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CSc 372, Spring 1996
Mid-Term Examination
Tuesday, March 5, 1996

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 20 problems presented on 12 numbered pages.  When you are
told to begin, first check to be sure you have all the pages.

On problems that ask you only to write code, you need not include any explanation in your
answer if you are confident it is correct.  However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

Please feel free to ask the instructor questions during the course of the exam.  If you are
unsure about the form or operation of a language construct that is central to a problem's
solution, you are especially encouraged to ask the instructor about that construct.

If you're completely puzzled on a problem, the instructor may offer you a hint, at the cost of
a deduction of points.  If you agree to accept such a hint, the instructor will note that
deduction on your paper.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.  If you
can offer any sort of pertinent response it may earn you partial credit.

Problems marked with an asterisk (*) disproportionately hard with respect to their point
values.  You should do such problems last.

Except as otherwise noted, you may use any language elements you desire.  For the Icon
problems you may use split.

When you have completed the exam, give it to the instructor and enter your name on the
exam sign-in log.
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Problem 1 (6 points):

State a definition for the term "programming language".

Name a language element or capability one would almost certainly find in a language that
supports imperative programming.

Name a language element or capability one would almost certainly find in a language that
supports functional programming.

Problem 2 (4 points):

Write ML expressions having the following types:

int * string list

int * (int * (int * int) list)

Define ML functions named f and g having the following types.  The functions need not
perform any meaningful computation.  You may define additional functions to help produce
the desired types.

f: (int -> int) * int -> bool

g: int -> int -> int list
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Problem 3 (6 points):

Consider the following ML function definitions:

fun h(x::xs) = x = 2
fun f(a,b,g) = h(g(a^"x")::b)

For each of the following identifiers, what type would ML infer, given the above definitions
for h and f.

f?

g?

h?

a?

b?

x?

Problem 4 (3 points):

The following ML function definition is an example of using an exception.

exception NotOne;
fun f(n) = if n <> 1 then (raise NotOne) else n

Rewrite f to make better use of ML's pattern matching facilities.

Problem 5 (3 points):
What is meant by the ML warning "non-exhaustive match"?

What is one possible implication of the warning?

Write an ML function that would produce that warning.
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Problem 6 (4 points):

Consider this fragment of a function definition:

fun f(x,y,z::zs) = ...

What values would be bound to x, y, z, and zs for this call, assuming that the body of the
function f is compatible with the given values?

f([1]::[],(2,[3]),[[4,5,6]])

x?

y?

z?

zs?

Specify a function body for f that for the above argument tuple would produce the value 21. 
That is, instead of the "..." shown above, complete the function definition.  (Hint: Don't make
this too hard!)

What is the type of f, given the function body you specified in the previous part of this
problem?

Problem 7 (5 points):

Write a function named length of type int list -> int that calculates the length of a
list of integers.  Examples of usage:

- length;
val it = fn : int list -> int

- length([1,2,1,2]);
val it = 4 : int

You may not use the built-in length function!
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Problem 8 (8 points):

Write an ML function avglen of type 'a list list -> real that computes the
average number of elements in a list of lists.  For example, if a list L contained an empty list
and a list with five elements, avglen(L) would return 2.5.  If the list is empty, raise the
exception EmptyList.

You may wish to use the function real, of type int -> real, to convert an int into a
real.

Examples of usage:

- avglen;
val it = fn : 'a list list -> real
- avglen([]);
uncaught exception EmptyList
- avglen([[]]);
val it = 0.0 : real
- avglen([[],[1]]);
val it = 0.5 : real
- avglen([[1],[1],[2,2]]);
val it = 1.33333333333333 : real
- avglen([[true,true],[true],[true,true,true]]);
val it = 2.0 : real
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Problem 9 (8 points):

Write an ML function F_L_eq of type ''a list -> bool that returns true if the first
element in a list is equal to the last element, and returns false otherwise.  If called with an
empty list, F_L_eq should return false.

Examples of usage:

- F_L_eq;
val it = fn : ''a list -> bool
- F_L_eq([]);
val it = false : bool
- F_L_eq([1]);
val it = true : bool
- F_L_eq([1,2,1]);
val it = true : bool
- F_L_eq([1,2]);
val it = false : bool
- F_L_eq([[],[1],[2],[],[]]);
val it = true : bool
- F_L_eq(explode "abcde");
val it = false : bool

You may NOT use a function that reverses a list.
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Problem 10 (4 points) (*)

Write an ML function f(FL,VL) that takes a list of functions (FL) and a list of values (VL)
and produces a list of lists wherein the first list contains the results of applying each function
in FL to the first elment in VL, and so forth, such that the Nth list contains the results of
applying each function in FL to the Nth element in VL.

For example,

f([f1, f2, f3, ..., fM],[x1, x2, ..., xN])

would produce a value equivalent to an expression like this:

[[f1(x1), f2(x1), ..., fM(x1)],
 [f1(x2), f2(x2), ..., fM(x2)],
 ...
 [f1(xN), f2(xN), ..., fn(xN)]]

Problem 11 (3 points)

Lists in Icon and ML share a common syntax for literal specification of lists—the expression
[1,2,3] specifies a simple list in both languages.  But, ML places a constraint on lists that
Icon does not—many lists that are valid in Icon are not valid in ML.

What is the constraint that ML places on lists that Icon does not?

Give an example of a list that is valid in Icon, but not valid in ML.
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Problem 12 (2 points) (*)

Define ML functions named f and g having the following types.  The functions need not
perform any meaningful computation.  You may define additional functions to help produce
the desired types.

f: (string -> int) list -> int

g: string -> int -> real -> bool list

Problem 13 (4 points)

Icon's reverse(s) built-in function produces a reversed copy of a string s.  Write an Icon
procedure Reverse(s) to do the same thing.  Of course, Reverse may not use reverse.

Problem 14 (8 points)

Write an Icon procedure Point(s) that takes a string representation of a point in 2D
cartesian space such as "(10,20)" and if the string is well-formed, returns the X and Y
coordinates as integers in a list.  If the string is not well-formed, Point(s) fails.

Point is not required to handle negative coordinates, but if it can, that is fine.  That is, for
the call Point("(-10,-20)"), it is acceptable either if Point fails or if it returns the list
[-10,20].

Examples:

][ Point("(1,2)");
   r := L1:[1,2]  (list)
][ Point("(100,200)");
   r := L1:[100,200]  (list)
][ Point("10,20");
Failure
][
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Problem 15 (8 points)

Write an Icon program that reads standard input and produces a histogram of line lengths
encountered.  For example, for the file

abc
def
ghij
klm
nop
qr
st
uv
wxyz

The following output would be produced:

Length  Occurrences
2       ***
3       ****
4       **

If you choose to use a table in your solution, note that if x is a table, sort(x) produces a
list of the form [[k1,v1],[k2,v2],...,[kN,vN]] where each ki/vi represents a
key/value pair in the table.  The pairs are ordered by increasing value of ki.
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Problem 16 (9 points):

Imagine a file with a format such as this:

02.sting
01.just te
10. this out

Each line begins with a sequence number that is followed by a dot.  An arbitrary string
follows the dot.  Note that there is no whitespace at the beginning of the line.

In a given file all sequence numbers are the same length, but the sequence number length
may vary from file to file—do not assume a length of two for sequence numbers.  Sequence
numbers are always specified with leading zeros.

Write a program that reads such a file on standard input, assembles the lines in order based
on the sequence numbers, and writes to standard output a sequence of fixed length lines.  The
full set of sequence numbers may be non-consecutive, as shown above, but there will be no
duplicated sequence numbers.

The length of the output lines is determined by a command line argument, which if not
specified defaults to 10.

Assuming that the program is called assemble, here are some invocations on an input file
containing the above three lines:

% assemble <assemble.in
just testi
ng this ou
t
% assemble 15 <assemble.in
just testing th
is out
% assemble 1000 <assemble.in
just testing this out
%

Another input file and sample invocations:

% cat assemble.in2
0004.xy
0001.abcdefg
0002.hijklmnop
0005.z...
0003.qrstuvw
% assemble 25 < assemble.in2
abcdefghijklmnopqrstuvwxy
z...
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Problem 16 (space for solution):

Problem 17 (3 points):

Write an Icon procedure cons(x,y) that approximates the ML operation x::y as closely
as possible.  If the approximation is poor, explain the difficulty.

Problem 18 (3 points) (*):

Write a procedure size(x) that has the same result as *x for values of x that are a
string, list, or table.  You may not use the * operator in your solution.

Examples:

][ size("");
   r := 0  (integer)
][ size("abc");
   r := 3  (integer)
][ size([1,2,3,4]);
   r := 4  (integer)
][ size(table(""));
   r := 0  (integer)
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Problem 19 (6 points) (*):

Write an Icon program to read standard input and print out the largest integer found in the
input.  Consider an integer to be simply a series of consecutive digits; don't worry about
issues with negative numbers.  The program's output should be simply the largest integer.  If
no integers are found the program should output "No integers".

% bigint
On February 14, 1912, Arizona
became the 48th state.
^D
1912
% bigint
A test with no integers
in the input.
^D
No integers
% bigint
-100-1000-100000
^D
100000

Problem 20 (3 points) (*):

Icon has language elements to support imperative programming, but could Icon adequately
support functional programming?  Present an argument in support of your answer.
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CSc 372, Spring 1996
Final Examination

Tuesday, May 7, 1996      

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 14 problems and an extra credit section presented on 15
numbered pages.  When you are told to begin, first check to be sure you have all the pages.

On problems that ask you only to write code, you need not include any explanation in your
answer if you are confident it is correct.  However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

Please feel free to ask the instructor questions during the course of the exam.  If you are
unsure about the form or operation of a language construct that is central to a problem's
solution, you are especially encouraged to ask the instructor about that construct.

If you're completely puzzled on a problem, please ask for a hint.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.  If you
can offer any sort of pertinent response, it may earn you partial credit.

Except as otherwise noted, you may use any language elements you desire.

Please do not write on the back of any page—ask for additional sheets of paper if you run out
of room.

When you have completed the exam, give it to the instructor and enter your name on the
exam sign-out log.

Course grades are due at 5pm on Thursday, May 9.  Shortly after that, if not before, you will
be notified of your final grade via e-mail.  Graded exams with solutions will be available in
the Computer Science main office by Monday, May 13.

Print your name below and when told to begin, put your initials in the lower right hand
corner of each page, being sure to check that you have all the pages.

Name: _______________________________________
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Problem 1 (10 points):

What is the difference between a class and an object?

What is the proper way to view the relationship between function members and data
members in a C++ class?

Under what circumstances should a data member in a C++ class be public?

What is the difference between the class relationships of inheritance and containment?

As described by the instructor, what is the primary benefit of inheritance?

Problem 2 (5 points):

Write a set of C++ class declarations that capture the relationships shown in this Booch
Notation class diagram:

Here's a start—a complete declaration for A:

class A { };
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Problem 3 (20 points):

In this problem you are to fully implement a C++ class named ReplStr.  The abstraction
represented by ReplStr is a character string that consists of a "base" string repeated
(replicated) a specific number of times.  For example, the string "ababab" might be
represented with ReplStr("ab", 3) or ReplStr("ababab", 1).

ReplStr should have this interface:

class ReplStr {
    public:

ReplStr();
//
// Creates a string of length zero

ReplStr(String s, int n);
//
// Creates a string consisting of n
// concatenations of s.

int Length();
//
// Produces the length of the replicated String.

String GetString(); 
//
// Produces the replicated string as an
// instance of the String class.

};

The binary operations of equality (==), inequality (!=), and concatenation (+) can be applied
to pairs of ReplStrs.

Examples of use:

ReplStr r1("abc", 2);
int l1 = r1.Length();       // should be 6
String s1 = r1.GetString(); // should be "abcabc"

ReplStr ab1("ab",3), ab2("ababab",1);
ReplStr x6("x",6);

int t1 = ab1 == ab2;    // Should be 1
int t2 = x6 == ab1;     // Should be 0

int t3 = ab1 != ab2;    // Should be 0
int t4 = x6 != ab1;     // Should be 1

ReplStr s2("abc",2), s3("xy",3), s4;
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s4 = s2 + s3;   // s4 should represent "abcabcxyxyxy"
                // s2 and s3 should be unchanged

ReplStrs can be inserted in ostreams.  The lines:

cout << "ab1 = '" << ab1 << "', ab2 = '" << ab2
<< "', x6 = '" << x6 << "'" << endl;

cout << "s4 = '" << s4 << "'" << endl;

should produce the output:

ab1 = 'ababab', ab2 = 'ababab', x6 = 'xxxxxx'
s4 = 'abcabcxyxyxy'

Tasks in this problem:

  (1) Define a set of private data members for ReplStr.

  (2) Define implementations for the two constructors and the Length and GetString
methods.

  (3) Define implementations for the overloaded ==, !=, +, and << operators.  You may
add additional public and/or private methods to ReplStr.

  (4) If needed, define implementations for the assignment operator and the copy
constructor.  If either or both are not needed, explain why not.

  (5) Describe a pattern of usage for which your implementation would have poor
performance characteristics and explain the difficulty.  If you believe your
implementation has uniformly good performance characteristics, make an argument
to support that claim.

Note that ReplStr utilizes the String class studied during the course.  In addition to the
String methods studied in class and implemented in assignment 6, you may assume that an
insertor for String exists and that the operations of == and != are defined for pairs of
Strings.
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Problem 3—space for solution
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Problem 4 (5 points):

Fully implement classes Bicycle and Tricycle as follows.

A Bicycle or Tricycle can only be created given an owner's name represented by a
char *.  Examples:

Bicycle b1("Jimmy"), b2("Susan");
Tricycle t3("Mary"), t4("Bobby"), t5("Joey");

A Bicycle or Tricycle can be asked for the name of its owner or the number of wheels it
has:

char* o1 = b1.GetOwner(); // Should produce "Jimmy"
int w1 = b1.GetNumWheels(); // w1 should be 2
int w2 = t3.GetNumWheels();  // w2 should be 3

Write a function CountWheels that can be used to count the number of wheels in a
collection of bicycles or tricycles.  Two possible uses of it:

Bicycle *bikes[] = { &b1, &b2, 0 };
Tricycle *trikes[] = ( &t1, &t2, &t3, 0 };
int c1 = CountWheels(bikes); // c1 should be 4
int c2 = CountWheels(trikes); // c2 should be 9

Your implementation of CountWheels should be able to accommodate possible future
classes such as Unicycle or TandemBicycle, assuming that they also have a
GetNumWheels method.

If you wish, you may introduce an additional class or classes to simplify your solution.

Note that you must specify all the code necessary to compile and run the examples given.
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Problem 5 (5 points):

Write a Prolog predicate flip(L1,L2) that if given a list such as [a,b,c,d,e,f] as L1
it will instantiate L2 to be the list [b,a,d,c,f,e].  That is, it flips the position of each
element in a list on a pair-wise basis.  flip should fail if given a list with an odd length.

Examples of usage (blank lines have been elided):

| ?- flip([1,2,3,4], L).
L = [2,1,4,3] ? ;
no
| ?- flip([1,2,3], L).
no
| ?- flip([a,b], L).
L = [b,a] ? ;
no
| ?- flip([],L).
L = [] ? ;
no

Problem 6 (5 points):

State in your own words the relationship expressed by each of the rules of the append
predicate:

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

For reference, here are some examples of usage:

| ?- append([1,2],[3,4],L).
L = [1,2,3,4] ? ;
no
| ?- append([1,2],L,[1,2,3,4]).
L = [3,4] ? ;
no



CSc 372 Final examination; page 8 of 15

Problem 7 (5 points):

Write a Prolog predicate trim(L, SL, NL) that describes the relation that the list NL is
the list L with the list SL removed if SL is a prefix or suffix of L.  Note that if SL is a both a
prefix and a suffix, two alternatives should be generated.

Examples of usage (blank lines have been elided):

| ?- trim([a,b,c,d],[a,b],L).
L = [c,d] ? ;
no
| ?- trim([a,b,c,d],[b,c,d],L).
L = [a] ? ;
no
| ?- trim([a,b,c,d,a],[a],L).
L = [b,c,d,a] ? ;
L = [a,b,c,d] ? ;
no
| ?- trim([a,b,c],[a,b,c],L).
L = [] ? ;
L = [] ? ;
no
| ?- trim([a,b,c],[],L).
L = [a,b,c] ? ;
L = [a,b,c] ? ;
no
| ?- trim([a,a,b,c,a,a],[a],L).
L = [a,b,c,a,a] ? ;
L = [a,a,b,c,a] ? ;
no
| ?- trim([a,a,b,c,a,a],[a,a],L).
L = [b,c,a,a] ? ;
L = [a,a,b,c] ? ;
no
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Problem 8 (5 points):

Do EITHER part (8a) or part (8b), but not both.  If you work on both, CLEARLY mark
which solution you wish to have graded.

  (8a) Write a predicate maxint/2 that if given a list of integers will find the largest
element in the list.  maxint should fail if given an empty list.

Examples of usage:

| ?- maxint([5,10,15],M).
M = 15 ? ;
no
| ?- maxint([10,5,15],M).
M = 15 ? ;
no
| ?- maxint([10],M).
M = 10 ? ;
no
| ?- maxint([],M).
no

  (8b) Write a predicate sum_check/2 that determines if a given integer is the sum of a list
of integers.

Examples of usage:

| ?- sum_check(10, [1,2,3,4]).
yes
| ?- sum_check(10, [1,2,3,4,5]).
no
| ?- sum_check(0, []).
yes

Hint: Note that a query such as '4 is 2+2' is valid and succeeds.
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Problem 9 (5 points):

Write a Prolog predicate find_missing/3 that can be called with any two arguments
instantiated and if the two supplied arguments are equal, the uninstantiated argument is
instantiated to the value of the other two.

Examples of usage:

| ?- find_missing(X,1,1).
X = 1 ? ;
no
| ?- find_missing(1,2,X).
no
| ?- find_missing(3,X,3).
X = 3 ? ;
no
| ?- find_missing([a],X,[a|[]]).
X = [a] ? ;
no

Problem 10 (5 points):

Consider two predicates that express relationships about employees in a factory.  The first is
knows/2:

knows(A,B)

This expresses the relationship that A knows B.  For example, if Bob knows Mary that might
be expressed with this fact:

knows(bob,mary).

The second predicate is shift/2:

shift(bob,day).
shift(mary,night).

The above two facts indicate that Bob works on the day shift and Mary works on the night
shift.

Using the two predicates knows and shift, do the following:

   (1) Write a Prolog query that expresses Is there is a person who knows both Bob and
Mary?:
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   (2) Write a Prolog query that expresses Does Mary know anyone who works on a different
shift than she?:

   (3) Define a new clause for knows/2 that expresses A person knows everyone who works
on the same shift.

   

   (4) Define a predicate by_shift that prints a list of employees by shift.  Usage:

| ?- by_shift.
Day:
   bob
   mary
   joe
Night:
   bill
   jim
   sam
   susan

At your discretion, by_shift may either succeed or fail.
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Problem 11 (3 points):

Write an ML function allsame(L) of type ''a list -> bool that returns true if all
the elements in a list are equal and false otherwise.  allsame([]) should return false.

Examples of usage:

- allsame;
val it = fn : ''a list -> bool

- allsame([1]);
val it = true : bool

- allsame([1,2,3]);
val it = false : bool

- allsame([1,1,1,1]);
val it = true : bool

- allsame([1,1,2]);
val it = false : bool

- allsame([]);
val it = false : bool

Problem 12 (2 points):

Consider this function definition:

fun f(x,g) = x::g(x-1)

What types would ML infer for:

f?

g?

x?
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Problem 13 (5 points):

Write an Icon program tac to read a text file on standard input and print on standard output
the lines of the file in reverse order—last line first; first line last.

For the input file:

just
a
test
right here

The output should be:

right here
test
a
just

Write your solution to the right of the above example.

Problem 14 (20 points):

Write a letter to a friend that discusses each of the four languages studied in this class.  You
may assume that your friend has had exposure to languages like C and Pascal.  You may also
assume that your friend has knowledge of data structures such as linked lists and trees.  

For each language be sure to:

  (1) Describe in broad terms the type of problems that the language is well-suited for.

  (2) Describe at least three distinctive elements of the language and give an example of
the use of each.  Choose elements that are not closely related to each other—for
example, don't simply cite three different data types, or three different control
structures.

  (3) Show a situation where the language presents a clear advantage over doing the same
task in C.

And, mention which of the languages is your favorite, and why.
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Problem 14—additional space for answer
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Extra Credit Problems

(1 point) Andrew Koenig's paper, An Anecdote About ML Type Inference, describes an
incident in which ML's type inferencing system produced a suprising result.  What was that
result?

(2 points) Name five programming languages that originated before 1980.

(2 points) In C, write a recursive version of the library function strlen(char*). You may
not use any library functions, or perform any assignment, augmented assignment, or
increment/decrement operations.  In other words, write strlen using a functional style.

(1 point) Who was the person that first described the notion of partially evaluated functions,
such as that provided with currying in ML?

(1 point) Name a popular operating system in which Prolog is utilized.

(5 points) Do a great job on question 14.
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CSc 372, Fall 1996
Mid-Term Examination

Monday, October 21, 1996

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of nine problems and an extra credit section presented on

twelve numbered pages.

On problems that ask you only to write code, you need not include any explanation

in your answer if you are confident it is correct.  However, if an answer is incorrect,

any accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central

to a problem 's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem , please ask for a hint.

Try to avoid leaving a problem  completely blank— that will certainly earn no credit.

On the C++ problems you may use any language constructs you desire.

On the M L problems you may use only language constructs covered in class.  You

may not use the hd or tl functions.  The #N operator to extract elements from a

tuple (e.g. #2(t)) may not be used.

W hen you have completed the exam, give it to the instructor and enter your name on

the exam sign-out log.

Print your name below and when told to begin, put your initials in the lower right

hand corner of each page, being sure to check that you have all the pages.

This is a fifty minute exam with a total of 100 points.  You should therefore average two

points of completed problems per minute in order to finish in the allotted time.

Name: _______________________________________
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For the following M L-related problems you may assume you have at your disposal

the m_to_n, map, reduce, and filter functions as discussed in class.  You may

also use any of the built-in functions discussed in class such as size, length, map,

etc.

