
CSc 372, Fall 1996, Final Examination; page 1 of 14

CSc 372, Fall 1996
Final Examination

Monday, December 16, 1996

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 14 problems and an extra credit section presented on 14

numbered pages.

On problems that ask you only to write code, you need not include any explanation

in your answer if you are confident it is correct. However, if an answer is incorrect,

any accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central

to a problem's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem, please ask for a hint.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.

Unless otherwise noted on a given problem you may use whatever language

elements you desire.

Print your name below and when told to begin, put your initials in the lower right

hand corner of each page, being sure to check that you have all the pages.

This is a two hour exam with a total of 100 regular points and 28 points of extra credit

problems. You should therefore average slightly better than one point of completed

problems per minute (1.067 p/m) in order to finish all problems in the allotted time.

Name: _______________________________________

CSc 372, Fall 1996, Final Examination; page 2 of 14

Problem 1 (12 points):

For each of ML, C++, Icon, and Prolog, cite three elements in the language that are

unique to that language among this group of four. Elements should be of a broad

nature rather than focused on narrow details such as reserved words, built-in

functions, and the like. Think in terms of the elements in the language that you

would first mention if describing it to someone. Remember: Elements must be

unique to a particular language. Note: Read the next problem before you answer this

one.

Problem 2 (8 points):

Select one element from EACH set of three in the previous problem and describe a

benefit it provides to the programmer.

CSc 372, Fall 1996, Final Examination; page 3 of 14

In the following Prolog problems you may assume that you have at your disposal all

of the predicates that we covered in class, such as len/2 (length), member/2,

append/3, last/2, etc.

Problem 3 (5 points):

Write a predicate permute(L,P) that for a list L of 1, 2, or 3 elements instantiates

P to each permutation of the elements of L. A one element list [a] has one

permutation: [a]. A two element list [1,2], has two permutations: [1,2] and

[2,1]. A three element list [a,b,c] has six permutations: [a,b,c], [a,c,b],

[b,a,c], [b,c,a], [c,a,b], and [c,b,a]. You may generate the permutations

in any order. Hint: You can do this with a predicate with nine clauses, none of

which are rules. You may abbreviate permute as p and use ditto marks ('') where

useful.

Examples:

?- permute([1,2],P).
P = [1,2] ? ;
P = [2,1] ? ;
no

?- permute([1,2,3],P).
P = [1,2,3] ? ;
P = [1,3,2] ? ;
P = [2,1,3] ? ;
P = [2,3,1] ? ;
P = [3,1,2] ? ;
P = [3,2,1] ? ;
no

CSc 372, Fall 1996, Final Examination; page 4 of 14

Problem 4 (3 points):

The instructor's implementation of roman/2 used a series of facts of this form:

rdval('I',1).
rdval('V',5).
rdval('X',10).
etc.

Consider an attempt at an ML function to provide the same functionality as

rdval/2:

fun rdval("I") = 1
 | rdval("V") = 5
 | rdval("X") = 10
etc.

Without particular regard to usage in roman/2, is the ML function a good

approximation of the rdval/2 predicate? Be sure to justify your answer.

Problem 5 (7 points):

Write a predicate sum_ints(L,Sum) that produces a sum of the integers in list L.

L might contain things other than integers, but they should be ignored. Examples:

?- sum_ints([1,3,5], Sum).
Sum = 9 ? ;
no

?- sum_ints([a,1,b,2,c,3], Sum).
Sum = 6 ? ;
no

?- sum_ints([], Sum).
Sum = 0 ? ;
no

?- sum_ints([a,b,c], Sum).
Sum = 0 ? ;
no

Note that the predicate integer/1 can be used to see if a term is an integer:

?- integer(5).
yes

?- integer(a).

CSc 372, Fall 1996, Final Examination; page 5 of 14

no

?- integer([1,2]).
no

Hint: Be sure your solution accommodates being asked for alternatives (As shown,

none should be produced.)

Problem 6 (6 points):

Write a predicate assemble(L,Segments) that describes the relationship that the

list L can be assembled from two of the lists in Segments. Examples:

?- assemble([1,2,3,4], [[1,2,3],[4],[3,4],[1,2]]).
yes

?- assemble([1,2,3,4], [[1,2,3],[3,4],[1,2]]).
yes

?- assemble([a,b], [[a],[b],[a,b],[a,b,c],[]]).
yes

?- assemble([a,b,c], [[a,b],[b,c],[c,a],[b]]).
no

CSc 372, Fall 1996, Final Examination; page 6 of 14

Problem 7 (10 points):

Imagine that at your disposal is a predicate make_change(CoinStock,

Amount, Coins, NewStock) that is used to calculate the number of nickels,

dimes, and quarters necessary to add up to a given amount. Examples:

?- make_change([5,5,10,10,25,25], 30, C, N).
C = [5,25]
N = [5,10,10,25] ?

