CSC 372, Spring 2016
Assignment 8
Due: Friday, April 15 at 23:59:59

Game plan for the Prolog assignments
Our work with Prolog will be distributed across three assignments, with the following due dates:
Assignment 8  Friday, April 15
Assignment 9 Friday, April 22
Assignment 10 Wednesday, May 4
Remember that the video assignment is also due on May 4.

The Usual Stuff

Make an a8 symlink that references /cs/www/classes/cs372/springl6/a8. Test using
a8/tester (or a8/t).

Use SWI Prolog!
We'll be using SWI Prolog for the Prolog assignments. On lectura that's swipl.
About the i f-then-else structure (->) and disjunction (;)

To encourage thinking in Prolog, you are strictly prohibited from using the i f-then-else structure,
which is represented with —>. (Section 4.7 in Covington talks about it.)

Disjunction, represented with a semicolon (; ), is occasionally very appropriate but it's easy to misuse and
make a mess. Section 1.10 in Covington talks about it. Here's the rule for us: If you think you've found a
good place to use disjunction, ask me about it; but unless I grant you a specific exemption, you are not
allowed to use disjunction. (My general rule is this: don't use disjunction unless it avoids significant
repetition.)

Easy Money!
Due to the time frame for this assignment and not wanting to underweight problems on assignments 9 and

10, I think you'll find that the time required to do this assignment is a bit low with respect to the points
assigned.

Problem 1. (7 points, 2 point each) queries.pl

For this problem you are to write a number of queries, packaged up as rules. Some are easier than their
half-point and some are harder, but they're all worth a half-point.

a8/queries-starter.pl starts like this:

% What foods are green?
g0 (Food) :- thing(Food,green,yes).

% What are all the things?
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gl(Thing) :- true.

% What are the colors of non-foods?
g2 (Color) :- true.

g0 above is a completed example. The comment just prior specifies a question, "What foods are green?"
Following that comment is a query that will answer that question. Let's load up the file and try gO:

$ swipl a8/queries-starter.pl

[...lots of singleton warnings due to the uncompleted queries...]
?2- gO(F).

F = broccoli ;

F = lettuce.

Your task is to replace the dummy bodies (just true) for all the rules. The first few use the facts in
a8/things.pl; the rest use the facts in a8/fcl.pl. Begin by copying a8/queries-
starter.pl toqueries.pl, and then edit queries.pl.

When your queries.pl is complete you should see behavior like this:

$ swipl queries.pl

?- ql(T).

T = apple ;

T = broccoli ;
T = stopsign ;
T = bagel.

?- q2(NF).

NF = brown ;
NF = green ;
NF = blue ;

NF = red.

Leave the sample rule g0 in place—the tester uses it.

The : -QUERY. construct

You'll see that a8/queries-starter.pl ends like this:

-[a8/fcl].
-[a8/things].

When consulting a file, Prolog assumes that it contains clauses that constitute the knowledgebase but
sometimes we want to execute queries when consulting a file. The construct : —-QUERY . indicates that
QUERY is to be performed.

The two lines above cause a8/fcl.pl and a8/things.pl to be consulted, providing the facts to be
used by this problem's queries.

Grading
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When grading I'll use altered versions of a8/things.pl and a8/fcl.pl, with facts added,
deleted, and changed. Write queries to be general, rather than "wired" for current data. For example, if
something involves the cost of an orange, use a goal like cost (orange, OC) to get the cost of an
orange rather than visually inspecting a8/fcl.pl, seeing cost (orange, 3), and using 3 for the cost
of an orange.

Important: The usual guarantee of 75% of the points for passing all supplied test cases does not apply for
this problem.

A note about the tester

You'll see that the tester uses a Prolog query with several goals for the rules in queries.pl:

findall(X,ql(X),L), sort(L,Results), writeln('Results:'),
member (X,Results), writeln(X), fail.

We'll be learning about £indall, sort, and member soon, but briefly, here is what's happening:
findall makes a list of all results produced by g1 (X) and then sort sorts them, removing duplicates.
The member (X,Results), writeln(X), fail sequence causes the results to be written out,
one per line

Problem 2. (1 point) altrules.pl

The first examples we saw with Prolog involved food/ 1 and color/2 facts. Then on slide 48 we saw
an alternate representation of the same data using thing/3.

For this problem you are to implement food/1 and color/2 as rules that use the thing/3 facts.

Your solution should look like this:
:-[a8/things].

food(F) :- ...
color(T,C) :- ...

