
CSc 372 — Comparative Programming Languages
Spring 2017 (McCann)

The Great CACM GOTO Argument

In 1968, Professor Edsger W. Dijkstra wrote a letter to the editors of the Communications of the ACM, the flagship
publication of the Association for Computing Machinery. He titled it “A Case against the GO TO Statement,” but
the editor re-titled it “Go To Statement Considered Harmful.” It grew to become one of the most cited items in the
magazine’s history.

• Dijkstra, Edsger W. “Letters to the Editor: Go to Statement Considered Harmful.” Communications
of the ACM, Volume 11 Issue 3, March 1968, pp. 147-8. https://doi.org/10.1145/362929.362947

In 1987, Frank Rubin submitted a letter to the editor titled “ ‘GOTO Considered Harmful’ Considered Harmful,” in
which he argued that the GOTO statement is often very useful. It was published in the March issue.

• Rubin, Frank. “ACM Forum: ‘GOTO Considered Harmful’ Considered Harmful,”
Communications of the ACM, Volume 30, Number 3, March 1987, pp. 195-6.
https://doi.org/10.1145/214748.315722

Rubin’s letter prompted a flurry of responses that were published in the May, August, and December 1987 issues.
These responses included a response from Rubin to the flurry, a response from Dijkstra to the flurry, and a reponse
from Rubin to Dijkstra’s response. We can only imagine the volume and tone of the responses and rejoinders had this
occurred today on social media.

• Ashenhurst, Robert L., Ed. “ACM Forum,” Communications of the ACM, Volume 30, Number 5,
May 1987, pp. 350–5. https://doi.org/10.1145/22899.315729

• Ashenhurst, Robert L., Ed. “ACM Forum,” Communications of the ACM, Volume 30, Number 8,
August 1987, pp. 658–62. https://doi.org/10.1145/27651.315742

• Ashenhurst, Robert L., Ed. “ACM Forum,” Communications of the ACM, Volume 30, Number 12,
December 1987, pp. 996–9. https://doi.org/10.1145/33447.315758

The following pages are from scans of the original pages in the CACM. I expect you’ll find these letters to be interesting
reading, particularly from your points of view as programmers who were taught programming long after the GOTO
statement ceased to be an option in most new languages.

“At the IFIP Congress in 1971 I had the pleasure of meeting Dr. Eiichi Goto of Japan, who
cheerfully complained that he was always being eliminated.”

— Donald Knuth, in “Structured Programming with go to Statements,”
Computing Surveys, Vol. 6, No. 4, December 1974.

https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/214748.315722
https://doi.org/10.1145/22899.315729
https://doi.org/10.1145/27651.315742
https://doi.org/10.1145/33447.315758

Go T o S t a t e m e n t C o n s i d e r e d H a r m f u l

Key Words and Phrases: go to statement, jump instruction,

branch instruction, conditional clause, alternative clause, repet-

itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EDITOR :

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered w h y the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine Code).
At'that time I did not attach too m u c h importance to this dis-
covery; I now submit m y considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

M y first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the "making" of the corresponding process is dele-
gated to the machine.

M y second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider h o w we can characterize the progress of a
process. (You m a y think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us call such a
pointer to a suitable place in the text a "textual index."

W h e n we include conditional clauses (if B then A), alternative
clauses (if B then AZ else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres-
sions as introduced by J. McCar thy (Bi -~ El, B2 --~ E2, ... ,
Bn ---~ En), the fact remains that the progress of the process re-
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on

the other hand, the reasoning pattern known as "induction"

makes us well equipped to retain our intellectual grasp on the

processes generated by repetition clauses. With the inclusion of

the repetition clauses textual indices are no longer sufficient to

describe the dynamic progress of the process. With each entry into

a repetition clause, however , we can associate a so-called "dy-
namic index," inexorably counting the ordinal number of the

corresponding current repetition. As repetition clauses (just as

procedure calls) may be applied nestedly, we find that now the

progress of the process Can always be uniquely characterized by a

(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside

programmer's control; they are generated (either by the write-up

of his program or by the dynamic evolution of the process) whether

he wishes or not. They provide independent coordinates in which

to describe the progress of the process.

Why do we need such independent coordinates? The reason

is--and this seems to be inherent to sequentiM processes--that

we can interpret the value of a variable only with respect to the

progress of the process. If we wish to count the number, n say, of

people in an initially empty room, we can achieve this by increas-

ing n by one whenever we see Someone entering the room. In the

in-between moment that we have observed someone entering the

room but have not yet performed the subsequent increase of n,

its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate

consequence that it becomes terribly hard to find a meaningful set

of coordinates in which to describe the process progress. Usually,

people take into account as well the values of some well chosen

variables, but this is out of the question because it is relative to

the progress that the meaning of these values is to be understood l

With the go to statement one can, of course, still describe the

progress uniquely by a counter counting the number of actions

performed since program start (viz. a kind of normalized clock).

The difficulty is that such a coordinate, although unique, is utterly

unhelpful. In such a coordinate system it becomes an extremely

complicated affair to define all those points of progress where,

say, n equals the number of persons in the room minus onet

The go to statement as it stands is just too primitive; i t is too

much an invitation to make a mess of one's program. One can

regard and appreciate the clauses considered as bridling its use. I

do not claim that the clauses mentioned are exhaustive in the sense

tha t /hey will satisfy all needs, but whatever clauses are suggested

(e.g. abortion clauses) they should satisfy the requirement that a

programmer independent coordinate system can be maintained to

describe the process in a helpful and manageable way.

I t is hard to end this with a fair acknowledgment. Am I to

Volume 11 / Number 3 / March, 1968 Communieations of the ACM I47

judge by whom my thinking has been influenced? It is fairly

obvious that I am not uninfluenced by Peter Landh~ a~d Chris~

topher Strachey. Finally I s~muld like to record (as I remember i~

quite distinctly)how Heinz Zema:~ek a~ the pre-A~c~-oL meeting

in early !959 in Copenhagen quite explicitly expressed his doubts

whether the go to statement should be treated on equM syntactic

footing with the ~s ignment statement. T n a modest extent t

blame myself for not having then drawn ~he eor~sequenees of his

remark.

The remark about the undesirability of the go to statement is

far from new. I remember having read the explicit recoam~enda*

~[on ~o restrict the use of the go to statement to alarm exits, but

I have not been able to trace it; presumably, it has been made by

C. A. R. Hoare. In {t, See. 3.Z1.] Wirth and Hoare together

make a remark in the same direetion in motivating the case

eonstruetion: "Like the conditional, it mirrors die dynamic

structure of a program more eleaHy than go to statements a~d

switches, sad it eliminates the need for introducing a large number

of labels i~ the program."

In !2] Guiseppe aaeopini seems to have proved the (togieM)

superfluousness of the go to statement. The exercise to translate

an arbitrary flow diagram more or tess meehanicMty into a jmnp-

less one, however, is not to be recommended. The~ the resulting

flow diagram cannot be expected to be more transparent than the

originM one.

}'~g FNRE NCES :

1. WIaT~L N~KL.-~'S~ Axe> }{O.~a~, C A. R A contribution to the
developmen~ of ALGOL. ('cram. A(\~.[9 (June 19~i), 413-432.

2. B{JIH)d~ CORNADO, .aN[)J-kkCOP[N[, GUqSEPeE,. Flow diagrams,

Turing macNnes and languages with only two formation

>ties, Commo ACM ,9 (May lg@}), 3(~->-371.

EDSGER W o I)UKSTRA

Technogogicag University

Eindhoven, The NegheHa~ds

l a n g u a g e P r o t e c t i o n b y T r a d e m a r k I l l - a d v i s e d

Key Words and Phrsaes: TRAC languages, procedure-oriented

language, proprietary software, protection of software, trade~

marks, copyright protection,patent protection, standardization,

lice~sing, Mooers doctrb~e

C[~' Categories: 212, 2.2, 4.0, 42

}:n~Toa :

I would like to comment on a policy published 25 August 1967

by the Rockford Research Insti tute Inc., for trademark control

of ~he T}~Ac language "originated by Calvin N. Mooers of that

eorp,ratio>.": "I~ is ~.he belief at Rockford t~meareh that an

aggresaive cour:~e of action can and should be taker~ to protect the

i~tegrity of its carefully desig~ed targuages." Mr. Mooers believes

that "well-drawn standards are not enough to prevent irrespon.-

sib~e deviatio~v~ in computer ta~guages," and that. there%re

"Rnekford Research shall insist ~ha~. all software and supporting

services for its T:r{.~e languages arid related services be furnished

for a price by Rockford~ or by sources licensed and authorized by

Rockford in a cow, tract ar rangement" Mooers' policy, which

applies in academic hastitutions ~s well as commercial ~sem,

includes ":authorized use of the algorithm and prbnitives of a

specific T-~ae language; authorization for experimentatior~ with

the language , 2'

I ~hir~k that ~his attempt ~o protect a ia~guage a~d its software

by eoatrotlb~g ffhe name is very ill-advised. Orm is remi~ded of

the C o ~ r tz, ngaage, whose develo~:~r~ (under V. Yngve) reetrieted

its sourcedevel distribution. As a result, that efforl5 was bypassed

by the people at Bell Laboratories who developed Srvonou This

latter Ianguage and its software were iacvitM)ly superior, and

were immediately available to every~me, b~eluding the right to

make exte~sio~s. Later versions benefitted from "meritorious

extra,siena" by "irrepressible young people" at universities, with

the result that Sxo~o~, today is an important and prominent

language, while Coast enjoys relative obscurity.

Mr. Mooers will find that; new Ta~cdike languages will appear

whose documentatimb because of the trademark restriction, can.

not mention Tm~c. Textbook references will be similarly inhibited.

It is unfortunate.

B~:RNaeD A. G a L ~

UaiversiQl of Michigag
Ann Arbor, Mich. 4810~

Mr. Manet's Reply

EDITOR: I~

Professor GMter's let.tar, commenting ca our Rockford Research sl

policy statement on software protection of 25 August 1967, opens t~

the discussion of what may be a very significant developmeat to p

our computing profession. This policy statement applies to our

TIRAC CFM) computer-controlling languages. The statement in.

eludes a new doctrine of software protection which may be gen. tl

erally applicable to a variety of different kinds of complex corn- i~

purer systems, computer services, languages, and software, a

Already it is evident that this doctrine has a number of interesting

legal and commercial implications. It is accordingly appropriate d

that it be subiect to critical discussion.

