 
R = [a, b, c] ; 
false. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  208	
  

Built-in equivalent: select/3 



layrow produces a sequence of bricks for a row of a given length: 
 

?- layrow([3,2,7,4], 7, BricksLeft, Row). 
BricksLeft = [2, 7], 
Row = [3, 4] ; 
 
BricksLeft = [3, 2, 4], 
Row = [7] ; 
 
BricksLeft = [2, 7], 
Row = [4, 3] ; 
false. 
 

Implementation: 
layrow(Bricks, 0, Bricks, []).     % A row of length zero consists of no 

           % bricks and doesn't touch the supply. 
 
layrow(Bricks, RowLen, Left, [Brick|MoreBricksForRow]) :- 

   getone(Brick, Bricks, Left0), 
   RemLen is RowLen - Brick, RemLen >= 0, 
   layrow(Left0, RemLen, Left, MoreBricksForRow). 

Helper layrow 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  209	
  



 
Let's write lay3rows, which is hardwired for three rows: 
 

lay3rows(Bricks, RowLen, [Row1,Row2,Row3]) :- 
 layrow(Bricks,         RowLen,   LeftAfter1,   Row1), 

    layrow(LeftAfter1,  RowLen,    LeftAfter2,   Row2), 
    layrow(LeftAfter2,  RowLen,    LeftAfter3,   Row3), 
    LeftAfter3 = []. 
 

Usage: 
?- lay3rows([2,1,3,1,2], 3, Rows). 
Rows = [[2, 1], [3], [1, 2]] ; 
... 
Rows = [[2, 1], [1, 2], [3]] ; 
... 
 

What is the purpose of LeftAfter3 = []? 
 
How can we generalize it to N rows? 
 

Three rows of bricks 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  210	
  



laybricks(+Bricks, +NRows, +RowLen, ?Rows) works like this: 
?- laybricks([5,1,6,2,3,4,3], 3, 8, Rows). 
Rows = [[5, 3], [1, 4, 3], [6, 2]] . 
 
?- laybricks([5,1,6,2,3,4,3], 8, 3, Rows). 
false. 
 
?- laybricks([5,1,6,2,3,4,3], 2, 12, Rows). 
Rows = [[5, 1, 6], [2, 3, 4, 3]] . 
 
?-  laybricks([5,1,6,2,3,4,3], 4, 6, Rows). 
Rows = [[5, 1], [6], [2, 4], [3, 3]] . 

 
Implementation: 
 

laybricks([], 0, _, []). 
 
laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :- 
        layrow(Bricks, RowLen, BricksLeft, Row), 
        RowsLeft is Nrows - 1, 
        laybricks(BricksLeft, RowsLeft, RowLen, Rows). 

N rows of bricks 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  211	
  



At hand: 
 

laybricks([], 0, _, []). 
 
laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :- 
        layrow(Bricks, RowLen, BricksLeft, Row), 
        RowsLeft is Nrows - 1, 
        laybricks(BricksLeft, RowsLeft, RowLen, Rows). 

 
laybricks requires that all bricks be used.  How can we remove that 
requirement? 
 

 laybricks2(_, 0, _, []). 
 ...second rule the same, but with a call to laybricks2... 

 
 ?- laybricks2([4,3,2,1], 2, 3, Rows). 
 Rows = [[3], [2, 1]] . 

 
 
 

N rows of bricks, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  212	
  



Some facts for testing: 
 
b(1, [7,5,6,4,3,5]). 
b(2, [5,1,6,2,3,4,3]). 
b(3, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4]).    % 6x12 
b(4, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4,1]). % 6x12 with extra 1 

 
We can query b(N, Bricks) to set Bricks to a particular list. 
 

?- b(1,Bricks), laybricks(Bricks, 2, 10, Rows). 
false. 
 
?- b(1,Bricks), laybricks2(Bricks, 2, 10, Rows). % laybricks2 
Bricks = [7, 5, 6, 4, 3, 5], 
Rows = [[7, 3], [5, 5]] . 
 
?- b(3,Bricks), laybricks(Bricks,6,12,Rows). 
Bricks = [8, 5, 1, 4, 6, 6, 2, 3, 4|...], 
Rows = [[8, 1, 3], [5, 4, 3], [6, 6], [2, 4, 3, 3], [6, 6], [8, 4]] . 