The first line consults a8/things.pl.
Your task is to simply fill in the bodies for the food and color rules.

Usage:

$ swipl altrules.pl
?- food(X).

X = apple ;

X broccoli ;

?- color(apple,red).
true.

?- color(F,green).
F = broccoli ;
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F = grass ;
= lettuce.

o
[

Problem 3. (2 points) sequence.pl

Write a predicate sequence/ 0 that outputs the sequence below.

?- sequence.
10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011
true.

Be sure that sequence produces true when done, as shown above.

Two notes: (1) Don't over think this one. (2) Don't just "wire-in" the output verbatim, like
writeln(10101000), writeln(10101001), ...—that'll be azero!

Problem 4. (7 points) rect.pl

In this problem you are to implement several simple predicates that work with rect (width,height)
structures that represent position-less rectangles having only a width and height.

square (+Rect) asks whether a rectangle is a square.

?- square(rect(3,4)).
false.

?- square(rect(5,5)).
true.

landscape (+Rect) is true iff (if and only if) a rectangle is wider than it is high. portrait tests the
opposite— whether a rectangle is higher than wide. A square is neither landscape nor portrait.

?- landscape(rect(16,9)).
true.

?- landscape(rect(3,4)).
false.

?- portrait(rect(3,4)).
true.

?- portrait(rect(10,1)).
false.

?- landscape(rect(3,3)).
false.
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?- portrait(rect(3,3)).
false.

classify(+Rect,-Which) instantiates Which to portrait, landscape or square,
depending on the width and height. If Rect is not a two-term rect structure, then Which is instantiated
towat.

?- classify(rect(3,4),T).
T = portrait.

?- classify(rect(10,1),T).
T = landscape.

?- classify(rect(3,3),T).
T = square.

?- classify(rect(3),T).
T = wat.

?- classify(10,T).

T = wat.

You may need to use some cuts (slide 109+) to prevent classify from producing bogus alternatives.
Here is an example of BUGGY behavior:

?- classify(rect(5,7),T).

T = portrait ;  First answer is correct but there should be no alternatives!
T = square ;

T = wat.

Needless to say, use your portrait/1, landscape/1, and square/1 predicates to write
classify/2.

rotate(?R1, ?R2) has three distinct behaviors:
(1) If R1 is instantiated and R2 is not, rotate instantiates R2 to the rotation of R1.
(2) If R2 is instantiated and R1 is not, rotate instantiates R1 to the rotation of R2.
(3) If both are instantiated, rotate succeeds iff R1 is the rotation of R2.

Examples:

?- rotate(rect(3,4),R).
R = rect(4, 3).

?- rotate(R,rect(3,4)).
R = rect(4, 3).

?- rotate(rect(5,7),rect(7,5)).
true.

?- rotate(rect(3,3),R).
R = rect(3, 3).

rotate should also handle cases like these:

?- rotate(rect(3,4),rect(W,H)).
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W= 4,
H = 3.

?- rotate(rect(3,X),rect(Y,4)).
false.

smaller (+R1,+R2) succeeds iff both the width and height of R1 are respectively less than the width
and height of R2. Rotations are not considered.

?- smaller(rect(3,5), rect(5,7)).
true.

?- smaller(rect(3,5), rect(7,5)).
false.

add(+R1, +R2, ?RSum) follows the idea of "adding" rectangles that was shown on the Ruby slides
on operator overloading.

?- add(rect(3,4),rect(5,6),R).
R = rect(8, 10).

?- add(rect(3,4),rect(5,6),rect(W,H)).
= 8,
H = 10.

=

?- add(rect(3,4),rect(5,6),rect(10,10)).
false.

?- X = 10, add(rect(3,4),rect(5,6),rect(X,X)).
false.

Assume both terms of rect structures are non-negative integers.

If you need more than ten mostly short lines of Prolog to implement all the above, you're probably
not making good use of unification.

Problem 5. (3 points) consec.pl

Write a predicate consec (?A, ?B, ?2C) that expresses the relationship that A, B, and C are
consecutive integers. A, B, and C can be any combination of integers and uninstantiated variables.

Examples:
?- consec(6,B,C).
B =17,
c = 8.

?- consec(3,4,5).
true.

?- consec(X,Y,-3).

X = -5,
Y = -4.
?- consec(X,0,Y).
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X = -1,
Y = 1.

?- consec(A,2,A4).
false.

If none of the three terms are instantiated, we see this:

consec(A,B,C).