If there is a function you would like to use but you are in doubt as to its suitability,

please ask.

You are encouraged to use helper functions (either in lets or not) in your solutions.

As mentioned on the cover page, hd, tl, and the #n operator are off-limits.

Problem  1: (2 points each; 4 points total)

State the type of each of the two following expressions, or if the expression is not

valid, state why.

(1,2,(1=2,1+2),"x")

[[],[1],[1,2]]

Problem  2: (2 points each; 8 points total)

Consider this M L function definition:

fun f(a,b,c) = (b, a(b), c(a)) = ("x", 2, [1])

State the type that will be deduced for each of the following: (2 points each)

a:

b:

c:

The type of the result produced by f:
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Problem 3: (4 points)

W rite a function f that has the type int -> int -> int -> int -> bool. 

You may use literals (constants) but you may not use any explicit type specifications

such as x:int.

Problem 4: (12 points)

W rite a function ints_to_strs(L,c) that for the int list L and the string

c produces a list of strings where the ith element in the resulting list is a string

composed of N replications of c where N is the ith elem ent in the input list.

Examples:

- ints_to_strs;
val it = fn : int list * string -> string list

- ints_to_strs([2,1,3], "x");
val it = ["xx", "x", "xxx"] : string list

- ints_to_strs([2,1,3], "ab");
val it = ["abab", "ab", "ababab"] : string list
- ints_to_strs(m_to_n(1,5), "a");
val it = ["a", "aa", "aaa", "aaaa", "aaaaa"] : string list
- ints_to_strs([1,2], "");
val it = ["", ""] : string list
- ints_to_strs([], "x");
val it = [] : string list

You may assume that all the integers in the given list are greater than zero.



CSc 372, Fall 1996, Mid-Term Examination; page 4 of 12

Problem 5: (12 points)

W rite a function len(L) of type string list list -> int that produces the

total number of characters in all the strings in the lists contained in L. (12 points)

Examples:

- len;
val it = fn : string list list -> int

- len([["a","b"], ["xx", "yyy"]]);
val it = 7 : int

- len([["1"], ["2"], ["3"], ["4","5","6"]]);
val it = 6 : int

- len([]);
val it = 0 : int

- len([[]]);
val it = 0 : int
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Problem 6: (10 points)

W rite a function pair(L) that accepts an 'a list as an argument and produces a

list of tuples containing consecutive pairs of elem ents from the list L.  That is, the

first tuple in the result list should contain the first and second elements from the list. 

The second tuple should contain the third and fourth elements from the list, etc.

If the list is of an odd length, e.g., three elements, the exception OddLength should

be raised.

Examples:

- pair;
val it = fn : 'a list -> ('a * 'a) list

- pair([1,2,3,4,5,6]);
val it = [(1, 2), (3, 4), (5, 6)] : (int * int) list

- pair(["a","A","two","too","up","down"]);
val it = [("a", "A"), ("two", "too"), ("up", "down")]
    : (string * string) list

- pair([1,2,3,4,5,6,7]);
Uncaught exception: OddLength

- pair([]);
val it = [] : ('a * 'a) list
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Problem 7: (26 points)

In this problem you are to implement a class named Eater.  Instances of Eater are

initialized with an integer that is the Eater's capacity expressed in food units. 

This creates an Eater with a capacity of ten food units:

Eater e1(10);

An Eater can be told to eat some number of food units:

e1.Eat(7);
e1.Eat(5);

If an Eater consumes more than its capacity, it burps.  In the above case, the second

invocation of Eat would produce this output as a side effect:

burp!

Each burp reduces the volume currently retained in the Eater by the capacity of the

Eater.  After the burp, e1 would then be holding two units.

Continuing the example, a large feeding may produce several burps:

e1.Eat(29);

Output:

burp!
burp!
burp!

Note that three burps are produced because the Eater had two units remaining after

the first burp.

An Eater may be inserted into an output stream:

cout << e1 << endl;

Output: (note that 0x5eb10 is the memory address of the Eater)

Eater at 0x5eb10 has burped 4 times

Another small example:
Eater a(1); a.Eat(3);

Output:

burp!
burp!
burp!

A longer example:

Eater E(10);
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E.Eat(5);
cout << "..A.." << endl;
E.Eat(12);
cout << "..B.." << endl;
E.Eat(2);
cout << "..C.." << endl;
E.Eat(12);
cout << "..D.." << endl;
cout << E << endl;

Output:

..A..
burp!
..B..
..C..
burp!
burp!
..D..
Eater at 0x5eaf8 has burped 3 times

You may assume the specified capacity of an Eater will be greater than zero.  You

may assume that a given amount to eat will be non-negative.

Problem 8: (10 points)

Create an abstract base class named Food and create two derived classes named

Burger and Fries.  Any instance of a subclass of Food can be queried for the
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number of food units it is:

Burger b;
Fries f;

cout << "A burger has " << b.GetUnits() << " units" << endl;
cout << "An order of fries has " << f.GetUnits() << " units"

<< endl;

Output:

A burger has 25 units
An order of fries has 15 units

Note: Every Burger has 25 units and every Fries has 15 units.

Extend Eater so that an Eater can be told to eat an instance of any subclass of

Food.

Burger b;
Fries f;
Eater e2(20);

cout << "..1.." << endl;
e2.Eat(&b);
cout << "..2.." << endl;
e2.Eat(&f);
cout << "..3.." << endl;

Output:

..1..
burp!
..2..
burp!
..3..

Operation summary for Eater, Food, Burger, and Fries— be sure that your

implementations support all these operations:

Eater e(10);
e.Eat(100);
cout << e << endl;
Burger b;
Fries f;
e.Eat(&b);
e.Eat(&f);
int x = b.GetUnits(), y = f.GetUnits();
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[Space for solution for problem 8]
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Problem  9: (2 points each; 14 points total)

Answer each of the following questions related to object-oriented programming in

general and C++ in particular.

W hat is the difference between a class and an object?

W hat is the purpose of a constructor?

W hat is the purpose of a destructor?

If a class has no member functions, how many data members should it have?

Challenge or defend this statement: In C++, one possible reason to have a public

data member is to avoid the overhead of calling a function to access that data.

Challenge or defend this statement: The purpose of member functions is to provide

well-controlled access to data members.

Describe a benefit provided by using inheritance.
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Optional Extra Credit Problems:

W hat is a practical reason to prefer pattern matching rather than using the hd and tl

functions in SM L? (2 points)

W rite the m inimum am ount of code necessary to compile and run this code: (4

points)

X x1, xa[10], *xp;
X x2 = x1;
x1 = xa[0];
cout << &*xp << endl;

Could C++ be used effectively for functional programming?  Present an argument to

support your answer— don't just say "yes" or "no". (5 points)

W rite in C a version of int strcmp(char *, char *) that uses no assignment

operators of any form, nor the ++ or -- operators.  Recall that strcmp returns 0 if

the strings are equal and a non-zero value if the strings are not equal. (3 points)
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[Additional work space]
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CSc 372, Fall 1996
Final Examination

Monday, December 16, 1996

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 14 problems and an extra credit section presented on 14

numbered pages.

On problems that ask you only to write code, you need not include any explanation

in your answer if you are confident it is correct.  However, if an answer is incorrect,

any accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central

to a problem's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem, please ask for a hint.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.

Unless otherwise noted on a given problem you may use whatever language

elements you desire.

Print your name below and when told to begin, put your initials in the lower right

hand corner of each page, being sure to check that you have all the pages.

This is a two hour exam with a total of 100 regular points and 28 points of extra credit

problems.  You should therefore average slightly better than one point of completed

problems per minute (1.067 p/m) in order to finish all problems in the allotted time.

Name: _______________________________________
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Problem 1 (12 points):

For each of ML, C++, Icon, and Prolog, cite three elements in the language that are

unique to that language among this group of four.  Elements should be of a broad

nature rather than focused on narrow details such as reserved words, built-in

functions, and the like. Think in terms of the elements in the language that you

would first mention if describing it to someone.  Remember: Elements must be

unique to a particular language.  Note: Read the next problem before you answer this

one.

Problem 2 (8 points):

Select one element from EACH set of three in the previous problem and describe a

benefit it provides to the programmer.
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In the following Prolog problems you may assume that you have at your disposal all

of the predicates that we covered in class, such as len/2 (length), member/2,

append/3, last/2, etc.

Problem 3 (5 points):

Write a predicate permute(L,P) that for a list L of 1, 2, or 3 elements instantiates

P to each permutation of the elements of L.  A one element list [a] has one

permutation: [a].  A two element list [1,2], has two permutations: [1,2] and

[2,1].  A three element list [a,b,c] has six permutations: [a,b,c], [a,c,b],

[b,a,c], [b,c,a], [c,a,b], and [c,b,a].  You may generate the permutations

in any order.  Hint: You can do this with a predicate with nine clauses, none of

which are rules.  You may abbreviate permute as p and use ditto marks ('') where

useful.

Examples:

?- permute([1,2],P).
P = [1,2] ? ;
P = [2,1] ? ;
no

?- permute([1,2,3],P).
P = [1,2,3] ? ;
P = [1,3,2] ? ;
P = [2,1,3] ? ;
P = [2,3,1] ? ; 
P = [3,1,2] ? ;
P = [3,2,1] ? ;
no
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Problem 4 (3 points):

The instructor's implementation of roman/2 used a series of facts of this form:

rdval('I',1).
rdval('V',5).
rdval('X',10).
etc.

Consider an attempt at an ML function to provide the same functionality as

rdval/2:

fun rdval("I") = 1
 |  rdval("V") = 5
 |  rdval("X") = 10
etc.

Without particular regard to usage in roman/2, is the ML function a good

approximation of the rdval/2 predicate?  Be sure to justify your answer.

Problem 5  (7 points):

Write a predicate sum_ints(L,Sum) that produces a sum of the integers in list L. 

L might contain things other than integers, but they should be ignored.  Examples:

?- sum_ints([1,3,5], Sum).
Sum = 9 ? ;
no

?- sum_ints([a,1,b,2,c,3], Sum).
Sum = 6 ? ;
no

?- sum_ints([], Sum).
Sum = 0 ? ;
no

?- sum_ints([a,b,c], Sum).
Sum = 0 ? ;
no

Note that the predicate integer/1 can be used to see if a term is an integer:

?- integer(5).
yes

?- integer(a).
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no

?- integer([1,2]).
no

Hint: Be sure your solution accommodates being asked for alternatives (As shown,

none should be produced.)

Problem 6 (6 points):

Write a predicate assemble(L,Segments) that describes the relationship that the

list L can be assembled from two of the lists in Segments.  Examples:

?- assemble([1,2,3,4], [[1,2,3],[4],[3,4],[1,2]]).
yes

?- assemble([1,2,3,4], [[1,2,3],[3,4],[1,2]]).
yes

?- assemble([a,b], [[a],[b],[a,b],[a,b,c],[]]).
yes

?- assemble([a,b,c], [[a,b],[b,c],[c,a],[b]]).
no
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Problem 7 (10 points):

Imagine that at your disposal is a predicate make_change(CoinStock,

Amount, Coins, NewStock) that is used to calculate the number of nickels,

dimes, and quarters necessary to add up to a given amount.  Examples:

?- make_change([5,5,10,10,25,25], 30, C, N).
C = [5,25]
N = [5,10,10,25] ?

?- make_change([5,10,10,25], 5, C, N).
C = [5]
N = [10,10,25] ?

?- make_change([10,10,25], 18, C, N).
no

make_change fails if exact change can't be produced.  make_change will produce

alternatives and is not guaranteed to produce the best result first:

?- make_change([5,5,5,5,5,25], 25, C, N).
C = [5,5,5,5,5]
N = [25] ? ;

C = [25]
N = [5,5,5,5,5] ? ;
no

In this problem you are to write a predicate cfa/2 (change for amounts) with this

form: cfa(Amounts, Coins, CoinLists).  Amounts is a list of amounts for

which change is to be produced from the list Coins.  cfa instantiates CoinLists

to a list of lists where each element is a list of coins totaling the amount in the

corresponding position in Amounts.  Examples:

?- cfa([30,5,20], [5,5,10,10,25,25], CoinLists).
CoinLists = [[5,25], [5], [10,10]] ?

?- cfa([30,5,5], [5,5,10,10,25,25], CoinLists).
no

?- cfa([10,10,10,10], [5,5,5,5,5,5,10], CoinLists).
CoinLists = [[5,5], [5,5], [5,5], [10]] ?

Note that the second case fails because the nickels ran out.

Important: The task at hand is to write cfa using make_change.  cfa should be

able to accommodate a list of amounts of any length.  If you can't work out a

solution that handles any number of amounts you may write a solution that handles

only lists of three amounts for a score of 6 points rather than the full 10 points for

this problem.  If you can't do that either, you can implement all of member(X,L),

length(L,Len), last(L,Last), and append(L1,L2,L3) for a score of four

points.



CSc 372, Fall 1996, Final Examination; page 7 of 14

For reference, here again are some of the examples from the previous page:

?- make_change([5,5,10,10,25,25], 30, C, N).
C = [5,25]
N = [5,10,10,25] ?

?- make_change([5,10,10,25], 5, C, N).
C = [5]
N = [10,10,25] ?

?- make_change([10,10,25], 18, C, N).
no

?- cfa([30,5,20], [5,5,10,10,25,25], CoinLists).
CoinLists = [[5,25], [5], [10,10]] ?

?- cfa([30,5,5], [5,5,10,10,25,25], CoinLists).
no

?- cfa([10,10,10,10], [5,5,5,5,5,5,10], CoinLists).
CoinLists = [[5,5], [5,5], [5,5], [10]] ?

Don't forget: Your task is to write cfa; you may assume that you have

make_change at your disposal.
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In the following Icon problems you may assume that you have at your disposal the

full set of built-in functions and the split procedure.

Problem 8 (8 points):

Write an Icon procedure extract(s, m, n) that extracts a portion of a string that

represents a hierarchical data structure.  m is a major index and n is a minor index. 

Major sections of the string are delimited by slashes and are composed of minor

sections separated by colons.  Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one minor sections.

A call such as extract(s, 3, 2) should locate the third major section

("10:2:4" in the string above) and return the second minor section therein ("2").  If

either section number is out of bounds, extract should fail.  m and n may be

assumed to be integers greater than zero.  s may be assumed to be well-formed.

Examples (with ie):

][ s := "/a:b/apple:orange/10:2:4/xyz/";

][ extract(s, 1, 1);
   r := "a"  (string)

][ extract(s, 1, 2);
   r := "b"  (string)

][ extract(s, 3, 3);
   r := "4"  (string)

][ extract(s, 4, 1);
   r := "xyz"  (string)

][ extract(s, 4, 2);
Failure

][ extract(s, 5, 1);
Failure
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Problem 9 (6 points)

Write an Icon program that reads, on standard input, a list of words, one per line, and

prints the words that contain the letters a, b, and c in that order.  The letters need not

be consecutive and there may be more than one occurrence of each.  The only

requirement is that in order for a word to be printed it must contain an "a" followed

by a "b" that is followed by a "c".  You may assume that the input is strictly lower-

case.

Examples of words satisfying the desired condition:

acrobatic

elasmobranch

swashbuckler

Problem 10 (6 points)

Write an Icon procedure revby2(s) that reverses the string s on a character pair-

wise basis and returns the resulting string.  revby2 should fail if s has an odd

number of characters.  NOTE: Your solution must use string scanning.  You may not

use string subscripting (s[i]) or sectioning (s[i:j]), or the * operator.

Examples (with ie):

][ revby2("12345678");
   r := "78563412"  (string)

][ revby2("abcdefghijklmnopqrstuvwxyz");
   r := "yzwxuvstqropmnklijghefcdab"  (string)

][ revby2("");
   r := ""  (string)

][ revby2("123");
Failure
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Problem 11 (7 points):

Write an Icon program that prints on standard output, one per line, each minute of

the day in the form 12:22pm.  The program should produce 1440 lines of output (24

times 60).  The desired output, with key portions and shown and other portions

elided, is as follows.  Note that to conserve space the output is shown here in three

columns but your solution should produce output in a single column.

12:00am
12:01am

...
12:58am
12:59am
 1:00am
 1:01am
 1:02am

...
 9:58am
 9:59am
10:00am
10:01am

10:02am
10:03am

...
11:58am
11:59am
12:00pm
12:01pm
12:02pm

...
12:58pm
12:59pm
 1:00pm
 1:01pm

 1:02pm
...

 9:58pm
 9:59pm
10:00pm
10:01pm
10:02pm

...
11:58pm
11:59pm

Note that the first time printed is 12:00am and the last is 11:59pm.  You may find

the right(s, width, pad_character) function handy:

][ right(3, 2, "0");
   r := "03"  (string)

][ right(3, 2, " ");
   r := " 3"  (string)

Recall that in an Icon expression with multiple generators, generators are resumed in

LIFO order: the generator that most recently produced a result is the first one

resumed to produce a new result.
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Problem 12 (4 points):

Write an Icon program rev that reads a file redirected to standard input and writes

out the lines in the file in reverse order—last line first, first line last.

Example:

% cat in.dat
line 1
number two
the third line
% rev < in.dat
the third line
number two
line 1

Problem 13 (9 points):

Write an ML function samesums(L) of type (int * int * int) list ->

bool that tests whether all the 3-tuples in L have the same sum.

- samesums;
val it = fn : (int * int * int) list -> bool

- samesums([(1,1,1),(3,0,0),(5,3,~5)]);
val it = true : bool

- samesums([(1,1,1),(3,0,1)]);
val it = false : bool

- samesums([(1,1,1)]);
val it = true : bool

- samesums([]);
val it = true : bool
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Problem 14 (9 points)

Write code for a C++ class named X that exhibits the following elements:

A private default constructor.

A public constructor that takes two ints and stores their sum in a private data

member of type int.

A public member function int f() that produces the sum computed by the

(int, int) constructor or zero if this object was created by the default

constructor.

Write an insertor for X that simply inserts (for example) "an X at 0x7FFFEBBE"

where the address is the location of the instance of X in memory.

Write code to create five instances of X as follows: one local variable, one

dynamically allocated instance, and a local variable that is an array of three

instances.  Show this code in a complete function.

Write code to invoke X::f for each of the five instances created in the above step

and print the sum of the five return values.
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EXTRA CREDIT SECTION

EC 1 (5 points):

Name five programming languages that originated before 1985.

EC 2 (5 points max):

For one point each, name a programming language and the person generally credited

as being the designer of the language.

EC 3 (1 point):

What is the instructor's favorite programming language?

EC 4 (1 point):

Name a popular operating system in which Prolog plays a role in system

configuration.

EC 5 (2 points)

Languages can be grouped according to various aspects of the language.  For

example, ML, Icon, and Prolog all have automatic memory management and C++

does not.  Group the languages we studied according to their type checking

philosophy.
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EC 6 (3 points)

Write an Icon program that reads a list of words like that described in problem 12

and prints out the words that consist of solely of the hex digits a-f.  Examples of

such words: added, beef, dead, facade.

EC 7 (1 point)

Among ML, C++, Icon, and Prolog, which is your favorite?

EC 8 (2 points)

Of all that we covered, which one language feature did you find most interesting?

EC 9 (5 points):

In the same style as problems 1 and 2, name three differences between Java and C++

and for any one of those differences explain the benefit provided to the programmer.

EC 10 (2 points):

Why are static class members an essential element of Java?

EC 11 (1 point):

What is the Prolog 1000?
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CSc 372, Spring 1997
Mid-term Examination

Thursday, March 13, 1997

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 12 problems presented on 16 numbered pages.

On problems that ask you only to write code, you need not include any explanation in your
answer if you are confident it is correct.  However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central to a
problem's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem, please ask for a hint.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.

On the C++ problems you may use any language constructs you desire.

On the ML problems you may use only language constructs covered in class.  You may not
use the hd or tl functions.  The #N operator to extract elements from a tuple (e.g. #2(t))

may not be used.

When you have completed the exam, give it to the instructor and enter your name on the
exam sign-out log.

Print your name below and when told to begin, put your initials in the lower right hand
corner of each page, being sure to check that you have all the pages.

This is a seventy-five minute exam with a total of 100 points.

Name: _______________________________________
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For the following ML-related problems you may assume you have at your disposal all the
functions discussed in class, such as  m_to_n, reduce, and filter.  You may also use
any of the built-in functions discussed in class such as size, length, map, etc.

If there is a function you would like to use but you are in doubt as to its suitability, please
ask.

You are encouraged to use helper functions (either in lets or not) in your solutions.

As mentioned on the cover page, hd, tl, and the #n operator are off-limits.

Problem 1: (1 points each; 4 points total)

State the type of each of the following expressions, or if the expression is not valid, state
why.  For example, the type of the expression 3+4 is int.

([1, 2], [3.0, 4.0])

(map size) (explode "abcd")

("x", (2, "y"), ([3, "z"]))

(length, [size, length o explode])

Problem 2: (2 points)

Consider this ML function definition:

fun f(x) = [x 1, 2]

What type will be deduced for f?  
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Problem 3: (1 point each; 5 points total)

Consider these two ML function definitions:

fun f(_) = 1
fun g(a,b,c) =  if a = f(c) then b else [c,a]

State the type that will be deduced for each of the following:

a:

b:

c:

The return type of f:

The return type of g:

Problem 4: (3 points)

Write a function f that has the type int -> int list -> bool.  You may use literals
(constants) but you may not use any explicit type specifications such as x:int.  The
behavior of the function is not important—the task is simply to produce the desired type.
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Problem 5: (9 points)

Write a function tossbig(L,N) of type string list * int -> string list that
produces a list consisting of the elements in L that have a size less than N.

Examples:

- tossbig;
val it = fn : string list * int -> string list

- val SL = ["just", "a", "test", "right", "now"];
val SL = ["just","a","test","right","now"] : string list

- tossbig(SL, 4);
val it = ["a","now"] : string list

- tossbig(SL, 5);
val it = ["just","a","test","now"] : string list

- tossbig(explode "abc", 2);
val it = ["a","b","c"] : string list

- tossbig(explode "abc", 1);
val it = [] : string list



CSc 372, Spring 1997, Mid-term Examination; page 5 of 16

Problem 6: (9 points)

Write a function samesums of type (int * int) list -> bool that produces true if
adding the two elements of each tuple in turn produce the same sum.