 

Testing 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  213	
  



Let's try a set of bricks that can't be laid into six rows of twelve: 
 

?- b(4,Bricks), laybricks(Bricks,6,12,Rows). 
...[the sound of a combinatorial explosion]... 
^CAction (h for help) ? abort 
% Execution Aborted 
 
?- statistics. 
8.240 seconds cpu time for 74,996,337 inferences 
... 
true. 
 

The speed of a Prolog implementation is sometimes quoted in LIPS—
logical inferences per second. 
 
2006 numbers, for contrast: 

?- statistics. 
8.05 seconds cpu time for 25,594,610 inferences 

 
 

Testing, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  214	
  



The Zebra Puzzle 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  215	
  



The Wikipedia entry for "Zebra Puzzle" presents a puzzle said to have been first 
published in the magazine Life International on December 17, 1962.  The facts: 
 

•  There are five houses. 
•  The Englishman lives in the red house. 
•  The Spaniard owns the dog. 
•  Coffee is drunk in the green house. 
•  The Ukrainian drinks tea. 
•  The green house is immediately to the right of the ivory house. 
•  The Old Gold smoker owns snails. 
•  Kools are smoked in the yellow house. 
•  Milk is drunk in the middle house. 
•  The Norwegian lives in the first house. 
•  The man who smokes Chesterfields lives in the house next to the man 

with the fox. 
•  Kools are smoked in the house next to the house where the horse is kept. 
•  The Lucky Strike smoker drinks orange juice. 
•  The Japanese smokes Parliaments. 
•  The Norwegian lives next to the blue house. 

 
The article asked readers, "Who drinks water?  Who owns the zebra?" 

The Zebra Puzzle 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  216	
  



We can solve this problem by creating a set of goals and asking Prolog to find the 
condition under which all the goals are true. 
 
A good starting point is these three facts: 
 

•  There are five houses. 
•  The Norwegian lives in the first house. 
•  Milk is drunk in the middle house. 

 
Those facts can be represented as this goal: 
 
  Houses = [house(norwegian, _, _, _, _),         % First house 
              _,          % Second house 
              house(_, _, _, milk, _),       % Middle house 
              _, _]         % 4th and 5th houses 
 
Instances of house structures represent knowledge about a house. 
 
house structures have five terms: nationality, pet, smoking preference (remember, 
it was 1962!), beverage of choice and house color. 
 
Anonymous variables are used to represent "don't-knows". 
 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  217	
  



Some facts can be represented with goals that specify structures as 
members of the list Houses, but with unknown position: 
 

 The Englishman lives in the red house. 
  member(house(englishman, _, _, _, red), Houses) 

 
 The Spaniard owns the dog. 
  member(house(spaniard, dog, _, _, _), Houses) 

 
 Coffee is drunk in the green house. 
  member(house(_, _, _, coffee, green), Houses) 

 
How can we represent The green house is immediately to the right of the 
ivory house.? 
 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  218	
  



At hand: 
 The green house is immediately to the right of the ivory house. 

 
Here's a predicate that expresses left/right positioning: 

left_right(L, R, [L, R | _]). 
left_right(L, R, [_ | Rest]) :- left_right(L, R, Rest). 

 
Testing: 

?- left_right(Left,Right, [1,2,3,4]). 
Left = 1, 
Right = 2 ; 
 
Left = 2, 
Right = 3 ; 
... 

 
Goal:    left_right(house(_, _, _, _, ivory), 

                    house(_, _, _, _, green), Houses) 
 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  219	
  



We have these "next to" facts: 
•  The man who smokes Chesterfields lives in the house next to the 

man with the fox. 
•  Kools are smoked in the house next to the house where the horse is 

kept. 
•  The Norwegian lives next to the blue house. 

 
How can we represent these? 
 
We can say that two houses are next to each other if one is immediately 
left or right of the other: 

next_to(X, Y, List) :- left_right(X, Y, List). 
next_to(X, Y, List) :- left_right(Y, X, List). 

 
 
 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  220	
  



These "next to" facts are at hand: 
•  The man who smokes Chesterfields lives in the house next to the 

man with the fox. 
•  Kools are smoked in the house next to the house where the horse is 

kept. 
•  The Norwegian lives next to the blue house. 
 

