Quiz Stuff
Use a full sheet of 872x11" paper. (Half sheet? Half credit!)
Put your last name and first initial in the far upper left hand

corner of the paper, where a staple would hit it. (It helps when
sorting quizzes!)

/”/'L‘&ée/f W

No need to write out questions.

Numbering responses may help you avoid overlooking a question;
it's ok to go ahead and pre-number your sheet.

Two minutes; five questions.

Can everybody see this line?



Quiz 1, January 15, 2015
2 minutes; Y2 pt/answer; 2" pts total

. What 1s the name of any one programming language created before
19707

. How many programming languages are there? (pick one: dozens,
hundreds, thousands)

. Who founded the UA CS department and in what year?

. Name an area of research for which the UA CS department was
recognized worldwide 1n the 1970s and 1980s.

. Ideally, what percentage of your classmates will get a "B" 1n this
course?



Quiz 2, January 20, 2015
90 seconds; 72 pt/answer; 1'2 pts total

1. On Thursday we discussed three programming paradigms m some
detail. What were two of them? (Hint: Not functional or logic

programming.)

2. Name one general, discipline-mdependent characteristic of paradigms,
as defined by Kuhn.

Extra credit: Who founded the UA CS department and m what year?



10.

11

12.

13.

Quiz 3; Tuesday, January 27; S minutes; S points
[Solutions follow on next page]

Does the Java expression x + y == 2z have a side-effect? If so, what is it?
Write a function named add that can add two integers. You may use an explicit type specification, like

: : Integer, if you wish.

What is the type of the add function you just wrote? Use parentheses to show associativity.

Write a function eq3 that returns True if and only its three arguments are equal. Assume the == and &&
operators work just like they do in Java. Don't worry about types.

> eq3 555
True

The toLower function in the Data . Char module works like this:
> toLower 'A’

a
What's the type of toLower?

Here are the types of the functions not and i sLower:

not :: Bool -> Bool
isLower :: Char -> Bool

What's the type of the result of not isLower 'x' ?

Thefunction f x y 2 = x + y + z::Int hastype Int -> Int -> Int -> Int. What
are the types of the following expressions?

£f 10 20

£ 10 20 30

Add parentheses to the following expression to show the order in which operations would be done.
f 3 p + 5 * x vy

Name one general, discipline-independent characteristic of a paradigm, as defined by Kuhn.

Name one characteristic of the functional programming paradigm.

. (Extra credit) Write a version of eqg3 from question 4 above that uses one or more guards.

(Extra credit) Haskell has both Int and Integer types. Why?

(Extra credit) What does REPL stand for?



Quiz 3 Solutions
Tuesday, January 27, 2015; S minutes (extended 30 seconds); S points
DRAFT,; in progress

1. Does the Java expression x + y == z have a side-effect? If so, what is it?
It has no side-effects.

A few students wrote out a complete sentence, like the above or maybe "No, it does not have a side
effect." That can chew up a lot of time. Strive for short answers. "No" is enough.

2. Write a function named add that can add two integers. You may use an explicit type specification, like
: :Integer, if you wish.

add x y = x + y :: Int

3. What is the type of the add function you just wrote? Use parentheses to show associativity.

Int -> (Int -> Int)

Several students said just Int, or Integer. That's the type of the value produced by add but the type
of a function includes the type of both inputs and output. A simple rule: The type of a function is what's
reported by : type, after the : :. Example:

> :type add
add :: Int -> Int -> Int

The output of : type is a little chatty. We pronounce that : : as "has type", so we'd literally read that
output as "add has type Int -> Int -> Int". It's important to recognize that "add ::" is not
part of the type of add; the type is simply "Int -> Int -> Int".

Some said Num -> Num -> Num, and that's wrong; Num is a type class, not a type. Type classes
appear in types only as part of a class constraint,likeinNum a => a -> a

and (Real a, Fractional b) => a -> b. Inour limited Haskell world, if a type includes a
class constraint, it will appear at the beginning of the type.

Int is an instance of the type class Num. That's evidenced in the output of both : show Int and
:show Num by the line instance Num Int.

4. Write a function eq3 that returns True if and only if its three arguments are equal. Assume the == and
&& operators work just like they do in Java. Don't worry about types.

> eq3 555
True

Solution:
eq3 Xy z2 =X ==y && y == 2

Several students imagined an eq function, perhaps extending the idea of the add and add3 examples.
There's no eq function in the Prelude but I didn't deduct for it.

Several students did this:



5.