?- co
A 1
B 2
C 3

¢ N 0~

Implementation notes
integer/1 can be used to see if a term is an integer or uninstantiated:

?- integer(5).
true.

?- integer(A).
false.

?- A =5, integer(d).
A = 5.

Also, note this behavior of is/2:

?2- X =2, 3 is X + 1.
X = 2.

?2- X =2, 3 is X + 10.
false.

My solution has four clauses.
Problem 6. (3 points) bases.pl

Write a predicate bases/2 such that bases (+Start,+End) prints the integers from Start
through End in decimal, hex, and binary. Assume that Start is non-negative and that End is greater
than Start. Examples:

$ swipl bases.pl

?- bases(0,5).

Decimal Hex Binary
0 0 0
1 1 1
2 2 10
3 3 11
4 4 100
5 5 101

true.

?- bases(1022,1027).
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Decimal Hex Binary

1022 3FE 1111111110

1023 3FF 1111111111

1024 400 10000000000

1025 401 10000000001

1026 402 10000000010

1027 403 10000000011
true.

Be sure that your predicate succeeds, showing true, not false.

Below is a predicate fmttest /0 that shows almost exactly the specifications to use with format/2.
However, you'll need to do help (format/2) and figure out how to output numbers in hex and binary.

?- listing(fmttest).

fmttest :-
format ('~tDecimal~t~10|~tHex~t~20|~tBinary~t~35|\n"'),
format ('~t~d~6|~t~d~16|~t~d~30|\n', [10, 20, 307]).

true.

?- fmttest.

Decimal Hex Binary
10 20 30

true.

Problem 7. (12 points) grid.pl

Write a predicate grid (+Rows,+Cols) that prints an ASCII representation of a grid based on a
specification of rows and columns in English.

Here's an example of a grid with three rows and four columns:

?- grid(three, four).
T S S

R S S

O S S

ettt ——+
true.

The grid is built with plus signs, minus signs, vertical-bars ("or" bars), and spaces. Lines have no trailing
whitespace.

Unless a specification is invalid, grid always succeeds, producing the true that follows the output.

Here are two more examples:

?- grid(three,twenty-one).
S S OO S S SR SO SOt U S MY SRR S SRS ST S S &

SRS S O S N S MO S S S SIS

SRS S S O S U S O S S S SIS
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T LT N U M e, I MU S
true.

?- grid(one,one).

+——+
|

+——+

true.

Widths and heights, in English, from one through ninety-nine are recognized; numbers are one word
or two hyphen-separated words.

If a number is used for either dimension instead of an English specification, the user is reminded to use
English:

?- grid(3,four).
Use English, please!
true.

Hint: Use number/1 to see if a value is a number rather than a structure.

Invalid specifications produce Huh?:

?- grid(testing,this).
Huh?
true.

?- grid(one-hundred, twenty-£five). one-hundred is out of range
Huh?
true.

?- grid(---,+++).
Huh?
true.

Be careful not to accept invalid combinations of words representing numbers, like ten-four, twenty-
twenty, and one-£fifty; they, too, should produce the Huh? diagnostic. Example:

?- grid(ten-four,twenty-twenty).
Huh?
true.

a8/grid-hint.html shows a solution for a simplified version of this problem, a predicate box that
prints a rectangle of asterisks. To provide a little extra challenge for those who want it, I'm not showing
that code here but please don't hesitate to take a look if you're stumped by grid.

Note that terms like ninety-nine, thirty-seven, fifty-two are simply two-atom structures
with the functor ' -'. Here's a predicate that prints the terms of such a structure:

parts(First-Second) :-
format('First word: ~w; second word: ~w\n', [First,Second]).

?- parts(twenty-one).
First word: twenty; second word: one

Page 9 of 15



true.

a8/numbers.txt might save you a little typing. (Think about using a keyboard macro/keystroke
recorder in your editor or maybe a Ruby program to turn the text in that file into Prolog facts.)

Problem 8. (4 points) rsg.pl
"rsg" stands for "random sentence generator".

Overall, this problem has three parts:
(1) Decide what sort of "sentences" you'd like to generate.
(2) Create a predicate rsg that outputs a single random sentence.
(3) Create a predictate rsg (+N) that calls rsg/0 N times.

Here's an example of an rsg that generates trivial English sentences:
p 9 g g

?- rsg.

The boy sat.
true.

?- rsg.

A girl ran.
true.

?- rsg.

The girl spoke.
true.