The doctrine is very simple. For speeifieity, I shall describe it

in regard to the Tm~c languages which we have developed: (1)

Rockford Research has designated itself as the sole authority for

the development and publication of authentic standards and

specifications for our TRAC languages; and (2) we have adopted

Taac as our commercial trademark (and service mark) for use in

connection with our eoraputer-eontrolling languages, our publica-

tions providing standards for the languages and any other related

goods or services, i

The power of this doctrine derives from the unique manner in

whieh :it serves the interests of the consuming public--the people K

who wilt be using computer services. The visible and recognized

Te.~c trademark informs this public--the engineers, the soeiol0gy

professors, the business systems people, and the nonprogrammers

everywhere--that the language or computer capability identified I!

by this trademark adheres authentieMly and exactly to a carefully * !i

drawn Rockford Research standard for one of our TR:~c languages 'i

or some related service. This is in accord with a long commercial ~t

and legal tradition.

The evils of the present situation and the need to find a suitable ~l

remedy are well known. An adequate basis for proprietary soft- ~

ware development and marketing is urgently needed, particularly

in view of the doubdul capabilities of copyright, patent, or "trade

secret" methods when applied to software. Developers of vMuable

systems--including languages-~-deserve to have some vehicle to

give them a return. On the user side the nonexistence of standards

in the computer systems area is a continuing nuisance. The

proliferation of dialects ou wduabte languages (e.g. SNOR0~ or

f' O~Tr~ ~.X) iS sheer madness. The layman user (read "nonprogram"

mer") who now has access to any of several dozen computer

facilities (each with incompatible systems and diMects) needs

relief. It is my opinion that this new doctrirm of autonomous

sta~dardizativm eoupled with resort to eontmereiat trademark can

provide a substangiM contribution to remedying a variety of our

problems ia this area.

Several points of Professor Galter's tatter deserve specific

comment Ih::, full impact of our Rockford Research policy (and

t 4 8 C o m m u n i e a t l o ~ s ~)f the ACid| Vo lume 11 / N u m b e r 3 / March, 1698

LETTERS

Robert L. Aslzedmrst, cditov acm forum
Taulbee Survey Report
I was disappointed in the report by
David Gries on the 1984-1985
Taulbee Survey (Communications,
October 1986, pp. 972-977). Al-
though it was well presented,
reasonably laid out and, most
likely, accurate, it was not useful
information. Data in this form
need commentary to become in-
formation. I often hear of “indus-
try eating its own seed corn” in
reference to the hiring of Ph.D.‘s
away from academia, and of a
shortfall in Ph.D.‘s for computer
science overall. I jumped at the
chance to learn from the Gries
report. Alas, there were no con-
clusions drawn, no help for all us
uninformed. I know that time
spent pouring over the data would
give me some feel for the condi-
tion I am concerned over (e.g., po-
tential lack of sufficient Ph.D.‘s),
but I know I do not have the time
and I fear I lack the knowledge to
draw proper conclusions.

Roger S. Gourd
MASSCOMP
One Technology Park
Westford, MA 01886

Response:
Perhaps reader Gourd is right in
asking for more commentary and
conclusions. Inexperience, a
reluctance to draw too many
conclusions, and a lack of space all
contributed to the form and
content of the report. We will try
to address this criticism in the
next report.

David Gries
Department of Computer Science
Cornell University
405 Upson Hall
Ithaca, NY 14853-7501

Network Noted
In the “Notable Computer Net-
works” article by John S. Quar-
terman and Josiah C. Hoskins
(Communications, October 1986,
932-971) a few company networks
are detailed. One such network
which is not detailed seems to be
a fairly well-kept secret. This is
the internal network belonging to
Tandem Computers Incorporated.
This network has 200 Nonstop
hosts connected via 150 links con-
sisting of microwave, laser, satel-
lite, fiber, and copper running at
speeds up to 3 Mbit/s. The aggre-
gate processing power of this vir-
tual machine is 1.6 BIPS (billion
instructions per second). Both the
systems and the network are fault-
tolerant.

A staff of four employees in
Cupertino, CA, and one in Ger-
many support the user community
of 6500 hard-wired and 2500 dial-
up terminals and PCs. While the
network, spanning 23 countries, is
running 24 hours a day, the sup-
port staff works normal 40 hour
weeks. Because of its fault-tolerant
nature, communications failures
are not critical to network connec-
tivity.

This ease of maintainability is
due to Tandem’s proprietary pro-
tocol, EXPAND, which is modeled
after x.25. Addition, deletion or
moves of hosts do not require a
Network Sysgen. When a new host
is added to the network, a “ripple
effect” takes place until each host
knows the best path to the new
host. During a network failure and
after the subsequent recovery,
the network performs its own
rerouting.

The network supports over 100
production applications including

Electronic Mail, Order Entry,
Manufacturing, VLSI Design, Cus-
tomer Engineering Dispatch, Prob-
lem Reporting and Software Patch
Distribution.

A typical Tandem electronic-
mail name looks like
‘LaPedis-Ron’, or ‘Payroll’, the

second being a department name
rather than a person. There is no
need to specify the geographical
location of a mail correspondent.

An on-line telephone book, tele-
phone messages, and request form
application round out the average
employee’s interface with the net-
work. An article on the Tandem
network has appeared in Data
Communications magazine (August
and September 1985).

Ron LaPedis
Corinne DeBra

Tandem Computers Incorporated
2 9191 Vallco Parkway
Cupertino, CA 95024-2599

“GOT0 Considered Harmful”
Considered Harmful
The most-noted item ever pub-
lished in Communications was a
letter from Edsger W. Dijkstra
entitled “Go To Statement Con-
sidered Harmful” [l] which at-
tempted to give a reason why the
GOT0 statement might be harm-
ful. Although the argument was
academic and unconvincing, its
title seems to have become fixed
in the mind of every programming
manager and methodologist. Con-
sequently, the notion that the
GOT0 is harmful is accepted al-
most universally, without question
or doubt. To many people, “struc-
tured programming” and “GOTO-
less programming” have become
synonymous.

This has caused incalculable

March 1987 Volume 30 Number 3 Communications of the ACM 195

Forum

harm to the field of programming,
which has lost an efficacious tool.
It is like butchers banning knives
because workers sometimes cut
themselves. Programmers must
devise eIaborate workarounds,
use extra flags, nest statements
excessively, or use gratuitous sub-
routines. The result is that GOTO-
less programs are harder and cost-
lier to create, test, and modi.fy.
The cost to business has already
been hundreds of millions of dol-
lars in excess development and
maintenance costs, plus the hid-
den cost of programs never devel-
oped due to insufficient resources.

I have yet to see a single study
that supported the supposition
that GOTOs are harmful (I pre-
sume this is not because nobody
has tried). Nonetheless, people
seem to need to believe that
avoiding GOTOs will automati-
cally make programs cheap and
reliable. They will accept any
statement affirming that belief,
and dismiss any statement oppos-
ing it.

It has gone so far that some peo-
ple have devised program com-
plexity metrics penalizing GOTOs
so heavily that any program with
a GOT0 is ipso facto rated more
complex than even the clumsiest
GOTO-less program. Then they

turn around and say, “See, the
program with GOTOs is more
complex.” In short, the belief that
GOTOs are harmful appears to
have become a religious doctrine,
unassailable by evidence.

I do not know if I can do any-
thing that will dislodge such
deeply entrenched dogma. At least
I can attempt to reopen the discus-
sion by showing ,a clearcut in-
stance where GOTOs significantly
reduce program complexity.

I posed the following problem to
a group of expert computer pro-
grammers: “Let X be an N x N ma-
lrix of integers. Write a program
that will print the number of the
first all-zero row of X, if any.”

Three of the group regularly
used GOTOs in-their work. They
produced seven-line programs
nearly identical to this:

for i :=I ton

dobegin

forj :=ltondo
if x[i, j]<>O

thengoto reject;
writeln

('The firstall-zero

row is I, i
break;

reject: end;

The other ten programmers nor-
mally avoided GOTOs. Eight of
them produced 13 or 14-line pro-
grams using a flag to indicate
when an all-zero row was found.
(The other two programs were
either incorrect or far more com-
plex.) The following is typical of
the programs produced:

i :=I;

repeat
j :=I;

allzero :=true;
while (j<=n)andallzero
dobegin

if x[i, j]OO
thenallzero := false;

j :=j+l;
end;
i :=i+l;

until (i>n) or allzero;
ifi<=n

thenwriteln
('The firstall-zero

rowis I, i-l);

After reviewing the various
GOTO-less versions, I was able to
eliminate the flag, and reduce the
program to nine lines:

i:=l;
repeat

j := 1;

while(j<=n)

and (x[i, j] =0) do
j := j+l;

i :=i+l;
until(i>n)or (j>n);
ifj>n

thenwriteln
('The firstall-zero

row is' , i-l);

By any measure not intention-
ally biased against GOTOs, the
two GOTO-less programs are more
complex than the program using
GOTOs. Aside from fewer lines of
code, the program with GOTOs
has only 13 operators, compared to
21 and 19 for the GOTO-less pro-
grams, and only 41 total tokens,
compared to 74 and 66 for the
other programs. More impor-
tantly, the programmers who used
GOTOs took less time to arrive at
their solutions.

In recent years I have taken
over a number of programs that
were written without GOTOs. As
I introduce GOTOs to untangle
each deeply nested mess of code,
I have found that the number
of lines of code often drops by
20-25 percent, with a small de-
crease in the total number of vari-
ables. I conclude that the matrix
example here is not an odd case,
but typical of the improvements
that using GOTOs can accomplish.

I am aware that some awful pro-
grams have been written using
GOTOs. This is often the fault of
the language (because it lacks
other constructs), or the text edi-
tor (because it lacks a block
move). With a proper language
and editor, and adequate instruc-
tion in the use of GOTO, this
should not be a consideration.

All of my experiences compel
me to conclude that it is time to
part from the dogma of GOTO-less
programming. It has failed to
prove its merit.

Frank Rubin
The Contest Center
P.O. Box 1660
Wappingers Falls, NY 22590

REFERENCE
1. Dijkstra, E.W. "Go to statement considered

harmful." Commun. ACM 11, 3 (Mar. 1968),
147-148.

