
CSc 451, Spring 2003, Examination #1 Solutions; page 1

CSc 451, Spring 2003
Examination #1 Solutions

Problem 1: (15 points)

Write a program expand that reads a spell-checker word list with entries such as these:

abbreviate,s,d,\ing,\ion
bar,s,"ed,"ing
calmest

and prints all forms of each word.

link split
procedure main()
 while ws := split(read(), ',') do {
 write(base := get(ws))
 every suf := !ws do
 if suf[1] == "\\" then
 write(base[1:-1]||suf[2:0])
 else if suf[1] == "\"" then
 write(base||base[-1]||suf[2:0])
 else
 write(base||suf)
 }
end

Problem 2: (15 points)

Write a procedure eval(s) that evaluates string representations of expressions consisting of
integer values and the binary operators +, -, *, and /.

link split
procedure eval(s)
 ws := split(s,'+*/-',1)
 result := get(ws)
 while result := get(ws)(result, get(ws))
 return result
end

Some students used an approach similar to this one by Mr. Rini:

procedure eval(s)
 L := split(s,'+*/-',1)
 while *L ~= 1 do
 L := help(L)

 return L[1]
end
procedure help(lst)
 r := lst[2](lst[1],lst[3])
 return [r]|||lst[4:0]
end

CSc 451, Spring 2003, Examination #1 Solutions; page 2

Problem 3: (10 points)

Write a procedure Reverse(x) that reverses either strings or lists. If x is a list, the reversal
is at the top level only. You may use the built-in function reverse in your solution.

procedure Reverse(x)
 if type(x) == "string" then return reverse(x)
 R := []
 every push(R, !x)
 return R
end

My intention was that Reverse should not change its argument but because I did not state
that both applicative and non-applicative versions received full credit.

Mr. Kobes, Mr. Lucas, and Mr. Wampler took advantage of polymorphic operations and the
swap operator:

procedure Reverse(x)
 every i := 1 to *x/2 do
 x[i] :=: x[-i]
 return x
end

Problem 4: (8 points)

Write a procedure altbang(s) that generates the characters of s working in from each end
in an alternating manner. If s is the null string, the result sequence is empty.

procedure altbang(x)
 suspend x[i:=1 to *x & (i|-i)] \ *x
end

Mr. Graham produced a unique solution:

procedure altbang(s)
 temp := s
 suspend |{c := temp[1] & temp := reverse(temp[2:0]) & c}
end

Several solutions took this form:

procedure altbang(s)
 every i := 1 to *s/2 do {
 suspend s[i]
 suspend s[-i]
 }

 if *s % 2 = 1 then
 suspend s[i+1] # Another way: suspend s[(*s+1)/2]
end

Mr. Leslie used the approach of alternately popping and pulling from a list of the characters.

CSc 451, Spring 2003, Examination #1 Solutions; page 3

Problem 5: (20 points)

Write a program exttotal that reads "ls -s" output and prints a table of file extensions
and the total number of blocks used by files of that type in the current directory.

link split
procedure main()
 t := table(0)
 f := open("ls -s", "rp")

 read(f)

 while ws := split(read(f)) do {
 blocks := ws[1]
 nmp := split(ws[2], '.')
 if *nmp = 1 then
 ext := "(None)"
 else
 ext := nmp[-1]

 t[ext] +:= blocks
 }

 every pair := !sort(t,2) do
 write(left(pair[1],10), " ", right(pair[2],6), " blocks")
end

Problem 6: (10 points)

Write a program lensort that reads a file named on the command line and prints the lines
of the file in order of increasing length.

procedure main(a)
 f := open(a[1]) | stop(a[1], ": can't open")
 lines := []
 while line := read(f) do
 put(lines, [*line, line])

 every write((!sortf(lines, 1))[2])
end

Mr. Leslie used a table keyed by line length. The value for a given length was a
concatenation of all lines having that length.

CSc 451, Spring 2003, Examination #1 Solutions; page 4

Problem 7: (1 point each; 5 points total)

Write an expression whose result sequence ...