Examples:

- samesums;
val it = fn : (int * int) list -> bool

- samesums([(0,3)]);
val it = true : bool

- samesums([(0,3),(2,1),(4,~1)]);
val it = true : bool

- samesums([(1,2),(3,0),(4,0),(5,0),(1,2)]);
val it = false : bool

- samesums([(0,0),(1,~1),(2,~2),(3,~3)]);
val it = true : bool
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Problem 7: (12 points)

Write a function block(w,h) of type int * int -> unit that prints a block of x's
having a width of w and height of h.  You may assume that w and h are greater than or equal
to 1.

Your solution must be NON-RECURSIVE in nature.  You may use recursive routines such
as m_to_n and map, but you may not invent any recursive routines yourself.

Examples:

- block;
val it = fn : int * int -> unit

- block(5,3);
xxxxx
xxxxx
xxxxx
val it = () : unit

- block(2,2);
xx
xx
val it = () : unit

- block(1,1);
x
val it = () : unit
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Problem 8: (6 points)

Write a function c_block of type int -> int -> unit that behaves like block, but
that allows partial application.   You may use block in your solution.

Examples:

- c_block;
val it = fn : int -> int -> unit

- c_block 5;
val it = fn : int -> unit

- it 3;
xxxxx
xxxxx
xxxxx
val it = () : unit

- c_block 2 2;
xx
xx
val it = () : unit
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Problem  9: (30 points)

In this problem you are to implement a C++ class that models a television set that has a list
of favorite channels, each with a preferred volume.  The television set has channels ranging
from 2 to 83 and volume levels of 1, 2, 3, ..., 10.

class TV {
  public:
    TV();
       //
       // Initializes a TV, setting the channel to 2 and
       // the volume to 5

    void SetVol(int vol);
        //
        // Sets the volume to the level vol.  Attempts to set
        // the volume to less than 0 or more than 10 are ignored.

    void SetChan(int chan);
        //
        // Sets the current channel to chan.  Attempts to set the
        // channel to be less than 2 or more than 83 are ignored.

    void SetFav();
        //
        // Marks the current channel as a favorite channel and
        // records the current volume as the preferred volume
        // for the channel.

    void SetFav(int vol);
        //
        // Marks the current channel as a favorite channel and
        // establishes vol as the preferred volume for the
        // channel.  If the volume is less than 0 or more than
        // 10, SetFav is ignored.  SetFav does not change the
        // the current volume.

        // For both forms of SetFav, if the current channel has
        // already been selected as a favorite, the only effect
        // is to possibly change the preferred volume.  Note that
        // there is no way to indicate that a channel is no
        // longer a favorite.

    void NextFav();
        //
        // Goes to the next higher channel marked as a favorite
        // and sets the preferred volume.  After channel 83,
        // NextFav wraps around to 2 and continues, if necessary.
        //  
        // If no favorites are marked, no change is made. 

    void Status();
        //
        // Prints current channel and volume.

};

An annotated example of operation follows.  The only output produced by the program are
the boldface lines beginning "Channel is ...".
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void main()
{
    TV tv;

    tv.Status();
Channel is 2, volume is 5
 (Initial conditions)

    tv.SetChan(9);
    tv.SetFav(10);

    tv.Status();
Channel is 9, volume is 5
 (Channel 9 was established as a favorite with preferred volume of 5)

    tv.SetChan(12);
    tv.NextFav();
    tv.Status();

Channel is 9, volume is 10
 (Starting from channel 12, just marked as a favorite, the search for  
  the next favorite channel goes through 83 and back around to channel
  9, with a preferred volume of 10.)

    tv.SetChan(13);
    tv.SetVol(3);
    tv.SetFav();
    tv.Status();

Channel is 13, volume is 3

 (At this point, channels 9 and 13 have been marked as favorites, with
volumes of 10 and 3, respectively.)

    tv.NextFav();
    tv.Status();

Channel is 9, volume is 10

    tv.NextFav();
    tv.Status();

Channel is 13, volume is 3

    tv.SetChan(8);
    tv.SetFav(0);
    tv.SetVol(4);
    tv.SetChan(50);

    tv.NextFav();    tv.Status();
Channel is 8, volume is 0

    tv.NextFav();    tv.Status();
Channel is 9, volume is 10

    tv.NextFav();    tv.Status();
Channel is 13, volume is 3

    tv.NextFav();    tv.Status();
Channel is 8, volume is 0

}
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Your task in this problem is to specify the private portion of the TV class and
implementations for each method.  You need not recopy the public portion shown above. 
Hints: (1) For a central data structure my solution uses an 84 element int array with the Nth
element holding a preferred volume if channel N is a favorite channel.  (2) The purpose of
this problem is to determine if you can put together a C++ class.  With that purpose in mind,
I don't intend to deduct for minor programming problems such as off-by-one errors.
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[Additional space for solution for problem 9]
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Problem 10: (5 points)

With our String class in mind, overload the % operator so that an expression such as s %
c produces an int that is the zero-based position of the first occurrence of the character c in
the String s.  If s contains no occurrences of c, negative one should be produced.  You
may choose to implement the operator as a member function or a free-standing function. 
Recall that the C library function char *strchr(const char *s, char c) returns
the address of the first occurrence of c in s.

Your solution should simply consist of the function or method definition itself.

Example:

String str = "testing";
int p1 = str % 's';
int p2 = str % 'x';

cout << "p1 = " << p1 << ", p2 = " << p2 << endl;

Output:

p1 = 2, p2 = -1
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Problem 11: (2 points each; 6 points total)

Briefly answer each of the following questions related to object-oriented programming in
general and C++ in particular.

(a) What is the difference between a class and an object?

(b) As you know, the destructor for a class X is a method named ~X.  The rationale for this
choice of name is that "destruction is the complement of construction".  However, the
instructor has contended on several occasions that the relationship between constructors and
destructors is in fact somewhat asymmetrical.  Describe that asymmetry.

(c) What is the key benefit provided by in-line functions in C++?
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Problem 12: (9 points)

In this problem you are to implement a class called Ring that is a subclass of the Shape
class described in the slides.  A ring can be thought of as a disk with a circular center region
removed.  In the following diagram, the black region is a Ring:

An instance of Ring is created by specifying the radius of the inner circle and the radius of
the outer circle.  A ring having the proportions of the one shown above might be created in
this way:

Ring r(0.75, 1.0);

The radius of the inner circle is specified first and may be assumed to be non-negative and
not greater than the radius of the outer circle.  The area of a ring is the difference of the areas
of the two circles.  The perimeter of a ring is the perimeter of the outer circle.

Your first task in this problem is to specify a full class definition and member
implementations for Ring as a subclass of Shape.  You are to work with this definition of
Shape:

class Shape {
  public:
    virtual double Area() = 0;
    virtual double Perimeter() = 0;
    virtual void Print(ostream& o) = 0;
    };

If your implementation of Ring requires changes in Shape, show those changes.
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Here is an example of Ring in operation:

void main()
{
    Ring r(.75, 1.0);
    r.Print(cout);

    Ring r1(0.0, 1.0);
    Ring r2(0.0, 2.0);
    Ring r3(1.0, 2.0);

    r1.Print(cout);
    r2.Print(cout);
    r3.Print(cout);
}

Output:

Ring; area = 1.37445, perim = 6.28319
Ring; area = 3.14159, perim = 6.28319
Ring; area = 12.5664, perim = 12.5664
Ring; area = 9.42478, perim = 12.5664

Recall the SumOfAreas and Biggest functions presented in the slides, which follow
below.  Your second task in this problem is to indicate what changes that are required to
these routines in order for them to accommodate Rings in addition to Circles and
Rectangles, which the routines already handle.

double SumOfAreas(Shape *shapes[])
{
        double area = 0.0;

        for (int i = 0; shapes[i] != 0; i++) {
                Shape *sp = shapes[i];
                area += sp->Area();
                }

        return area;
}

Shape* Biggest(Shape *shapes[])
{

Shape *bigp = shapes[0];

for (int i = 0; shapes[i] != 0; i++) {
Shape *sp = shapes[i];
if (sp->Area() > bigp->Area())

bigp = shapes[i];
}

return bigp;
}

If you wish, you may use the Circle class in your implementation of Ring.
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[Space for solution for problem 12]
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CSc 372, Spring 1997
Final Examination

Friday, May 16, 1997

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 11 problems and an extra credit section presented on 18

numbered pages.

On problems that ask you only to write code, you need not include any explanation

in your answer if you are confident it is correct.  However, if an answer is incorrect,

any accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central

to a problem 's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem , please ask for a hint.

Try to avoid leaving a problem  completely blank— that will certainly earn no credit.

On the C++, Icon, and Prolog problems you may use any language constructs you

desire.  On the M L problems you may use only language constructs covered in class. 

W hen you have completed the exam, give it to the instructor and enter your name on

the exam sign-out log.

Print your name below and when told to begin, put your initials in the lower right

hand corner of each page, being sure to check that you have all the pages.

This is a two-hour exam with a total of 100 regular points and 10 points of extra credit

questions.

Name: _______________________________________
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Problem  1: (2 points each; 20 points total)

Based on the material covered in class, in what language is the expression

[10,20|30] valid?  W hat does it mean?

W hat is the type of the following M L expression?

[([length],[1,2,3])]

In M L, implement the well-studied map function in a way that yields the same type

as the built-in version of map.  This is the type desired:

('a -> 'b) -> 'a list -> 'b list

In your own words, what does the term "object-oriented programming" mean?

Cite a fundamental benefit of inheritance in C++.



CSc 372, Spring 1997, Final Examination; page 3 of 18

W hat's unusual about this Prolog predicate?

f(L) :- g(L), fail, !. 

Describe in English the form  of the list L that would satisfy this predicate:

p(L) :- append(L1,L1,L).

Consider this version of member which has been instrumented with calls to

write/1:

member(X,L) :- write('A'), L = [X|_].
member(X,[_|T]) :- write('B'), member(X,T), write('C').

W hat would be printed in response to the following query?

| ?- member(3,[1,2,3]).

W rite the append/3 predicate.

Name two significant things that Prolog has in common with any one of the other

languages that we studied.
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Problem 2 (31 points):

W rite an Icon program ckconn that analyzes test run output of connect from

assignment seven and determines for each test case if the output shown is a suitable

configuration of cables.

The data to be processed looks like this

case 1: data is '[[[m,10,f],[f,7,m]],m,15,f]'
F----------MF-------M

case 2: data is '[[[m,10,f],[f,7,m]],m,15,m]'
Cannot connect

case 3: data is '[[[m,5,m],[f,20,f],[m,10,m]],f,10,f]'
M-----M

case 4: data is '[[[m,5,m],[f,20,f],[m,10,m]],f,10,f]'
M-----MM----------M

case 5: data is '[[[m,5,f]],f,10,f]'
M----------M

The output of ckconn is the input data augmented with an error indication if the

cable configuration shown is invalid in some way.  For example, the case 3 result is

invalid because the cable isn't long enough.  The case 4 result is invalid because of

the male/m ale connection in the middle.  The case 5 result is invalid because there is

no ten-foot M /M  cable to be used.  If an invalid result is found, the string

**ERROR** is printed on the next line.  For the above input, this is the output:

case 1: data is '[[[m,10,f],[f,7,m]],m,15,f]'
F----------MF-------M

case 2: data is '[[[m,10,f],[f,7,m]],m,15,m]'
Cannot connect

case 3: data is '[[[m,5,m],[f,20,f],[m,10,m]],f,10,f]'
M-----M
**ERROR**

case 4: data is '[[[m,5,m],[f,20,f],[m,10,m]],f,10,f]'
M-----MM----------M
**ERROR**

case 5: data is '[[[m,5,f]],f,10,f]'
M----------M
**ERROR**

Note that only successful connections need to be checked.  If the result is "Cannot

connect", no further analysis need be done.
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This problem has several elements: You must extract cable set information, distance

to span, and endpoint genders from the "case" line.  You must extract cable

configuration information from the result lines (composed of dashes, Ms and Fs). 

You'll need to be sure all the cables shown in the result are in the input set (i.e., be

sure the programmer didn't fabricate a cable as shown in case 5).  You'll need to be

sure that all the inter-cable matings are proper and that the cable ends mate with the

endpoints.  You'll need to be sure that the cables span the distance.

You may assume that the input is well-formed.  In particular you may assume that

the first, fourth, seventh, etc. lines are "case..." lines and that the second, fifth,

eighth, etc. lines are cable configurations.  You may assume that all the cables in the

cable configuration consist of an M or an F on each end and have one or more dashes

in the middle.  You may assume there are no extraneous characters present.  For

example, you may assume that you W ON'T see something like this: M---M--  --

-M.

A cable with given genders and length may appear more than once.  For example,

you might see this set of cables: [[m,1,f],[m,1,f],[m,1,f]].  If that set of

cables were used to produce this configuration: F-MF-MF-MF-M, that would be

invalid.

You may organize your solution in any way you wish, but here is a possible

organization:

(1) W rite a routine do_case(s) that assumes s is a "case..." line and that

returns a list that contains three values: A list of lists representing the cables,

an integer representing the length to span, and a string that holds the desired

endpoints.

(2) W rite a routine do_config(s) that processes a cable configuration line

and produces a list of lists representing the cables.

(3) W rite a routine check_sets(In,Out) that takes two lists of cables and

tests to be sure that the cables in Out are a subset of the cables in In.

(4) W rite a routine check_config to check other aspects of the

configuration.

You may use any elements of Icon and you may also use split.  You may assume

you have a routine ltos(L) that takes a list and returns a string representation of its

contents.  For example, ltos(["m",10,"f"]) would return "m, 10, f".

Don't forget to supply a m ain program that ties all the pieces together.
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[Space for solution for problem 2]
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[M ore space for solution for problem 2]
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For the following Prolog problems you may assume you have at your disposal all the

predicates discussed in class, such as getone(Elem,List,Remaining),

length(List,Len), last(Elem,List), and append.  You may also assume you

have min(Elem,ListOfInts) and max(Elem,ListOfInts).  If there is a

predicate you would like to use but you are in doubt as to its suitability, please ask.

Problem 3 (8 points):

W rite a Prolog predicate sort(L,SortedL) that describes the relationship that

SortedL is a list that has the elements of L in ascending order.  Both lists may be

assumed to consist only of integers.  The query sort([],[]) should succeed.

| ?- sort([4,1,6,2],L).
L = [1,2,4,6] ? ;
no

| ?- sort([4,1,6,2],[1,2,4,6]).
yes

| ?- sort([4,1,6,2],[1,6,4,2]).
no

| ?- sort("just testing", S), name(A,S).

A = ' egijnsstttu',
S = [32,101,103,105,106,110,115,115,116,116,116,117] ?

yes

Regarding the last example, recall that a sequence of characters in double quotes is a

shorthand for a list of integers representing the corresponding ASCII codes.
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Problem  4 (6 points): 

W rite a Prolog predicate hexprint/0 that prints, one per line, each of the

hexadecimal numbers between 000 and fff inclusive but omitting those numbers

where all the digits are the same (000, 111, 222, ..., eee, fff).  In all, 4080 lines

are to be printed (16^3 minus 16 is 4080).  Note that hexprint ultimately succeeds.

Example:

| ?- hexprint.
001 (note that 000 was not printed)
002
003
004
005
006
007
[many lines omitted]
10d
10e
10f
110
112 (note that 111 was not printed)
113
[many many lines omitted]
ff9
ffa
ffb
ffc
ffd
ffe 
     (note that fff was not printed)
yes
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Problem 5 (6 points):

W rite a Prolog predicate palsum/1 that succeeds if a list of integer lists is

palindromic with respect to the sums of the elements of the contained lists. 

Example:

| ?- palsum([[1,2], [5], [1,1,0,1]]).

yes

The above argument of palsum contains three lists whose sums are 3, 5, and 3,

respectively.  That list is said to be palindromic because the sequence of sums is the

same whether read from left to right or right to left.

M ore examples:

| ?- palsum([[4], [5], [6], [3,1,1], [5,-1]]).

yes

| ?- palsum([[4], [15], [6], [3,1,1], [5,-1]]).

no

| ?- palsum([[4],[1,1,1,1]]).

yes

| ?- palsum([[0],[2],[3],[4],[3],[2],[]]).

yes

| ?- palsum([[1], [1,1], [2], [1,1,1]]).

no
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Problem 6 (6 points):

It was said in class that a single Prolog predicate can take the place of several

functions in some other language.  (1) Explain what's meant by that statement.  (2)

W rite a Prolog predicate that exhibits that property.  (3) In some other language

write a set of routines to perform the various operations that the predicate can

perform.  NOTE: Don't get carried away on this problem— conserve your time by

using a simple predicate that illustrates the point.

Problem 7 (4 points):

Among M L, C++, Icon, and Prolog, which language did you find the most

interesting, and why?
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Problem 8 (4 points):

Among M L, C++, Icon, and Prolog, which language did you find the most difficult

to learn.  Cite an element of the language that you had particular difficulty with.

Problem 9 (3 points):

W rite an M L function f of type a' -> 'b -> 'a that exhibits the following

behavior:

- f;
val it = fn : 'a -> 'b -> 'a

- val f2 = f("one");
val f2 = fn : 'a -> string

- f2 2;
val it = "one" : string

- val f3 = f(10);
val f3 = fn : 'a -> int

- f3 20;
val it = 10 : int

- val g = f([1]);
val g = fn : 'a -> int list

- g [100];
val it = [1] : int list
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Problem  10 (4 points):

W rite an M L function dups(s) that removes sequences of duplicated characters

from a string.

Example:

- dups;
val it = fn : string -> string

- dups("meet to eat beets");
val it = "met to eat bets" : string

- dups("....");
val it = "." : string

- dups("x");
val it = "x" : string

- dups("   a    test   right    here   ");
val it = " a test right here " : string

- dups("aaabbbcccdddeeeaaaabbb");
val it = "abcdeab" : string

- dups("");
val it = "" : string
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Problem 11 (8 points):

In this problem  you are to implem ent two C++ classes: MList and

PrintableMList.

An MList holds a list of integer values that are added to the MList one by one via

the < operator, which is overloaded.

To construct an MList the user must supply an integer value that specifies a

maximum value for integers in the list.  Attem pts to add values larger than the limit

are silently ignored.

An MList may be "closed" by calling its close() method.  Once a list is closed it

cannot be reopened.  Attempts to add values to a closed MList are silently ignored. 

The size() method returns an integer representing the number of values held in the

MList.

Although there is no way to print an MList or obtain stored values from it, but the

implementation of MList must properly maintain that information internally.

You may assume the user will never attempt to add more than fifty values to an

MList.

PrintableMList is a derived class of MList that does everything an MList can

do but can also print its contents in response to invocation of its print() method.
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Here is a test program  for MList and PrintableMList:

void main()
{
    MList m1(10);

    m1 < 5;     // Attempt to add some values to m1.  All should
    m1 < 7;     // go into m1 except for 20, which exceeds the
    m1 < 10;    // limit of 10.
    m1 < -10;
    m1 < 20;

    cout << "(1) m1.size() = " << m1.size() << endl;

    m1.close(); // Close m1 to prevent further additions

    m1 < 1;     // These additions should fail because m1
    m1 < 2;     // is closed.

    cout << "(2) m1.size() = " << m1.size() << endl;

// m1 should now contain 5, 7, 10, and -10, but
// there's no way to directly inspect that.

    PrintableMList m2(5);

    m2 < 1;
    m2 < 3;
    m2 < 6; // 6 and 10 should bounce off because 
    m2 < 10; // they're greater than 5.

    m2.print();

    m2 < 2;
    m2 < 4;
    m2.close();
    m2 < 1; // Should fail because m2 is closed.
    m2.print();
}

Output:

(1) m1.size() = 4
(2) m1.size() = 4
1 3          (output of first m2.print())
1 3 2 4      (output of second m2.print())
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[Space for solution for problem 11]
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EXTRA CREDIT SECTION

EC 1 (1 point):

Two of the programming languages mentioned during lectures that were first

publicly released after 1990.  Name BOTH of them.

EC 2 (1 point):

Reigning world chess champion Garry Kasparov was recently defeated in a six game

match by IBM 's Deep Blue system.  W hat language was used to implement Deep

Blue?

EC 3 (1 point):

Taking into account the syllabus, the slides for each language, homework

assignments and solutions, and the mid-term exam and solutions, how many pages

of handouts have been distributed in the course of this class?  Your answer must be

within 10%  of the actual total.  Note that a sheet printed on both sides counts as two

pages.

EC 4 (1 point):

Name a language that is an ancestor of Icon.

EC 5 (1 point):

How many applications are included in the Prolog-1000 list?  Pick one: (a) Less than

1000 (b) Exactly 1000 (c) M ore than 1000.

EC 6 (1 point):

W hat piece of sports equipment is on the instructor's desk?
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EC 7 (1 point):

W rite an Icon expression that is exactly ten characters in length and that evaluates to

the value "10" (a string).  RESTRICTION: You may use no letters, digits,

underscores, white space characters, or parentheses.

EC 8 (1 point):

Finish this sentence as yourself:  "If I only remember one thing from CSc 372 it will

be _______."

EC 9 (1 point):

W ithout using a control structure (such as every or while) write an Icon

expression that prints the letters from "a" to "z".

EC 10 (1 point):

W rite an Icon procedure allsame(s) that succeeds if all the characters in the string

s are the same and fails otherwise.  For example, allsame("testing") should

fail, but allsame("++++") should succeed.  allsame("") should fail.
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CSc 372, Fall 2001
ML Examination

September 26, 2001

READ THIS FIRST

Do not turn this page until you are told to begin.

On problems that ask you only to write code, you need not include any explanation in your answer if
you are confident it is correct.  However, if an answer is incorrect, any accompanying explanation
may help you earn partial credit.

If you have a question, raise your hand and the instructor or a teaching assistant will come to you. 
DO NOT leave your seat.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed.  Examples:

"Assuming length  is string -> int"
"Assuming the homework function to insert values in a list is insert_n."
"Assuming ien(L,n,v) and repl(n,s)"  (if uncertain of argument order)

BE CAREFUL with assumptions that may significantly change a problem.  For example, consider the
expression f [x 1, 2, 3].  It may appear that a comma has been omitted in "x 1" but in fact
there is no error.