196 Communications of the ACM March 1987 Volume 30 Number 3

LETTERS

Robert L. Ashenhurst, editor acm forum

PCs and CPs View from Watergate Bridge

This letter is in response to the
February 1987 President’s Letter
in Communications (“Personal Com-
puters and Computing Profession-
als,” pp. 101-102). Right on and
write on, Paul Abrahams. Last

summer (1986) ACM-SIGGRAPH
awarded me an educational
resource grant to assist with the
creation of computer art work-
shops for high school and middle
school children. Since attending
SIGGRAPH ‘86, I have gone into
the classrooms of our children.

These young people know a great
deal about personal computers,
video technology, computer
music, . . the electronic world.

Their heroes, in some cases, are
the hackers and computer wizards
to whom Abrahams refers in his
letter. I have been able to reach

young people and have received
the support of Parent Teacher
Associations (PTAs) for my use of
personal computers in the creation
of computer art. SIGGRAPH Video
Reviews are exciting for children
to watch, but the opportunity to
see and do creative work on an
Apple II, Amiga or Macintosh goes
a long way in educating children.
As a result, it seems like a great
idea for ACM to find a place for
the hardware tinkers and software
wizards who have made such
a wonderful contribution to the
development of young people.

The Forum strives for balanced pres-

entation. One way to achieve this is
by soliciting responses to received
letters. Another is to publish all or a
representative sampling of subse-
quent reader responses to letters. The
former expedient was followed for the
letter from Herb Grosch, to which the
following response refers. The latter
expedient is adopted here, the “bal-
ance” being perhaps skewed by the

fact that this was the only response
received. The editor accepts full

responsibility for delaying its pub-
lication somewhat until it seemed
reasonably certain that no more
responses were forthcoming.
-R. L. Ashenhurst.

While reading Herb Grosch’s letter
in a recent ACM forum (“An ACM
Watergate,” Communications, Oct.
1986, p. 928-930) I was reminded
of an old Dutch expression that
my late father used for this sort of
situations: “Vechten tegen de bier-
kaai,” he used to say. It meant that
no matter how hard one fought
and argued and obtained agree-
ments, the thing would crop up
again and again. It was a fight
without an end. And that is what
the ACM has become.

Theresa-Marie Rhyne
Computer Artist/Art Educator
P.O. Box 3446
Stanford, California 94305

For those of us who have been
convinced of the necessity of
Chapters and have been fighting
for twenty years now for Chapter
Rights and to make life more bear-
able for the common programmer,
Herb is the only visible and audi-

ble voice left, it seems. Most of US

gave up after the Council elections
of 1982 and stopped paying dues.
I still pay my dues every year and
will for as long as Herb is on the
Council. Unless they kick me out
once this piece is published.

The publications boys in New
York have tricks up the kazoo in
order to protect their jabs. It has
happened to me and to others that
a piece is put “on hold” for publi-
cation until the establishment has
thought of enough smart answers
for publishing the piece with their
comments. But the original author
does not see their comments until
he reads them in Communications.
And if he then tries to get a rebut-
tal published, it is refused “be-
cause there is no sense in dragging
it out,” as I was once told after
inquiring. We now read that the
same thing again has befallen
Herb Grosch. It’s the secrecy that
gets ye! They only do what they
are legally obligated to and not
what is morally right. I know: that
is hard to prove, and they prob-
ably will scream of slander and
libel and threaten legal action
because their usual response is to
hide behind the law and the rules
of the Association. It’s the way
that the staff interprets figures and
doctors up reports, hold.ing the in-
teresting stuff close to their chests
and publishing good-to-them items
only.

Slowly it’s becoming impossible
to say anything or ask q.uestions
anymore. Over the years the staff
and the Council have become
sacred and we, the rank:-and-file
members, we are the sacred jack-

350 Communications of the ACM May 1987 Volume .?O Number 5

ACMForum

asses who have let them become Then we will have money for
that holy in the first place. Chapters and local activities.

It may be true that the total
number of members is at an all
time high, as Adele Goldberg
states. And as long as the sign-up
rate of new members is higher
that the drop-out rate of old mem-
bers, that number will continue to
rise. But the number is deceiving.
More than half the membership is
Associate and Student members
who have no vote in the ACM. We
advertise some 300 Chapters but
that number is also deceiving.
Some ZOO are Student Chapters,
and you know how it is at school:
if the professor says that it will
help your grade if you pay nine
dollars for ACM student member-
ship, especially “if you are a
borderline case” (“and you are all
borderline,” he adds!), then the
whole class joins the ACM. How-
ever, not many become full-
fledged ACM members after they
have received their diplomas. As
far as Regular Chapters go, per-
haps some 60 of them show some
degree of activity. The rest have
died since 1982 because the lead-
ers were burnt out by a lack of
administrative and financial sup-
port from the National organiza-
tion. Long-time members drop out
because of disappointment in the
ACM. Some months the number of

members who do not renew their
memberships is huge. That is what
Herb refers to when he speaks of
membership falling off. And that
was also the reason why they
were talking merger with the IEEE
there for a while.

Jan Matser
ACM Arrowhead Chapter Chair

(1967)
ACM San Francisco Peninsula

Chair (1977)

“ ‘GOT0 Considered Harmful’
Considered Harmful” Considered
Harmful?
I enjoyed Frank Rubin’s letter
(“‘GOT0 Considered Harmful’
Considered Harmful,” March 1987,
pp. 195-196), and welcome it as an
opportunity to get a discussion
started. As a software engineer, I
have found it interesting over the
last 10 years to write programs
both with and without GOT0
statements at key points. There
are cases where adding a GOT0 as
a quick exit from a deeply nested
structure is convenient, and there
are cases where revising to elimi-
nate the GOT0 actually simplifies
the program.

Rubin’s letter attempts to
“prove” that a GOT0 can simplify
the program, but instead proves
to me that his implementation
language is deficient. In the first
solution example the GOT0 pro-
grammers got the answer very
effectively with no wasted effort:

for i := 1 to n

do begin
for j := 1 to n do

if x[i, j] <> 0 then
got0 reject;

writeln ('the
first

To maintain an oversized office
in a high rent area costs hands full
of money. That is the main reason
why Chapter services have been
cut to practically nothing. In order
to get funds for Chapters and the
common programmer, I suggest
getting that office out of Manhat-
tan and moving it west. This will
accomplish two purposes: lower
rent, and half of the staff will quit.

all zero row is I, i);
break;

reject: end;

In the consolidated second ex-
ample, the GOTO-less version
seems somewhat more complex,
even after the subscript beyond
the end of the array is exchanged
for a binary flag to determine the
result:

i := 1;

repeat

j := 1;
while (j <= n) and
(x[i, j] = 0) do

j := j,+ 1;

i := i + 1;

until (i > n) or (j > n);

if j > n then
writeln('The first all

zero row is ', i);

Both programs, however, serve
to point out a missing feature of
the language. In the first, the auto-
matic incrementation of a counter
is used, but the end condition can-
not be tested with the loop con-
struct. In the second, the loop
construct tests for end condition,
but cannot then increment the
counter.

The ideal would be to take both
good ideas and use them in combi-
nation:

found := false;
for i := 1 to n while (A

found)
do for j := 1 to n

while (x[i, j] = 0)

do if j = n then
found := true;

if found then
writeln('The first all

zero row is I, i);

This is not a legal program in
Pascal, but the ability to use both
a counter and a condition in the
loop construct makes the entire
job much simpler. The loop count-
ing is done (correctly) by the loop-
ing construct, as is the exit testing.
I have included a flag to avoid de-
pending on the value of a loop in-
dex after exhausting the count,
which could be undefined. If a
language specifies the counter to
be left one past the end of range,
this flag would not be needed.

one who thinks there are no valid

I generally prefer GOTO-less
code, but will disagree with any-

May1987 Volume30 Number5 Communications ofthe ACM 351

ACMForum

uses for the GOT0 in practical en-

gineering. The GOT0 statement
can be easily misused and should
therefore be avoided. The hand-
coded counters in the second
example are also easily misused
and should be avoided whenever
possible.

The IF and GOT0 are a mini-
mum subset of control flow fea-
tures, to which the programmer
can return when the “correct” fea-
ture is not available. GOTO, hand
coded counters, and extra flags
should all be avoided when possi-
ble because their use is error
prone. I would like to challenge
language designers to make the
GOT0 useless by allowing its use
and then providing “better alter-
natives” for each situation where a
GOT0 is needed to work around a
language limitation.

Donald Moore

Prime Computer, Inc
292 Old Connecticut Path
Framingham, MA 01701

It was with a mixture of dismay
and exasperation that I read Frank
Rubin’s letter to the Forum. I was
dismayed to see this dead horse
beaten once again, and exasper-
ated by Rubin’s sweeping claims
about the virtues of the GOT0
statement.

This is primarily a religious
issue, and those of us who oppose
the GOT0 statement have little
hope of converting those who
insist on using it. To be sure, the
statement has its place in pro-
gramming, but, recalling Rubin’s
reference to butcher knives, it
should be used only with great
care. The fundamental problem is
that a programmer, when encoun-
tering a GOT0 in some fragment
of code, is forced to begin a se-
quential search of the entire pro-
gram to determine where the flow
of control has gone. Even in
Rubin’s simplistic example I had

352 Communications of the ACM

to read the code twice to find the
label he was jumping to.

Obviously, an occasional need
arises for some type of GOT0
statement. The solution is for the
programming language to provide
a GOT0 statement which has re-
stricted semantics, making it pos-
sible to easily determine the target
of the desired branch. For exam-
ple, here is Rubin’s example pro-
gram (determining the first all-
zero row of an N X N matrix of
integers), written in C:

for (i = 0; i < n; i+t) {

for (j = 0; j < n; jH-)
if (x[i, j] != 0)

break ;
if (j<n) (

printf(*'The first
all-zero row is

%d\n", i);

break ;

This fragment has two GOT0
statements, both named break.
[Note: Rubin’s program had the sec-
ond break but not the first-Ed.]
break has the effect of jumping
to the statement following the in-
nermost loop enclosing the break
statement. In both uses, the effect
of a GOT0 has been achieved, but
the restricted semantics of break
allow the programmer to easily
determine the destination of the
branch.

