
Quiz 3; Tuesday, January 27; 5 minutes; 5 points
[Solutions follow on next page]

1. Does the Java expression  x + y == z  have a side-effect?  If so, what is it?

2. Write a function named add that can add two integers.  You may use an explicit type specification, like
::Integer, if you wish.

3. What is the type of the add function you just wrote? Use parentheses to show associativity.

4. Write a function eq3 that returns True if and only its three arguments are equal.  Assume the == and &&
operators work just like they do in Java.  Don't worry about types.

> eq3 5 5 5
True

5. The toLower function in the Data.Char module works like this:
     > toLower 'A'
  'a'

What's the type of toLower?

6. Here are the types of the functions not and isLower:

not :: Bool -> Bool
isLower :: Char -> Bool

What's the type of the result of  not isLower 'x' ?

7. The function f x y z = x + y + z::Int has type Int -> Int -> Int -> Int.  What
are the types of the following expressions?

f 10 20

f 10 20 30

8. Add parentheses to the following expression to show the order in which operations would be done.

    f  3  p  +  5  *  x  y
    

9. Name one general, discipline-independent characteristic of a paradigm, as defined by Kuhn.

10. Name one characteristic of the functional programming paradigm.

11. (Extra credit)  Write a version of eq3 from question 4 above that uses one or more guards.

12. (Extra credit)  Haskell has both Int and Integer types.  Why?

13. (Extra credit)  What does REPL stand for?



Quiz 3 Solutions
Tuesday, January 27, 2015; 5 minutes (extended 30 seconds); 5 points

DRAFT; in progress

1. Does the Java expression  x + y == z  have a side-effect?  If so, what is it?

It has no side-effects.

A few students wrote out a complete sentence, like the above or maybe "No, it does not have a side
effect."  That can chew up a lot of time.  Strive for short answers.  "No" is enough.

2. Write a function named add that can add two integers.  You may use an explicit type specification, like
::Integer, if you wish.

add x y = x + y :: Int

3. What is the type of the add function you just wrote? Use parentheses to show associativity.

Int -> (Int -> Int)

Several students said just Int, or Integer.  That's the type of the value produced by add but the type
of a function includes the type of both inputs and output.  A simple rule: The type of a function is what's
reported by :type, after the ::.  Example:

> :type add
add :: Int -> Int -> Int

The output of :type is a little chatty.  We pronounce that :: as "has type", so we'd literally read that
output as "add has type Int -> Int -> Int".  It's important to recognize that "add ::" is not
part of the type of add; the type is simply "Int -> Int -> Int".

Some said Num -> Num -> Num, and that's wrong; Num is a type class, not a type.  Type classes
appear in types only as part of a class constraint, like in Num a => a -> a
and  (Real a, Fractional b) => a -> b.  In our limited Haskell world, if a type includes a
class constraint, it will appear at the beginning of the type.

Int is an instance of the type class Num.  That's evidenced in the output of both :show Int and
:show Num by the line instance Num Int.

4. Write a function eq3 that returns True if and only if its three arguments are equal.  Assume the == and
&& operators work just like they do in Java.  Don't worry about types.

> eq3 5 5 5
True

Solution:

eq3 x y z = x == y && y == z

Several students imagined an eq function, perhaps extending the idea of the add and add3 examples. 
There's no eq function in the Prelude but I didn't deduct for it.

Several students did this:



eq3 x y z = x == y == z

I was mostly interested in seeing a mostly function definition of some sort, so I didn't deduct for the
above.  Take a minute and work out the type of the above function.  Note that to actually try it, you'll
need to add some parentheses, like (x == y) == z.  (See if you can figure out why that is, too.)

I was surprised by the number of students who didn't take advantage of the transitivity of equality and
had something like this:

eq3 x y z = x == y && y == z && x == z

5. The toLower function in the Data.Char module works like this:
     > toLower 'A'
  'a'
What's the type of toLower?

Char -> Char

Like some students said just Int for the type of add above, some said just Char for this one. 
Remember: The type of a function comprises both the type of the inputs and the type of the value
produced.

6. Here are the types of the functions not and isLower:

not :: Bool -> Bool
isLower :: Char -> Bool

What's the type of the result of  not isLower 'x' ?

According to my tally only three students got this one right but it's very close to the signum negate
2 example on slide 43.  Remember that function application, expressed with juxtaposition—two values
beside each other with no intervening symbols—is left associative.  Thus,
not isLower 'x' 

means 
(not isLower) 'x' 

and is an error!

You might think I should have added "Or, if the expression produces an error, state why." but I believe
questions like this are fair game.  Likewise, I might ask a 127A student, "What's the output of

Comparative moment:  Here's a case where equality in JavaScript is not transitive:

> [empty, zero, zerochar]
[ '', 0, '0' ]

> empty == zero
true

> zero == zerochar
true

> empty == zerochar
false

For something similar (and more) in PHP, see http://phpsadness.com/sad/52.