You may use only language elements that have been studied in the class.  You may use built-in
functions such as size, map, and rev.  You may use functions presented on the slides or written
thereon, such as member, filter and reduce.  You may use functions presented via the mailing
list, such as make_curried_r.  You may use functions that have appeared on the homework
assignments this semester such as gather and ien.  You may not use the hd or tl functions.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor or a teaching assistant.

New DO NOT use your own paper.  Do not write on the opposite side of the paper.  If you need extra
sheets, ask for them.

New Here is a list of functions that may be useful: explode, filter, ien(L,n,v), implode, map,
print(s), reduce, repl(s,n), split d s, sum(L).

New There are no restrictions on the use of recursion and no deductions for poor style.  Anything that
works and doesn't use off-limits elements, such as hd and tl,  is acceptable.

Print your name below and when told to begin, put your initials in the lower right hand corner of each
page, being sure to check that you have all the pages.

This is a forty-five minute exam with a total of 100 points.  There are nine problems on seven pages.

Seat row and number:  __________           Name:_______________________________________
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Problem 1: (2 points each; 8 points total)

State the type of each of the following expressions, or if the expression is not valid, state why.  For
example, the type of the expression 3+4 is int and the type of the expression length is
'a list -> int.

(1, [2,3], 4.0)

(reduce op+)

explode o rev o implode

[[[size]]]

Problem 2: (3 points each; 15 points total)

State the type of each of the following functions:

fun a (w,h) = w * h * 1

fun f(x) = f(1) + f(2);

fun f(L,(a,b)) = L = (a,b)

fun f(3,4) = (size,length)

fun x y z = (y z) + z
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Problem 3: (3 points each, 9 points total)

Edit or rewrite the following functions to make better use of the facilities of ML:

fun f(a,b,c) = [a-c, a+c]

fun f(x,y) = x::y::1::2::[]

fun f(n) = if n = 10 then true else if n = 5 then true else false;

Problem 4: (5 points)

Write the map function.  The type of map is ('a -> 'b) -> 'a list -> 'b list

Problem 5: (7 points)

Create a function abslist(L) of type real list -> real list that produces a copy of L
with each value in the output list being the absolute value of the corresponding value in the input list. 
Assume there is NO function like Java's Math.abs() to compute absolute value–do the absolute
value computation yourself.

Examples:

- abslist([1.0, ~2.0, ~3.4, 100.0]);
val it = [1.0, 2.0, 3.4, 100.0] : real list

- abslist([]);
val it = [] : real list
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Problem 6: (7 points)

Your instructor suffered the great embarrassment of distributing a version of gather that has a bug: 
If called with an empty list it should return [] but in fact it returns [[]].  Example:

- gather([], 10);
val it = [[]] : int list list

Here is the source for the instructor's faulty version of gather:

fun gather(L, limit) =
  let
    fun g([], _, _, result) = [result]
     |  g(x::xs, sum, limit, result) =
         if result = [] then
            g(xs, x, limit, [x])
         else
            if x + sum > limit then
                result::g(x::xs, 0, limit, [])
            else
                g(xs, sum+x, limit, result @ [x])
  in
    g(L, 0, limit, [])
  end

Produce a version of gather that has the correct behavior.  Either mark changes to the above code or
rewrite it.  Note: You only need to fix that one bug–don't search for additional problems.  Your
changes should not introduce additional bugs, of course.
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Problem 7: (15 points)

In this problem you are to create TWO functions, doubler and quadrupler.  doubler is of type
string list list -> string list list and "doubles" each letter in the strings.
quadrupler is of the same type, but quadruples each letter.

Examples:

- doubler([["just"], ["a", "test"], ["h", "e", "r", "e", ""]]);
val it = [["jjuusstt"],["aa","tteesstt"],["hh","ee","rr","ee",""]]
  : string list list

- doubler([["hello"]]);
val it = [["hheelllloo"]] : string list list

- doubler([ ]);
val it = [] : string list list

- doubler([[ ]]);
val it = [[]] : string list list

- quadrupler([["an", "example"],[ ]]);
val it = [["aaaannnn","eeeexxxxaaaammmmpppplllleeee"],[]] : string
list list
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Problem 8a: (7 points)

Create a function genlist that takes a list of integers and for each integer N in the list, produces a
list with N instances of the number 1.  You may assume that all the values are non-negative.

Examples:

- genlist;
val it = fn : int list -> int list list
- genlist [2,1,0,7,4];
val it = [[1,1],[1],[],[1,1,1,1,1,1,1],[1,1,1,1]] : int list list
- genlist [];
val it = [] : int list list
- genlist [10];
val it = [[1,1,1,1,1,1,1,1,1,1]] : int list list

Problem 8b: (7 points)

Create a function genlist_inv that performs the inverse operation of genlist.  The only value
appearing in the lists will be the integer 1 (one).  Examples:

- genlist_inv [[1,1,1], [1], [1,1]];
val it = [3,1,2] : int list
- genlist_inv (genlist [2,1,0,7,4]);
val it = [2,1,0,7,4] : int list
- genlist_inv [[],[],[1],[]];
val it = [0,0,1,0] : int list

Problem 8c: (2 points)

What is the type of    genlist_inv o genlist o genlist_inv    ?
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Problem 9: (18 points)

Imagine a function read_all_bytes(fname)that produces a string containing all the bytes in the
file fname.  For a file "x" containing the following five  lines of text,

this
is @ some data
here to
test@
with

the string "this\nis @ some data\nhere to\ntest@\nwith\n" is returned by
read_all_bytes("x").  Note that \n represents one character, a newline. 

Create a function tacdel(fname) that reads the file named by fname and prints (using the print
function) the lines in the file in reverse order, and if a line contains the character "@", the line "<D>"
appears in its place.  Assume that the file exists and is readable. Example:

- tacdel("x");
with
<D>
here to
<D>
this
val it = () : unit

Here is a function you may use:

fun member (v, []) = false
 |  member (v,x::xs) = if x = v then true else member(v,xs)
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Name:_______________________________________   Seat row and number:  __________ 
        

CSc 372, Fall 2001
Icon Examination
October 24, 2001

READ THIS FIRST

Fill in your name and seat row/number above.

Do not turn this page until you are told to begin.

DO NOT use your own paper.  Do not write on the opposite side of the paper.  If you need extra
sheets, ask for them.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed.  Examples:

"Assuming reverse(s) reverses a string"
"Assuming *t returns the number of keys in table t"

Changed If you have a question you wish to ask, raise your hand and the instructor or teaching assistant will
come to you.  DO NOT leave your seat.

You may use all elements of Icon regardless of whether they have been studied in class.  You may not
use any elements of the Icon Program Library (IPL).  (The instructor has said nothing about anything
in the IPL during lectures.)

Changed You may use Icon procedures that appear on the slides, or have been presented in class, or have been
mentioned in e-mail.   Here are some Icon procedures that may be useful: split, atos, rev, and
read_file

There are no deductions for poor style.  Anything that works and meets all restrictions will be worth
full credit, but try to keep your solutions brief to save time.

On problems that ask you only to write code, you need not include any explanation in your answer if
you are confident it is correct.  However, if an answer is incorrect, any accompanying explanation
may help you earn partial credit.

This is a forty-five minute exam with a total of 100 points and eight possible points of extra credit. 
There are eight regular problems and six extra credit problems.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor or a teaching assistant.

When told to begin, double-check that your name and seat/row are recorded at the top of this page,
and then put your initials in the lower right hand corner of each page, being sure to check that you
have all the pages.
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Problem 1: (15 points)

Write a program tacdel that reads lines from standard input and prints the lines in the file in reverse
order.  If a line contains the character "@", the line "<D>" appears in place of that line.  Example:

% cat x
this
is @ some data
here to
test@
with
% tacdel < x
with
<D>
here to
<D>
this
%
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Problem 2: (15 points)

Write a program idiff that examines two files named on the command line and if the files are not
identical, prints "Diffs".  If the files are identical, idiff produces no output.

Two files are considered to be identical if and only if they contain the same number of lines and the
lines in each are identical and in the same order.  Here are four sample input files.  Note that f1 and
f3 are identical.

% cat f1
a
test
here
%

% cat f2
here
is
a
test
%

% cat f3
a
test
here
%

% cat f4
1
2
3
%

Examples of usage:

% idiff f1 f2
Diffs
% idiff f1 f3
% idiff f2 f4
Diffs
% idiff f1 f1
%
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Problem 3: (15 points)

Write a program paldate that searches for palindromic dates between January 1, 2001 and
December 31, 2099 and prints those dates.  Represent a date such March 15, 2001 like this: 3/15/1. 

Some examples of palindromic dates are 1/1/1,  1/22/1,  3/11/3, and  12/11/21.

Note that months 4, 6, 9, 11 (April, June, September, and November) have 30 days and assume that
February always has 28 days.  All the other months have 31 days.

RESTRICTION: You may not use any lists in your program. 

The output of paldate is always the same:

% paldate
1/1/1
1/2/1
1/3/1
1/4/1
1/5/1
1/6/1
1/7/1
1/8/1
1/9/1
1/11/1
...lots more lines...
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Problem 4: (24 points)

Write a program total that reads merchandise descriptions and prices and then computes the total
for a list of items to purchase.

Both merchandise descriptions and the list to purchase are read from standard input.  One or more
lines of merchandise item names and associated prices appear first, one per line.  A line containing
only a "." signals the end of the descriptions, and that the full names of items to purchase follow. 
The output of the program is the total price of all the items listed after the end of the descriptions.

Here is a sample input file:

% cat total.in
Icon book                   $10
Old lamp with bad switch     $2
Bowling ball                 $1
Perl book                    2c
Pencil                       6c
.
Pencil
Bowling ball
Pencil
Icon book
Old lamp with bad switch
%

The program outputs the total cost of the to-purchase items.  Example:

% total < total.in
$13.12
%

Details:

Prices will be something like $15 (fifteen dollars) or 10c (ten cents).  Prices are always
integer amounts—there won't be a price like $10.15.  A price is always preceded by a dollar
sign or followed by a "c".  Prices appear at the very end of a line—the last character of the
first line of input  is "0".

The whitespace characters are always blanks, never tabs.   In the "to-purchase" list, no blanks
follow the item name.

Don't worry about formatting—just print the total preceded by a dollar sign.  

Assume that there is no invalid input, no duplications in the price list, and that all items named
in the to-purchase list have appeared in the price list.
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(Problem 4 — space for answer)

For reference: (copied from previous page)

% cat total.in
Icon book                   $10
Old lamp with bad switch     $2
Bowling ball                 $1
Perl book                    2c
Pencil                       6c
.
Pencil
Bowling ball
Pencil
Icon book
Old lamp with bad switch
% total < total.in
$13.12
%
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Problem 5: (7 points)

Write a procedure intmem(i, L) that returns &null if the integer i is contained in the list L and
fails otherwise.  L may contain values of any type.

Examples:

][ intmem(1, [3, 1, 4, 2, 5]);
   r := &null  (null)

][ intmem(1, [3, "abc", &digits, 1, []]);
   r := &null  (null)

][ intmem(1, [3, "abc", &digits, 10, []]);
Failure

][ intmem(1, []);
Failure

Only the top-level elements of L need be considered.  Do not search for i in lists contained in L:

][ intmem(1, [[1]]);
Failure

Note that a comparison such as 1 = [] produces a run-time error.
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Problem 6: (10 points)

Write a program sumints that reads lines on standard input and prints the sum of all integers found.

Example:

% sumints
On February 14, 1912, Arizona became
the 48th state.
^D (control-D)
1974
%

A string such as 12.34 is simply interpreted as two integers: 12 and 34.

Restriction: Your solution must be based on string scanning.  The only types you may use are
integers, strings, and character sets.  You may not any comparison operators such as ==.

Problem 7: (6 points)

According to the instructor, what is the unique aspect of Icon's expression evaluation mechanism? 

Name one thing that the instructor doesn't like about Icon or has  identified as a problem with the
language.  Here's one thing you can't mention: unexpected failure.

There are no built-in functions in Icon to do things like reverse lists, compare all elements of two lists,
or do a "deep copy" of a list.  What did the instructor cite as the likely reason for the absence of
functions like that?
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Problem 8: (8 points)

Fill in the blanks:

The instructor described the function __________ as being a "lone wolf".  He said that _____ "works
well with others".

The result of a successful comparison in Icon is ___________________.

We studied a total of ____ string scanning functions.  Of those, two changed  ___________________ 

and ______  of them returned a _______.   ______ is one-of-a-kind.

EXTRA CREDIT SECTION (one point each)

(a) Write the result sequence of (?"xxx" || !"xxx" || *"xxx")

(b) If the string s contains your login name, what is string(cset(s[1:4]))[1:-2]?

(c) Which one of the following principal contributors to Icon have not been mentioned in class:  Steve
Wampler, Bob Alexander or Tim Korb?

(d) Cite up to three elements of Icon that are "syntactic sugar". (one point each)

(e) Given this program, args.icn:

procedure main(args)
    every write(!args)
end

what does args print when run like this: "args < in.dat >out.dat"?

(f) Describe a situation where tab(n) and move(n) produce the same result, for a
particular subject, position, and value of n.
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Name:_______________________________________   Seat row and number:  __________ 
        

CSc 372, Fall 2001
Prolog Examination
November 28, 2001

READ THIS FIRST

Fill in your name and seat row/number above.

Do not turn this page until you are told to begin.

DO NOT use your own paper.  Do not write on the opposite side of the paper.  If you need extra
sheets, ask for them.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed.  Examples:

"Assuming length(List,Length)"
"Assuming 3 / 4 produces a floating point result"

If you have a question you wish to ask, raise your hand and the instructor or teaching assistant will
come to you.  DO NOT leave your seat.

You may use only language elements and predicates that have been studied in class or mentioned in
mail.  Here are some predicates that may be useful: member(X, List),  sum(List, Sum),
length(List, Length),  append(L1,L2,L3),  getone(Element, List,
Remaining).

There are no deductions for poor style.  Anything that works and meets all restrictions will be worth
full credit, but try to keep your solutions brief to save time.

Unless otherwise specified, predicates should produce only one result.

You need not include any explanation in an answer if you are confident it is correct.  However, if an
answer is incorrect, any accompanying explanation may help you earn partial credit.

This is a forty-five minute exam with a total of 100 points and eight possible points of extra credit. 
There are eleven regular problems and an extra credit section with eight problems.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor or the teaching assistant.

When told to begin, double-check that your name and seat/row are recorded at the top of this page,
and then put your initials in the lower right hand corner of each page, being sure to check that you
have all the pages.
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Problem 1: (5 points)

Show an example of each of the following:

A fact:

A rule:

A query:

A clause:

An atom:

Problem 2: (2 points)

What is the relationship between facts, rules, and clauses?

Problem 3: (5 points)

True or false: The following is a working implementation of the member predicate, as studied in
class:

member(X, [X]).
member(X, [_|T]) :- member(X, T).

Problem 4: (5 points)

True or false: The following is a working implementation of the length predicate, as studied in
class:

length([], 0).
length([_|T], Sum) :- length(T, Sum), Sum is Sum + 1.
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Problem 5: (12 points)

Write a predicate sumval(+List, +Value, -Sum) that produces the sum of all occurrences of
Value in the list List.  Assume that Value and all elements in List are integers.  sumval should
produce only one result.  You may abbreviate sumval as sv.

| ?- sumval([3, 2, 1, 1, 3, 1], 1, Sum).
Sum = 3 ?

| ?- sumval([3, 2, 1, 1, 3, 1], 3, Sum).
Sum = 6 ?

| ?- sumval([3, 2, 1, 1, 3, 1], 5, Sum).
Sum = 0 ?

| ?- sumval([ ], 10, Sum).
Sum = 0 ?
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Problem 6: (4 points)

Write a predicate sumvals(+List, +ListOfValues, -Sum) that produces the sum of all
occurrences of members of the list ListOfValues in the list List.  Assume that Value and all
elements in List are integers.  sumvals should produce only one result.  You may abbreviate
sumvals as svs.

Note that the only difference between sumval (the previous problem) and sumvals is that
sumvals has a list of values that are to be included in the sum..

| ?- sumvals([3,2,1,1,3,1], [1], Sum).
Sum = 3 ?

| ?- sumvals([3,2,1,1,3,1], [1,3], Sum).
Sum = 9 ?

| ?- sumvals([3,2,1,1,3,1], [1,3,2], Sum).
Sum = 11 ?

| ?- sumvals([3,2,1,1,3,1], [-1,-3,-2], Sum).
Sum = 0 ?

| ?- sumvals([3,2,1,1,3,1], [], Sum).
Sum = 0 ?

| ?- sumvals([], [], Sum).
Sum = 0 ?

| ?- sumval2([3,2,1,1,3,1], [3,1,1,3,1,3], Sum).
Sum = 9 ?

The order of values in ListOfValues is inconsequential.  Note that a given value may appear
multiple times in ListOfValues but that does not affect the result.
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Problem 7: (12 points)

Write a predicate listeq(+L1, +L2) that succeeds if the lists L1 and L2 are identical and fails
otherwise.  L1 and L2 may be arbitrarily complicated lists but all values will be either integers or lists.

| ?- listeq([1,2,3],[1,2,3]).
yes

| ?- listeq([1,2,3],[1,2,3,4]).
no

| ?- listeq([1,[2,[],[3,4,5],[6],8],  [1,[2,[],[3,4,5],[6],8]).
yes

| ?- listeq([1,[2,[],[3,4,5],[6,[7]]],8],  [1,[2,[],[]]]).
no

| ?- listeq([],[]).
yes

| ?- listeq([],[[]]).
no

The instructor believes there is a significant chance of making a careless error in the answer for
listeq that may result in a major deduction.  BE CAREFUL AND DOUBLE-CHECK YOUR
ANSWER!!
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Problem 8: (15 points)

Write a predicate consec(+Value, +N, +List)  that succeeds if and only if List contains N
consecutive occurrences of Value.  Assume that Value and all elements of List are atoms or
integers.  Assume N > 0.

| ?- consec(a, 2, [b,c,a,a,b,a]).
yes

| ?- consec(a, 2, [b,c,a,b,a]).
no

| ?- consec(a, 1, [b,c,a,b,a]).
yes

| ?- consec(b, 3, [b,b,c,b,bb,bbb,a,b,a]).
no

| ?- consec(b, 3, [b,b,c,b,b,b,a,b,a]).
yes

| ?- consec(1, 4, [a,b,c,d,1,2,3,4,1,1,1,1]).
yes

For this problem you may assume that you have a repl(X, N, List) predicate:

| ?- repl(b,3,L).
L = [b,b,b] ?
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Problem 9: (15 points)

Write a predicate order3(+L1, -L2) that assumes that L1 contains three integers and instantiates
L2 to be a list of those integers in ascending order:

| ?- order3([3,1,4],L).
L = [1,3,4] ?

| ?- order3([4,1,3],L).
L = [1,3,4] ?

| ?- order3([4,-1,3],L).
L = [-1,3,4] ?

| ?- order3([1,1,1],L).
L = [1,1,1] ?

Note: The instructor's solution uses getone(X, L, Remaining).
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Problem 10: (20 points)

In this problem you are to write a predicate inventory/0 that does an inventory calculation for a
fruit stand.  There are instances of fruit/1 and cost/2 for each type of fruit that the stand may
stock.  There are instances of qty/2 (quantity) for each type of fruit that is currently in stock.  

Example:

fruit(apple).
fruit(banana).
fruit(orange).
fruit(pear).

cost(apple, 30).
cost(pear, 50).
cost(banana, 15).
cost(orange, 25).

qty(apple, 3).
qty(orange, 5).

There four types of fruit, and the cost of each is expressed in cents.  There are three apples and five
oranges currently in stock.  For the above collection of facts, inventory does this:

| ?- inventory.
apple: 3 at 30 = $0.90
banana: 0 at 15 = $0.00
orange: 5 at 25 = $1.25
pear: 0 at 50 = $0.00

yes

Note that inventory lists the fruits in the order the fruit facts appear.  The elements in each line
of output are separated only by spaces and thus the output text weaves back and forth.  Note that
inventory always succeeds.

There will be at least one fruit and each fruit fact will have an associated cost fact present.  At least
one fruit will be in stock.  (That is, there will be at least one qty fact.)  Assume that printing a
floating point number with write or format produces two places to the right of the decimal
point—exactly what's needed.
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Problem 11: (5 points)

For each of the two following queries, write in the values computed for each variable.  If a query fails,
indicate it.

| ?- X = [1,2,3], Y = [4|X], [A,B|C] = Y.

A = 

B = 

C = 

| ?- A = [], B = 1, C = [A,B], B = 2, [D,E] = C.

D =

E =

EXTRA CREDIT SECTION (one point each)

(a) What is the Prolog 1000?

(b) In what country was Prolog developed?

(c) What country made a big investment in Prolog?

(d) What language was used for the first implementation of Prolog?

(e) What is the sound of a combinatorial explosion?

(f) What is inaccurate about this specification: append(+L1,+L2,-L3)?

(g) Why is a warning about a singleton variable significant?

(h) Recall that the ML functions ord and chr convert between ASCII character codes and ASCII
characters.  In a Prolog library you see these two predicates: get_chr(+Number, -Char) and
get_ord(+Char, -Number).  What's odd about that?
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Name:_______________________________________   Seat row and number:  __________

CSc 372, Fall 2001
Final Examination
December 14, 2001

READ THIS FIRST

Fill in your name and seat row/number above.

Do not turn this page until you are told to begin.

DO NOT use your own paper.  DO NOT write on the opposite side of the paper.  If you need extra
sheets, ask for them.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed.

If you have a question you wish to ask, raise your hand and the instructor or teaching assistant will
come to you.  DO NOT leave your seat.

For the problems that ask you to write Emacs Lisp or Icon code, you may use all elements of the
language and libraries, whether or not they were covered in class.  For the ML and Prolog problems
you may use only the elements of the language and libraries that were studied in class.

It is tedious to properly match parentheses when writing Lisp code on paper.  You may draw brackets
to indicate the intended grouping of your Lisp code.

