
Quiz 1, January 15, 2014
 2 minutes; ½ pt/answer; 2½ pts total

1. In what decade was the oldest language still in use created?

2. How many programming languages are there? (pick one: dozens,
hundreds, thousands)

3. Who founded the UA CS department?

4. Name an area of research for which the UA CS department was
recognized worldwide in the 1970s and 1980s.

5. Ideally, what percentage of your classmates will get an "A" for the
course?

Quiz 2, January 22, 2014
 2 minutes; ½ pt/answer; 2 pts total

1. What are two characteristics of languages that support imperative
programming? (Hint: two words is enough!)

2. With ghci, after evaluating 2+3 what is it+it?

3. What do you type at the ghci prompt to see the type of the function
fizz?

4. Extra credit (½ point): What's the name of the book that whm claims
popularized the term "paradigm", as used in the phrase "programming
paradigm"? (Or, who's the author of the book?)

Quiz 3, January 27, 2014
 3 minutes; 1/1/2 points; 4 points total + ½ point extra credit

1. Write a function f such that f x returns 7, no matter what the value of

x is.

2. Given a function g with type Char -> (Int -> Bool), what is the type
of each of the following two expressions?

g 'x'

g 'x' 5

3. Using guards to handle cases, write a function roman such that

roman 5 returns 'V'

roman 10 returns 'X'

roman anything else returns '?'

4. Extra credit (½ point): What's the type of roman?

1. f x = 7

2. > let g char ordval = ord char == ordval

> :type g
g :: Char -> Int -> Bool

> :type g 'x'
g 'x' :: Int -> Bool

> :type g 'x' 5
g 'x' 5 :: Bool

3. roman n
 | n == 5 = 'V'
 | n == 10 = 'X'
 | otherwise = '?'

> roman 5
'V'
> roman 10
'X'
> roman 3
'?'
> :type roman
roman :: (Eq a, Num a) => a -> Char

Quiz 4, Feb 3, 2014
 2 minutes; 2 points for taking it

1. Write sum list, which computes the sum of the numbers in list.

2. Write member x list, which returns True iff x is in list.

3. Write last list, which returns the last element of list. Return undef
for the empty list.

Quiz 5, Feb 10, 2014
 3 minutes; 1+½+1+1+½ points

1. Write sum list, which computes the sum of the numbers in list.

2. Given let x:y:z = [(1,2), (3,4)], what is the value of y?

3. Name any one of the characteristics that would cause a function to be
considered to be a higher-order function.

4. Recall map:

> map length ["just", "testing"]

[4,7]

Write map.

5. What is the type of map?

6. (½ point EC) Write another function that would be considered to be
higher-order.

Quiz 6, March 3, 2014
 3 minutes; ½ point each #1-5, 1 point for #6, 3.5 points total

1. What's the Ruby analog for Haskell's ghci? That is, what program
can we use to evaluate Ruby expressions interactively?

2. Cite one of the many significant differences between working with
strings in Java and strings in Ruby.

3. Cite another Java vs. Ruby string difference.

4. Given a string s, write a Ruby expression to create a string s2
containing the first and last characters of s. Assume s.size > 0.

5. Assume that s is all digits, like "100". Write an expression to
convert the value to an integer, so that s.....*2 == 200

6. Write a Ruby program that reads lines from standard input, printing
lines that are longer than 20 characters. (Ok to be off-by-one or
-two!)

Quiz 7, March 10, 2014
 3½ minutes; ½ point each; 3.5 points total

1. Briefly describe the essential characteristic of "duck typing".

2. Write a method f that returns its argument unless it's called without
an argument, in which case it returns 8.

3. Using the iterator each, print all the elements in an array a.

4. Write Ruby code to create a Hash named h.

5. Write Ruby code to store the key/value pair "X"/10 in h.

6. What's the Ruby keyword that an iterator uses to invoke a block?

7. If an array has N elements, how many times will an iterator on the
array invoke its block?

(a) N times (c) N-1 times
(b) 1 <= times <= N (d) It might depend on the elements

Quiz 8, March 14, 2014
 90 seconds; 1½ points

1. Write a method ifn(s) that returns true iff the string s is a full name,
like "John Q. Smith" and nothing more! Hint: Use anchors!

EC ½ point: Write your answer for #1 so that the middle initial is
optional.