I contend that my version of
this program is far more under-
standable than either of Rubin’s
programs, with or without GOTO.
In fact, Mr. Rubin’s examples of
GOTO-less programming do more
to highlight a problem in Pascal
(which has no BREAK statement)
than they do to convince me that
a GOT0 statement is required. He
starts with an absolutely egregious
program, and “improves” it by re-
moving a flag. Here is my attempt
at a GOTO-less version of the
same program, in Pascal:

i := 1;

done := false;
while i <= n and not done

do
begin

j := 1;

while j <= n anti x[i, j]

= 0 do

j := j + 1;

if j <= n then
begin
writeln("The first

all-zero row is i);

done := true
end ;

i :=i+l

end ;

For lack of a BREAK Istatement,
I had to use a flag to terlminate the
outer while loop. Unlike Rubin, I
did not mix while and repeat
loops, which is confusing, nor did
I force the variable i to serve dual
roles, indexing the array and
pointing to the row following the
first all-zero row. While I prefer
my C version of this program, I
would still stand my Pascal
against any of Rubin’s attempts.

The conclusion to be drawn
from this exercise is that good
GOTO-less code can almost al-
ways be written to be better than
any equivalent code containing
GOTOs. Contrary to Mr. Rubin’s
claims, I (and many others) have
had many experiences trying to
debug and maintain someone
else’s code containing GOTOs, and
have yet to come away from such
an experience feeling good about
the individual who wrote the
original code.

Chuck Musciano
Lead Software Engineer
Harris Corporation
PO Box 37, MS 3A/19:12
Melbourne, FL 32902

My congratulations to Frank
Rubin for coming out of the closet
on “GOT0-less” programming. As
a professional programmer for
many years, I have read and lis-

May 1987 Volume SO Number5

ACM Forum

tened to all the arguments in favor
of GOTO-less programming, hop-
ing that one of them would con-
vince me to give up GOTOs. None
has so far succeeded. Such an ar-
gument would have to show that
GOTOs always violate the struc-
ture of a program even when they
are used in accordance with good
programming practices. Obviously
GOTOs are misused, but it is usu-
ally not much easier to untangle
heavily nested code than it is to
decipher spaghetti code.

Both the overuse and the total
elimination of GOTOs constitute
misunderstandings of the relation-
ship among syntactic elements in
a programming language. GOTOs

transfer control just like other,
related transfer commands (e.g.,
IF.. .THEN). Hence, they should
be used when other forms would
be inappropriate-by leading to
needlessly complex code, for in-
stance. A linguistic analogy can be
found in active and passive sen-
tences. Active sentences are easier
to produce and understand in
relation to their passive counter-
parts. A “passive-less” English
would certainly lead to simpler
(better?) structures. However,
most linguists would agree that
English would loose a portion of
its expressive power.

Finally, I will continue to do
what I have always been doing:
listening to GOTO-less arguments
and writing well-organized and
commented software that makes
appropriate use of all available
features of a programming language.

Michael J. Liebhaber
Child Language Program
University of Kansas
1043 lndiana
Lawrence, KS 66044

Frank Rubin’s letter stated that
I‘ . * * GOTO-less programs are
harder and costlier to create,
test, and modify.” He describes
Dijkstra’s original letter on the
subject (Communications, March

May 1987 Volume 30 Number 5

1968, pp. 147-148) as I‘. . . aca-
demic and unconvincing . . .”
without any support or justifica-
tion. Finally, he concludes with
some example programs which
purport to illustrate the logical
simplicity of programs which
freely use GOT0 plus BREAK con-
tructs.

Example programs are claimed
to fit the sample specification “Let
X be an N x N matrix of integers.
Write a program that will print the
first all-zero row of X, if any.” I
had to make several assumptions
in order to write the sample
program:

the language does not support
partial evaluation of logical
expressions,
performance of the final prod-
uct is not an issue, and
performance in the absence of
any all-zero row is not speci-
fied-in particular, termination
is not required.

Apparently, there are also sever-
al additional unstated assumptions:

1)

4

3)

4)

5)

the algorithm should test as
few elements of matrix X as
necessary,
the algorithm need not be eas-
ily changed to meet a different
specification,
the language does not support
recursion or multiple procedures,

the language does support both
GOT0 and BREAK, and
the program should terminate
if a non-all-zero row is found.

Rubin’s first example, of a pro-
gram “. . . where GOTOs signifi-
cantly reduce program complex-
ity,” will not run on my UCSD 1.1
Pascal system. My Pascal has no
BREAK statement. This, however,
can be circumvented by use of
an additional GOT0 and label as
follows:

writeln
('the first all zero

row is 1, i);

goto break
reject: end;
break: (*etc.*)

By violating all of the unstated
assumptions, I was able to produce
some relatively pleasant solutions
to this problem, none of which
caused me “to use extra flags, nest
statements excessively, or use gra-
tuitous subroutines.”

The first solution tests addi-
tional elements of the matrix X as
necessary, is easily changed to
meet a different specification, uses
multiple procedures, and does not
use either GOT0 or BREAK:

functionallZero:boolean;
var

az:boolean;
beginaz :=true;

for j := 1 tondo
az :=azAND (x[i, j] =

0);

allZero :=az
end;

procedurefirstZero;
begini :=l;

whilenotallZerodoi :=
i+ 1;

WRITELN('Firstal1 zero
row is 1, i)

end;

The second solution uses recur-
sion. With a minor change, the
recursive solution tests minimal
values of X. Many reject recursion
as a viable candidate, but recent
evidence [2] confirms that recur-
sion is indeed faster for many
classes of problems.

function allZero(i, j:
integer):

boolean;
begin

if j > n then
allZero := true

else
allZero := (x[i, j] =

0) and allZero(i,

j + 1)
end;

Communications of the ACM 353

ACM Forum

procedure firstZero(i:

integer);

begin
if i 5 n then

if allZero(i, 1) then
writeln(“First all

zero row is ', i)

else
firstZero(i + 1)

else
writeln(‘No all zero

row')

end ;

It seems that Rubin takes issue
with the complexity of deeply
nested control structures. Recent
work [3] sheds some light on ways
to cope with such problems. In
general, poor program layout re-
sults from a failure to understand
an algorithm, not from the lan-
guage or from the specific tech-
niques used for implementation.

I submit that there are two
issues here:

Poor and good programming are
language independent. That
Rubin is able to reduce the
complexity of poor programs is
not an indictment of the pro-
gramming style, but rather an
indictment of the program-
mer(s), and a tribute to Rubin’s
obvious skill.
Modifying programs in which
there is a ‘I. . . conceptual gap
between the static program and
the dynamic process . . .” (to
quote Dijkstra’s original letter)
is generally quite difficult.
While some advocate scrapping
programs instead of patching
them ([l] is a recent example),
it seems that writing a program
as generally as possible can
only make it less expensive to
modify.

In order to see the real limita-
tions of GOT0 programming, try
to modify the example programs
in Rubin’s letter. Modifications
should include:

1) locating all rows which are all
zero,

2) locating and computing an
arithmetic mean for all rows
which contain nonzero values,
and

3) locating all rows in which the
sum of the elements is odd.

Steven F. Loft
Computer Task Group
6700 Old Collanzer Road
Syracuse, NY 13057

REFERENCES
1. Hekmatpour, S. Experience with Evolution-

ary Prototyping in a Large Software Project.
Software Engineering Notes 12:l. 38-41.
January 1987.

2. Louden, K. Recursion Versus Non-Recur-
sion in Pascal: Recursion Can Be Faster.
SIGPLAN Notices 22:2. 62-67 February
1987.

3. Perkins, G. R.. R. W. Norman. S. Dancic.
Coping with Deeply Nested Control Struc-
tures. SIGPLAN Notices 22:2. 68-77
February 1987.

I would like to comment on Frank
Rubin’s article on GOTOs. Al-
though I agree with him in spirit,
unfortunately he did not give a
fair shake to the non-GOT0 camp
for a correct solution. The problem
is to find the first row of all zeroes
in an n x n matrix if such a row
exists. A simple correct solution
can be derived from the English
description of the problem/solu-
tion. First, a practical definition of
an algorithm can be given as:

1)

2)

if the current matrix element is
equal to zero then look at the
next element in the row;
if the current matrix element is
not equal to zero then look at
the first element in the next
row;

But WHOOPS, . . .

3) if the column number is equal
to n + 1, then we have found a
row with all zeroes, so write
out that row number;

4) if the row number is equal to
n + 1, then we have run out of
rows and there are no rows in
matrix X that is full of zeroes.

An English-definition of a pro-
cedure that accomplishes the
above is

FIND(X, n, r, c) =
Returns the row number of

the first row of an n by n matrix X
that has all zeroes if such a row
exists, or the value of n + 1 if the
row does not exist. It also

Assumes that all rows whose
index is less than r have at least
one non-zero element, and that
row r has zeroes as all of its ele-
ments from 1 to c - 1.

[Assumes (V r’) if r’ c r then
X[r’][l. .n] # 5) and X[r][l. .c - 11
= 0, and gives the first r" where r”
2 r, X[r”][l. .n] = 0, else it gives
the value of n + 11.

Thus, the Lisp-like, tail-
recursive definition of “Given
an n x n matrix X, print out the
row number of the first row with
all zeroes if there exists such a
row”, is:

FIND(X, n, r, c) = [[[
c=n+l+r. (fro-m clause 3)
r=n+l-+r. {from clause 4)

X[r, c] = 0 + FIND(X, n, r, c + 1).

(from clause 1)
X[r, c] # 0 + FIND(X, yz, r + 1, 1).

111
(from clause 2)

This definition FIND would be run
as “FIND(X, n, 1, 1)” with n al-
ready instantiated as some integer.
From the definition of FIND, it is
easy to write the following pro-
gram:

r := 1;

c := 1;

while (c<>n + 1) and
(r<>n + 1) do

if X[r, c] = 0 then
C := c + 1

else
begin
r := r+ 1;

c := 1

end ;
if r<>n + then

writelin('Found the

first row with all

zeroes, it is :I, r);

354 Communications of the ACM May 1987 Volume 30 Number 5

ACM Forum

This program was written by put-
ting the recursive clauses in order
in a “if. . . then . . . else if. . .
etc . . . ,‘I and by putting the escape
clauses into the while clause pred-
icate location. Since there were
two escape clauses, we have to
differentiate as to which one ter-
minated the while loop. We do
this by using an if statement after
the loop.