System.out.println(x y z)?  Recognizing when something is wrong is an important part
of mastering a subject.  Another example: "In what year did man first walk on Mars?"

7. The function f x y z = x + y + z::Int has type Int -> Int -> Int -> Int.  What
are the types of the following expressions?

f 10 20
Int -> Int
I counted "<function>" as correct on this quiz but that's not a type; it's a simple representation of
a kind of value that Haskell considers to be unprintable.  (Do you agree function values are
unprintable?)   <function> won't get counted as correct for a type in the future.

f 10 20 30
Int

If you don't understand those answers, take another look at the ex-partialapps.html set of
exercises and/or come and see me.

Here's a simple approach that's usually right for questions like this: for each supplied argument, scratch
off the leftmost "TYPE ->" in the function's type.  The types are simple in this case—all just Int—
but the types can be arbitrarily complicated.

8. Add parentheses to the following expression to show the order in which operations would be done.

    f  3  p  +  5  *  x  y

I was truly disappointed with the dismal results on this one!  A full answer is below but anybody who
recognized that f 3 p and x y are function calls(!) got full credit.

(((f  3)  p)  +  (5  *  (x  y)))

Maybe think of juxtaposition—two values side by side—as a highest precedence "invisible" binary
operator.

let expressions
If you search for "let it be" in LYAH you'll find where it talks about let expressions.  I don't use or
cover them in the slides because they're similar to where clauses and I think that can be a source of
confusion early on.  However, I did use a let expression to test the expressions above.  Here's what I
did:

> let {f x y = x + y; p = 97; x = negate; y = 1} in f 3 p + 5 * x  y
95

> let {f x y = x + y; p = 97; x = negate; y = 1} in (((f  3) p)+(5*(x  y)))
95

As you can see, inside the braces I bind names to several values and then use those bindings in the
expression that follows in.  The GNU Readline facilities (slide 42) let me edit and redo that one-liner.

Instead of writing the addition function f on the spot I could have simply bound f to the addition
operator, like this:

> let {f = (+); p = 97; x = negate; y = 1} in f  3  p  +  5  *  x  y
95



9. Name one general, discipline-independent characteristic of a paradigm, as defined by Kuhn.

See slides 3-4.  A good, short answer to have at your fingertips is, "a vocabulary".  For example, "partial
application" and "currying" are part of the vocabulary of the paradigm of functional programming.

There was a fair amount of confusion between Kuhn's definition of "paradigm", which can apply to any
area of study, and elements of programming paradigms, evidenced by answers like "syntax",
"expressions", "object-oriented", "procedural", and "modules".

10. Name one characteristic of the functional programming paradigm.

See slides 23-24.  Of all those listed I'd say that "functions are values" is the one absolute must.

11. (Extra credit)  Write a version of eq3 from question 4 above that uses one or more guards.

eq3 x y z
    | x == y && y == z = True
    | otherwise = False

There were lots of interesting manglings on this one but it was graded very liberally.

12. (Extra credit)  Haskell has both Int and Integer types.  Why?

Values of type Int are "word"-sized integers.  They are space-efficient and operations on them are fast. 
Values of type Integer can hold arbitrarily large (or small) values.

Haskell uses the Int type to great advantage wrt. performance but I consider the mix of types to be a
wart.  Icon, for example, supports arbitrary precision integers but the implementation switches between a
word-sized representation for small values and a data structure for large values as needed.  The
programmer only sees one type: integer.  Ralph Griswold felt that languages should be simple and
consistent, and that the burden of making that so should fall on the implementors of the language.

Python, like Icon but unlike Haskell, supports arbitrary precision integers and only has one integer type:
int.  I'm not familiar with the implementation of Python and don't know whether Python switches between
representations as needed, like Icon.

Many people are surprised to learn that Haskell doesn't provide any sort of overflow checking on Int
values.  Note the difference between Int and Integer values produced below.

> 29408329043284028*8204230420424823
241272707750773653786886810627044
it :: Integer

> 29408329043284028*8204230420424823::Int
8300605119622015972 -- WAT?
it :: Int

Googling for "haskell int vs integer" turns up lots of good discussion about the two types.

Chapter 18 in H10 has the official word on the Int type.  You'll see there are Int8, Int16, Int32,
and Int64 types, too.  (Remember, "H10" is my abbreviation for the Haskell 2010 Language Report.)

It's important to understand that choosing whether to provide a single integer type or multiple integer types
is simply a language design decision; there's no right or wrong answer.  A single type conserves the mental
footprint of the user but multiple types offer speed and space benefits that can be dramatic, even pivotal, in
some cases.



I was pleasantly surprised to see how many students got this one right.  Maybe I said the right thing in
class about Int vs. Integer and/or it connected well to existing knowledge. 

Another comparative tidbit: JavaScript has only a single numeric type: number.

13. (Extra credit)  What does REPL stand for?

Real-eval-print loop.  Almost everybody got this one.