...is empty: &fail, 1 < 0, and "a"[2] are some examples

...is infinite: |1 (repeated alternation)

...has length 2: 1 | 2

...has length 10: !&digits (Mr. Kobes)

...has length 100: 1 to 100

Problem 8: (2 points each, 8 points total)

Write expressions that have the following result sequences. You may use built-in functions
such as repl(s,n) but you may not write any helper procedures.

(a) All capital letters in the string s. For example, if s is "The Right Way", the result
sequence would be {"T", "R", "W"}.

!s == !&ucase

(b) The character and position of each character in the string s. For example, if s is
"abc", the result sequence would be {"a", 1, "b", 2, "c", 3} — six values altogether.

i := 1 to *s & s[i] | i

(c) The infinite sequence {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...}.

i := 0 & |(1 to (i +:= 1))

(d) The integers in the list L, in descending order. For example, if L is ["x", 5, 3, "y", 10,
5, 4.1], the result sequence would be {10, 5, 5, 3}.

L2 := sort(L) & i := *L2 to 1 by -1 &
 type(L2[i]) == "integer" & L2[i];

CSc 451, Spring 2003, Examination #1 Solutions; page 5

Problem 9: (6 points)

Write a procedure invert(t) that returns an inverted copy of the table t by swapping keys
and values. invert(t) fails if the table t contains any values that are not unique.

procedure invert(t)
 new := table()

 every k := key(t) do
 new[t[k]] := k

 if *new = *t then
 return new
end

A number of solutions simply failed upon discovery of a duplicate:

procedure invert(t)
 new := table()
 every k := key(t) do {
 if \new[t[k]] then fail
 new[t[k]] := k
 }
 return new
end

Problem 10: (3 points)

Show the output of this program:

procedure main()
 every write(("+"|"*")(2|3, 4|5))
end

Output: 6, 7, 7, 8, 8, 10, 12, 15 (one value per line)

EXTRA CREDIT SECTION (one point each)

(a) Who was known as "bikmort"? Tim Korb

(b) What is the output of the following expression? Nothing—every always fails!
every write(every 1 to 10)

(c) Write a procedure defvalue(t) that returns the default value of table t.

procedure defvalue(t)
 return t[[]]
end

(d) List the last names of ten other students in this class. Two students came up with seven.

(e) Write a good one point extra credit question and answer it correctly.
Mr. Wampler wrote: "What is the shortest Icon program that will successfully
compile?"

CSc 451, Spring 2003, Examination #2 Solutions; page 1

CSc 451, Spring 2003
Examination #2 Solutions

Problem 1: (20 points)

Write a program that opens a 300 x 300 window and permits the user to draw circles of
varying size and color...

procedure main()
 WOpen("size=300,300","drawop=reverse")
 colors := create |WAttrib("fg="||!["red","green","blue"])
 @colors
 repeat {
 case Event() of {
 &rpress: @colors
 &lpress: {
 x := &x
 y := &y
 r := 1
 DrawCircle(x,y,r)
 until (c := Event()) === "." do {
 newr := r
 case c of {
 "+": newr := r + 1
 "-": newr := r - 1
 }
 if newr ~= r then {
 DrawCircle(x,y,r)
 DrawCircle(x,y,r := newr)
 }
 }
 }
 }
 }
end

Mr. Pawlowski had a very interesting solution for the radius increment/decrement. Here is
the essence of it:

case e := Event() of {
 !"+-": radius := e(radius, 1)
 }

Mr. Wampler used co-expressions as co-routines to call between two procedures, place()
and size(), to handle the switching between modes.

CSc 451, Spring 2003, Examination #2 Solutions; page 2

Problem 2: (20 points)

Write a procedure FillGizmo(x, y, cap, stem, inset) that draws a gizmo at the
coordinates (x, y).

procedure FillGizmo(x, y, cap, stem, inset)
 FillCircle(x+cap, y+cap, cap, 0, -&pi)
 FillCircle(x+cap, y+cap+stem, cap, 0, &pi)
 FillRectangle(x+inset, y+cap, (cap-inset)*2, stem)
 return
end

Coordinate translation with dx/dy could be used but in this case it seemed easier to
manually offset than to save/set/restore dx and dy.