The loop invariant for the while
is:

There exists no row previous to
r that is all zeroes, and of row r, its
elements from 1 to c - 1 are all
zeroes.

(i(Elr')(r' < Y, X[r'][l. .n] = 5))

and X[Y][l. .c - l] = 0.

The condition that will be true at
termination of the while, after 0
or more iterations is:

We ran out of rows and there
was no row of all zeroes, or, the
current row r is all zeroes and all
the previous rows had at least one
nonzero element each.

(r=n+l and

(i(3r’)(r’ 5 n, X[r’][l. .n] = 0)))

TO OUR MEMBERS:

More than 15,000 members

took advantage of the special

multiple-year renewal offer in

November and December 1986.

As a result of this enthusiastic

response, for which we were not

fully prepared, processing of nor-

mal membership renewals was

delayed, and some members
who renewed through the spe-

cial offer received incorrect sec-

or (X[Y][l. A] = 0 and

(i@r’)(r < Y, X[r’][l. .n] = 0))).

-which is nothing more than a
conjunction of the loop invariant
with the negation of the while
loop guard. (This paragraph may
be clouding the point).

Now I would like to criticize
Rubin’s example programs. In the
third program in his letter, in
which he eliminated the flag, one
can tell that the program was writ-
ten and then hodged-podged into
being hopefully correct. This is
shown by the “i := i + 1;” state-
ment. If a row was all zeroes, then
why increment i? Because it is
necessary to make the program
work.

Thus, all the statements are not
fully (correctly) utilized, and an
unnecessary loop construct seems
to be an unwarranted complica-
tion

In the first program (the “pre-
ferred” GOT0 program) the “for
j := 1 to n do” behavior is not con-
sistent with the commonly under-
stood definition of the FOR loop.
A FOR loop specifies a definite
number of iterations. Depending
on the data of row i, the FOR j
loop may do its body for n itera-
tions, or it may do it for less. The

ond notices. If you received such

a notice, we wish to assure you

that your payments have been

applied properly and your publi-

cations will arrive on schedule.

In addition, membership cards

were not sent with the multiple-

year renewal offer because of

the nature of that offer. For

those of you who responded to

the offer, new membership cards

construct used in that program is a
quasi-FOR definition where it is
somewhat like a FOR definition
except. . . . So you have a GOT0
which can prematurely break you
out of the “FOR j := 1 to n do”
loop, and a BREAK that can break
you prematurely out of the “for
i := 1 to n” loop. These two quasi-
loops make the program error
prone and make proving program
correctness harder.

In conclusion, although the
derivation of my program may
appear contrived, I did derive a
similar program in less than five
minutes intuitively, except that
the guards for the while loop were
not as good as those in the pre-
sented version. Then I thought of
how to systematically derive a
correct solution from the problem,
and thus, the letter.

Incidentally, there are intuitive
ways to write non-GOT0 pro-
grams that will run as efficiently
as Rubin’s GOT0 program (or bet-
ter). One involves a different data-
structure, which would be an
n + 1 by n + 1 matrix containing
sentinels in the extra row and
column.

Lee Starr
10 Overlook Terrace
Walden, NY 12586

are being prepared and will be

sent as soon as possible.

We apologize for any incon-

venience that these processing

problems may have caused you,

and urge you to contact the

ACM Member Services Depart-

ment at ACM Headquarters if

you have any remaining unre-

solved problems with your

membership.

May 1987 Volume 30 Number 5 Communications of the ACM 355

acm forum
Don’t Sell Technology Short
Alan Borning’s treatise, “Computer
System Reliability and Nuclear
War” (Communications, February
1087, pp. 112-31), is a remarkably
thorough and perceptive piece of
work. Its persuasive exposition of
the dangers of over-reliance on com-
puters should not, however, deter us
from fully utilizing their great and
growing potential for improving
weapons command and control
systems.

being made across the board in the
computer industry at an increas-
ingly rapid pace.

Yes, computer system reliability
has been, and continues to be, a
cloud in the SD1 sky, but please, let
us recognize the very significant
progress being made, continuously,
in this crucial area.

communication and ethical issues of
global computer communication,
and still be general enough in scope
not to be outdated by advances in
hardware and architectures.

Erik Fenna

CNCP Telecommunications
Toronto, Canada

The threat of nuclear war is in-
deed a problem to be solved “in the
political, human realm,” but in the
computer technology realm we can
do something about computer reli-
ability. Every day brings new tools
which, if used properly, will help us
deal with the problem.

P. E. Borkovitz

Executive Vice President
Advanced Technology

International, Inc.
350 Fifth Ave.

New York, NY 10118

Ain’t Got No Body?

Communications, A Matter
of Course?

Borning’s references to the inter-
action/integration difficulties asso-
ciated with projects like the SD1 are
an important case in point. Rela-
tively new “second generation” tools
such as those produced by my firm
have vastly improved the reliability
of design work in software engineer-
ing for large-scale systems, permit-
ting dozens-potentially even
hundreds-of engineers to do design
work interactively in a highly reli-
able manner. Within a few months,
such PDL tools will be superseded
by new CASE (Computer-Aided
Software Engineering) tools which
will give design engineers access to
a single, fully-integrated, monolithic
development path. Such tools will
cover software development from
architectural design through main!e-
nance, and will he especially geared
to the requirements of DOD’S Ada
programming language.

I was pleased to see the ongoing ef-
fort to guide and encourage excel-
lence in computer science education
(AIfs Berztiss, “A Mathematically
Focused Curriculum for Computer
Science,” Communications, May 1987,
pp. 356-65). The purpose of teaching
computer science is not to fill stu-
dents with data but rather to teach
them how to think, and the curricu-
lum propounded by Berztiss cer-
tainly seems to emphasize this
theory.

I enjoyed Carolynn Van Dyke’s arti-
cle, “Taking ‘Computer Literacy’
Literally” in the May issue of Com-

munications (pp. 366-74), but I was
puzzled by the footnote on the bot-
tom of page 369 which stated, in
effect, that computing ha:; no body
of great work comparable to literary
culture. In fact, the literature of al-
gorithms is quite close to being such
a body. Algorithms are short; they
are not analogous to novels, but per-
haps correspond to short stories or
even haiku. Competent program-
mers must be familiar with this lit-
erature just as competent writers
must be familiar with their literary
culture.

Although it is difficult to predict
accurately what computers will be
like and how they will be used a
decade or two in the future, one
steady trend in computing has been
the increase in intercomputer com-
munication (witness the inclusion of
the author’s CSNET address). This
field was ignored in the author’s
curriculum, however, to what I feel
is the detriment of computer science
education.

Accuracy, reliability, and elimina-
tion of “bugs” before a new system
even reaches the testing stage are
the objectives being realized in this
software design work; work that has
obvious beneficial implications for
massive interactive projects like the
SDI. Improvements of this sort are

A half or full year elective cover-
ing topics in communication would
go a long way toward exposing stu-
dents to the field, and would lay the
groundwork for those students who
target computer communications as
a career. The course(s) could cover
telecommunication facilities, the
OS1 model, network concepts, real-
world problems and solutions in

There are differences between al-
gorithms and other literary works.
The author of a poem or novel need
not publish commentary on that
work, but we require that the au-
thor of an algorithm publi:sh a con-
siderable volume of commentary
with the original publication of the
work. With traditional literature,
most of the credit goes to the author
who expressed the idea, not to the
original inventor of the idea being
expressed. In contrast, we credit the
original inventor of an algorithm
long after the expression of that al-
gorithm has been modified into a
form the inventor would no longer
recognize.

Charles Babbage admonished that,
“the man who aspires to fortune or
to fame by new discoveries must he
content to examine with care the
knowledge of his contemporaries, or
to exhaust his efforts in inventing

656 Communications of the ACM August 1987 Volume 30 Number 8

again, what he will most probably Several automated retrieval sys- What do you say? How about poll-
find has been better executed be- terns are provided by the BITNET ing the members and get going
fore” (Paragraph 327, On the Economy Network Information Center KWICkly?
of Machinery and Manufacturers, 4th (BITNIC), which is located at EDU-
ed., Charles Knight, London, 1835). COM in Princeton, New Jersey. Two

Gary D. Knott

This applies equally to the authors of these systems, NICSERVE and
Dept. of Computer Science

of algorithms and to the authors of DATABASE, offer services very sim-
University of Maryland

traditional literary works. ilar to netlib. NICSERVE provides ac-
College Park, Md. 20742

Douglas W. Jones
Assistant Professor
Department of Computer Science

The University of Iowa
Iowa City, IA

Md Call
We would like to correct an unfortu-
nate comment made in Dongarra
and Grosse’s article on “Distribution
of Mathematical Software via Elec-
tronic Mail” (Communications, May
1987, pp. 403-7), ;hat there are no
software distribution services com-
parable to netlib.

There are several comparable au-
tomated information retrieval sys-
tems which use electronic mail as
the transport mechanism. Most of
these support retrieval of software
(in addition to other retrieval func-
tions). Three of the best known are
the CSNET Info Server, the suite of
systems operated by the BITNET
BITNIC, and NIC Service. The
BITNIC services and the CSNET Info
Server have been generally accessi-
ble to electronic mail users for more
than two years.

The CSNET Info Server is a serv-
ice of the CSNET Coordination and
Information Center (CIC). The CIC is
administered by the University Cor-
poration for Atmospheric Research
and operated by BBN Laboratories
Inc. in Cambridge, Mass. Versions
of the server run under the 4.3bsd
and System V UNIX systems with
either the Sendmail or MMDFZ mail
systems. Users mail requests to
info@sh.cs.net, where a query pro-
cessor scans the request and sends
back the desired information (or a
suitable error message). The user in-
terface is patterned after that of the
MOSIS chip fabrication system de-
veloped at the USC Information Sci-
ences Institute (MOSIS was probably
the first major information service
to rely on electronic mail to transfer
data).

cess to BITNET-related software and
information. DATABASE provides
keyword access to a variety of data-
bases.