The facts above expressed as goals: 
next_to(house(_, _, chesterfield, _, _), 
               house(_, fox, _, _, _), Houses) 
 
next_to(house(_, _, kool, _, _), 
               house(_, horse, _, _, _), Houses) 
 
next_to(house(norwegian, _, _, _, _), 
               house(_, _, _, _, blue), Houses) 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  221	
  



A few more simple house & member goals complete the encoding: 
 

•  The Ukrainian drinks tea. 
  member(house(ukrainian, _, _, tea, _), Houses) 

•  The Old Gold smoker owns snails. 
  member(house(_, snails, old_gold, _, _), Houses) 

•  Kools are smoked in the yellow house. 
  member(house(_, _, kool, _, yellow), Houses) 

•  The Lucky Strike smoker drinks orange juice. 
  member(house(_, _, lucky_strike, orange_juice, _),  
   Houses) 

•  The Japanese smokes Parliaments. 
  member(house(japanese, _, parliment, _, _), Houses) 

 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  222	
  



A rule that comprises all the goals: 
 

zebra(Zebra_Owner, Water_Drinker) :- 
  Houses = [house(norwegian, _, _, _, _), _,  
                      house(_, _, _, milk, _), _, _], 
  member(house(englishman, _, _, _, red), Houses), 
  member(house(spaniard, dog, _, _, _), Houses), 
  member(house(_, _, _, coffee, green), Houses), 
  member(house(ukrainian, _, _, tea, _), Houses), 
  left_right(house(_,_,_,_,ivory), house(_,_,_,_,green), Houses), 
  member(house(_, snails, old_gold, _, _), Houses), 
  member(house(_, _, kool, _, yellow), Houses), 
  next_to(house(_,_,chesterfield,_,_),house(_, fox,_,_,_), Houses), 
  next_to(house(_,_,kool,_,_), house(_, horse, _, _, _), Houses), 
  member(house(_, _, lucky_strike, orange_juice, _), Houses), 
  member(house(japanese, _, parliment, _, _), Houses), 
  next_to(house(norwegian,_,_,_,_), house(_,_,_,_, blue), Houses), 
  member(house(Zebra_Owner, zebra, _, _, _), Houses), 
  member(house(Water_Drinker, _, _, water, _), Houses). 
 

Note that the last two goals ask the questions of interest. 
 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  223	
  



The moment of truth: 
?- zebra(_, Zebra_Owner, Water_Drinker). 
Zebra_Owner = japanese, 
Water_Drinker = norwegian ; 
false. 
 

The whole neighborhood: 
?- zebra(Houses,_,_), member(H,Houses), writeln(H), fail. 
house(norwegian,fox,kool,water,yellow) 
house(ukrainian,horse,chesterfield,tea,blue) 
house(englishman,snails,old_gold,milk,red) 
house(spaniard,dog,lucky_strike,orange_juice,ivory) 
house(japanese,zebra,parliment,coffee,green) 
false. 
 

Credit: The code above was adapted from sandbox.rulemaker.net/
ngps/119, by Ng Pheng Siong, who in turn apparently adapted it from 
work by Bill Clementson in Allegro Prolog. 

Zebra Puzzle, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  224	
  



Parsing and grammars 

Credit:	
  The	
  first	
  part	
  of	
  this	
  sec2on	
  borrows	
  heavily	
  from	
  chapter	
  
12	
  in	
  Covington. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  225	
  



Here is a grammar for a very simple language.  It has four productions. 
 

Sentence  => Article Noun Verb 
 
Article   => the | a 
 
Noun   => dog | cat | girl | boy 
 
Verb   => ran | talked | slept 

 
Here are some sentences in the language: 

the dog ran 
a boy slept 
the cat talked 
 

the, dog, cat, etc. are terminal symbols—they appear in the strings of the language.  
Generation terminates with them. 
 
Sentence, Article, Noun and Verb are non-terminal symbols—they can produce 
something more. 
 
Sentence is the start symbol.  We can generate sentences by starting with it and 
replacing non-terminals with terminals and non-terminals until only terminals remain. 
 
 
 
 

A very simple grammar 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  226	
  



Here is a simple parser for the grammar, expressed as clauses: (parser0.pl) 
 

sentence(Words) :- 
 article(Words, Left0), noun(Left0, Left1), verb(Left1, []). 

 
article([the| Left], Left). 
article([a| Left],  Left). 
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]). 
verb([Verb|Left], Left)   :- member(Verb, [ran,talked,slept]). 