Solution: (see next page)

There are lots of details that come to mind but here's a reasonable solution
for the problem as stated.

def ifn(s)
 !! (s =~ /^[a-z]+ ([a-z]\.)?[a-z]+$/i)
end

One of the details is capitalization—should the first letters of all parts be
required to be capitals? Can a capital appear in the middle (McIntosh)? The
solution above takes a liberal view by using /.../i to make it case-
insensitive.

Another detail: the above doesn't accommodate hyphenated names like Mary
B. Smith-Fox or names with multiple whitespace like Jim de Stefano.

In practice there's so much variety in names that expecting a full name to be
in any particular format creates more headaches than it's worth.

p.s. I wrote this quiz between 9:53 and 9:59, and now I wish I'd thought it
through a little more! :)

Quiz 9, March 31, 2014
 3 Minutes; 3½ points

1. In what decade or what country was Prolog created?

2. Write an example of a fact.

3. Syntactically, how are facts distinguished from queries?

4. Given a bunch of clauses like food(apple) and food('Big Mac'),
how can we use Prolog to display the foods?

5. apple and 'Big Mac' are examples of _______.

6. Cite a predicate that was mentioned.

7. Write an example of a structure with two terms.

Quiz 10, April 9, 2014
 3 Minutes; 1+1+1+½ points

1. Using thing/3 above right, write a Prolog query that shows the
names of the green foods.

2. Draw the box of the four-port model and label the ports. Be sure to
include the arrows for the ports.

3. Consider the query A = B, B = 3, writeln(C), A = 1.
What does it output, if anything?
Does it succeed or fail? (That is, does it say true. or false.?)

4. Write a rule hello/0 that prints "Hello!".
?- hello.
Hello!

It doesn't matter whether hello. succeeds or fails.

thing(apple, red, yes).
thing(grape, purple, yes).
thing(dirt, brown, no).

Quiz 11, April 18, 2014
 3 Minutes; 3 points + ½ point E.C. if no singletons!

1. Write a predicate middle(+List, ?Middle) where Middle is
List with the first and last elements removed.

?- middle([a,b,c,d,e],M).
M = [b, c, d] ;
false.

?- middle([1,2],[]).
true.

?- middle([1],M).
false.

As a reminder, here's the documentation for append:
?- help(append/3).
append(?List1, ?List2, ?List1AndList2)
 List1AndList2 is the concatenation of List1 and List2

Usage:

?- middle([a,b,c,d,e],M).
M = [b, c, d] ;
false.

Solution:

middle(L,M) :-
append([_], Rest, L),
append(M, [_], Rest).

Quiz 12, April 25, 2014
 3 Minutes; 3 points

1. What does the following query output?

?- member(X, [1,2,3]), writeln(X), X = 2, !,
 member(Y, [a,b,c]), writeln(Y), !, fail.

2. Write a query that prints "hello" an endless number of times.

3. What is the output of the following query?

?- assert(a(1)), retractall(a(2)), assert(a(2)), a(X),
writeln(X), fail.

Answers
Question 1:

?- member(X,[1,2,3]), writeln(X), X = 2, !,
 member(Y,[a,b,c]), writeln(Y), !, fail.
1
2
a
false.

Question 2:

?- repeat, write(hello), fail.

Question 3:

?- dynamic(a/1).
true.

?- assert(a(1)), retractall(a(2)), assert(a(2)), a(X), writeln(X), fail.
1
2
false.

Quiz 13, April 30, 2014
 3:30; 4 points (1+1+2)

Regarding the brick laying puzzle...

1. layrow uses getone instead of member to select bricks one at

a time. Why wouldn't member work just as well as getone?

2. The following goal is in laybricks. What does BricksLeft
represent?

layrow(Bricks, RowLen, BricksLeft, Row),

Regarding the Zebra puzzle...

3. What facts are represented by the following goal? (Ok to write as
one sentence.)

 Houses = [_, house(_, zebra, _,_, green) | _]

Answers

1. Along with producing each element in turn, getone also produces
a copy of the list with that element removed.

2. BricksLeft represents the bricks from Bricks that were not used

to lay Row.

3. The second house is green and has a zebra.

	q1
	q2
	q3
	q4
	q5
	q6
	q7
	q8
	q9
	q10
	q11
	q12
	q13