NIC Service is operated by the
DDN Network Information Center
(NIC) at SRI International in Menlo
Park, Calif. Users mail requests to
serviceesri-nic.arpa. The subject
field of the request contains key-
words that are used to locate the
desired information, which is then
mailed back to the user.

Interested users can get more in-
formation about these services by
contacting the network centers.

Dan Oberst
BZTNlC at EDUCOM

Princeton, NJ

Craig Partridge
CSNET CIC
BBN Laboratories Inc.
10 Moulton St.
Cambridge, MA 02238

Jack Be Nimble, Jack Be . . .

This letter is a plea to reinstitute the
old, much-beloved, “KWIC Index to
Computing Literature.” I would tol-
erate a dues increase just to be able
to have a reliable and convenient
index containing a citation to
(nearly) every journal article, book,
thesis, and proceedings paper in the
CR categories.

I do not really find much use for
Computing Reviews. It is okay, but
completeness and timeliness are
what I really want; not reviews. In
fact, I would be happy to trade Com-
puting Reviews and two SIG publica-
tions for a comprehensive KWIC
index periodical.

Indeed, with KWIC indexing of
authors and titles, no further index-
ing or categorization need be done.
The big job is typing in all the new
entries every month, but a bi-
monthly or quarterly publication
would be sufficiently up-to-date.

Last month we announced the major

burden of handling GOT0 letters has

been shifted to Technical
Correspondence. However, it seems
appropriate that the following letters

appear in Forum since they relate to the
first and second batch of responses

which appeared in the May and June
issues of Communications.-Ed.

GOTO, One More Time

The GOT0 is back, and not only in
the pages of the ACM Forum! The
Ollie North of language commands
is turning up in myriad “end user”
tools intended to produce programs
without the involvement of pro-
grammers. While computer profes-
sionals-such as Frank Rubin-may
consciously choose to use the feared
GCTO in certain cases, users of
spreadsheet, database and other
macro languages often do so without
information on the other constructs
available. In the worst cases,
other constructs may not even be
available.

The debate over GOTOism is too
narrowly defined. A growing per-
centage of code is being written by
users whose entire knowledge of al-
gorithm design is bound to the syn-
tax of their favorite packages. If
professional programmers can intro-
duce subtle errors into program
code, how much greater is the risk
when end users do what comes nat-
urally-and let their code jump all
over the place?

The new class of “end users” (do-
it-yourself programmers) out there
need tools that embody principles of
well-structured design. Without
such tools, they will only reproduce
the expensive maintenance head-
aches professional programmers are
so familiar with. The GOT0 will
continue to spread unchecked.

David Foster
1730 S. Michigan #IO06
Chicago, IL 60605

August 1987 Volume 30 Number 8 Communications of the ACM 659

Among all the comments appearing
in the May 1987 Forum on Frank
R.ubin's "'GOT0 Considered Harm-
fill' Considered Harmful" letter
(Communications, March 1987, pp.
195-6), I am surprised that there
was not one citation of Donald
Knuth's "Structured Programming
with go to Statements" (Computing
Suweys, December 1974, pp. 261-
301).* Knuth clearly illustrated how
the goals of structured program-
ming-ease of understanding, main-
tainability, and simplification of val-
idation, among others-often cannot
be met without GOT0 statements.

David E. Ross
6477 E. Bayberry St.
Oak Park
Agoura, CA 91301

* but see Harrison letter in the Technical Corre-
spondence section. luly 1987. pp. 634-Ed.

At risk of being accused of "beating
a dead horse," I feel compelled to
respond to all of the responses gen-
erated by Frank Rubin's "GOTO
Considered Harmful etc." It seems
that much attention has been de-
voted to demonstrating individual
programming prowess at the ex-
pense of the author of the original
program, while overlooking the
problem-namely the relative mer-
its of the GOT0 statement.

I have often found myself in the
position of arguing against the use of
the GOTO, most notably with stu-
dents attempting to learn Pascal. In
this situation it was clear that they
should not be allowed to use the
GOT0 statement, given their lack of
experience in making "mature pro-
gramming decisions" about the use
of control structures. Personally, I
use only the limited forms of the
GOT0 allowed in C, and believe (for
"religious" reasons) that others
should do the same.

This last statement highlights the
fundamental problem a t issue in
these discussions of "GOTO-less" vs.
"GOTO-ful" programming. The ar-
guments are mostly dogmatic, and
frequently break down into heated
discussions of the fundamental
strengths and weaknesses of the pre-
ferred languages of the authors.

With the current knowledge in soft-
ware metrics being as it is, I do not
believe we are capable of ade-
quately analyzing the problem in a
purely scientific light-that is, our
tools for analysis (no matter how un-
biased they may seem) always lack
objectivity. In fact, the very nature
of the metrics are always slanted
either for or against unconditional
branch statements simply by the
opinions of their authors.

For this reason, I suggest to all
(myself included) who argue so reli-
giously on this subject to change the
focus of attack, from the program-
ming languages used and/or the
pragmatic attitudes acquired
through years of experience, to a
more useful avenue. Let us instead
address the issue of developing the
appropriate measures for making an
objective judgement as to the merits
(or lack of same) of the GOTO.

Frederick J. Bourgeois, I I I
Computer Scientist b Software

Engineer
The Eaton Corporation
31 71 7 LaTienda Dr.
Box 5009, M/S 21 6
Westlake Village, CA 91360

Steven F. Lott's contribution to the
great GOT0 debate (May 1987,
Forum, pp. 353-354) left me
stunned. In his zeal to solve Frank
Rubin's sample problem without us-
ing GOTOs, Lott produces a solution
which deliberately fails to termi-
nate. Apparently Lott thinks this is
OK: "I had to make several assump-
tions," he writes. " . . . performance
in the absence of any all-zero row is
not specified-in particular, termi-
nation is not required."

The GOT0 debate is about pro-
gram complexity, reliability, and
maintainability, is it not? In the real
world (I am not talking Turing ma-
chines or finite automata), termina-
tion is always required. Lott's first
solution, which does not terminate
if there is no all-zero row, is a per-
fect example of why non-termina-
tion is disastrous. Depending on the
hardware and software environment
it's running in, it may (1) return the
wrong answer, (2) crash, or (3) loop
forever. The problem is: "Let X be

an N X N matrix of integers. Write a
program that will print the number
of the first all-zero row of X, if any."
Lott's solution just keeps increment-
ing the row number until it finds an
all-zero row, without checking for
the end of the matrix. Consider:

1. The program continues examin-
ing memory after the end of matrix
X. It happens to find what it thinks
is an all-zero row and terminates,
returning the invalid row number.

2. The program does not happen
to find a spurious solution, but con-
tinues through memory. I f the hard-
ware incorporates address checking
or memory protection, the program
will eventually exceed the limits of
its address space and crash with an
address exception.

3. In the absence of such hard-
ware, the address references and
row counter eventually wrap
around and the program never ter-
minates. This is presumably what
Lott had in mind, though no one I
know would consider it acceptable.

Surely an unterminated loop is a
programming error-one .which,
ironically, is much harder to debug
than a wayward GOT0 statement,
since its behavior depends on ob-
scure side effects of the system
hardware and software.

Some things go without saying. A
program should always terminate.
A program should not crasih. A pro-
gram should not return incorrect re-
sults. Must these be part of the spec-
ification? Let's not lose sight of the
forest for the trees when discussing
the merits of the GOT0 statement.

Lawrence C. Kueke:;
Software Discoveries, Inc.
137 Krawski Dr.
South Windsor. CT 06074

The PL/I excerpt in Conrad Weis-
ert's otherwise thoughtful letter
(June, 1987 issue) contains a danger-
ous assumption.

Unless a language definition and
compiler implementation s-pecify
otherwise, it is generally incorrect to
assert anything at all about the
value of a loop index variable after
exiting the loop. For example, the
Pascal User Manual and Report ex-
plicitly states, "The final value of

660 Communications of the ACM August 1987 Volume 30 Number 8

the control variable is left undefined
upon normal exit from the for state-
ment” (p 24). Some instructional lan-
guages (such as PL/C) actually pro-
hibit the use of an index variable in
this manner.

The fact that the test produces
proper results in many programs is
an artifact of compiler pragmatics,
but nevertheless is not strictly
correct.

Norman E. Cohen

Manager, Product Development
Mclntosh Computer Systems, Inc.

472 S. Salina St.
Syracuse, NY 13202

Response:

I believe the PLI language definition
does indeed specify otherwise. Upon
normal loop exit the index variable is
available and defined in the natural
way. As the example showed,
this convention allows considerable
economy of expression and poses no
threat to structured programming
objectives.

Norman Cohen’s concern is
appropriate for other programming
languages that cater more to compiler
writers than to user-programmers.

-Conrad Weisert

The huge response to my GOT0
letter in the March Communications
shows that this issue is alive and
hot. I will keep my remarks about
the first five letters (Communications,
May 1987, pp. 351-55) brief, as I
know there are many more to come.

Moore makes some valid points
about programming language
features. However, my purpose was
not to discuss languages, but to
discuss the GOTO. I chose Pascal as
a base for comparison because it is
so widely known, then devised a
sample problem to fit that language.
If I had chosen PL/I or C, I would
have devised a different sample
problem.

Musciano makes the point that a
programmer who meets a GOT0
must search for the target. In most
cases the target is nearby. When
labels are outdented from the text,
they are spotted instantly. If the
label is distant, online the FIND

command is used, offline the
compiler cross-reference is used.
Visually, it is usually easier to spot
the target of a GOT0 than the target
of a CALL.

By contrast, the problem of
matching each DO with its END and
each IF with its ELSE, if any, is
much more difficult and error-
prone. There can be only one
statement with a given label, but
there can be numerous ENDS and
ELSEs before you find the matching
one. Once you have found the label,
it stays found, but one END looks
like any other, so you find yourself
searching over and over for the
same pairs. On a paper listing, you
can bracket them in pencil, but on
a terminal that is infeasible.

I sympathize with Musciano’s
last paragraph where he indicates
that programs misusing GOTOs can
be difficult to modify. However,
tangled programs without GOTOs
can be equally difficult. Anecdotal
evidence won’t resolve this issue.
A disciplined study is needed.

The letter from Lott consists of
three unrelated sections. In the first
part he describes eight assumptions
that he made when solving the
sample problem. He fails to men-
tion whether he believes the
programmers I surveyed made
similar or opposite assumptions, and
whether he considers that good or
bad.