 
Usage: 

?- sentence([the,dog,ran]). 
true . 
 
?- sentence([the,dog,boy]). 
false. 
 
?- sentence(S).   % Generates all valid sentences 
S = [the, dog, ran] ; 
S = [the, dog, talked] ; 
S = [the, dog, slept] ; 
... 

A very simple parser 

Sentence => Article Noun Verb 
Article      => the | a 
Noun      => dog | cat | girl | boy 
Verb      => ran | talked | slept 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  227	
  



For reference: 
sentence(Words) :- 

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []). 
 
article([the|Left], Left).  
article([a| Left],  Left). 
noun([Noun|Left], Left) :- member(Noun, [dog,cat,girl,boy]). 
verb([Verb|Left], Left)  :- member(Verb, [ran,talked,slept]). 

 
Note that the heads for article, noun, and verb all have the same form. 
 
Let's look at a clause for article and a unification: 

 
article([the|Left], Left). 
 
?- article([the,dog,ran], Remaining). 
Remaining = [dog, ran] . 

 
If Words begins with the or a, then article(Words, Remaining) succeeds and 
unifies Remaining with the rest of the list.  The key idea: article, noun, and 
verb each consume an expected word and produce the remaining words. 
 

A very simple parser, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  228	
  



sentence(Words) :- 
 article(Words, Left1), noun(Left1, Left2), verb(Left2, []). 

 
A query sheds light on how sentence operates: 

?- article(Words, Left1), noun(Left1, Left2), 
 verb(Left2, Left3), Left3 = []. 

Words = [the, dog, ran], 
Left1 = [dog, ran], 
Left2 = [ran], 
Left3 = [] . 
?- sentence([the,dog,ran]). 
true . 

 
Each goal consumes one word.  The remainder is then the input for the 
next goal. 
 
Why is verb's result, Left3, unified with the empty list? 
 

A very simple parser, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  229	
  



Here's a convenience predicate that splits up a string and calls sentence. 
s(String) :- 

 concat_atom(Words, ' ', String), sentence(Words). 
 
sentence(Words) :- 

 article(Words, Left1), noun(Left1, Left2), verb(Left2, []). 
 
Usage: 

?- s('the dog ran'). 
true . 
 
?- s('ran the dog'). 
false. 

 

A very simple parser, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  230	
  



Prolog's grammar rule notation provides a convenient way to express these 
stylized rules.  Instead of this, 
 

sentence(Words) :- 
 article(Words, Left0), noun(Left0, Left1), verb(Left1, []). 

article([the| Left], Left). 
article([a| Left],  Left). 
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]). 
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]). 

 
we can take advantage of grammar rule notation and say this, 
 

sentence --> article, noun, verb. 
article --> [a]; [the]. 
noun --> [dog]; [cat]; [girl]; [boy]. 
verb --> [ran]; [talked]; [slept]. 

 
Note that the literals (terminals) are specified as singleton lists. 
 
The semicolon is an "or".  Alternative: noun --> [dog].   noun --> [cat]. ... 
 

Grammar rule notation 

This is Prolog source code, too! 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  231	
  



$ cat parser1.pl 
sentence --> article, noun, verb. 
article --> [a]; [the]. 
noun --> [dog]; [cat]; [girl]; [boy]. 
verb --> [ran]; [talked]; [slept]. 
 
listing can be used to see the clauses generated for that grammar. 
 

?- [parser1]. 
... 
 
?- listing(sentence). 
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D). 
 
?- listing(article). 
article(A, B) :- 
        (   A=[a|B] 
        ;   A=[the|B] 
        ). 

 
Note that the predicates generated for sentence, article and others have an 
arity of 2. 
 

Grammar rule notation, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  232	
  



At hand: (a definite clause grammar) 
sentence --> article, noun, verb. 
article --> [a]; [the]. 
noun --> [dog]; [cat]; [girl]; [boy]. 
verb --> [ran]; [talked]; [slept]. 
 
?- listing(sentence). 
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D). 
 
?- listing(article). 
article(A, B) :- (A=[a|B];   A=[the|B]). 
 
?- sentence([a,dog,talked,to,me], Leftover). 
Leftover = [to, me] . 
 