Aside from problem 7, there are no deductions for poor style.  Anything that works and meets all
restrictions will be worth full credit, but try to keep your solutions brief to save time.

You need not include any explanation in an answer if you are confident it is correct.  However, if an
answer is incorrect, any accompanying explanation may help you earn partial credit.

This is a 110 minute exam with a total of 100 points and nine possible points of extra credit.  There
are twelve regular problems and an extra credit section with six problems.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor or the teaching assistant.

When told to begin, double-check that your name and seat/row are recorded at the top of this page
then put your initials in the lower right-hand corner of each page, being sure to check that you have
all the pages.
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Quick reference for some possibly useful Emacs Lisp functions
(You may tear this page out)

(char-after N) Returns the character after the Nth position in the buffer.

(delete-char N) Deletes N characters following the point.

(delete-region B E) Deletes text between buffer positions B and E.

(eobp)  Tests whether the point is at the end of the buffer.

(forward-line N) Moves to the beginning of the Nth line relative to the current line.  N may
be zero or negative.

(get-empty-buffer B)  Creates an empty buffer named B.

(goto-char N) Sets the point to position N.

(int-to-string N) Converts the integer N to a string.

(not E) Returns t if E is nil; returns nil otherwise.

(sit-for 0 N) Pauses for N milliseconds.

(switch-to-buffer B)  Switches to the buffer named B.

(window-height) Returns the height of the current window.

(window-width) Returns the width of the current window.
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Problem 1: (7 points)

Write an Emacs Lisp function change that changes every letter in the current buffer to "x", and
every decimal digit to "#" .  You may assume the presence of a function letterp that returns t if
the function's argument is a letter and nil otherwise.  For example, (letterp ?A) returns t. 
Assume a similar function, digitp, to test if a character is a decimal digit.

These buffer contents:

On February 14, 1912, Arizona became
the 48th state.

would be changed to this:

xx xxxxxxxx ##, ####, xxxxxxx xxxxxx
xxx ##xx xxxxx.
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IMPORTANT: Select and solve two of the next three
problems (problems 2, 3, and 4).   If you do all three, the first
two will be graded.  Problem 2 carries a three point extra
credit bonus.

Problem 2: (15 points, plus 3 of extra credit—do only two of problems 2, 3, and 4)

When editing text it is sometimes useful to know the column in which certain text appears.  In this
problem you are to write an Emacs Lisp function named ruler, bound to ESC-R, that inserts a
"ruler" before the current line.  The ruler disappears when the user strikes any key and the position of
the point is restored to what it was initially.

For example, consider the following buffer contents and imagine that the cursor is positioned on the
"e" in "while".

    (goto-char 1)
    (while (not (= (point) (point-max)))
        (setq char (char-after (point)))

The user then types ESC-R and a two-line ruler with column positions is inserted in the text before the
current line:

    (goto-char 1)
         1         2         3         4         5         6    
12345678901234567890123456789012345678901234567890123456789012345
    (while (not (= (point) (point-max)))
        (setq char (char-after (point)))

We can see that the "w" is in column six and the last parenthesis is in column forty.  The ruler should

be as wide as the window, which can be assumed to be less than 100 characters in width.

When the user types any character, the text of the ruler is removed and the buffer is restored to its
original state, with the cursor positioned on the "e" in "while":

    (goto-char 1)
    (while (not (= (point) (point-max)))
        (setq char (char-after (point)))

Note that the ruler is created by inserting text in the buffer.  (read-char) is then called to read a
character of input and when read-char returns, the inserted text is deleted.

A blank page follows.
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(Space for solution for problem 2)

For reference:

         1         2         3         4         5         6    
12345678901234567890123456789012345678901234567890123456789012345
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Problem 3: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function longest that positions the cursor at the beginning of the longest line
in the current buffer.  If there are ties for the longest line, choose the first one.
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Problem 4: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function marquee that displays a horizontally scrolling line of text.  (There is a
standard Windows screen saver having the same name.)  The user is prompted for the text to display
with Text?.  The text is displayed at the left side of the center line of the window.  Every 70
milliseconds, the leftmost character is removed and put at the right end of the string.  This creates a
perception of the text moving from right to left.  The text is displayed in a buffer named "*m*".

For the text "CSc 372 Final Examination..." the line being displayed would first be this:

CSc 372 Final Examination...

then this:

Sc 372 Final Examination...C

then this:

c 372 Final Examination...CS

then this:

 372 Final Examination...CSc

and so forth.

marquee never terminates on its own.  It runs until the user terminates it.

A blank page follows.
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(Space for solution for problem 4)
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Problem 5: (9 points)

Background: In Icon, built-in functions supply default values for omitted arguments when there's a
reasonable default.  Emacs Lisp is very inconsistent in this regard.  For example, the count for
forward-line is optional but the count for delete-char is required.  The instructor believes
that consistent use of reasonable defaults would be an improvement for Emacs Lisp.

Problem: Identify two more elements from ML, Icon, Prolog, and/or Java that would be
improvements for Emacs Lisp.  Briefly describe how Emacs Lisp would benefit from their inclusion. 
The elements may be from the same language or from different languages.
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Problem 6: (6 points)

Write an ML function rm_prefix(P, L) that ASSUMES that P is a prefix of the list L and returns
a copy of L with P removed.

- rm_prefix([1,2],[1,2,3,4]);
val it = [3,4] : int list

- rm_prefix([ ], [5,10,20]);
val it = [5,10,20] : int list

- rm_prefix(explode "test", explode "testing");
val it = [#"i",#"n",#"g"] : char list

- implode(rm_prefix(explode "test", explode "testing"));
val it = "ing" : string

Be sure to keep in mind that rm_prefix ASSUMES that P is a prefix of L:

- rm_prefix([1,2], [3,4,5]);
val it = [5] : int list

- rm_prefix([1,2,3], explode "testing");
val it = [#"t",#"i",#"n",#"g"] : char list

- rm_prefix([1.0,2.0],[5,4,3,2,1]);
val it = [3,2,1] : int list
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Problem 7: (2 points)

Write an ML function listeq(L1, L2) that returns true if the lists L1 and L2 are identical and
returns false otherwise.  Style does matter on this problem.

- listeq;
val it = fn : ''a * ''a -> bool

- listeq([1,2,3],[1,2,3]);
val it = true : bool

- listeq(explode "testing", explode "test");
val it = false : bool

- listeq([[],[],[]], [[],[],[]]);
val it = true : bool

Problem 8: (8 points)

Write an Icon procedure extsort(L) that accepts a list of file names and sorts them by their
extension.

][ extsort(["x.icn","test.c","b.java","a.c","a.java"]);
   r := ["a.c","test.c","x.icn","a.java","b.java"]  (list)

You may assume that file names contain exactly one dot.  Files with the same extension may appear
in any order.  (In the above, for example, it would be acceptable for "test.c" to precede "a.c".)
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Problem 9: (8 points)

Write a Prolog predicate find(+N, [-A,-B,-C]) that produces all combinations of integers
between 1 and N inclusive such that N = A * B - C.  You may assume that you have a predicate
iota(+N,-L) that instantiates L to a list of the integers from 1 through N.

Examples:

| ?- find(5,R).
R = [2,3,1] ? ;
R = [2,4,3] ? ;
R = [3,2,1] ? ;
R = [4,2,3] ? ;
no

| ?- find(4,R).
no

| ?- find(100,R).
R = [2,52,4] ? ;
R = [2,53,6] ? ;
R = [2,54,8] ? ;
...lots more...

Important: Each integer may appear only once in a given result.  There should never be a result like
R = [5,5,5] or R = [7,1,7].

Hint: This is the instructor's second and final attempt (no pun intended) to get everybody to use
getone(X, L, R) on a test.
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Problem 10: (10 points)

Pick one interesting element from any of the languages we have studied and, in the style of an e-mail
note, describe that element to a colleague familiar only with Java programming.  Be sure to talk about
the syntactic form, the operation, and describe a practical usage of the element.
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Problem 11: (10 points)

There have been two notable attempts to produce a single language to meet the needs of the majority
of programmers.  In the 1960s, the language PL/I was created to serve both the business and scientific
programming communities.  In the 1970s, the Department of Defense sponsored the development of
the Ada programming language, which was to be used for DoD software systems whenever possible.  

Present an argument either for or against the prospect of a single language becoming dominant for the
majority of software development.  Here are some points to possibly consider: What major elements
would a dominant language need to have?  How might such a language come into existence?  What
are forces that would work in opposition to a language becoming dominant?
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Problem 12: (10 points)

For five points each, answer TWO of the following questions.  If more than two questions are
answered, only the first answers on the paper will be graded.

(A) In languages like Java, C++, and ML, words like "if", "fun", and "class" are called reserved
words—they can't be used for variable or routine names.  The PL/I language has no reserved words. 
One can write statements like if = while + then(else).  What are some advantages and/or
disadvantages to having no reserved words?  Disregard issues related to compiling languages with no
reserved words.

(B) Icon has several polymorphic operators and functions.  For example, the unary * operator returns
the number of elements in an object.  The delete function removes elements from sets and tables.
What are some tradeoffs that a language designer must take into account when considering inclusion
of a polymorphic operation in a language?

(C) Imagine a language that has heterogeneous lists like Prolog, Icon, and Lisp, but that also has a
tuple type that is very similar to ML.  Present an argument either for or against the claim that if a
language has heterogeneous lists, tuples provide no additional benefit.

(D) What do Java's exception handling mechanism and Icon's failure mechanism have in common?

(E) The instructor said that "every programmer should have a language like Icon in their toolbox". 
What are the characteristics of Icon, and similar languages, that make it worthwhile to know such a
language in addition to mainstream languages like Java and C++?  (Or, argue that knowing a single
language like Java or C++, and knowing it well, is all that's needed.)

(F) A language implemented in C, such as Emacs Lisp,  typically has some library functions coded in
C and the balance coded in the language itself.  What factors influence whether a function is
implemented in the language itself?

A blank page follows.
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(Space for answers for problem 12)
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EXTRA CREDIT SECTION (one point each)

(a) What's the difference between a hack and programming technique?

(b) Order these languages from oldest to youngest: Icon, Java, Lisp, ML, Prolog.

(c) Write an expression that is valid in three of the languages we studied but with a notably different
interpretation in each.

(d) As of midnight on December 12, how many messages have been sent to the CSc 372 mailing list? 
(Your answer must be within 10%.)

(e) The instructor has immediate plans to rewrite the Icon assignments in another language to see how
that language compares to Icon.  What's the language?

(f) What is the type of rm_prefix (problem 6)?
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CS login: ___________ Seat Number: _____

CSc 372 Mid-Term Examination

October 17, 2006

READ THIS FIRST

Read this page now but do not turn this page until you are directed to do so.  Go ahead and fill in your login and seat number.

This is a 60-minute exam with a total of 100 points of regular questions and an extra credit section.

You are allowed no reference materials whatsoever.

If you run out of room, write on the back of a page.  DO NOT use sheets of your own paper.

If you have a question, raise your hand.  One of us will come to you.  DO NOT leave your seat!

There is an exam-wide restriction: You may not use regular expressions or hashes in a Ruby solution.

If you have a question that can be safely resolved with a minor assumption, state the assumption and proceed.  Examples:

Assuming String.sub is string * int -> char

Assuming tl [] returns [].

Assuming String#downcase!  imperatively converts all capitals to lower case.

BE CAREFUL with assumptions that dramatically change the difficulty of a problem.  If in doubt, ask a question.

Unless explicitly prohibited on a problem you may use helper functions/methods.

Don't waste time by creating solutions that are more general, more efficient, etc. than required.  Take full advantage of
whatever assumptions are stated.

As a broad rule when grading, we consider whether it would be likely if the error would be easily found and fixed if one were
able to run it.  For example, something like i + x instead of i + x.to_i, or forgetting a chomp will be typically a minor

deduction at worst.  On the other hand, an error that possibly shows a fundamental misunderstanding, such as a yield with

no argument for a block that expects one, will often lead to a large deduction.

Feel free to use abbreviated notation such as I often use when writing on the Elmo.  For example, you might use a ditto
instead of writing out the function name for each case or abbreviate a function/method name to a_b_c or ABC.  Don't worry

about matching parentheses at the end of a line—just write plenty and we'll know what you mean.

You need not include any explanation in an answer if you are confident it is correct. However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that will certainly earn
no credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials, or some other
distinctive mark, in the lower right hand corner of each page.

BE SURE to check that you have all 12 pages.

When you have completed the exam, enter your name on the exam sign-out log and then hand your exam to the instructor.
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Problem 1:  (5 points)

The instructor often says "In ML we never change anything; we only make new things."  What does he
mean by that?

Problem 2:  (5 points)

(a) Write an ML function fun firstLast(L) that returns a tuple consisting of the the first and last
elements of the list L.  Assume L has at least one element.  Restriction: You may use helper functions
but you may use no functions other than functions you write.  Hint: Write a helper function
last(L).

(b) What is the type of firstLast?

Problem 3:  (5 points)

Consider a list of one-element lists:

[[10], [2], [5], [77]]

Imagine an ML function f that will "flatten" such lists, like this:

- f [[10], [2], [5], [77]];
 val it = [10,2,5,77] : int list

Using at most eight (8) characters, fill in the blank below to create f:

val f = _ _ _ _ _ _ _ _
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Problem 4:  (6 points)

Write an ML function eo(L) that returns a list consisting of every other element of the list L.  (That is,
the 2nd, 4th, 6th, 8th, ... elements.) Restriction: You may use helper functions but you may use no
functions other than functions you write.  Examples:

- eo [1,7,9,12];
val it = [7,12] : int list

- eo [5,3,10];
val it = [3] : int list

- eo (iota 10);
val it = [2,4,6,8,10] : int list

Problem 5:  (12 points)

Without writing a function that is directly or indirectly recursive, write an ML function
ints_to_string(L) that produces a string representation of L, an int list.  As shown below, the
values are separated by a comma and a space.  If you wish, you may use Int.toString, of type int
-> string, to convert individual values.  (It produces "~3" for ~3.)  Examples:

- ints_to_string([10,5,3,~3]);
val it = "10, 5, 3, ~3" : string

- ints_to_string([123]);
val it = "123" : string

- ints_to_string([]);
val it = "" : string
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Problem 6:  (15 points)

Without writing a function that is directly or indirectly recursive, write an ML function
show_lists(L) of type (string * int list) list -> unit that prints the contents of L,
prefixing each int list with the specified label.  Example:

- show_lists [("a",[3,5,1]),("list2",[]),("c",(iota 10))];
a: 3, 5, 1
list2: <empty>
c: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
val it = () : unit

- show_lists [("Result(s)", [10])];
Result(s): 10
val it = () : unit

- show_lists [];
val it = () : unit

Note that if a tuple's int list is empty, the string "<empty>" is printed.  Be sure that your solution
does not produce any trailing whitespace—the last digit, or "<empty>", should be immediately followed
by a newline.

If you wish, you may make use of  ints_to_string, from the previous problem.  (Assume a working
version.)
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Problem 7:  (10 points)

Consider a folding that operates on an int list with an even number of values, all greater than zero,
and produces a list of pair-wise sums: [1st+2nd, 3rd+4th, ..., (N-1)th+Nth]

Example:

- foldr f [] [5,7, 3,4, 9,8];
val it = [12,7,17] : int list

- foldr f [] [10,20];
val it = [30] : int list

- foldr f [] [4,1, 3,2, 2,3, 4,1];
val it = [5,5,5,5] : int list

In this problem you are to write a function f such that the above foldings work as shown.

Hint: Remember the technique of writing out a fixed expansion of the calls, like
f(e1,f(e2,f(e3,[]))), to help develop the function to fold with.

Keep in mind that you are writing a function to use with foldr, not a function that performs this pair-
wise summing directly.

Hint: I think that to create an exam-size solution you must take advantage of the fact that all values are
greater than zero.  If you don't quickly see an approach, you may be wise to skip this problem and come
back to it if time permits.
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Problem 8:  (4 points)

(a) Is the following ML function declaration valid?  If valid, what is the type of f1?  If not valid, explain
why it is not valid.

fun f1 () f2 () = [f2];

(b) Write an ML function g whose type is 

int -> (int list * int) -> (string list) -> (bool * real)

UNLIKE ftypes.sml on the first assignment, there are no restrictions on this problem.

Problem 9:  (4 points)

(a) Using nothing but a val binding and the composition operator, create an ML function f(s) that
returns a copy of the string s with the first and last characters removed.  Assume that size(s) >= 2.

Examples:

- f "string";
val it = "trin" : string

- f "ab";
val it = "" : string

- f "abc";
val it = "b" : string

The requirements imply that your solution must look like this:

val f = f1 o f2 o ... o fN.

(b) As you've defined it, what is the type of f?  (Don't forget to properly account for the intermediate
functions in the composition.)
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Problem 10:  (16 points)

When showing examples of interaction with irb it saves space to put both the expression and the result on
the same line.  However, it is tedious to left-align the results in a column.

Write a Ruby program that reads from standard input a script of interaction with irb and combines the
expressions and results on a single line, vertically aligning the results, based on the longest input
expression.  Each combined line is followed by a blank-line.

An optional command line argument specifies the number of spaces between the end of the longest input
expression and its result.  (Assume the specified spacing is good, not "x", "5x" or "-3", for example.) 
If no argument is specified, one space is used.  Example:

% cat irbfmt.1
>> 3+4
=> 7
>> a = %w{words in array}
=> ["words", "in", "array"]
>> a.max
=> "words"
% ruby irbfmt.rb 3 < irbfmt.1   # NOTE: 3 spaces before "=>"
>> 3+4                      => 7

>> a = %w{words in array}   => ["words", "in", "array"]

>> a.max                    => "words"

%

Because expressions and results should always be paired, it is an error if the number of input lines is odd:

% cat irbfmt.2
>> 3*7
=> 21
>> it.class
% ruby irbfmt.rb < irbfmt.2
Error: short input

Write your answer below or use the whole page that follows.

Don't forget to handle the optional command-line argument.
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(Space for irbfmt.rb)
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Problem 11:  (2 points)

Write a Ruby program that reads all lines from standard input and prints them on standard output in
reverse order, last line first, first line last.  Assume there is at least one line and that the file ends with a
newline.

% cat revlines.1
reverse
the
order
% ruby revlines.rb < revlines.1
order
the
reverse
%

For two points of extra credit, have less than 25 characters in your solution.  (No abbreviations on this
one!)  To help you pursue this option, here are 24 blanks:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Problem 12:  (3 points)

Here is a line of code from a Ruby method:

line = (gets || return)

Imagining the reader to be a Java programmer with no knowledge whatsoever of Ruby, explain its
operation in each of the possible cases that might arise when it executes.  Ignore the open-command-line-
arguments-as-files-and-read-them behavior of gets.
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Problem 13:  (8 points)

Write a Ruby iterator named upto_limit(a, limit).  The argument a is an array of integers;
limit is an integer.  upto_limit yields the values of a in turn (a[0], a[1], ...) continuing while the
sum of the yielded values is less than or equal to limit.  upto_limit returns a.

>> upto_limit([1,2,3], 5) { |x| puts x }
1
2
=> [1, 2, 3]

>> upto_limit([1,1,1,1],3) { |x| puts x }
1
1
1
=> [1, 1, 1, 1]

>> sum = 0
=> 0
>> upto_limit([10,20,30,40], 1000) { |x| sum += x }
=> [10, 20, 30, 40]
>> sum
=> 100

>> upto_limit([0,0,0,1], 0) { |x| puts x }
0
0
0
=> [0, 0, 0, 1]
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Problem 14:  (5 points)

Write a Ruby method extract(s, m, n) that extracts a portion of a string that represents a
hierarchical data structure. m is a major index and n is a minor index. Major sections of the string are
delimited by slashes and are composed of minor sections separated by colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one minor sections. A call such as
extract(s, 3, 2) should locate the third major section ("10:2:4" in the string above) and return
the second minor section therein ("2"). If either section number is out of bounds, extract returns nil.  
Assume that m and n are greater than zero and that s is well-formed.

>> s = "/a:b/apple:orange/10:2:4/xyz/"
=> "/a:b/apple:orange/10:2:4/xyz/"

>> extract(s,1,1)    => "a"

>> extract(s,1,2)    => "b"

>> extract(s,3,3)    => "4"

>> extract(s,4,1)    => "xyz"

>> extract(s,4,2)    => nil

>> extract(s,10,1)   => nil

Hint: Assume that "|20|1|300|".split("|") produces ["20", "1", "300"].
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Extra Credit Section (one point each unless otherwise indicated)

(1) Imagine that you have an ML function named f and a Ruby method named f.  Does [f] produce an
analogous result in both languages?  If not, how do the results differ? 

(2) For up to three points name three programming languages developed at the University of Arizona
and give an example of a valid expression in each that involves an operator.

(3) For one point each, write curry and uncurry in ML.

(4) Assuming that s is a string, what is a Ruby expression that produces the same effect as s.dup but is
both shorter and more difficult to type?

(5) What element of Ruby most closely corresponds to an anonymous function in ML?

(6) Simplify this Ruby expression: if a[0] == nil then false else true end

(7) Cite a contribution to knowledge made by Ralph Griswold.

(8) (Up to five points.) Offer some intelligent observations about the applicability of type deduction, or
something similar, in Ruby.
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CS login: ___________ Seat Number: _____

CSc 372 Final Examination

December 14, 2006

READ THIS FIRST

Read this page now but do not turn this page until you are directed to do so.  Go ahead and fill in your login and seat number.

This is a 105-minute exam with a total of 100 points of regular questions and an extra credit section.

You are allowed no reference materials whatsoever.

If you run out of room, write on the back of a page.  DO NOT use sheets of your own paper.

If you have a question, raise your hand.  One of us will come to you.  DO NOT leave your seat!

If you have a question that can be safely resolved with a minor assumption, state the assumption and proceed.  Examples:

Assuming select(?Elem, ?List, ?Remaining)

Assuming String#downcase!  imperatively converts all capitals to lower case.

BE CAREFUL with assumptions that dramatically change the difficulty of a problem.  If in doubt, ask a question.

Unless explicitly prohibited on a problem you may use helper functions/methods.

Don't waste time by creating solutions that are more general, more efficient, etc. than required.  Take full advantage of
whatever assumptions are stated.