?- make_change([5,10,10,25], 5, C, N).
C = [5]
N = [10,10,25] ?

?- make_change([10,10,25], 18, C, N).
no

make_change fails if exact change can't be produced. make_change will produce

alternatives and is not guaranteed to produce the best result first:

?- make_change([5,5,5,5,5,25], 25, C, N).
C = [5,5,5,5,5]
N = [25] ? ;

C = [25]
N = [5,5,5,5,5] ? ;
no

In this problem you are to write a predicate cfa/2 (change for amounts) with this

form: cfa(Amounts, Coins, CoinLists). Amounts is a list of amounts for

which change is to be produced from the list Coins. cfa instantiates CoinLists

to a list of lists where each element is a list of coins totaling the amount in the

corresponding position in Amounts. Examples:

?- cfa([30,5,20], [5,5,10,10,25,25], CoinLists).
CoinLists = [[5,25], [5], [10,10]] ?

?- cfa([30,5,5], [5,5,10,10,25,25], CoinLists).
no

?- cfa([10,10,10,10], [5,5,5,5,5,5,10], CoinLists).
CoinLists = [[5,5], [5,5], [5,5], [10]] ?

Note that the second case fails because the nickels ran out.

Important: The task at hand is to write cfa using make_change. cfa should be

able to accommodate a list of amounts of any length. If you can't work out a

solution that handles any number of amounts you may write a solution that handles

only lists of three amounts for a score of 6 points rather than the full 10 points for

this problem. If you can't do that either, you can implement all of member(X,L),

length(L,Len), last(L,Last), and append(L1,L2,L3) for a score of four

points.

CSc 372, Fall 1996, Final Examination; page 7 of 14

For reference, here again are some of the examples from the previous page:

?- make_change([5,5,10,10,25,25], 30, C, N).
C = [5,25]
N = [5,10,10,25] ?

?- make_change([5,10,10,25], 5, C, N).
C = [5]
N = [10,10,25] ?

?- make_change([10,10,25], 18, C, N).
no

?- cfa([30,5,20], [5,5,10,10,25,25], CoinLists).
CoinLists = [[5,25], [5], [10,10]] ?

?- cfa([30,5,5], [5,5,10,10,25,25], CoinLists).
no

?- cfa([10,10,10,10], [5,5,5,5,5,5,10], CoinLists).
CoinLists = [[5,5], [5,5], [5,5], [10]] ?

Don't forget: Your task is to write cfa; you may assume that you have

make_change at your disposal.

CSc 372, Fall 1996, Final Examination; page 8 of 14

In the following Icon problems you may assume that you have at your disposal the

full set of built-in functions and the split procedure.

Problem 8 (8 points):

Write an Icon procedure extract(s, m, n) that extracts a portion of a string that

represents a hierarchical data structure. m is a major index and n is a minor index.

Major sections of the string are delimited by slashes and are composed of minor

sections separated by colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one minor sections.

A call such as extract(s, 3, 2) should locate the third major section

("10:2:4" in the string above) and return the second minor section therein ("2"). If

either section number is out of bounds, extract should fail. m and n may be

assumed to be integers greater than zero. s may be assumed to be well-formed.

Examples (with ie):

][s := "/a:b/apple:orange/10:2:4/xyz/";

][extract(s, 1, 1);
 r := "a" (string)

][extract(s, 1, 2);
 r := "b" (string)

][extract(s, 3, 3);
 r := "4" (string)

][extract(s, 4, 1);
 r := "xyz" (string)

][extract(s, 4, 2);
Failure

][extract(s, 5, 1);
Failure

CSc 372, Fall 1996, Final Examination; page 9 of 14

Problem 9 (6 points)

Write an Icon program that reads, on standard input, a list of words, one per line, and

prints the words that contain the letters a, b, and c in that order. The letters need not

be consecutive and there may be more than one occurrence of each. The only

requirement is that in order for a word to be printed it must contain an "a" followed

by a "b" that is followed by a "c". You may assume that the input is strictly lower-

case.

Examples of words satisfying the desired condition:

acrobatic

elasmobranch

swashbuckler

Problem 10 (6 points)

Write an Icon procedure revby2(s) that reverses the string s on a character pair-

wise basis and returns the resulting string. revby2 should fail if s has an odd

number of characters. NOTE: Your solution must use string scanning. You may not

use string subscripting (s[i]) or sectioning (s[i:j]), or the * operator.