?- sentence([a,bird,talked,to,me], Leftover). 
false. 
 

Remember that sentence, article, verb, and noun are non-terminals.  dog, 
cat, ran, talked, are terminals, represented as atoms in singleton lists. 

 

Grammar rule notation, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  233	
  



Below we've added a second term to the call to sentence, and mixed in a regular 
rule for verb along with the grammar rule. 
 

s(String) :-           % parser1a.pl 
  concat_atom(Words, ' ', String), sentence(Words,[]). 
 
sentence --> article, noun, verb. 
article --> [a]; [the]. 
noun --> [dog]; [cat]; [girl]; [boy]. 
 
verb --> [ran]; [talked]; [slept]. 
verb([Verb|Left], Left) :- verb0(Verb). 
 
verb0(jumped). verb0(ate). verb0(computed). 
 
?- s('a boy computed'). 
true . 
 
?- s('a boy computed pi'). 
false. 

 

Grammar rule notation, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  234	
  



We can insert ordinary goals into grammar rules by enclosing the goal(s) in curly 
braces.  
 
Here is a chatty parser that recognizes the language described by the regular 
expression a*: 

parse(S) :- atom_chars(S,Chars), string(Chars, []). % parser6.pl 
 
string --> as. 
 
as --> [a], {writeln('got an a')}, as. 
as --> [], {writeln('empty match')}. 

 
Usage:  

?- parse(aaa). 
got an a 
got an a 
got an a 
empty match 
true . 
 

 

Goals in grammar rules 

?- parse(aab). 
got an a 
got an a 
empty match 
empty match 
empty match 
false. 

What if the as clauses are 
swapped? 

?- parse(aaa). 
empty match 
got an a 
empty match 
got an a 
empty match 
got an a 
empty match 
true. 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  235	
  



We can add parameters to the non-terminals in grammar rules.  The 
following grammar recognizes a* and produces the length, too. 
 

parse(S, Count) :-     % parser6a.pl 
 atom_chars(S,Chars), string(Count,Chars, []). 

 
string(N) --> as(N). 
 
as(N) --> [a], as(M), {N is M + 1}. 
as(0) --> []. 
 

Usage: 
?- parse(aaa, N). 
N = 3 . 
 
?- parse(aaab, N). 
false. 

 
 
 

Parameters in non-terminals 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  236	
  



Here is a grammar that recognizes aNb2Nc3N: (parser7a.pl) 
 

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []). 
 
string([N,NN,NNN]) -->  

 as(N), {NN is 2*N}, bs(NN), {NNN is 3*N}, cs(NNN). 
 
as(N) --> [a], as(M), {N is M+1}. 
as(0) --> []. 
 
bs(N) --> [b], bs(M), {N is M+1}. 
bs(0) --> []. 
 
cs(N) --> [c], cs(M), {N is M+1}. 
cs(0) --> []. 

 
?- parse(aabbbbcccccc, L). 
L = [2, 4, 6] . 
 
?- parse(aabbc, L). 
false. 

 
Can this language be described with a regular expression? 
 
 

Parameters in non-terminals, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  237	
  



How could we handle aXbYcZ where X <= Y <= Z? 
 

?- parse(abbbccc, L). 
L = [1, 3, 3] . 
 
?- parse(ccccc, L). 
L = [0, 0, 5] . 
 
?- parse(aaabbc, L). 
false. 

 
parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []). % parser7b.pl 
 
string([X,Y,Z]) --> as(X), bs(Y), {X =< Y}, cs(Z), {Y =< Z}. 
 
as(N) --> [a], as(M), {N is M+1}. 
as(0) --> []. 
 
bs(N) --> [b], bs(M), {N is M+1}. 
bs(0) --> []. 
 
cs(N) --> [c], cs(M), {N is M+1}. 
cs(0) --> []. 
 

Parameters in non-terminals, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  238	
  



Problem: Write a parser that recognizes a string of digits and creates an integer 
from them: 
 

?- parse('4341', N).    
N = 4341 . 
 
?- parse('1x3', N). 
false. 

 
Solution: 

parse(S,N) :-                  % parser8.pl 
 atom_chars(S, Chars), intval(N,Chars,[]), integer(N). 

 
intval(N) --> digits(Digits), { atom_number(Digits,N) }. 
 
digits(Digit) --> [Digit], {digit(Digit)}. 
digits(Digits) --> [Digit], {digit(Digit)}, 
             digits(More), {concat_atom([Digit,More],Digits)}. 
 
digit('0'). digit('1'). digit('2').  ... 
 