As a broad rule when grading, we consider whether it would be likely if the error would be easily found and fixed if one were
able to run it.  For example, something like i + x instead of i + x.to_i, or forgetting a chomp will be typically a minor

deduction at worst.  On the other hand, an error that possibly shows a fundamental misunderstanding, such as a yield with

no argument for a block that expects one, will often lead to a large deduction.

Feel free to use abbreviated notation such as I often use when writing on the Elmo.  For example, you might use a ditto
instead of writing out the function name for each case or abbreviate a function/method name to a_b_c or ABC.  Don't worry

about matching parentheses at the end of a line—just write plenty and we'll know what you mean.

You need not include any explanation in an answer if you are confident it is correct. However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that will certainly earn
no credit.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with violations may still be
worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials, or some other
distinctive mark, in the lower right hand corner of each page.

BE SURE to check that you have all 15 pages.

When you have completed the exam, enter your name on the exam sign-out log and then hand your exam to the instructor.
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Problem 1:  (13 points)

In this problem you are to write a Ruby program xref.rb that prints a cross-reference table of what
identifiers appear on which lines in a Ruby program.  Here is a source file:

% cat -n map.rb
     1  def map(a)
     2      map_result = []
     3      for x in a do
     4          block_result = yield x
     5          map_result << block_result
     6      end
     7      return map_result
     8  end

NOTE THAT cat-n is being used to show line numbers.  The file itself does not include those numbers.

Here is what xref does with map.rb:

% ruby xref.rb < map.rb
a: 1, 3
block_result: 4, 5
map: 1
map_result: 2, 5, 7
x: 3, 4

We see that the identifier a appears on lines 1 and 3.  block_result appears on lines 4 and 5, etc.  A
given line number will appear only once for an identifier, no matter how many times the identifier appears
on a line.

Here are some simplifications:

Assume that $id_re is a regular expression that matches identifiers.  You might use it with
String#scan:

>> "def map(a)".scan($id_re)
=> ["def", "map", "a"]

Assume that $kwds is an array of identifiers to ignore, like $kwds = ["def", "end" ...]

Recall that sorting a hash produces a list of two-element lists that are key/value pairs ordered by the
keys:

>> h = {"a", 10, "b", 20}
=> {"a"=>10, "b"=>20}

>> h.sort
=> [["a", 10], ["b", 20]]

Array#uniq returns a copy of the array with all duplicates removed.
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(Space for solution for problem 1.)

Data point: the instructor's solution is 13 lines in length. % cat -n map.rb
     1  def map(a)
     2      map_result = [ ]
     3      for x in a do
     4          block_result = yield x
     5          map_result << block_result
     6      end
     7      return map_result
     8  end
% ruby xref.rb < map.rb
a: 1, 3
block_result: 4, 5
map: 1
map_result: 2, 5, 7
x: 3, 4
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Problem 2:  (8 points)

The connect predicate on assignment 9 printed a representation of a sequence of cables.  In this problem
you are to write a Ruby method parse_layout(s) that parses such a representation and returns an
array of arrays representing the cables.

>> parse_layout("M---MF-MF----M")
=> [["m", 3, "m"], ["f", 1, "m"], ["f", 4, "m"]]

>> parse_layout("F-------F")
=> [["f", 7, "f"]]

Assume that the input is well-formed, that there will always be at least one cable, and that all cables will be
at least one unit long.

Problem 3:  (2 points)

Specify the contents of a Ruby source file, tptnf.rb, such that after loading it, 2+2 is not 4.  Example:

>> 2 + 2 == 4
=> true

>> load "tptnf.rb"
=> true

>> 2 + 2 == 4
=> false

Hint: Don't make this a hard problem.  If your solution exhibits the above behavior it will be considered
correct—behavior for all other cases is of no concern.
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Problem 4:  (4 points)

The built-in Prolog predicate between(+Low, +High, -Value) instantiates Value to each integer
between Low and High, inclusive.  The built-in predicate numlist(+Low, +High, -List)
instantiates List to a list of the integers between Low and High, inclusive.

(a) In a non-recursive way, implement between(+Low, +High, -Value).  You may use any
predicates you wish, except for between/3.

(b) In a non-recursive way, implement numlist(+Low, +High, -Value).  You may use any
predicates you wish, except for numlist/3.

Incidentally, another way to think about this pair of predicates is this:  (a) Using numlist, implement
between.  (b) Using between, implement numlist.

Problem 5:  (6 points)

Write a Prolog predicate idpfx(+List, -Prefix) that instantiates Prefix to the longest prefix of
List such that all elements of the prefix are identical.  Assume that List has at least one element. 
idpfx always produces exactly one result.   Examples:

?- idpfx([3,3,1,5],P).
P = [3, 3] 

?- idpfx([1,2,3],P).
P = [1]

?- idpfx([3,3,3,5,3],P).
P = [3, 3, 3] ;
No

Hint: Recall that the first result of the query append(A,B,[1,2]) is A = [], B = [1, 2].

You may use the predicate allsame(L) from the slides, which succeeds iff all values in L are identical.
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Problem 6:  (14 points)

Write a predicate show_cost(C) that prints a description and cost of the cable C.  Cables are
represented using a structure with the functor cable.  The structure cable(m,2,f) represents a
2-foot cable with a male connector on one end and a female connector on the other.

A set of cost facts represents the cost of the various components.  For example, the facts

cost(male, 2.0).  cost(female, 3.0).  cost(foot, 0.50).

indicate that male connectors are $2.00, females are $3.00 and each foot of cable costs 50 cents.  The
cost of a cable is the sum of the cost of its components.

Here is a call to show_cost:

?- show_cost(cable(m,3,f)).
3-foot female to male: $6.50
Yes

IMPORTANT:  If a cable has both a male and female connector, the output produced by show_cost
ALWAYS describes the cable as "...female to male...", i.e., "female" first.  (A cable is NEVER
shown as "...male to female..."!)

IMPORTANT: Note that although "m" and "f" are used in the cable structure, "male" and "female"
are output in the description.

Don't worry about any sort of error checking.
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Problem 7:  (7 points)

Write a predicate halves(+L,-H1,-H2) that instantiates H1 and H2 to the first and second halves of
the list L, respectively.  halves fails if L has an odd number of elements.  halves produces at most
one result.  Examples:

?- halves([1,2,3,4], H1, H2).
H1 = [1, 2]
H2 = [3, 4] 

?- halves([1,2,3], H1, H2).
No

?- halves([],H1,H2).
H1 = []
H2 = [] 

For three points of extra credit, use no more than three goals to implement halves.  (Goals, not
clauses!)

Problem 8:  (8 points)

NOTE: This problem is far harder than the eight points it is worth.  It my be wise to save it for last.

RESTRICTION: You must base your solution on the "pick one (with select/3), try it, solve with

what's left" idiom shown in the slides with brick laying and also used in the instructor's solution for
connect on assignment 9.  In particular, YOU MAY NOT USE the built-in permutation/2

predicate or a similar predicate that you write yourself.

Write a predicate wseq(+Words,-Seq) that finds a sequence of the atoms in Words such that the last
character of each atom is the same as the first character of the next atom.  Here is a simple example:

?- wseq([pop, up],S).
S = [up, pop] 

The sequence is valid because "up" ends in the same letter, "p", that "pop" starts with.



Page 8 of 15

Here is a longer example:

?- wseq([slowly,the,apples,test,extra],Seq).
Seq = [test, the, extra, apples, slowly] 

wseq produces all valid sequences:

?- wseq([tic,cat],S).
S = [tic, cat] ;
S = [cat, tic] ;
No

wseq fails if there is no valid sequence:

?- wseq([tic,tac],Seq).
No

Assume that there is at least one word—wseq always succeeds in that case—and that each word has at
least one character.
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Problem 9:  (2 points each; 16 points total)

Answer the following questions.  A sentence or two, maybe three should be sufficient in most cases.

The expression (f 1 2) has meaning in both ML and Emacs Lisp.  In Emacs Lisp it means to call the
function f with the arguments 1 and 2.  Does it mean the same thing in ML?  If not, what does it mean?

It's well known that thinking up names for variables and functions is not always easy and that bad names
make code harder to understand.  This is sometimes called the "naming problem".  It can be said that with
respect to Java, one of our three primary languages makes the naming problem worse.  Another of the
three lessens the naming problem.  The third is roughly neutral—it requires about as much naming as Java.
Which language is which?  Briefly state why.

With the Icon programming language in mind, what's meant by the term "failure"?  Show two distinct
examples of expressions that can fail or succeed depending on the values of the variables involved.

Prolog has predicates for comparison like >/2 and ==/2 but it does not have predicates for arithmetic
like, +/2 and */2.  Why is that?

Which does Prolog use—compile-time type checking or run-time type checking?  Or does the notion of
type-checking not really apply to Prolog?  Support your answer with a brief argument.
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Ruby's designer elected to have string[n] produce a integer character code instead of a one-character
string.  Ignoring possible performance considerations write a brief argument either in favor of this design
decision or against it.

Write a simple Ruby method that takes advantage of duck typing and briefly explain how duck typing
allows the code to be simpler, or more expressive, or etc.

What is meant by the term "syntactic sugar"?

Problem 10:  (1 point each; 4 points total)

Characterize each statement below as true or false.

____ The instructor prefers the term "scripting language" to categorize languages like Icon, Perl, Python,
and Ruby.

____ In Icon, the expression write(1 to 10) prints the numbers from 1 through 10.

____ The Prolog fact p([A,B,C]) indicates that p(X) is true iff X is a three-element list whose values
are all different.

____ The regular expression /[a-z][x][123]/ can be written more concisely.
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Problem 11:  (18 points)

Answer any one, two or three of the following questions.  If you choose to answer only one you'll need to
have about three times as much depth or breadth as if you address all three.

Question 1:

Choose one of our three primary languages and take the position that it should be used to replace
Java in CSc 127A/B.  Present an argument in favor of this replacement.  Your argument should
point out aspects of your chosen language, and possibly the accompanying environment, that
facilitate teaching fundamental concepts of programming and creation of interesting programming
assignments.  Also identify the greatest weakness of using the language in an introductory class and
then address how to minimize the impact of that weakness.

Do not bother to address the fact that the replacement is not Java and therefore wouldn't take
advantage of high school AP programs, be as widely accepted in industry, etc.

This question can be successfully answered using any of the three languages—you don't need to
pick the one that you might think the instructor would pick.

Question 2:

A fundamental choice in a programming language is whether it does type checking when source
code is compiled.  Some languages forego analysis of types at compile time and instead only detect
type mismatches when the code is executed.  Programmers have a variety of opinions of the merit
of the two approaches.  Some favor compile-time checking for all software development; some
avoid compile-time type checking like the plague.  Describe your preferred position on the type-
checking question and provide a rationale for it.  Your position need not be polar—you might favor
compile-time checking in some cases and not in others.

Question 3:

A programming language can be thought of as a system for describing computation.  There are
many examples of descriptive systems in the world but few if any descriptive realms have the
variety of choices that are available in the realm of programming languages.  What has motivated
computer scientists to create so many different programming languages?
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(Space for essay question responses.)
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Problem 12:  (6 points, EXTRA CREDIT)

Using the parsing idiom supported by Prolog's rule notation, write a predicate parse(S) that parses a
simple Ruby string subscripting expression and outputs a line representing a method call that performs the
same computation.

?- parse('s[1]').
s.charAt(1)
Yes

?- parse('line[10,20]').
line.substr(10,20)
Yes

parse(S) fails if S is anything other than a subscripting expression of one of the two forms above.

Assume the indexing values are integers, as shown in the examples above.

Assume you have a grammar rule id(Ident) that recognizes an identifier and instantiates Ident to
atom, like 's' and 'line' for the above.

Assume you have a grammar rule digits(Digits) that recognizes a sequence of digits and
instantiates Digits to an atom consisting of the digits, just like in listsum on assignment 9.
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Extra Credit Section (one half-point each unless otherwise indicated)

(1) What programming language in the SNOBOL/Icon family was developed between SNOBOL4 and
Icon?

(2) Name a programming language that allegedly supports more than seven (7) programming paradigms.

(3) Order these languages by age, oldest to youngest: Java, Icon, Lisp, ML, Ruby, Scala.

(4) (2 points) Write an ML function eq(L1,L2) of type 'a list * 'a list -> bool that
returns true iff the lists L1 and L2 are equal.  Be sure to accommodate lists that contain lists.

(5) Imagining that Ruby has Icon's notion of failure, rewrite the following code to take advantage of
failure:

for i in 0...len
c = self[start+i]

    if c then
        r += c.chr
    end
end

(6) What is a connection of sorts between Java and constraint programming?

(7) In three words or less, describe Icon in terms of the languages we studied this semester.

(8) In three words or less, describe Scala in terms of the languages we studied this semester.
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(9) The names Java, Ruby and Icon are not acronyms.  Create a humorous acronym for each that is
somehow related to the language, like Lisp: Lost In Stupid Parentheses.  (1/2 point each)

(10) (1 point) In SWI-Prolog the query ?- X. produces an "Easter Egg" that alludes to a well-known
book.  What is the title of that book?

(11) Who was the central character in the short film Jarwars Episode III, Revenge of the <T>?

(12) According to assigned reading, the only well-known scholarly paper published by Bill Gates
concerned what problem?

(13) On every lecture day the instructor ate breakfast at Millie's Pancake House.  Estimate the total
number of pancakes he consumed at Millie's during those breakfasts.

(14) (2 points) In any language you wish, write a program to read this exam as plain text on standard
input and output the total number of points for all the regular problems, i.e., don't worry about this
extra credit section.  Hint: Here's a 0-point solution: puts 100
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Problem 1:  (15 points)

What is the type of the following values?  If the expression is invalid, briefly state why.

Assume numbers have the type Int.  Remember that the type of True is Bool.  

"x"

 
(1,'x',[True])

["x":[]]

head

not . not . isLetter

map not

(+1) . (0<)

\x -> x + 1

[1,'2',"3"]

isDigit . chr . head . (:[]) . (+3) . ord . chr

    Hint: the composition is valid.  Here are some types:
ord :: Char -> Int

          chr :: Int -> Char
          isDigit :: Char -> Bool
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Problem 2:  (12 points) (two points each)

Using no functions other than helper functions you write yourself, implement the following Prelude

functions.  

Note: There will be a ½-point penalty for each case of not using the wildcard pattern (the underscore)

where it would be appropriate.

head

tail

length

sum

last  (Return error "empty" if the list is empty.)

snd (Returns second element of a 2-tuple)
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Problem 3:  (10 points)

Write a function prswap that swaps the elements of a list on a pair-wise basis.  That is, the first and

second elements are swapped, the third and fourth are swapped, etc.

ASSUME the list has an even number of elements but is possibly empty.

> prswap [1..6]
[2,1,4,3,6,5]

> prswap "abcd"
"badc"

> prswap [False,True,True,False]
[True,False,False,True]

> prswap []
[]

> :t prswap
prswap :: [a] -> [a]

There are no restrictions on this problem.
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Problem 4:  (10 points) 

Write a function rotabc that changes a's to b's, b's to c's and c's to a's in a string.  Only lowercase

letters are affected.

> rotabc "abc"
"bca"

> rotabc "test"
"test"

> rotabc "aaaaa"
"bbbbb"

> rotabc "ababab"
"bcbcbc"

> rotabc "cabinet"
"abcinet"

> :t rotabc
rotabc :: [Char] -> [Char]

There are no restrictions on this problem but it must be written out in full detail—no ditto marks,

abbreviations, etc.  It must be ready for an ASU or UNC-CH CS graduate to type in.

This is essentially like xlt "abc" "bca" with editstr from assignment 1 but don't be tempted to

use that! 

Hint: My first "solution" for this one got a non-exhaustive match error on one of the tests.
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Problem 5:  (20 points) (ten points each)

For this problem you are to write two separate versions of a function named bigTuples (call it bt).  

One version must not use any higher order functions (like assignment 1); the other version must not use

any explicit recursion (like assignment 2, minus warmup.hs).

bigTuples max tuples produces a list of the 2-tuples in tuples whose sum is larger than max, 

i.e., for a tuple (a,b), a + b > max.

> bigTuples 10 [(9,3),(3,4),(10,20)]
[(9,3),(10,20)]

> bigTuples 25 [(9,3),(3,4),(10,20)]
[(10,20)]

> bigTuples 100 [(9,3),(3,4),(10,20)]
[]

> bigTuples 1 []
[]

> take 5 $ bigTuples 1000 $ zip [1..] [1..]
[(501,501),(502,502),(503,503),(504,504),(505,505)]

> :t bigTuples
bigTuples :: (Num t, Ord t) => t -> [(t, t)] -> [(t, t)]

REMEMBER: You've got to write two versions of bigTuples!
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Problem 6:  (6 points) (5 for function, 1 for type)

Write a function fml list that returns a 3-tuple with the first, middle and last elements of a list.

> fml [1,2,3,4,5]
(1,3,5)

> fml [10]
(10,10,10)

> fml [1..101]
(1,51,101)

> fml "Haskell"
('H','k','l')

Assume the list is non-empty and has at least one element.

Restriction: You may not use the !! list indexing operator.

And, answer this question, too: What is the type of fml?

You didn't forget to state the type of fml, did you?!
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Problem 7:  (10 points)

Consider a function separate s that returns a 2-tuple with the digits and non-digits in the string s

separated, with the initial order maintained:

> separate "July 4, 1776"
("41776","July , ")

> separate "Problem 7: (10 points)"
("710","Problem : ( points)")

Here is a partial implementation of separate, using foldr:

separate s = foldr f ([],[]) s

Your task on this problem is to write the folding function f.  Remember that for foldr, the type of

the folding function can be described as elem -> acm -> elem.  Use isDigit to test for a digit.

Problem 8:  (5 points)

Implement map in terms of a fold.  

Your solution must look like this:

map f list = fold...

Note that the ellipsis starts right after the "d"—you'll need to decide which of fold1l, foldr1,

foldl, or foldr you need to use!

It's ok to use an anonymous function but that is not required.

Problem 9:  (2 points)

Without using explicit recursion, write last in point-free style.  Hint: Tough, and easy to get backwards!

Don't worry about handling empty lists.
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Problem 10:  (10 points) (one point each unless otherwise indicated)

(1) Who founded the University of Arizona Computer Science department and when? (2 points)

(2) Name two programming languages created before 1990.

(3) Name two programming languages created after 1989.

(4) Name one language feature you would expect to find in a language that supports imperative

programming.

(5) whm often says "In Haskell we never change anything; we only make new things." What's an

example of that?

(6) Things like cons lists, recursion, curried functions, and pattern matching on data structures are

commonly used in functional programming but there's another capability that without which it's

hard to do anything that resembles functional programming.  What's that capability?

(7) What is relatively unique among programming languages about the way that Haskell handles

strings and lists?

(8) What is a "partial application"?

(9) What is "syntactic sugar"?

(10) What's something we can represent with a tuple that we can't represent with a list?
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Extra Credit Section (½ point each unless otherwise noted)

(1) What is the type of the composition operator?

(2) What's meant by "lexicographic comparison"?

(3) Name a programming language created at the University of Arizona.

(4) Haskell functions like getLine and putStr return an action.  What does an action represent?

(5) What is the exact type of the list[head, tail]?

(6) If you only remember one thing about the Haskell segment of 372, what will it be?  (Ok to be

funny!)

 (7) With Ruby in mind, cite an example of an imperative method and an example of an applicative

method.

(8) Write a Ruby method printN that prints the numbers from 1 to N on a single line, separated by

commas. (1 point)
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Problem 1:  (21 points)

In this problem you are to write a Ruby program tail.rb that prints the last N lines of standard input,
just like the UNIX tail command.  Here's an example, after first demonstrating that the file five has
five lines.

% cat five
one
two
three
four
five
% ruby tail.rb -2 < five
four
five
%

If the file has less than N lines, all lines are printed.  Example:

% ruby tail.rb -10 < five       # prints all five lines
one
two
three
four
five
%

Exactly one command line argument should be specified and, with the leading dash, it should look like
a negative integer, like "-3" or "-100".  Otherwise, print "Usage: tail -N" and exit by calling
exit(1).

Examples of erroneous invocations:

% ruby tail.rb < five
Usage: tail -N

% ruby tail.rb 100 < five
Usage: tail -N

Behavior is undefined with the argument "-0".  (In other words, ignore that case.)

Important: Make this simple by assuming you can hold the entire file in memory—don't imagine you
need to use a circular queue or something like that!

There's plenty of space on the next page for your solution.
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(space for solution for tail.rb)

Quick reminder of operation:

% ruby tail.rb -4 < five
two
three
four
five
% ruby tail.rb 4 < five
Usage: tail -N
%
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Problem 2:  (17 points)

In this problem you are to write a method load_facts(file_name) that reads Prolog facts from the
specified file and returns a Ruby hash that holds a representation of the facts.  Here's a sample input file,
fcl.pl, shown with cat:

% cat fcl.pl
food(apple).
%food(broccoli).
food(lettuce).  

color(sky,blue).
color(dirt,brown).
color(grass,green).
color(x).

thing(apple,red,yes).
thing(a,b).

Usage, with the hash contents shown formatted by hand, to make it easier to read.

>> h = load_facts("fcl.pl")
=> {
"food"=>[["apple"], ["lettuce"]],
"color"=>[["sky", "blue"], ["dirt", "brown"],

["grass", "green"], ["x"]],
"thing"=>[["apple", "red", "yes"], ["a", "b"]]
}

Each of the functors food, color, and thing are keys in the hash.  The value associated with each key
is an array of arrays.  Each entry in the inner arrays represents the term(s) for one fact.  Because there are
two one-term facts for food,  h["food"] references an array containing two one-element arrays.

Similarly, color has three two-term facts and one one-term fact.

Empty lines or lines that start with a % are ignored.  All other lines are well-formed Prolog facts with at
least one term.  Lines contain no whitespace.

 To read from a file, use f = File.open("x") to open a file named "x" and then f.gets to read
from it.  f.gets returns nil at end of file.  f.close closes it.

There's plenty of space on the next page for your solution.
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(space for solution for load_facts)

For reference, here are the facts and resulting hash again:

% cat fcl.pl
food(apple).
%food(broccoli).
food(lettuce).  

color(sky,blue).
color(dirt,brown).
color(grass,green).
color(x).

thing(apple,red,yes).
thing(a,b).