Problem 3: (12 points)

Write a procedure format(fmt, v[]) that does simple printf-like formatting of the
values in v based on the specifications in the string fmt. It returns the resulting string.

procedure format(fmt, v[])
 v := copy(v)
 r := ""
 fmt ? {
 while r ||:= tab(upto('%')) do {
 move(1)
 r||:= (
 case move(1) of {
 "v":1
 "i":image
 "I":Image})(get(v))
 }
 r ||:= tab(0)
 }
 return r
end

Problem 4: (8 points)

Write a program vc that reads lines on standard input and prints those lines that contain
more vowels than consonants.

procedure main()
 while line := read() do {
 vc := cc := 0
 map(line) ? while c := move(1) do {
 case c of {
 !'aeiou': vc +:= 1
 !(&lcase--'aeiou'): cc +:= 1
 }
 }
 vc > cc & write(line)
 }
end

CSc 451, Spring 2003, Examination #2 Solutions; page 3

There were some interesting approaches to counting. Mr. Jeffrey and Ms. Yost came up with
this:

every upto('aeiou') do v +:= 1

Mr. Graham did this:

tab(any(vowels)) & v +:= 1

Problem 5: (25 points)

Write a procedure dollars(s) that converts a string specifying a sum of money into a
corresponding real value.

procedure dollars(s)
 local dollars, cents
 s ? {
 value := {
 { cents := tab(many(&digits)) & *cents <= 2 & ="c" &
 cents * .01 } |

 { ="$" & dollars := tab(many(&digits)) & ="." &
 cents := tab(many(&digits)) & *cents = 2 &
 dollars + cents * .01 } |

 { =("one buck"|"one dollar") & 1.0 } |

 { =(english(n := 2 to 20) || (" dollars"|" bucks")) &
 real(n) }

 } & pos(0) & return value
 }
end

Problem 6: (9 points)

Write a PDCO Longest{expr1, expr2, ..., exprN} that returns the argument
with the longest result sequence.

procedure Longest(L)
 R := []
 every c := !L do {
 while @c
 put(R, [c, *c])
 }

 return ^(sortf(R, 2)[-1][1])
end

CSc 451, Spring 2003, Examination #2 Solutions; page 4

Mr. Linn's solution was the easiest to understand:

procedure Longest(L)
 max := 0
 every d := !L do {
 while @d
 if *d > max then c := ^d
 }

 return \c
end

Problem 7: (2 points each; 6 points total)

(a) What is the fundamental difference between an additive color model and a subtractive
color model?

In an additive color model light the component colors contribute energy to produce a
resulting color.

In a subtractive model ink of the component colors absorbs light of various
wavelengths. The light is not absorbed (and thus reflected) is what the viewer sees.

(b) Name a subtractive color model and the colors it uses.

The CMY (cyan, magenta, yellow) color model is subtractive.

(c) What "color" would be produced by the setting Fg("#bababa")?

It would be gray, which technically isn't a color.

EXTRA CREDIT SECTION

(a) (1 point) What is the shortest Icon program that will successfully compile and execute
without error?

 record main()

(b) (1 point) List the last names of ten other students in this class.

Mr. Thayer and Mr. Yee either learn from experience or are social butterflies.

(c) (3 points) An Icon programmer homesick for Java wants to produce output with
System.out.println() instead of write(). Create a file java.icn that provides the
necessary elements to meet the needs of this misdirected individual until professional help
can be obtained.

record java_sys(out)
record java_out(println)
global System
procedure java_init()
 System := java_sys(java_out(write))
end

CSc 451, Spring 2003, Final Examination Solutions, Page 1

CSc 451, Spring 2003
Final Examination Solutions

Problem 1: (3 points)

In some cases it would be nice to have a convenient syntax to initialize some number of table
entries when a table is created. Here is a proposed addition to Icon:

If the argument to table() is a list of N elements where N >= 2 and even, then the
elements are assumed to be [key1, value1, key2, value2, ...] and those key/value pairs are
added to the table.