How do the digits(...) rules work? 
 
 

Accumulating an integer 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  239	
  



Consider a parser that recognizes lists consisting of positive integers and lists: 
 
?- parse('[1,20,[30,[[40]],6,7],[]]'). 
true . 
 
?- parse('[1,20,,[30,[[40]],6,7],[]]'). 
false. 
 
?- parse('[ 1, 2 , 3 ]').  % Whitespace!  How could we handle it? 
false. 

 
Implementation: (list.pl) 

parse(S) :- atom_chars(S, Chars), list(Chars, []). 
 
list --> ['['], values, [']']. 
list --> ['['], [']']. 
 
values --> value. 
values --> value, [','], values. 
 
value --> digits(_).   % digits(...) from previous slide 
value --> list. 
 
 

A list recognizer 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  240	
  



These parsing examples are far short of what's done in a compiler.  The first phase 
of compilation is typically to break the input into "tokens".  Tokens are things like 
identifiers, individual parentheses, string literals, etc. 
 
Input text like this, 

[ 1, [30+400], 'abc'] 
 
might be represented as a stream of tokens with this Prolog list: 

[lbrack, integer(1), comma, lbrack, integer(30), plus, integer(400), 
rbrack, comma, atom(abc), rbrack] 

 
The second phase of compilation is to parse the stream of tokens and generate 
code (traditional compilation) or execute it immediately (interpretation). 
 
We could use a pair of Prolog grammars to parse source code: 
•  The first one would parse character-by-character and generate a token 

stream like the list above.  (A scanner.) 
•  The second grammar would parse that token stream. 

 

"Real" compilation 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  241	
  



Odds and ends 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  242	
  



In the mid-1990s Dr. Collberg developed a system that is able to discover 
the instruction set, registers, addressing modes and more for a machine 
given only a C compiler for that machine. 
 
The basic idea is to use the C compiler of the target system to compile a 
large number of small but carefully crafted programs and then examine the 
machine code produced for each program to make inferences about the 
architecture.  The end result is a machine description that in turn can be 
used to generate a code generator for the architecture. 
 
The system is written in Prolog.  What makes Prolog well-suited for this 
task? 
 
Paper: http://www.cs.arizona.edu/~collberg/content/research/
papers/collberg02automatic.pdf 
 

Collberg's Architecture Discovery Tool 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  243	
  



The Prolog 1000 is a compilation of applications written in Prolog and 
related languages.  Here is a sampling of the entries: 
 
AALPS 

The Automated Air Load Planning System provides a flexible spatial 
representation and knowledge base techniques to reduce the time 
taken for planning by an expert from weeks to two hours.  It 
incorporates the expertise of loadmasters with extensive cargo and 
aircraft data.  

 
ACACIA 

A knowledge-based framework for the on-line dynamic synthesis of 
emergency operating procedures in a nuclear power plant. 

 
ASIGNA 

Resource-allocation problems occur frequently in chemical plans.  
Different processes often share pieces of equipment such as reactors 
and filters.  The program ASIGNA  allocates equipment to some given 
set of processes. (2,000 lines) 

 

The Prolog 1000 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  244	
  



Coronary Network Reconstruction 
The program reconstructs a three-dimensional image of coronary networks 
from two simultaneous X-Ray projections. The procedures in the 
reconstruction-labelling process deal with the correction of distortion, the 
detection of center-lines and boundaries, the derivation of 2-D branch 
segments whose extremities are branching, crossing or end points and the 3-D 
reconstruction and display. 

 
All algorithmic components of the reconstruction were written in the C 
language, whereas the model and resolution processes were represented by 
predicates and production rules in Prolog. The user interface, which includes 
a main panel with associated control items, was developed using Carmen, the 
Prolog by BIM user interface generator. 