>> h = load_facts("fcl.pl")
=> {
"food"=>[["apple"], ["lettuce"]],
"color"=>[["sky", "blue"], ["dirt", "brown"],

["grass", "green"], ["x"]],
"thing"=>[["apple", "red", "yes"], ["a", "b"]]
}
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Problem 3:  (15 points)

This problem is a partner to load_facts.  You are to write a Ruby method print_preds that takes
the hash produced by load_facts (the previous problem) and prints a list of predicate indicators.

Usage, using the facts from the previous problem:

>> h = load_facts("fcl.pl")
=> {
"food"=>[["apple"], ["lettuce"]],
"color"=>[["sky", "blue"], ["dirt", "brown"], 

["grass", "green"], ["x"]], 
"thing"=>[["apple", "red", "yes"], ["a", "b"]]
}

>> print_preds(h)
color/1
color/2
food/1
thing/2
thing/3
=> nil

Predicates are shown in alphabetical order, with a predicate indicator (functor/N) for each of the forms
present.  We can see that the hash h holds one-term facts for food, one- and two-term facts for color,
and two- and three-term facts for thing.

Here are some possibly useful things:
Hash#keys returns an array of the keys in a hash.
Array#sort returns a copy of the array with the entries sorted.
Array#min and Array#max return the minimum and maximum values in an array.
Enumerable#map is the iterator analog for Haskell's map function.
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Problem 4:  (5 points)

Write a method multstring(spec, s) that behaves like this:

>> multstring("3,1,5", "x")
=> "xxx,x,xxxxx"

>> multstring("3,0,2,0", "Abc")
=> "AbcAbcAbc,,AbcAbc,"

>> multstring("10", "")
=> ""

The first argument, spec, is a comma-separated list of non-negative integers.  The result is a string that
consists of comma-separated replications of the second argument (s) corresponding to each integer in turn. 
Assume that spec is well-formed and contains no whitespace.

Problem 5:  (4 points)

Write a method addrev such that after calling addrev, the unary minus operator applicatively reverses a
string:

>> addrev
=> nil

>> x = -"testing"
=> "gnitset"

>> -x
=> "testing"

>> x
=> "gnitset"
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Problem 6:  (11 points)  One point each unless otherwise indicated

(a) Write a regular expression that is equivalent to /x+/ but that doesn't use the + operator.

(b) Write a regular expression that is equivlent to /ax|bx|cx/ but that doesn't use the | operator.

(c) Describe in English the strings matched by /a*b+c$/

(d) (3 points) Write a regular expression that matches only strings that are binary constants like these:

"0b0"
"0B11111"
"0b01010101"

The first two characters are a "0" and an upper- or lower-case "B".  One or more "1"s or "0"s
follow.

Here are two non-matches: "00b1" (extra leading zero), "0b12" (trailing non-0/1).

(e) (5 points) Write a regular expression that matches a string if and only if it is a comma-separated
sequence of integers greater than or equal to 10.  Examples of matches:

"10, 11, 12"
"30,200,500"
"100"

One optional space may appear after each comma but that is the only place a space may appear. 
Leading zeros are not permitted!

Here are three non-matches: "10, 020" (has a leading zero), "7,11" (7 is less than 10), "1x"
(has a trailing "x").
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Problem 7:  (7 points)

Write an iterator take_while(a) that calls its block with each element of the array a in turn.  As long
as the block returns true, array elements are accumulated.  When the block first returns a non-true value or
when the array elements are exhausted, an array of the accumulated elements is returned.

>> take_while([1,2,3,4,5]) { true }
=> [1, 2, 3, 4, 5]

>> take_while([1,2,3,4,5]) { false }
=> []

>> take_while([1,2,3,4,5]) { |e| e.odd? }
=> [1]

>> take_while([1,2,3,4,5,3,2]) { |e| e < 5 }
=> [1, 2, 3, 4]

>> take_while("eat peas all day".split) { |w| w =~ /e/ }
=> ["eat", "peas"]

Note: This is much like Enumerable#take_while, so you can't use that method in your solution! 
(It's like Haskell's takeWhile, too.)
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Problem 8:  (12 points) 

(a) Who invented Ruby? (1 point)

(b) Consider a Ruby method last(x) that returns the last element of a string or array.  Why would
last be awkward to write and use in Java? (2 points)

    

(c) What's the effect of  adding "include Enumerable" to a class definition? (2 points)

(d) Cite one way in which Ruby's if-then-else is like Haskell's if-then-else and one way in
which it is different. (2 points)

(e) A Java newcomer to Ruby might think that private and attr_reader are keywords but they
aren't.  What are they? (2 points)

(f) What's the essential difference between dynamic typing and static typing?  (3 points)
Hint: If your answer contains /(interprete|compile)[rd]?/ there's a fair chance it'll be
wrong.
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Problem 9:  (8 points) 

Recall the Shape/Circle/Rectangle inheritance hierarchy from the
slides.  Shape's constructor requires a single argument: a string that serves
as a label for the shape.  Shape#label returns the label.

In this problem you are to create a subclass of Shape named Ring.  An
instance of Ring represents the region between two concentric circles (the
black area in the drawing to the right).  Along with a label that is passed to
Shape's constructor, Ring's constructor takes the radii of the two circles
but they may specified be in either order.  If the two circles have the same
radius, the area of the ring is zero.

Your implementation of Ring should have five methods: a constructor, area, inner, outer, and
inspect.  The methods area, inner, and outer return the area of the ring, the inner radius and the
outer radius, respectively.  inspect displays the inner (smaller) radius followed by the outer radius.

Assume both radii are non-negative.  Math::PI is .

Examples:

>> r1 = Ring.new("a",3.2,1.9)
=> Ring a (1.9-3.2) # This line displays the result of inspect. The inner

#   radius, 1.9, is shown first.

>> r1.area
=> 20.82875929330033

>> r1.inner
=> 1.9

>> r1.outer
=> 3.2

>> Ring.new("x",3,3).area
=> 0.0

Write your solution to the right or on the next page.
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(space for solution for Ring)
Examples (repeated):

>> r1 = Ring.new("a",3.2,1.9)
=> Ring a (1.9-3.2) # This line displays the result of inspect. The inner

#   radius, 1.9, is shown  first.

>> r1.area
=> 20.82875929330033

>> r1.inner
=> 1.9

>> r1.outer
=> 3.2

>> Ring.new("x",3,3).area
=> 0.0
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Extra Credit Section (½ point each unless otherwise noted)

(a) What does whm consider to be the all-time greatest Original Thought ever put forth by one of his
372 students?

(b) Based on the Prolog we've covered, is Prolog statically typed or dynamically typed?  (And why?)

(c) What thing in Ruby is closest to a Prolog atom?

(d) Which is the oldest of Java, Haskell, and Ruby?

(e) The term "mixin" came from a business that sold what to college students?

(f) Regular expressions are Type _____ languages in the __________________ hierarchy of languages.

(g) Predict the median score on this exam.  (The median is the "middle" value in a range of values.)

(h) If you only remember one thing about Ruby, what will it be?  (Ok to be funny!)

(i) What's the stupidest thing in Ruby?  Can't be the same as (h) or (j).  (1 point)

(j) What's the best thing in Ruby?  Can't be the same as (h) or (i).  (1 point)

(k) Implement attr_reader. (1 point)
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CSC 372 Final Exam
Wednesday, April 14, 2014

READ THIS FIRST

Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in your last
name and NetID in the box above.

This is a 100-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are
still working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and
leave.  If not, you must stay quietly seated—no packing up— until time is up for all.

You are allowed no reference materials whatsoever, aside from the sheet mentioned on Piazza.

If you have a question, raise your hand.  We will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or
the order of function arguments, state the assumption and proceed.

Feel free to use abbreviations.

Don't make a problem hard by assuming it needs to do more than is specifically stated in the write-up.

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely
blank—that's a sure zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with
violations may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in
the lower right hand corner of the top side of each sheet, checking to be sure you have all seven
sheets.

BE SURE to enter your NetID on the sign-out log when turning in your completed exam.

Last name, NetID

_________________________________
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Problem 1:  (6 points)

Cite three things about programming languages you learned by watching your classmates' video projects.
Each of the three should be about a different language.

Note: If you were at last night's review session you can't cite the Python feature that was mentioned.
(Please ask if you were at the review session and have a question about this restriction!)

Problem 2:  (6 points)

Write the following simple Prolog predicates.  There will be a half-point deduction for each occurrence of
a singleton variable or failing to take full advantage of unification.

Restriction: No library predicates may be used other than is/2.

last(?List,?Elem) specifies the relationship that Elem is the last element of List, which is
assumed to be non-empty.

member(?Elem, ?List) specifies the relationship that Elem is a member of List.

length(?List, ?Len) specifies the relationship that List is Len elements in length.
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Problem 3:  (8 points)

Write a Prolog predicate insrel(+List, -WithRels) that instantiates WithRels to a copy of
List with one of the atoms <, >, and = inserted between each pair of values to reflect the relationship
between those values.  Assume all values are numbers.  Examples:

?- insrel([5,3,7,7,0],L).
L = [5, >, 3, <, 7, =, 7, >, 0] .

?- insrel([10,10],L).
L = [10, =, 10] .

?- insrel([7],L).
L = [7] .

?- insrel([],L).
L = [].

Only the first result is of interest; don't worry about behavior if the user responds with a semicolon.

Note that <, >, and = are valid symbolic atoms and are therefore shown without quotes.

Hint: Write a helper predicate which(+X,+Y,-Rel) that works like this:

?- which(3,4,Op).
Op = < .

Page 3 of  14



Problem 4:  (7 points)

Write a Prolog predicate alltails(+List, -T) that first instantiates T to the tail of List.  If an
alternative is requested, it generates the tail of the tail of List, and so forth, thus generating "all the
tails".

Restriction: Only "cons", unification, and recursive calls to alltails may be used.  In particular,

you can't use append or write your own version of append and use it.

?- alltails([10,20,30,40],T).
T = [20, 30, 40] ;
T = [30, 40] ;
T = [40] ;
T = [] ;
false.

?- alltails([x],T).
T = [] ;
false.

?- alltails([],T).
false.

Don't forget the restriction!
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Problem 5:  (10 points)

Write a Prolog predicate pinch(+List, -Pair) that instantiates Pair to a series of pair/2
structures.  The first pair structure has the first and last values of List.  The second pair has the
second and next-to-last values of List.  And so forth.  Example:

?- pinch([a,b,c,d,e,f],P).
P = pair(a, f) ;
P = pair(b, e) ;
P = pair(c, d) ;
false.

If a list has an odd number of values, the last pair has two copies of the middle element.

?- pinch([1,2,3],P).
P = pair(1, 3) ;
P = pair(2, 2) ;
false.

?- pinch([1],P).
P = pair(1, 1) ;
false.

pinch fails on an empty list.

?- pinch([],P).
false.

Restriction: You may not use any arithmetic in your solution.

You may assume the presence of last(?List,?Elem).
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Problem 6:  (5 points)

Write a Prolog predicate sumvals/0 that consolidates all v/1 facts into a single fact that contains the
sum of the terms of those facts.  Assume all terms are numbers.  There may be any number of v/1 facts.

?- v(X).
X = 1 ;
X = 7 ;
X = 2.

?- sumvals.
true.

?- v(X).
X = 10.

?- sumvals.
true.

?- v(X).
X = 10.

If no v/1 facts exist, sumvals creates the fact v(0).

?- v(X).
false.

?- sumvals.
true.

?- v(X).
X = 0.
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Problem 7:  (12 points)

This is the problem you were told to expect that is like connect from assignment 8.

path(+Start, +End, +Moves, -Path) instantiates Path to a series of values from Moves that
describe a path from Start to End, two points on a Cartesian plane.  All alternatives are produced if
requested.  Each move can be used only once in a given path.  Example:

?- path(p(0,0), p(3,4), [m(4,4),m(3,3),m(0,1),m(-1,0)], Moves).
Moves = [m(4, 4), m(-1, 0)] ;
Moves = [m(3, 3), m(0, 1)] ;
Moves = [m(0, 1), m(3, 3)] ;
Moves = [m(-1, 0), m(4, 4)] ;
false.

The call asks for a path from (0,0) to (3,4) using some combination of  movements, which are m/2
structures that specify relative changes in X and Y, respectively.  Here's the set of moves from above:

m(4,4) Move right 4 and up 4.
m(3,3) Move right 3 and up 3.
m(0,1) Move up 1.
m(-1,0) Move left 1.

In the following case there's both an empty solution and a solution that uses all three moves.

?- path(p(10,20), p(10,20), [m(-2,0),m(1,2),m(1,-2)], Moves).
Moves = [] ;
Moves = [m(-2, 0), m(1, 2), m(1, -2)] ;
Moves = [m(-2, 0), m(1, -2), m(1, 2)] ;
...four additional permutations aren't shown...

If no suitable sequence of moves exists, path fails.

?- path(p(0,0), p(1,1), [m(1,0),m(0,2),m(1,0)], Moves).
false.

As the preceding example demonstrates, a successful series of movements must terminate at the
destination, not merely pass through it.
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Problem 8:  (10 points)

Using the parsing method supported by Prolog's grammar rule notation write a predicate
ptime(+Spec,-Mins) that parses atoms that represent time durations, like '10m', '5h' and
'10:20', and instantiates Mins to the number of minutes represented by Spec.

Durations will either be a number (an integer >= 0) followed by "m" or "h", or two numbers separated by a
colon.  '10m' is ten minutes; '2h' is two hours—120 minutes. '2:30' is two hours and thirty
minutes—150 minutes.  Something like '1:2000' is valid, too (2,060 minutes).

?- ptime('10m',Mins).
Mins = 10.

?- ptime('2h',Mins).
Mins = 120.

?- ptime('2:30',Mins).
Mins = 150.

?- ptime('2:3',Mins).  % not required to be '2:03', for example
Mins = 123.

Assume you have a grammar rule int(N) --> ... that recognizes a non-negative integer and
instantiates N to the recognized value.  Example:

?- int(I,['2','3'],[]).
I = 23 .

?- int(I,['2','3',x],Left).
I = 2,
Left = ['3', x] ;
I = 23,
Left = [x] ;
false.
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Problem 9:  (7 points)

Write a Haskell function ckconn that takes a list similar to that used by a8's connect.pl and
returns True or False, depending on whether the exact sequence and orientation of cables represents a
valid connection.

Example:

> ckconn 'm' [('f',10,'m'), ('f',7,'m')] 'f'
True

In contrast to the Prolog version, the list of cables appears between the left and right endpoints.  ckconn
does not check the length of the configuration.  Note that cables are specified with three-tuples, not lists.

Note that ckconn checks the list as-is.  It doesn't consider alternatives in any way.  For example, simply
flipping the last cable in the configuration above produces False:

> ckconn 'm' [('f',10,'m'), ('m',7,'f')] 'f'
False

Any number of cables may be specified.  If no cables are specified, ckconn returns False.

> ckconn 'm' [] 'f'
False

Your solution may be recursive or not; your choice!

Important: Include a type declaration for ckconn.  I'll get you started: 
ckconn :: Char -> 
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Problem 10:  (7 points)

Write a Haskell function connlen that takes a list of the same type as ckconn and prints either the
length of the configuration, like "25 feet" or  "nope", if the configuration is not valid.

> connlen 'm' [('f',10,'m'), ('f',7,'m')] 'f'
17 feet

> connlen 'm' [('f',10,'m'), ('f',7,'m')] 'm'
nope

Restriction: Like on assignment 2, your solution for connlen must be non-recursive.

You may use assume a working ckconn from the previous problem and use it in connlen.

Remember: connlen produces output; its final result has type IO ().  (Not String, for  example.)
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Problem 11:  (14 points)

Write a Ruby program shuffile.rb that reads lines from standard input, shuffles them, and then
writes them to standard output.

shuffile requires one command line argument, -N, which specifies that lines are to be handled in
blocks of N lines.  Assume that standard input consists of a multiple of N lines. 

The UNIX utility seq can be used to output a sequence of numbers.  We'll use it to demonstrate
shuffile's behavior.  seq 6 outputs the first six integers:

% seq 6 
1
2
3
4
5
6

With the argument -1 the input lines are shuffled just like you might shuffle a deck of cards:

% seq 6 | ruby shuffile.rb -1
5
6
3
1
4
2

With the argument -2 the input lines are treated as pairs—the first and second lines are kept together, as
are the third and fourth, and the fifth and sixth.  With the output of seq 6 as input, the line "3" will
always be followed by the line "4", for example.

% seq 6 | ruby shuffile.rb -2
3
4
1
2
5
6

There are only two possible results of seq 6 | ruby shuffile.rb -3.  Here's one of them:
% seq 6 | ruby shuffile.rb -3
4
5
6
1
2
3
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There must be exactly one command line argument and it must be of the form -N.  If not, "Oops!" is
printed and exit(1) is called:

% seq 6 | ruby shuffile.rb
Oops!

% seq 6 | ruby shuffile.rb 3
Oops!

% seq 6 | ruby shuffile.rb -2 3
Oops!

All the examples above use a six line input but shuffile.rb should be able to handle any number of
lines of any length with arbitrary content, not just numbers.

Important: Note that there is an Array.shuffle method:

>> ["please","shuffle","me","up"].shuffle
=> ["up", "please", "shuffle", "me"]
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Problem 12:  (8 points, one point each) 

(a) Who founded UA's CS department, and in what year?

(b) Why are Prolog warnings about singleton variables worth paying attention to?

(c) What's the fundamental difference between predicates like  member/2 and append/3 in Prolog 
and their superficial analogs in other languages?

(d) Draw the box for Prolog's four-port model and label the ports.

(e) "cons" lists are found in many languages that make use of recursion.  What is it about cons lists
that makes them well-suited for recursive functions?

(f) Consider this claim: Prolog's grammar rule notation, like sentence --> article, noun,
verb, is an example of syntactic sugar.  Present an argument that either supports that claim or
refutes it.

(g) Write a simple Haskell function and show an example of using a partial application of that
function.

(h) What's a very good reason that ckconn above uses tuples instead of lists to represent the cables?
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Extra Credit Section (½ point each unless otherwise noted)

(a) What movie inspired the "Original Thought" bonus?

(b) whm came to graduate school here at UA specifically to join a research team developing a
programming language.  What was the language?

(c) To what current CS faculty member does whm attribute the following quotation?
"When you come to a problem you can lean forward and type, or you can sit back and think."

(d) The Prolog 1000 is a compilation of applications written in Prolog and related languages.  What's a
little odd about it?

(e) Jean Ichbiah, Ada's designer, was said to have once predicted that in ten years only two
programming languages would remain in use.  Ada was one of the languages.  What was the other?

(f) Cite a significant contribution to computer science made by Grady Booch.

(g) What's a language that has/had an "arithmetic if", one form of which looks like this: 
IF (I-J) 100, 110, 120

(h) In terms of creators, what do vim and Java have in common?

(i) whm would like to recycle a8's buy.pl in a future semester but needs mores dontmix facts with
an element of humor.  What's another pair he could use?

(j) How many students earned the "close reading" bonus on assignment 8?
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CSC 372 Mid-term Exam
Thursday, March 12, 2015

READ THIS FIRST

Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in your last
name in the box above.

This is a 60-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five  minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are
still working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and
leave.  If not, you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand.  I will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or
the order of function arugments, state the assumption and proceed.

Feel free to use abbreviations, like "otw" for "otherwise",  "lt" for "longerThan".  Use S as a synonym for
[Char].  Use I for Int.  

Don't make problems hard  by assuming that they need to do more than is specifically mentioned in the
write-up or that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that's
a sure zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with
violations may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in
the lower right hand corner of the top side of each sheet, checking to be sure you have all seven
sheets.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

Last name

_________________________________
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Problem 1:  (15 points)

What is the type of the following values?  If the expression is invalid, briefly state why.

Assume numbers have the type Int.  Remember that the type of True is Bool.

'x'

 
("len", "", "")

(:)

[(1,'a'),('b',2)]

map length

(+1) . (0<)

head

(True, (False, "x"))

length . (\x -> [(x,x)]) . head . init . tail
    Hint: the composition is valid.

[1..] < [2..] (Remember: I want the type!)
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Problem 2:  (12 points) (two points each)

This problem is like warmup.hs—write the following Haskell Prelude functions.

Each instance of poor style or needlessly using other Prelude or helper functions will result in a
deduction.

Remember this order of preference for handling cases: patterns, guards, if-else. Be sure to use the wildcard
pattern (underscore) when appropriate.

IGNORE empty list cases for head, tail, and maximum.  There's no need to specify function types.

head

tail

length

max (Hint: max 2 3 is 3)

maximum (maximum [5,2,3] is 5.  Ok to abbreviate as mm.)

filter (filter odd [1,2,3] is [1,3].  Ok to abbreviate as flt.)

DID YOU REMEMBER TO USE WILDCARDS WHEN APPROPRIATE?
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Problem 3:  (14 points) (7 points each)

For this problem you are to write both recursive and non-recursive versions of a function tupruns of
type [(Int, a)] -> [a] that behaves like this:

> tupruns [(3, 'a'), (2, 'b'), (4, 'c')]
"aaabbcccc"

> tupruns [(1,'#'),(0,'$')]
"#"

> tupruns  (zip [1..8] "abcdefgh")
"abbcccddddeeeeeffffffggggggghhhhhhhh"

Just like on assignment 2, the recursive version must not use any higher-order functions.  Just like on
assignment 3, write the non-recursive version imagining that you just don't know to how to write a
recursive function.

For one bonus point each on the non-recursive version:
    (1) Use point-free style.
    (2) Do not use any helper functions or anonymous functions.

concat and replicate may be useful:

> concat ["a", "...", "c"]
"a...c"

> replicate 3 5
[5,5,5]
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Problem 4:  (3 points)

Write a function flattups that "flattens" a list of 3-tuples into a list of the values in those tuples.

> :t flattups
f :: [(a, a, a)] -> [a]

> flattups [(10,20,30),(3,4,5),(1,2,3)]
[10,20,30,3,4,5,1,2,3]

> flattups [('H','i','!')]
"Hi!"

There are no restrictions on this problem.  You may call it just "ft".