In the second portion he presents
sample programs that illustrate
many of the things I find objection-
able about GOTO-less program-
ming: extra flags (az), gratutitous
subroutines (allzero), and unneeded
recursion (second program). Both of
these programs are inefficient and
complex. The first is also incorrect
when the matrix has no zero row,
and likely to produce addressing
exceptions.

In the third segment, he repeats
the usual claim that programs with
GOTOs are harder to modify than
those without. I dealt with this issue
earlier.

Starr’s letter presents a very
clever GOTO-less solution to the
sample problem. He uses this as evi-
dence that I did not give a fair shake
to GOTO-less programming. It was

expressly to prevent this charge that
I did not simply solve the sample
problem myself, but rather surveyed
other programmers, using only those
judged expert by their peers. The
first two sample programs are from
the survey. The third program
shows that a casual solution using
GOTOs can even beat a carefully
worked-over solution without GOTOs.

Naturally, I agree with Liebhaber’s
letter. However, I would like to
add one thought. When Dijkstra’s
letter first appeared, I took it as a
joke. When the notion the GOTOs
were harmful began to spread, I did
not become alarmed. I felt that
either the notion would be con-
firmed by studies, or it would dis-
appear. Instead, it has grown with-
out supporting evidence, and my
alarm has grown with it. It is time
to put this nonsense firmly be-
hind us, and say that GOTOs, prop-
erly used, are a valuable tool that
can reduce program complexity
and improve programmer
productivity.

Let me close with an observation:
It is easy to find problems where the
best known solution with GOTOs
permitted is simpler and/or faster
than the best known solution with
GOTOs forbidden. The opposite is
impossible.

Frank Rubin
The Contest Center

59 DeGarmo Hills Road
Wappingers Falls, NY 12590

I did not react to Frank Rubin’s orig-
inal letter [0], confident that all my
potential comments would be made
by others. But in the five letters
published two months later [I], I
found none of them expressed. So, I
reluctantly concluded that I had bet-
ter record my concerns, big and
small.

(0) The problem statement refers
to an N by N matrix X; Rubin’s pro-
grams refer to an n by n matrix x. In
other contexts this might be consid-
ered a minor discrepancy, but I
thought that by now professional
programmers had learned to be
more demanding on themselves and
not to belittle the virtue of accuracy.

August 1987 Volume 30 Number 8 Communications of the ACM 661

I shall stick to the capital letters.
(1) Rubin still starts indexing the

rows and the columns at 1. I thought
that by now professional program-
mers knew how much more prefera-
ble it is to let the natural numbers
start at 0. I shall start indexing at 0.

(2) Rubin’s third program fails for
N = 0 (in which case his second pro-
gram succeeds only by accident-
see below. I thought that by now
professional programmers would
know the stuff the silly bugs are
made of.

(3) Rubin’s second program fails to
detect the first all-zero row if it is
the last row of the matrix.

(4) Rubin’s third program relies-
without stating it explicitly-on the
“conditional and,” for which, if the
first operand is false, the second op-
erand is allowed to be undefined.
The conditional connectives--“cand”
and “co? for short-are, however,
less innocent than they might seem
at first sight. For instance, car does
not distribute over cand: compare.

(A cand B) COT C

with (A COY C) cand (B car C);

in the case 7A A C, the second
expression requires B to be defined,
the first one does not. Because the
conditional connectives thus com-
plicate the formal reasoning about
programs, they are better avoided.

(5) Rubin’s letter effectively con-
ceals that his problem can be solved
systematically by a nested applica-
tion of the same algorithm (some-
times known as “The bounded lin-
ear search”). His statement of the
problem is: “Let X be an N X N ma-
trix of integers. Write a program that
will print the number of the first all-

zero row of X, if any.” Now, concen-
trate to begin with on the “if any”;
nothing should be printed if all
rows differ from the all-zero row;
formally, if

(Ai: 0 5 i < N:

l(Aj: 0 5 j C N: X[i, j] = 0))

The theorem of “The bounded lin-
ear search” states for any boolean
function B on the first N natural
numbers (N 2 0)

I[var f: bool; var n: int
; f, n := true, 0 (P)

; dofAn#N+f,n:=B(n),
n+lod

IP A (lf V n = N))

II

with the invariant P given by

P: Osn<NA

(f = (Ak: 0 I k < n: B(k))) A
(Ak: 0 5 k < n - 1: B(k)),

which states that, upon termination
in the case f: all B’s are true, and in
the case lf: n - I is the smallest
value for which B is false.

Applying the above theorem twice
yields for Rubin’s problem:

[var c: bool; var i: int
; c, i := true, 0
; docAi#N-+

[var d: bool; var j: int
; d, j := true, 0
; do d A j # N += d, j := X[i, j]

=O,j+lod
; c, i := Td, i + 1

11
od

; if c -+ skip 0~ + print (i - 1) fi
n

II

and for me this settles the problem.
By my standards, a competent

professional programmer in 1987:

6)

(ii)

(iii)

(iv)
(VI

(vi)

(vii)

should recognize that Rubin’s
problem asks to be solved by a
nested application of the same
algorithm;
should know the theorem of
“The bounded linear search”;
should be able to derive that
theorem and its proof;
should not hesitate to use it;
should not waste his time in
pointing out that the boolean
variable d is superfluous;
should keep his repetitions
simple and disentangled
etc.

Evidently, my priorities are not
shared by everyone, for Rubin’s let-
ter and most of the five reactions it
evoked were conducted instead in
terms of all sorts of “programming
language features” that seem better
ignored than exploited. The whole
correspondence was carried out at a
level that vividly reminded me of
the intellectual climate of 20 years
ago, as if stagnation were the major
characteristic of the computing
profession, and that was is disap-
pointment.

REFERENCES
0. Rubin, Frank. ““GOT0 Considered Harm-

ful” Considered Harmful.” C~w~mun. ACM
30, 3 (Mar. 1967). 195-196.

1. Moore. Donald and Musciano, Chuck and
Liebhaber. Michael J. and Lott. Steven F.
and Starr. Lee. “ “ “GOT0 Considered
Harmful” Considered Harmful” Considered
Harmful?” Commun. ACM 30, 5 (May 1987).
351-355.

Prof. Dr. Edsger W. Dijkstra

Department of Computer Sciences
The University of Texas
Austin, TX 78712-1188

662 Commur~ications of the ACM August 1987 Volume 30 Number 8

After Nineteen Years
I resigned from the ACM Council ef-
fective the 13th of October.

I am the last active charter mem-
ber of the Association. From 1947 to
1961 I served on a dozen ACM com-
mittees, usually in connection with
the joint computer conference spon-
sorship. After I returned from my
first European sojourn I was elected
a Council member, in Spring of
1968. I have served as member-at-

large, vice president, president, past
president, and for almost eight years
as member-at-large again.

In the 46 years since its founding,

and in over 19 years on its Council, I
have had a dream of what ACM
should be. I wanted it to attract

every serious computer person in
America and many others across the
world-and by example define the
word “professional.” I wanted its
governance to be open and demo-
cratic. I wanted its members to be
mutually supportive: a band of
brothers and sisters.

I wanted ACM to be concerned
with the impact of computers and
computing on society, and to inter-
act with our industry worldwide
and with national, regional and local
governments. For two decades I
have wanted us to withdraw from

AFIPS and work toward a merger
with the IEEE Computer Society.

In the words of the old vaudeville

joke, “You just can’t get there from
here!“. The computer science estab-
lishment stands grimly across the
path, and Council is its tool. Cur-
rently, services to the membership
(other than publications, of course)
are being cut back on the grounds of
economic emergency, while our
bank balance climbs past $9 million,
and the final figures for FY ‘87 show
a million-dollar surplus versus a
budgeted loss. Meanwhile the lec-
tureship program, its funding can-
celled, struggles along on charity
from the SIGs!

I’ve tried, dammit! I’ve endured
the Establishment pinpricks:
11 years of expense account cheap-
ness, 20 years of agenda trickery,
unanswered correspondence. I’ve
struggled against censorship and

election nastiness. I’ve sat at the
Council table and seen my motion
to reconsider the cut of 63 percent
in FY ‘88 chapters support fail for
lack of a second. I’ve watched the
Member-Officer Forum, Headquar-

ters and regional newsletters, and
other channels to and from the
membership close down.

Some of it really hurt. My wife
Nancy was thrown off the SIG Board
as soon as I was safely out of the
presidency. I was excluded from
participation in the recent ACM
conference on the history of scien-
tific and numerical computation. I

was walled off from the history
panel of the sad, little 46th Anniver-
sary celebration.

Enough is enough.

Now, how about those of you out
there who still want to salvage the
ACM enterprise? It is not impossible,
but it cannot be done by genteel
complaints. You will have to capture
Council.

An anti-Establishment caucus
must put together a reform slate of
three officers (president, vice presi-
dent and secretary), three members-
at-large, and four regional represent-
atives They must be nominated by

petition, and all 10 must state in
their campaign material that the
slate is running as a unit.

If elected in 1988, they would find

three supporters already seated and
some sympathy available from two
others-naming the five in this let-
ter would be counterproductive.
That means reform power: there are
24 votes at the table, with the presi-
dent voting only to break ties.

The president appoints most board
and committee chairmen. But, only
if he or she has a council majority

can reform presidential appoint-
ments be meaningful, and Council
elects several key people directly.
The restrictive budget can be over-
ridden or reformed, but only by
Council authority.

Headquarters is neutral-perhaps
even secretly sympathetic-and it is
capable. Notably, the publications
staff can keep Communic&ms of the

ACM and such afloat if the Estab-
lishment editors rebel, and can help
salvage Computing Surveys from the
academics.

Council should restore its third
meeting, and hold it at SIGGRAPH
to see what ACM people can do
when they get free of the Establish-
ment. A hundred other changes
could be made-but only if mem-
bers want it to happen and support a
genuine reform movement.

The Association for Computing
Machinery will survive, but unless
it reforms itself, it will dwindle to a

self-serving bunch of computer
scientists-an establishment for the
Establishment. And no one in the
whole great world of computing will

care.