The key issue is that such an addition would create an ambiguity: There's no way to tell if,
for example, a two-element list is a default value or a key/value pair. One way to
accommodate an initializing list of key/value pairs would be to have it as an optional second
argument to table().

Problem 2: (2 points)

Consider the idea that + be used instead of '||' for string concatenation, and instead of '|||'
for list concatenation. For example, "xyz" + "123" would produce the string "xyz123"
and [1,2] + [3,4] would produce the list [1,2,3,4]. Cite one advantage and one
disadvantage of this broader meaning for the + operator. Ignore the problem of invalidating
some existing code.

Two advantages among several: (1) A single operator is easier to remember. (2)
Polymorphic routines using + can concatenate strings and lists.

The big disadvantage is that the result of an expression such as 1 + "2" is debatable and
requires non-trivial specification. Another problem among several is that the plus sign is so
strongly associated with addition that some would take issue with the fact that concatenation
is not commutative.

Problem 3: (2 points)

Given this Unicon procedure,

procedure f(s1:split, s2:2)
return *s1*s2

end

What does f("just testing") return?

It returns 4.

CSc 451, Spring 2003, Final Examination Solutions, Page 2

Problem 4: (3 points)

Consider this statement:

if (c == "x") | (c == "X") then ...

Show three different ways to perform the same comparison that are more concise.

Here are three:

if c == !"xX" then...
if c == ("x" | "X") then...
if map(c) == "x" then...

Problem 5: (4 points)

Write a procedure span(L) that suspends the smallest value in L and then suspends the
largest value in L. Assume that L is a list of integers. span(L) fails if L is empty.

procedure span(L)
 L := sort(L)
 suspend L[1|-1]
end

Problem 6: (15 points)

Write a program lcount that accepts one or more file names as command line arguments
and prints the number of lines that each file contains. If no command line arguments are
specified, lines on standard input are counted instead.

procedure main(a)
 if *a = 0 then
 put(a, &input)

 R := []
 longest := ""

 every f := !a do {
 if f === &input then
 fname := "<stdin>"
 else {
 fname := f
 f := open(f) | stop(fname, ": Can't open")
 }
 c := create !f
 while @c
 close(f)
 put(R, fname, *c)
 if *fname > *longest then
 longest := fname
 }
 while fname := get(R) do
 write(left(fname,*longest), " ", right(get(R),3),

" lines")
end

CSc 451, Spring 2003, Final Examination Solutions, Page 3

Problem 7: (8 points)

Characters in a URL can be specified using a two-digit hexadecimal code preceded by a
percent sign. For example, instead of "http://www.google.com" one might use
"http://www%2egoogle%2eco%6d".

Write a procedure urlhex(s) that returns a copy of the string s with any such hexadecimal
specifications converted to the corresponding characters.

procedure urlhex(s)
 s ? {

 r := ""
while r ||:= tab(upto('%')) do {
 move(1)

code := integer("16r"||move(2)) | fail
r ||:= char(code)
}

 return r || tab(0)
 }
end

Problem 8: (12 points)

In this problem you are to write a graphical program that repeatedly sweeps out a circle and
then erases it. It takes one minute to sweep out the circle and one minute to erase it. There
should be an update once per second.

procedure main()
 WOpen("size=200,200")

 c := create |WAttrib("reverse="||("on"|"off"))
 ticks := 1
 repeat {
 every 1 to 60 do {
 WDelay(1000)
 FillCircle(100, 100, 100, -&pi/2,
 (2*&pi)*(ticks/60.0))
 ticks +:= 1
 ticks %:= 60
 while *Pending() > 0 do
 Event() === "q" & exit()
 }
 @c
 }
end