Here's the Prolog code for the rsg above:
rsg :- article, b, noun, b, verb, write(.), !.

article :- p(0.5), w('The').
article :- p(_ ), w('A').

noun :- p(0.33), w('boy').
noun :- p(0.5), w('girl').
noun :- p(_), w('dog').
verb :- p(0.4), w('ran').
verb :- p(0.66), w('sat').
verb :- p(_), w('spoke').
w(X) :- write(X).

b :-=w(' ").

p(P) :- number(P), !, random(100) < P * 100.
p(_)-

w/1 and b/ 0 are convenience predicates that let us save a little typing.

p (X) is a predicate that succeeds with a probability equal to X. For example, p(0.5) succeeds half the
time, on average. If p is not called with a number, it succeeds.
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Let's consider the procedure (the clauses) for article, which output The or A with equal probability:

article :- p(0.5), w('The').
article :- p(_), w('A").

The first clause succeeds half the time. If the first clause fails, which it will half the time, the second clause
is tried, and it always succeeds. Effectively, its probability is also 0.5 but it's important that one always
succeeds, so we'll use the convention of using p(__) on the last clause to stand for "otherwise". (Yes, we
could just omit it, too, but having a p goal on each clause seems more aesthetically appealing at the
moment.)

And now, a confession: | made a dopey mistake when writing this problem. Here was my first version of
noun:

noun :- p(0.33), w('boy').
noun :- p(0.33), w('girl').
noun :- p(_), w('dog').

My thinking was that I'd get an even three-way distribution between boy, girl, and dog but for 10,000
calls to noun I found that I was getting counts like these:

3297 boy
4524 dog
2179 girl

What's happening is that a third of the time, the first clause succeeds and we get boy. In the two-thirds of
the time that the first clause fails, we then pick girl one third of the time, which is 2/9 overall. We reach
the always succeed p (__) case 4/9 of the time overall and produce dog. Oops!

My press deadline was looming and I couldn't think of a simple way to produce an even distribution with
the Prolog we've seen. (In particular, without using lists and/or some higher-order predicates.) I thought
about dropping this problem altogether but I like it because it gives you a chance to be creative. Thus it
remains, along with this story.

To get an even three-way split, we can do this:

noun :- p(0.33), w('boy').
noun :- p(0.5), w('girl').
noun :- p(_), w('dog').

One third of the time we get boy. In half of the remaining two-thirds, we get girl. In the remaining
third overall, we get dog.

If you do the math for the verb procedure shown above, I believe you'll find that we should get ran 40%
of the time, sat 40% of the time, and spoke 20% of the time.

If you want to work through the math or maybe write a Ruby method to generate p values that produce a
particular distribution, that's fine, but if you want to just plop in some numbers and see if they produce
results you like, that's fine, too!

(End of confession and emergency problem salvage operation.)

Let's use a flexible definition for "sentence" and now say that a sentence is an array of integers and nested
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arrays of integers. Here are some random "sentences" of that sort:

?- rsg.
[r17,91,30,31,38,40]1,85,48,96,[79,62]]
true.

?- rsg.

[61]

true.

?- rsg.
[r3,s8,11,1r21,95,6,85,9,92,38,79,27,24,2,10,47,[6,[96,58,62]1,57,56]
1,441,(83,48,14,60,79,[29,6,49,93,55,2411,2,96,23,64,69,97,([[37,32,
66,12],41,91,36,[[33,76]1,451,74,37,[(51,72,55,86,[16,9,301,4171,[[[92
;31,90,391,64,18,22,19]1,47,65,57,49]

true.

A fourth result, that's not shown above, was 23,424 characters long.

Here's the code that generated the arrays above:
rsg :- array, !.

array :- w('['), elems, w(']").

elems :- p(0.2), elem.

elems :- p(_), elem, w(',"'), elems.
elem :- p(0.8), X is random(100), w(X).
elem :- p(_), array.

Note the procedure for elems. 20% of the time it outputs a single element. 80% of the time it outputs an
element (e lem) followed by a comma and more elements (e lems —a recursive call).

The procedure for elem outputs a random number between O and 99 on 80% of the calls, but on the
remaining 20%, it outputs an array.

Note that the body for rsg should end with a cut, to prevent backtracking that would in turn produce some
malformed results.

Possibilities for "sentence"

If you want to stick to English sentences, you might have some fun with a Mad Libs style involving popular
culture or current events, especially the election season.

There are lots of possibilities in the symbolic realm, like expressions for some language you know, or even
simple whole programs. Various possibilities with ASCII pictures come to mind. You might consider an
HTML document to be a sentence. It's fine to have multi-line "sentences".