 
DAMOCLES 

A prototype expert system that supports the damage control officer aboard 
Standard frigates in maintaining the operational availability of the vessel by 
safeguarding it and its crew from the effects of weapons, collisions, extreme 
weather conditions and other calamities. (> 68,000 lines) 

 

The Prolog 1000, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  245	
  



DUST-EXPERT 
Expert system to aid in design of explosion relief vents in environments where 
flammable dust may exist. (> 10,000 lines) 

 
EUREX 

An expert system that supports the decision procedures about importing and 
exporting sugar products. It is based on about 100 pages of European 
regulations and it is designed in order to help the administrative staff of the 
Belgian Ministry of Economic Affairs in filling in forms and performing 
other related operations.  (>38,000 lines) 

 
GUNGA CLERK 

Substantive legal knowledge-based advisory system in New York State 
Criminal Law, advising on sentencing, pleas, lesser included offenses and 
elements. 

 
MISTRAL 

An expert system for evaluating, explaining and filtering alarms generated by 
automatic monitoring systems of dams. (1,500 lines) 

 
The full list is in www/pl/Prolog1000.txt.  Several are over 100K lines of code. 
 

The Prolog 1000, continued 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  246	
  



1. DOS-PROLOG  
http://www.lpa.co.uk/dos.htm 
2. Open Prolog 
http://www.cs.tcd.ie/open-prolog/ 
3. Ciao Prolog 
http://www.clip.dia.fi.upm.es/Software/Ciao 
4. GNU Prolog 
http://pauillac.inria.fr/~diaz/gnu-prolog/ 
5. Visual Prolog (PDC Prolog and Turbo Prolog) 
http://www.visual-prolog.com/ 
6. SWI-Prolog 
http://www.swi-prolog.org/ 
7. tuProlog 
http://tuprolog.alice.unibo.it/ 
8. HiLog 
ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/hilog.pdf 
9. ?Prolog 
http://www.lix.polytechnique.fr/Labo/Dale.Miller/
lProlog/ 
10. F-logic 
http://www.cs.umbc.edu/771/papers/flogic.pdf 
11. OW Prolog 
http://www.geocities.com/owprologow/ 
12. FLORA-2 
http://flora.sourceforge.net/ 
13. Logtalk 
http://www.logtalk.org/ 

14. WIN Prolog 
http://www.lpa.co.uk/ 
15. YAP Prolog 
http://www.ncc.up.pt/~vsc/Yap 
16. AI::Prolog 
http://search.cpan.org/~ovid/AI-Prolog-0.734/lib/AI/
Prolog.pm 
17. SICStus Prolog 
http://www.sics.se/sicstus/ 
18. ECLiPSe Prolog 
http://eclipse.crosscoreop.com/ 
19. Amzi! Prolog 
http://www.amzi.com/ 
20. B-Prolog 
http://www.probp.com/ 
21. MINERVA 
http://www.ifcomputer.co.jp/MINERVA/ 
22. Trinc Prolog 
http://www.trinc-prolog.com/ 
 
And 50 more! 
 
 

Lots of Prologs 
For a Fall 2006 honors section assignment Maxim Shokhirev was given the task 
of finding as many Prolog implementations as possible in one hour.  His results: 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  247	
  



http://www.artima.com/forums/flat.jsp?forum=123&thread=182574 
describes a "tiny Prolog in Ruby". 
 
Here is member: 

 
member[cons(:X,:Y), :X].fact 
member[cons(:Z,:L), :X] <<= member[:L,:X] 

 
Here's the common family example: 
 

sibling[:X,:Y] <<= [parent[:Z,:X], parent[:Z,:Y], noteq[:X,:Y]] 
parent[:X,:Y] <<= father[:X,:Y] 
parent[:X,:Y] <<= mother[:X,:Y] 
 
# facts: rules with "no preconditions" 
father["matz", "Ruby"].fact 
mother["Trude", "Sally"].fact 
... 
 
query sibling[:X, "Sally"] 
# >> 1 sibling["Erica", "Sally"] 
 

Ruby meets Prolog 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  248	
  



In conclusion... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  249	
  



Parsing with definite clause grammars (slides 225-240) 
 
More with... 

 Puzzle solving 
 

 Higher-order predicates 
 
Expert systems 
 
Natural language processing 
 
Constraint programming 
 
Look at Prolog implementation with the Warren Abstract Machine. 
 
Continued study: 

 More in Covington and Clocksin & Mellish. 
 

 The Art of Prolog by Sterling and Shapiro 

If we had a whole semester... 

CSC	
  372	
  Spring	
  2015,	
  Prolog	
  Slide	
  250	
  