Examples (with ie):

][revby2("12345678");
 r := "78563412" (string)

][revby2("abcdefghijklmnopqrstuvwxyz");
 r := "yzwxuvstqropmnklijghefcdab" (string)

][revby2("");
 r := "" (string)

][revby2("123");
Failure

CSc 372, Fall 1996, Final Examination; page 10 of 14

Problem 11 (7 points):

Write an Icon program that prints on standard output, one per line, each minute of

the day in the form 12:22pm. The program should produce 1440 lines of output (24

times 60). The desired output, with key portions and shown and other portions

elided, is as follows. Note that to conserve space the output is shown here in three

columns but your solution should produce output in a single column.

12:00am
12:01am

...
12:58am
12:59am
 1:00am
 1:01am
 1:02am

...
 9:58am
 9:59am
10:00am
10:01am

10:02am
10:03am

...
11:58am
11:59am
12:00pm
12:01pm
12:02pm

...
12:58pm
12:59pm
 1:00pm
 1:01pm

 1:02pm
...

 9:58pm
 9:59pm
10:00pm
10:01pm
10:02pm

...
11:58pm
11:59pm

Note that the first time printed is 12:00am and the last is 11:59pm. You may find

the right(s, width, pad_character) function handy:

][right(3, 2, "0");
 r := "03" (string)

][right(3, 2, " ");
 r := " 3" (string)

Recall that in an Icon expression with multiple generators, generators are resumed in

LIFO order: the generator that most recently produced a result is the first one

resumed to produce a new result.

CSc 372, Fall 1996, Final Examination; page 11 of 14

Problem 12 (4 points):

Write an Icon program rev that reads a file redirected to standard input and writes

out the lines in the file in reverse order—last line first, first line last.

Example:

% cat in.dat
line 1
number two
the third line
% rev < in.dat
the third line
number two
line 1

Problem 13 (9 points):

Write an ML function samesums(L) of type (int * int * int) list ->

bool that tests whether all the 3-tuples in L have the same sum.

- samesums;
val it = fn : (int * int * int) list -> bool

- samesums([(1,1,1),(3,0,0),(5,3,~5)]);
val it = true : bool

- samesums([(1,1,1),(3,0,1)]);
val it = false : bool

- samesums([(1,1,1)]);
val it = true : bool

- samesums([]);
val it = true : bool

CSc 372, Fall 1996, Final Examination; page 12 of 14

Problem 14 (9 points)

Write code for a C++ class named X that exhibits the following elements:

A private default constructor.

A public constructor that takes two ints and stores their sum in a private data

member of type int.

A public member function int f() that produces the sum computed by the

(int, int) constructor or zero if this object was created by the default

constructor.

Write an insertor for X that simply inserts (for example) "an X at 0x7FFFEBBE"

where the address is the location of the instance of X in memory.

Write code to create five instances of X as follows: one local variable, one

dynamically allocated instance, and a local variable that is an array of three

instances. Show this code in a complete function.

Write code to invoke X::f for each of the five instances created in the above step

and print the sum of the five return values.

CSc 372, Fall 1996, Final Examination; page 13 of 14

EXTRA CREDIT SECTION

EC 1 (5 points):

Name five programming languages that originated before 1985.

EC 2 (5 points max):

For one point each, name a programming language and the person generally credited

as being the designer of the language.

EC 3 (1 point):

What is the instructor's favorite programming language?

EC 4 (1 point):

Name a popular operating system in which Prolog plays a role in system

configuration.

EC 5 (2 points)

Languages can be grouped according to various aspects of the language. For

example, ML, Icon, and Prolog all have automatic memory management and C++

does not. Group the languages we studied according to their type checking

philosophy.

CSc 372, Fall 1996, Final Examination; page 14 of 14

EC 6 (3 points)

Write an Icon program that reads a list of words like that described in problem 12

and prints out the words that consist of solely of the hex digits a-f. Examples of

such words: added, beef, dead, facade.

EC 7 (1 point)

Among ML, C++, Icon, and Prolog, which is your favorite?

EC 8 (2 points)

Of all that we covered, which one language feature did you find most interesting?

EC 9 (5 points):

In the same style as problems 1 and 2, name three differences between Java and C++

and for any one of those differences explain the benefit provided to the programmer.

EC 10 (2 points):

Why are static class members an essential element of Java?

EC 11 (1 point):

What is the Prolog 1000?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