I hope I'll be dazzled by some creativity but something as simple as English sentences with three or more
fields with varying content is sufficient for full credit.

I'll compile a sampling of random sentences generated by all solutions and post it on Piazza. I won't show
authorship.
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The approach shown above lets you be fairly creative using only material presented on slides 1-131 but you
are free to implement rsg/0 in any way you want. In particular, when we get into lists you'll see
additional ways to randomly choose from several things.

Incidentally, another of the many things I learned from Ralph Griswold is that processing machine-
generated input, like the random arrays above, often turns up bugs that have long been dormant while
processing human-generated input.

Along with rsq/0 you'll need to write rsg (+N) , which generates N random sentences using rsg/0.
N is assumed to be an integer greater than zero. A line with three dashes is output after each sentence.

?- rsg(3).
[69,72]

[55,11,[18,83,80,57,1,54,13,57,[59],68,25],1]

[(4,[[47,41,98,96]]]

true.
Testing note

Because of the nature of this problem there's no simple way to test rsg/0 in an automated fashion. For
this problem the tester only confirms that rsg/1 produces the right number of "—--" lines. Passing that
simple test doesn't guarantee 75% of the points on this problem.

Problem 9. Extra Credit observations.txt
Submit a plain text file named observations.txt with...

(a) (1 point extra credit) An estimate of how long it took you to complete this assignment. To facilitate
programmatic extraction of the hours from all submissions have an estimate of hours on a line by itself,
more or less like one of the following three examples:

Hours: 6
Hours: 3-4.5
Hours: ~8

If you want the one-point bonus, be sure to report your total (estimated) hours on a line that starts with
"Hours:". There must be only one "Hours:" line in observations.txt. It's fine if you care to
provide per-problem times, and that data is useful to us, but report it in some form of your own invention,
not with multiple lines that contain "Hours:", in either upper- or lower-case.

Other comments about the assignment are welcome, too. Was it too long, too hard, too detailed? Speak up!
I appreciate all feedback, favorable or not.

(b) (1-3 points extra credit) Cite an interesting course-related observation (or observations) that you made
while working on the assignment. The observation should have at least a little bit of depth. Think of me
saying "Good!" as one point, "Excellent!" as two points, and "Wow!" as three points. I'm looking for

quality, not quantity.

Turning in your work
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Use a8/turnin to submit your work.

Line counts are often good for ballpark measurements of program size for many languages but they're
sometimes misleading with Prolog. For example, I'll sometimes write procedures with one goal per line.
With Prolog I'm going to give you a different measure of my solutions: the number of left parentheses and
commas that appear. I'll use this bash script

$ cat a8/plsize
for i in $*
do
echo $i: $(tr -dc "(," < $i | wec -c)
done

Here's what I see as of press time, with comments stripped:

$ a8/plsize $(grep -v txt a8/delivs)
queries.pl: 129

altrules.pl: 9

sequence.pl: 17

rect.pl: 46

consec.pl: 24

bases.pl: 13

grid.pl: 131

rsg.pl: 39

Miscellaneous

Aside from -> and ; you can use any elements of Prolog that you desire, but the assignment is written
with the intention that it can be completed easily using only the material presented on Prolog slides 1-131.

Point values of problems correspond directly to assignment points in the syllabus. For example, a 10-point
problem on this assignment corresponds to 1% of your final grade in the course.

Feel free to use comments to document your code as you see fit, but note that no comments are required,
and no points will be awarded for documentation itself. (In other words, no part of your score will be based
on documentation.) In Prolog, % is comment to end of line. Comments with /* ... */, justlikein
Java, are supported, too.

Remember that late assignments are not accepted and that there are no late days; but if circumstances
beyond your control interfere with your work on this assignment, there may be grounds for an extension.

See the syllabus for details.

My estimate is that it will take a typical CS junior from 4 to 6 hours to complete this assignment.

Our goal is that everybody gets 100% on this assignment AND gets it done in an amount of time that
is reasonable for them.

If you put six hours into this assignment and don't seem to be close to
completing it, it's definitely time to touch base with us, regardless of whether
you have any questions. Specifically mention that you've reached six hours.
Give us a chance to speed you up!
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I hate to have to mention it but keep in mind that cheaters don't get a second chance. If you give your code
to somebody else and they turn it in, you'll both likely fail the class, get a permanent transcript notation
stating you cheated, and maybe more. See the syllabus for the details.
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