Herb Grosch
Mies, Switzerland

Danger Signals
In the August Forum, p. 658, P.E.
Borkovitz predicts, “Within a few

months, . . . PDL tools will be super-
seded by new CASE (Computer-
Aided Software Engineering) tools
which will give design engineers
access to a single, fully-integrated,
monolithic development path.” Lit-
erate readers will notice the warn-
ing: a boulder is soon to be rolled
athwart the way where Dijkstra
would have us strew pearls.

M.D. Mcllroy
AT&T Bell Labs
600 Mountain Ave.

Murray Hill, N.J. 07974

9% Communications of the ACM December 1987 Volume 30 Number 12

ACM Forum

The World’s Shortest
Mutual Exclusion Algorithm
This algorithm could have been

published as a paper 20 years ago,
but today it looks crazy and can be
implemented only on a few antique
processors. Researchers who com-
municated to me privately ex-
pressed their interest in this algo-
rithm-perhaps because it is the

shortest mutual exclusion algorithm,
shorter than what they knew of.

They also indicated that it should
find a place in the published litera-
ture, better late than never.

I cannot think of a better forum
than the Forum to publish it.

I. Preamble
This algorithm for mutual exclusion

should have been born at least
20 years ago for machines like
EDVAC or its immediate successors
branded as antique by the present
standard. This algorithm is unlikely
to be used in machines designed
after 1970. But, this is the world’s
shortest mutual exclusion algo-
rithm-shorter than any I have read
about. It uses self-modifying instruc-
tions to implement spin-lock on a
multiprogrammed uniprocessor. The
algorithm is as follows:

2. The Solution
Let i be a machine instruction. The
symbol #(i) would be used to repre-
sent the bit pattern corresponding to
the machine code for that instruc-
tion.

The following codes would be ex-
ecuted by each process contending
for the critical section:

trick: trick := #(go to trick);
critical section;
trick := #(trick := #(go to trick)];

The execution of an instruction in
a uniprocessor is an atomic action.
The first instruction, while executed
by one process, changes itself to go
to trick and this blocks all the other
contending processes by forcing
them to execute a self-loop. Eventu-
ally, when the first process com-
pletes the critical section, it restores
the first instruction to its original
form. As a result, another process
can enter the critical section.

The algorithm is correct in the
sense that it is free from deadlock
and at most one process can be in
the critical section. Also, it does not
unduly delay a process from allow-
ing entry to the critical section pro-
vided it is free. The fairness is left to
the process scheduler.

This algorithm does not work on
multiprocessors or on machines
which do not permit instruction
modification.

Sukumar Ghosh
Department of Computer Science
The University of lowa
Iowa City, IA 52242

Last (Gasp!) GOT0
Several new responses to my GOT0
letter have appeared in the June and
August issues of Communications.*
Michael Harrison’s July letter sug-

gests that GOTOs be introduced by
transforming GOTO-less programs.
This seems the wrong way around.
Why start with a complex program,
then simplify it, when it is easier to
start simple?

Frederick Bourgeois’s August re-
ply proposes forbidding the use of
GOTOs by inexperienced students.
The problem here is you only gain
experience through use. Instead, I
suggest that students be given pro-
gressive assignments, where they
write an original program using any
style and language features they
wish. That program can then be
modified to add new features,
change output formats, etc . . In
this way, students discover first
hand what practices make programs
difficult to modify.

I will devote the rest of this letter
to the response from Edsger Dijkstra
in the August issue. Let me first an-
swer his numbered criticisms, then
remark on his proposed solution to
the matrix problem.

(0) The upper/lower case argu-
ment is nonsense. Just as I use dif-
ferent styles in my puzzle magazine
and in Communications, so I use dif-
ferent styles for problem specifica-
tions and programs. Each style is

‘July 1987 Technical Correspondence. pp. 632-4:
August Forum. pp. 659-62.

suited to the audience and the
material.

(1) Personally, I use both 0- and
l-origin indexing. l-origin is usually
simpler, e.g. FOR 1 := 1 TO N is
cleaner than FOR I := 0 TO N - 1.
I use O-origin if it results in simpler
subscript expressions, e.g. X[I + I]
instead of X[I + I - 11. Use deter-
mines form.

(2) I have never encountered a
1 X 1 matrix in practice. If I were
writing a general purpose subrou-
tine for widespread use, I would
either handle that case, or document
the restriction N > 1.

(3) The final test should be IF
ALLZERO instead of IF I <= N. The
fact that so many people responded
to my letter, but did not see this er-

ror, supports my view that GOTO-
less programming is not inherently
clearer or easier to debug.

(4) My example need not depend
on any sort of conditional Boolean
connective. The expression can be
fully evaluated. This will not cause
a problem unless the programmer
has turned on index range checking.

(5) All of the programmers I sur-
veyed used nested search loops to
solve the matrix problem. To make
comparisons easier, I have trans-
lated Dijkstra’s sample solution into
Pascal.

c := true;
i := 0;

while c and (i () n)

do begin
d := true;
j := 0;

while d and (j () n)
do begin
d := x[i,j] = 0;

j := j + 1;

end;
c := not d;

1 := i + 1;

end;
if c

then skip
else print (L - 1);

The survey programmers produced
both l- and 2-flag versions. Two pro-
grammers first wrote Z-flag pro-
grams, then eliminated the unneces-
sary flag. I used the simpler l-flag

[continued on p. 1085)

December 1987 Volume 30 Number 12 Communications of the ACM 997

Calls for Papers

Language for Automation: Symbiotic and
Intelligent Robotics, University of Mary-
land, College Park, MD, August 29-31. Sub-
mit 4c. of complete papers (20 pages maxi-
mum) to Prof. P.A. Ligomenides. Electrical
Engineering Dept., University of Maryland,
College Park, MD 20742.

March 1
ICDT 1988: International Conference on
Database Theory. Bruges, Belgium. August
31-September 2. Submit 6~. of full paper to
Dirk Van Gucht, Computer Science Dept.,
Indiana University. Bloomington, IN 47405.

March 15
CONCURRENCY 88, Hamburg, Fed. Rep. of
Germany, October 18-19. Submit 5c. of pa-
per (25 pages maximum) to Friedrich Vogt.
Fachbereich Informatik, Universitat Ham-
burg, Bodenstedtstr. 16, D-2000 Hamburg
50, FRG, Tel: +49 40 4123-6060/61.

March i5
OOPSLA 88, San Diego, Calif., September
25-29. Submit 5~. of 25 double-spaced
pages (approx. 4500 words). a cover sheet
including authors’ names, addresses and
telephone numbers, and 100 word abstract
to Kurt Schmucker, OOPSLA 88, Productiv-

ity Products International, Rocky Glen Mill,
75 Glen Rd., Sandy Hook, CT 06482; (203)
426-1875.

March 15
8th International Conference in Computer
Science, Santiago de Chile, July 4-8. Submit
IOC. of extended abstract (10 page maxi-
mum) in English, Spanish or Portuguese to
Albert0 Mend&on. CSRI, University of To-
ronto. 10 King’s College Rd., Toronto, Can-
ada M5S lA4

March 30
9th Annual International Conference on
Information Systems, Minneapolis, Minn.
November 30-December 3. Sponsors: TIM&
SIMS in coop. with ACM. 4~. of papers
(maximum 25 pages) to Margaret H. Olson,
Program Chair, Graduate School of Busi-
ness Administration, New York University,
90 Trinity Place, New York. NY 10003.

May 10
3rd International Conference on Fifth
Generation Computer Systems, Tokyo, Ja-
pan. November 28-December 2. IX. of 5000-
word manuscripts and 250-word abstracts
to Hidehiko Tanaka, FGCS ‘88, Program
Chair, ICOT, 28 Mita Kokusai Bldg.. l-4-28
Mita, Mianto-ku. Tokyo 108 Japan.

hy f5
3rd International Conference on Data and
Knowledge Bases: Improving Usability and
Responsiveness, Jerusalem, Israel. June 28-
30. Organized by Information Processing
Association of Israel in cooperation with
ACM SIGMOD. For information concerning
submission, contact Katriel Beeri, Data Base
88, P.O. Box 29313, Tel-Aviv 65121, Israel,
02-585266.

May 16
8th Conference on Foundations of Soft-
ware Technology and Theoretical Com-
puter Science, Pune, India. December l4-
16. Sponsor: Tata Institute of Fundamental
Research Developement & Design Centre.
Submit 4~. of full paper (maximum 5000
words) to K.V. Nori, TRDDC, 1 Mangaldas
Rd., Pune, India: Tel: (212)-61608, Telex:
0145-464.

Directions and Implications of Advanced
Computing, St. Paul, Minn., August 21.
Submit 4~. of complete papers including ab-
stract (6000 words maximum) to Nancy
Levenson, ICS Department, University of
California, Irvine, CA 92717.

ACM Forum (continued from p. 997)

version in my letter to be fair to the
GOTO-less advocates.

Dijkstra’s solution is similar to the
Z-flag versions, with minor differ-
ences. All of the survey program-
mers used an IF to test for zero ele-
ments. Dijkstra’s D := X[Z, I] = 0 is
syntactically simpler, but obscure. I
usually avoid that construct.

Dijkstra uses I () N as a loop ter-
minating condition. This is often un-
safe, since statements inside a loop
might cause I to skip the value N. It
is better to use I < N.

I presume that the SKIP in the fi-
nal IF is some form of null state-
ment. Thus, it serves as a type of

disguised GOTO. The Z-flag pro-
grams in my survey avoided this
awkwardness by reversing the sense
of the outer flag, e.g. IF ZERO-
FOUND THEN PRINT.

Such differences aside, I do not
see how Dijkstra’s sample program
shows that GOTO-less programming
is any simpler or more readable.
Rather, the notational quirks of his
example, like starting lines with
semicolons and interleaving assign-
ment statements, seem most inscru-
table. I was amused to note that 11

of the 13 programmers in my survey
produced better solutions than his.

Overall, I was very disappointed

in Dijkstra’s reply, which seemed to
be a scattershot attack on everyone
else who wrote.

Frank Rubin
The Contest Center
59 DeGarmo Hills Road
Wappingers Fall, NY 12590

With this second rejoinder from
Frank Rubin it seems expedient to
bring to a close the publication of

correspondence generated by his
March 1987 Forum letter, greater

response by far than with any
other issue ever considered in
these pages-Ed.

December 1987 Volume 30 Number 12 Communications of the ACM 1055