Problem 5:  (7 points)

The following function removes consecutive duplicates from a list:

dropConsecDups list = foldr ff [] list

Usage:

> dropConsecDups [3,3,1,5,7,5,5,7,7,7]
[3,1,5,7,5,7]

> dropConsecDups "a looooooooooooonnnnnnnnnng one!"
"a long one!"

For this problem you are to write a folding function ff that will work with dropConsecDups as shown
above.
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Problem 6:  (6 points) 

Write a Haskell program that reads a file named on the command line and prints the mean (average) length
of the lines in the file. 

Usage:

$ cat avglen.1
xxx
y
zz

$ runghc avglen.hs avglen.1
2.0

Note the computation: (3+1+2)/3 = 2 characters per line

DO NOT WORRY  about integer/float division issues.  Assume that 3/2 produces 1.5!

Assume there's at least one line in the file.

Be sure that a newline follows the value that's output.  Recall that show 3.2 is "3.2".  Here's a main
program, similar to the ones supplied for group.hs and avg.hs.  Your job is to write avglen.

main =
    do
       args <- getArgs
       bytes <- readFile (head args)
       putStr (avglen bytes)

Page 6 of  14



Problem 7:  (7 points)

Now it's time for some Ruby problems.

Write a Ruby version of the Haskell program in the previous problem.  The Ruby version reads from
standard input rather than opening a file specified on the command line:

$ cat avglen.1
xxx
y
zz

$ ruby avglen.rb < avglen.1
2.0

Use printf("%.1f\n",  ...) to produce the final output.

Unlike the Haskell version this Ruby version must properly handle the math to get a Float result, not a
truncated value like 3/2 == 1.
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Problem 8:  (7 points)

Write a Ruby program nwords.rb that reads lines from standard input and writes the first N words on
each line to standard output.

N is specified by a -N command line argument that is assumed to be present.  If N is larger than the
number of words on a line, all the words on that line are output.

$ cat nwords.1
a few words to
test the
operation
of nwords.rb on this exam.

$ ruby nwords.rb -3 < nwords.1
a few words
test the
operation
of nwords.rb on

$ cat nwords.2
aa bb cc dd ee ff gg
hh ii jj
kk
ll mm nn oo pp

$ ruby nwords.rb -2 < nwords.2
aa bb
hh ii
kk
ll mm

$ ruby nwords.rb -100 < nwords.2
aa bb cc dd ee ff gg
hh ii jj
kk
ll mm nn oo pp

Note the following behavior for array[n, m]:

>> w = "a b c".split
=> ["a", "b", "c"]

>> w[0,2]
=> ["a", "b"]

>> w[0,10]
=> ["a", "b", "c"]

SPACE FOR SOLUTION ON NEXT PAGE
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(space for solution for nwords.rb)

For reference:

$ cat nwords.2
aa bb cc dd ee ff gg
hh ii jj
kk
ll mm nn oo pp

$ ruby nwords.rb -2 < nwords.2
aa bb
hh ii
kk
ll mm

$ irb
>> w = "a b c".split => ["a", "b", "c"]

>> w[0,2] => ["a", "b"]

>> w[0,10] => ["a", "b", "c"]
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Problem 9:  (6 points)

Write Ruby method chunkstr(s, n) that returns an array of consecutive n-long substrings of the
string s.  Partial substrings are not included.  Assume n > 0.  chunkstr does not change s!  (Maybe
use String#dup.)

>> chunkstr("abcdef",3)
=> ["abc", "def"]

>> chunkstr("abcdef",1)
=> ["a", "b", "c", "d", "e", "f"]

>> chunkstr("abcdef",5)
=> ["abcde"]
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Problem 10:  (6 points) (one point each unless otherwise indicated)

The following questions and problems are related to Haskell.

(1) Add parentheses to the following type to explicitly show the associativity of the -> operator.

(Int -> Int) -> Int -> Int

(2) Fully parenthesize the following expression.

f   g   a   +   x   y   z  +  f1  (a, b)  c

(3) Rewrite the following expression to use as few parentheses as possible.

len ((map f) (head (lines bs)))

(4) Describe in English the data structure matched by this pattern: [t:h]

(5) Consider the following definitions for a function that tests whether a list is empty.  Each is shown
with the types that Haskell infers for them:

empty1 :: [t] -> Bool
empty1 [] = True
empty1 _  = False

empty2 :: Eq a => [a] -> Bool
empty2 x
   | x == [] = True
   | otherwise = False

What's causing the type of the functions to differ?  What's an example of a list that would work
with empty1 but not empty2?  (Two points.)
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Problem 11:  (7 points) (one point each unless otherwise indicated)

The following questions and problems are related to Ruby.

(1) Write a Ruby iterator itr that behaves like this:

>> itr(3) {|x| puts x}
6

(2) In the Ruby code $x = N * 5, we know that $x is a _______________ and N is a
_____________.

(3) Given h = {}, write an expression such that after it is evaluated, h["x"] is 10. 

(4) What's a big mistake in the following statement?
     "The if-else, while, and for statements are examples of Ruby control structures."

(5) A method named show_match is used extensively on the regular expression slides.  Briefly, what
does it do?

(6) What are the minimum and maximum lengths of strings that can be matched by the following
regular expression?  (Be careful!)

[Aa]..[Zz]0x9?

(7) Write a Ruby method that exemplifies duck typing.  There's no need for any explanation!
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Problem 12:  (10 points) (one point each unless otherwise indicated)

Answer the following general questions.  Keep your answers brief for questions—assume that the reader is
a 372 classmate who just needs a quick reminder.

(1) Who founded the University of Arizona Computer Science department and when?

(2) Name a language that was created before Ruby.  Name a language that was created after Ruby.

(3) whm believes the acronym LHtLaL appears nowhere on the web except in his slides.  What does it
stand for?

(4) What are two aspects of a "paradigm", as described in Kuhn's The Structure of Scientific
Revolutions?  Here are two wrong answers: functional and object-oriented.

(5) Perhaps the most fundamental characteristic of a functional programming language is that it permits
higher-order functions to be written.  What's the language feature that's required in order to write a
higher-order function?

(6) What's an important difference between an imperative method and an applicative method?  (Hint: it
doesn't concern the method name!)

(7) whm often says "In Haskell we never change anything; we only make new things." What's an
example of that?

(8) In general, every expression in a programming language has three aspects.  What are those three? 
Hint: one of them starts with a "v". (1.5 points)

(9) Briefly define the term "programming language". (1.5 points)
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Extra Credit Section (½ point each unless otherwise noted)

(1) Predict the median score on this test.  (The median is the "middle" value in a range of values.)

(2) Add a dunsel to the following function definition

f x = take 3 x ++ drop 3 x

(3) Why was \ chosen for use in Haskell's lamba abstraction syntax?

(4) To whom does whm attribute the following quote?
"When you hit a problem you can lean forward and type or sit back and think."

(5) What's the basic idea of whm's so-called "O(1) navigation"?

(6) What is the exact type of the list[head, tail]?

(7) What's interesting about the ASCII code sequence from 60 through 62?

(8) What Ralph say when a young and eager graduate student put forth a list of potential new features
for Icon?

(9) If you only remember one thing about the Haskell segment of 372, what will it be?  (Ok to be funny!)

(10) What is Matz' full name?

(11) Write a good extra credit question and answer it.
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CSC 372 Final Exam
Tuesday, May 12, 2015

READ THIS FIRST
Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in your last name in the
box above.

This is a 100-minute exam with a total of 100 points of regular questions and an extra credit section.

The last five  minutes of the exam is a "seatbelts required" period, to avoid distractions for those who are still
working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and leave.  If not,
you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand.  I will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or the order
of function arugments, state the assumption and proceed.

Don't make problems hard  by assuming that they need to do more than is specifically mentioned in the write-up or
that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that's a sure
zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with violations
may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in the lower
right hand corner of the top side of each sheet, checking to be sure you have all nine sheets.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

Exam solutions will be posted here: (Write it down!  Note the ~ in ~whm)
   http://www.cs.arizona.edu/~whm/cons-me-up-942-cardboard-pancakes-to-flip/

Last name

_________________________________
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Quiz 18, May 12, 2015
2 questions; 4 points

1. For one point each, cite three things you learned from Dr. Proebsting's presentation in 372 on Tuesday,
May 5, the last day of class.

2. On a scale of 1 to 5, with 1 being least important and 5 being most important, how would Dr. Proebsting
rate the importance of language choice for a programming project?

Problem 1:  (6 points)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of
the three should be about a different language.
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Problem 2:  (3 points)

(1) (Two points) Imagine that a Haskell function f has the type Char -> Bool -> Char.  Explain the
meaning of that type in a way that demonstrates you have significant knowledge of Haskell.

Hint: here's an answer that's worth zero points: "f takes two arguments, a Char and a Bool, and returns a
Char."

(2) (One point) Fully parenthesize the following Haskell expression.

f   1   2   g  +  x   x   +  f   g   f   1

Problem 3:  (6 points)

Write a Haskell function longpos :: [String] -> Int that returns the one-based position of the longest
string in a list of strings.  Assume the list has at least one string.  Don't worry about ties.  Usage:

> longpos ["just","a","few","strings","here"]
4

> longpos ["hello!"]
1

You may use any Prelude functions you wish.  You may also use Data.List.sort, with type 
Ord a => [a] -> [a].  Here's a reminder of how it works:

> sort [7,3,5]
[3,5,7]

> sort [(3,'a'),(1,'b'),(10,'c')]
[(1,'b'),(3,'a'),(10,'c')]

Hint: My solution is non-recursive.  It uses zip.
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Problem 4:  (9 points)

Write a Ruby program that reads integers, fractions, and mixed numbers, one per line from standard input, and
prints their sum when end of file is reached.  Here's an example, with user input underlined and bold:

% ruby addmixed.rb 
Number? 2
Number? 1/2
Number? 1 2/5
Number? ^D
Total: 3.9

Restriction: Your solution must be based on regular expressions; don't use String#split calls to break

up the line.

Each input line must be solely an integer, a fraction, or a mixed number, with no leading or trailing spaces.  Only
one space may appear between the whole number and fraction in a mixed number.  No negatives or decimal
fractions are allowed.  If a line doesn't satisfy any of those rules, "Ignored: <LINE>" is printed and the line is
completely ignored.  Examples:

% ruby addmixed.rb 
Number? 3 7/100
Number? 1 2
Ignored: 1 2
Number? 10/20/30
Ignored: 10/20/30
Number? -50/3
Ignored: -50/3
Number? 1.5
Ignored: 1.5
Number?    1/3
Ignored: 1.5
Number? ^D
Total: 3.07

Implementation notes:
You might find it easier to use two or three matches than to have a single regular expression that
accommodates integers, fractions, and mixed-numbers.

"3 ".to_f produces 3.0.

There's space for a solution on the next page.
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(Space for solution for addmixed.rb)

Reminder of operation:

% ruby addmixed.rb
Number? 1 1/2
Number? 100
Number? 1/4
Number? 1 2/3/4
Ignored: 1 2/3/4
Number? ^D
Total: 101.75

Remember:
Solution must be regular expression-centric, not splits and length checks.
Each line must be only an integer, fraction, or mixed number; nothing more.
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Problem 5:  (9 points)

In this problem you are to write a Ruby version of buy.pl from assignment 9.  The Ruby version reads a file
named buy.data for information about items and discounts.  The file has this format:

% cat buy.data
item|toaster|Deluxe Toast-a-matic|14.00
item|antfarm|Ant Farm|7.95
...
item|dip|French Onion Dip|1.29
discount|antfarm|20
discount|lips|40
discount|rshoes|10
...

Lines with information about items come first, with the fields separated by a vertical bar.  Lines for discounts on
items follow.  The discount amount is the percentage to subtract from the regular price.  With the specified 20%
discount, the $7.95 Ant Farm will sell for $6.36 (7.95 * 0.80).

Use Kernel#open to open buy.data for reading.  To read lines, use File#gets, which returns nil at end
of file.  Example:

>> f = open("buy.data")
=> #<File:buy.data>

>> f.gets
=> "item|toaster|Deluxe Toast-a-matic|14.00\r\n"

buy.rb is run with item identifiers as command line arguments.  The output format is simple: each item's
description is printed, followed by three dots, followed by the price (use "%.2f" as a printf format).  A line
with a total follows.

% ruby buy.rb antfarm catnip tiger twinkies twinkies
Ant Farm...6.36
50-pound bag of catnip...19.95
Sumatran tiger...749.95
Twinkies...0.75
Twinkies...0.75
Total: $777.76

If an unknown item is specified, a "price check" line is printed and execution is terminated:

% ruby buy.rb antfarm catfood catnip
Ant Farm...6.36
Price check for catfood!
%

Unlike the Prolog version, there are no "dontmix" specifications.

There's space for a solution on the next page.
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(space for buy.rb)

For reference:

% cat buy.data
item|toaster|Deluxe Toast-a-matic|14.00
...
item|dip|French Onion Dip|1.29
...

% ruby buy.rb lips lips dip
Chicken Lips...0.03
Chicken Lips...0.03
French Onion Dip...1.29
Total: $1.35
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Problem 6:  (6 points)

Implement assignment 9's outin as a Ruby iterator.  Assume its argument is always a non-empty array.

>> outin([1,2,3,4,5]) {|x| puts x}
1
5
2
4
3
=> nil

For one point of extra credit, write outin so that it could be a mix-in for  Array, and used like this:

>> "one two three".split.outin {|x| puts x}
one
three
two
=> nil

Problem 7:  (5 points)

Ruby defines a meaning for String * Fixnum but the operation is not commutative—Fixnum * String
produces an error:

>> 4 * "abc"
TypeError: String can't be coerced into Fixnum

For this problem you are to create a file named symmul.rb such that after symmul.rb is loaded, Fixnum *
String works.  Example:

>> load "symmul.rb"

>> 4 * "abc"
=> "abcabcabcabc"
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Problem 8:  (10 points)

Write the following simple Prolog predicates.  There will be a half-point deduction for each occurrence of a
singleton variable or failing to take full advantage of unification.

Restriction: No library predicates may be used other than is/2.  (But note exception for init!)

(a) f(?X) expresses the relationship that X is 3 or 4.  Examples:

?- f(3).
true.

?- f(X).
X = 3 ;
X = 4.

(b) head2(?L, ?Heads) expresses the relationship that Heads is a list that consists of two copies of the
head of L.

?- head2([1,2,3],X).
X = [1, 1].

?- head2([1,2,3],[1,2]).
false.

?- head2(L,[a,a]).
L = [a|_G2516].

(c) Write the library predicate member/2.  Examples:

?- member(X,[1,2]).
X = 1 ;
X = 2.

?- member(3,[1,2]).
false.

(d) sum(+L, -Sum) instantiates Sum to be the sum of the elements in L, which are assumed to all be
numbers.

?- sum([3,1,5],Sum).
Sum = 9.

(e) init(?L, ?Init) is an analog to Haskell's init: the list Init is all but the last element of L.   
init fails if L is empty.  Restriction EXCEPTION: Your solution for init may use append.

?- init([a,b,c,d],I).
I = [a, b, c] .

?- init([a],I).
I = [] .
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Problem 9:  (4 points)

Write a Prolog predicate zip(+L1, +L2, ?Pair) that produces a series of pair/2 structures:

?- zip([1,2,3,4],[a,b,c],R).
R = pair(1, a) ;
R = pair(2, b) ;
R = pair(3, c) ;
false.

The shorter list determines the number of results that are produced.

Restriction: You may not use any built-in predicates or write any helper predicates.

Problem 10:  (6 points)

Write a Prolog predicate swapends(?L1,?L2) that expresses the relationship that L1 is a copy of L2 with the
first and last elements swapped.  swapends is only meaningful for lists with two or more elements.

?- swapends([a,b,c,d],L).
L = [d, b, c, a] ;
false.

?- swapends([1,2,3],L).
L = [3, 2, 1] ;
false.

?- numlist(1,7,Nums), swapends(Nums,R).
Nums = [1, 2, 3, 4, 5, 6, 7],
R = [7, 2, 3, 4, 5, 6, 1] ;
false.
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Problem 11:  (6 points)

On assignment 9 you wrote outin(+L, -R), which worked like this:

?- outin([1,2,3,4,5],R).
R = 1 ;
R = 5 ;
R = 2 ;
R = 4 ;
R = 3 ;
false.

?- outin([1,2,3,4],R).
R = 1 ;
R = 4 ;
R = 2 ;
R = 3 ;
false.

On this problem you are write inout(+L, -R), which generates elements in the opposite order from outin.  

Examples:

?- inout([1,2,3,4,5],R).
R = 3 ;
R = 4 ;
R = 2 ;
R = 5 ;
R = 1.

?- inout([1,2,3,4],R).
R = 3 ;
R = 2 ;
R = 4 ;
R = 1.

IMPORTANT: You may use outin in your solution!  This problem is intended to be easy; don't make it hard!
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Problem 12:  (12 points)
In this problem you are to write a Prolog predicate cross/3 that finds a way to cross over a series of pits using
wooden planks as bridges.

Here's an example that shows two pits:

----+      +--+  +-----
    |      |  |  |
    |      |  |  |
    +------+  +--+
    5     12  15 18

Pits are represented with pit/2 facts, which have a starting position and a width:

pit(5,7)
pit(15,3)

There may be any number of pit/2 facts.  Pits never overlap.  Pits always have ground between them.

Below is an example of a valid crossing of distance 20 that uses the sequence of planks [3, 10, 10].  Planks
are shown with a vertical offset to make the lengths apparent.

===          ==========
   ==========
----+      +--+  +-------
    |      |  |  | ^
    |      |  |  | 20
    |      |  |  |
    +------+  +--+
    5     12  15 18

Planks must be placed so that both ends rest on solid ground, rather that having an end over a pit.  Planks
must extend continuously from a starting point to a specified length.

Here's an example of an invalid crossing, with the sequence [9, 11]. It's invalid because the two planks meet
over a pit, at position 10.  [11,9] and [16,9] would be invalid, too.

         ===========
=========
----+      +--+  +----
    |      |  |  | ^
    |      |  |  | 20
    |      |  |  |
    +------+  +--+
    5     12  15 18

A joint at position N between two planks is considered to be over a pit if start-of-pit <= N <= end-of-pit.  Examples
of invalid joint positions for the above pits are 5, 10, and 18.  Valid joint positions include 4, 13, 14, and 19.

Continued on next page...
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For reference, with two pits: pit(5,7) and pit(15,3):

----+      +--+  +-----
    |      |  |  |
    |      |  |  |
    +------+  +--+
    5     12  15 18

The predicate you are to write is cross(+Planks, +Distance, -Solution).  Examples of use:

?- cross([10,10,3],20,S).
S = [3, 10, 10] .

?- cross([9,11],20,S).
false.

?- cross([1,2,4,5,5,9],20,S).
S = [4, 9, 1, 5, 2] .

Assume that Distance is sufficient to cross all the pits.  As the first example above demonstrates, the combined
length of the planks may exceed Distance.  It not necessary to use all the planks.

As the second example shows, cross fails if a crossing is not possible with the given planks.

Only the first result of cross is of interest—the user hit ENTER after each answer above.

Remember that there may be any number of pit/2 facts and the pits may be in any position.

Hint: I use a helper, layplanks(+Planks, +Current, +Distance, -Solution).
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Problem 13:  (7 points) (one point each unless otherwise indicated)

The following questions and problems are related to Prolog.

(1) Haskell strings are actually just lists of characters.  Similarly, Prolog lists are actually instances of a more
basic element of Prolog.  What's that element? 

(2) What's an appropriate situation in which to use the "cut-fail" combination?

(3) Consider the following goal written by a novice Prolog programmer: append(A,B,A).  What's a likely
problem with that goal?

(4) Consider this claim:  Aside from what is/2 provides, Prolog has nothing that corresponds to the concept
of an expression like that found in Java, Haskell, and Ruby.  Present an argument either in favor or against
this claim. (2 points)

(5) What's the most important fundamental difference between a Prolog predicate like member/2 and a
function/method of the same name in Haskell, Ruby, or Java? (2 points)
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Problem 14:  (5  points) (one point each unless otherwise indicated)

The following is a Sather program, from http://rosettacode.org/wiki/Sum_of_squares#Sather

class MAIN is

  sqsum(s, e:FLT):FLT is
    return s + e*e;
  end;
 
  sum_of_squares(v :ARRAY{FLT}):FLT is
    return (#ARRAY{FLT}(|0.0|).append(v)).reduce(bind(sqsum(_,_)));
  end;
 
  main is
    v :ARRAY{FLT} := |3.0, 1.0, 4.0, 1.0, 5.0, 9.0|;
    #OUT + sum_of_squares(v) + "\n";
  end;

end;

Based on the code above, tell me five things about Sather.  Excellent or additional observations may earn up to
three points of extra credit.
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Problem 15:  (6 points)

Answer the following general questions.

(1) What is the fundamental characteristic of a statically typed language? (1 point)

(2) A language designer must decide whether an operation is to have a symbolic form, like +, ==, and x[y]
or an alphabetic form like length, insert, and charAt.  What are some factors that must be
considered when deciding between an symbolic or alphabetic form for an operation? (2 points)

(3) Imagine that for some reason all your knowledge and memories of two of the three languages we covered
this semester must be erased!  Which of the three languages do you wish to retain your memories of, and
why? (3 points)
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Extra Credit Section (½ point each unless otherwise noted)

(1) What programming language had a typo in the first example of the first book published about the languaage?

(2) The first machine named lectura was a VAX-11/785.  Who picked the name "lectura"?

(3) What would be a better name for the Prolog 1000, and why?

(4) What does DWIM mean?

(5) What is the official name of Gould Simpon 942?  (Ok to be funny!)

(6) Ralph Griswold is known for designing languages like SNOBOL4 and Icon but he's also known for his work
related to the mathematical aspects of weaving.  What's a one word connection between those two areas?

(7) In what year did Ralph Griswold found The U of A's Department of Computer Science?

(8) On Ralph's first day here he arrived to find a number of students waiting outside his office for advising. 
When he entered his office he found a common piece of office furniture was absent.  What was it?

(9) There are many measures of success.  What do you think must be true in order for a programming language
to be considered a success?

(10) Under what circumstances should a programming language be considered dead?
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