CSc 451, Spring 2003, Final Examination Solutions, Page 4

Problem 9: (20 points)

In this problem you are to implement four classes in Unicon...

class Eater(capacity, current_amt, consumed)
 method eat(x)
 if type(x) == "string" then {
 put(consumed, x)
 amt := *x
 }
 else {
 amt := x.units()
 put(consumed, x.what())
 }
 current_amt +:= amt
 until current_amt <= capacity do {
 write("Burp!")
 current_amt -:= capacity
 }
 end
 method eaten()
 every write(!consumed)
 end
 initially (cap: integer)
 capacity := cap
 current_amt := 0
 consumed := []
end

class Food(_what, _units)
 method units()
 return _units
 end
 method what()
 return _what
 end
 initially(w:string, u:integer)
 _what := w
 _units := u
end

class Burger: Food()
 initially
 self$Food.initially("Burger", 25)
end

class Fries: Food()
 initially
 self$Food.initially("Fries", 15)
end

CSc 451, Spring 2003, Final Examination Solutions, Page 5

Problem 10: (3 points)

Comment intelligently on this statement: In Icon, variables are implicitly declared upon their
first use. For example, if the variable x has not been previously used, the statement x := 3
declares that the type of the variable x is an integer, just like 'int x = 3;' in Java.

The problem with the statement is that x := 3 does not declare a type for x—variables in
Icon have no type!

Problem 11: (4 points each; 28 points total; answer 7 of 13)

Proposed change: Don't allow the names of built-in Icon functions, such as pos, to be used as
variables.

Question: Unintentional assignments to built-in functions can certainly cause some
headaches but in some cases it's very handy. Present a set of language
additions/modifications that simultaneously and conveniently accommodates these three
different schools of thought: (1) I like things the way they are. (2) Never let me assign to the
name of a built-in procedure. (3) Don't let me assign to a built-in unless I specifically
indicate I want to.

This could be achieved by adding a file-scope declaration such as "immutable
procedures" and a syntax to force assignment, such as write !:= x.

Some of you may have noticed that Unicon warns about assignments to built-ins.

Proposed change: write() should return the full string it printed, not just the last argument.

Question: What would be a negative impact of this change, and why?

That would require a lot of strings to be built that would be never be used. In other
words, it would create a lot of memory throughput.

Proposed change: Icon has too many operators. I cannot think of any other language with so
many operators to remember. At some point it's more useful to have functions than to make the
programmer use a cheat-sheet.

Question: Specify four operators that it would be good to replace with functions and suggest
a function name for each that's easier to remember than the symbolic operator.

Here are four that seem reasonable to me:

@ activate
^ refresh
? random
% mod

Commonly used operators such as * were not favorably viewed when grading.

CSc 451, Spring 2003, Final Examination Solutions, Page 6

Proposed change: When you try to assign a value outside a list's boundaries, the list should
automatically expand itself and fill any gaps created with nulls. For example (L[3] := "c" s
hould create a list L of [null, null, "c"]).

Question: For the expression L[N], what's a value of N that would pose a problem with the
above rule, and why? (Hint: For full credit you must think of an issue that's at least as good
as the one the instructor has in mind.)

That's a good question! When I first wrote it I had negative numbers in mind, and
that's the answer that got full credit, but perhaps there is a reasonable interpretation
for a negative N.

Proposed change: The repeat and until-do loops should not be included in the language.
Although they are considered "syntactic sugar", their functionality can be modeled using the
regular while loop with minor changes.

Question: Present a strong argument that until-do is a worthwhile element of the
language.

It's easier to reason about

until f() do ...

than

while not f() do ...

Proposed change: Unicode support, i.e., support for 16-bit characters should be added to Icon.
Characters shouldn't be limited to the English character set.

Question: What element of the language would be most severely impacted, in terms of both
speed and space, by adding Unicode support. Why?

Character sets would balloon from eight 32-bit words to 2048 32-bit words and there
would be a consequent increase in processing time.

Proposed change: The * operator shouldn't show the number of results already generated by a
co-expression, instead it should be the total number of results that the co-expression will
generate.

Question: Cite a co-expression with a finite result sequence for which the number of results
it will produce can not be predicted.

create read()

CSc 451, Spring 2003, Final Examination Solutions, Page 7

Proposed change: Icon permits the use of the insert, delete and member functions for sets
and tables. delete should be supported for lists as well.

Question: With the idea of being able to delete from lists in mind, what's an additional aspect
of the behavior of delete that would need to be specified?

Whether delete(L,x) should delete all occurrences of x or just one.

Proposed change: Any type determination that can be made at compile-time should be made to
improve runtime performance.

Question: Give a specific example of how compile-time type determination can be used to
reduce execution time.

Given the expression x + 5, if we know that x is always an integer, we can simply
fetch the value and add five to it. As is, we must first check the type of x and then
take appropriate action.

Proposed change: member(), insert(), and delete() should work on both sets and
csets.

Question: That might create a pitfall for a newcomer to Icon. What is it?

Because csets have value semantics a function can't change the value of a cset—it can
only produce a new cset. But the newcomer might expect this:

cs := 'abcd'
delete(cs, 'a')

to delete the 'a' from cs.

Proposed change: You should be able to specify an initializing value for a global variable. For
example, global whitespace := ' \t'

Question: Depending on the implementation of this feature, a potential inconsistency could
be created. What is that potential inconsistency?

Global declarations in two files might initialize the same variable to different values.

CSc 451, Spring 2003, Final Examination Solutions, Page 8

Proposed change: Give lists and sets value semantics.

Question: What's meant by that statement? (Be sure to include an example involving some
code.)

Lists, for example, would be treated as values. A comparison such as L1 === L2
would succeed if the two lists are congruent and have identical values in
corresponding positions. As is, that comparison simply tests to see whether L1 and
L2 reference the same object in memory.

Proposed change: Lists should be invocable. The invocation [proc, a, b](c, d) would
be equivalent to proc(a, b, c, d), and [p]() would be like p(), for example.

Question: Assuming the presence of list invocation as described above, provide an
 implementation of partial that would produce a suitable value for replx.

procedure partial(a[])
 return a
end

(The cost of that question was to understand it...)

EXTRA CREDIT SECTION

(1 point) List the last names of ten other students in this class. Use of phonetic spelling is
acceptable.

Almost everybody got this question on their third, and final, attempt. One student
named all fifteen others.

(1 point) To the best of the instructor's knowledge, the last time a class at the University of
Arizona covered Icon's graphics facilities was in the mid-1990s. In general, students then
had a very positive response to the graphics facilities. The response this semester,
particularly to VIB and vidgets, was not so warm. Why?

The graphics programming landscape was relatively bleak at that time.

(1 point) Write a routine which(x) that returns "string" or "list", depending on
whether x is a string or list. You may not use type() or [Ii]mage(). You may assume
that x is either a string or a list.

procedure which(x)
 return if x === copy(x) then "string"
 else "list"
end

Another central test is 'if x[1:1] === "" then...'.

CSc 451, Spring 2003, Final Examination Solutions, Page 9

(1 point) The text list vidget provides no way to indicate that there was a double-click on a
item. Describe a technique that would allow a program to respond to a double-click on a text
list item. The text list vidget must be used as-is. (If you tried to do this on your project but
it didn't work out, briefly describe what you tried.)

Have code in the callback routine that measures the time between clicks.

(1 point) Write a SNOBOL4 program that reads lines from standard input and prints the first
and last line on standard output. Recall that referencing the variable INPUT causes a line to
be read and that assigning a value to the variable OUTPUT causes a line to be written.

 OUTPUT = INPUT
 LOOP LAST = INPUT :S(LOOP)
 OUTPUT = LAST
 END

	451.ex1sol
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	451.ex2sol
	Page 1
	Page 2
	Page 3
	Page 4

	451.ex3sol
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