6.

eq3 Xy z2 = X ==y == 2

I was mostly interested in seeing a mostly function definition of some sort, so I didn't deduct for the
above. Take a minute and work out the type of the above function. Note that to actually try it, you'll
need to add some parentheses, like (x == y) == z. (See if you can figure out why that is, t0o0.)

I was surprised by the number of students who didn't take advantage of the transitivity of equality and
had something like this:

eq3 Xy z2 = X ==y & y == 2 && X

Il
I
N

Comparative moment: Here's a case where equality in JavaScript is not transitive:

> [empty, zero, zerochar]
[ L}

14 OI IO‘ ]
> empty == zero
true
> zero == zerochar
true
> empty == zerochar
false

For something similar (and more) in PHP, sec http://phpsadness.com/sad/52.

The toLower function in the Data.Char module works like this:
> toLower 'A’

a
What's the type of toLower?

Char -> Char

Like some students said just Int for the type of add above, some said just Char for this one.
Remember: The type of a function comprises both the type of the inputs and the type of the value
produced.

Here are the types of the functions not and isLower:

not :: Bool -> Bool
isLower :: Char -> Bool

What's the type of the result of not isLower 'x' ?

According to my tally only three students got this one right but it's very close to the signum negate
2 example on slide 43. Remember that function application, expressed with juxtaposition—two values

beside each other with no intervening symbols—is left associative. Thus,
not isLower 'x'

means
(not isLower) 'x'

and is an error!

You might think I should have added "Or, if the expression produces an error, state why." but I believe
questions like this are fair game. Likewise, I might ask a 127A student, "What's the output of




System.out.println(x y z)? Recognizing when something is wrong is an important part
of mastering a subject. Another example: "In what year did man first walk on Mars?"

The function f x y z = x + y + z::Inthastype Int -> Int -> Int -> Int. What
are the types of the following expressions?

f 10 20
Int -> Int

I counted "<function>" as correct on this quiz but that's not a type; it's a simple representation of
a kind of value that Haskell considers to be unprintable. (Do you agree function values are
unprintable?) <function> won't get counted as correct for a type in the future.

f 10 20 30
Int

If you don't understand those answers, take another look at the ex-partialapps.html set of
exercises and/or come and see me.

Here's a simple approach that's usually right for questions like this: for each supplied argument, scratch
off the leftmost "TYPE ->" in the function's type. The types are simple in this case—all just Int —
but the types can be arbitrarily complicated.

Add parentheses to the following expression to show the order in which operations would be done.

f 3 p + 5 * x y

I was truly disappointed with the dismal results on this one! A full answer is below but anybody who
recognized that £ 3 p and x y are function calls(!) got full credit.

(((f 3) p) + (5 * (x y)))

Maybe think of juxtaposition—two values side by side—as a highest precedence "invisible" binary
operator.

let expressions
If you search for "let it be" in LYAH you'll find where it talks about 1et expressions. 1 don't use or
cover them in the slides because they're similar to where clauses and I think that can be a source of
confusion early on. However, I did use a 1et expression to test the expressions above. Here's what I
did:

> let {f xy
95

X +y; p=97; x negate; y 1} in £ 3 p+5 *x vy

> let {f xy
95

X +y; p=297; x = negate; y = 1} in (((£f 3) p)+(5*(x V)))

As you can see, inside the braces I bind names to several values and then use those bindings in the
expression that follows in. The GNU Readline facilities (slide 42) let me edit and redo that one-liner.

Instead of writing the addition function £ on the spot I could have simply bound £ to the addition
operator, like this:

> let {f = (+); p = 97; x = negate; y =1} in f 3 p + 5 * x vy
95




9. Name one general, discipline-independent characteristic of a paradigm, as defined by Kuhn.

See slides 3-4. A good, short answer to have at your fingertips is, "a vocabulary". For example, "partial
application" and "currying" are part of the vocabulary of the paradigm of functional programming.

There was a fair amount of confusion between Kuhn's definition of "paradigm", which can apply to any
area of study, and elements of programming paradigms, evidenced by answers like "syntax",

nn

"expressions", "object-oriented", "procedural", and "modules".
10. Name one characteristic of the functional programming paradigm.
See slides 23-24. Of all those listed I'd say that "functions are values" is the one absolute must.

11. (Extra credit) Write a version of eq3 from question 4 above that uses one or more guards.

eq3 Xy z
| x ==y && y == z = True
| otherwise = False

There were lots of interesting manglings on this one but it was graded very liberally.
12. (Extra credit) Haskell has both Int and Integer types. Why?

Values of type Int are "word"-sized integers. They are space-efficient and operations on them are fast.
Values of type Integer can hold arbitrarily large (or small) values.

Haskell uses the Int type to great advantage wrt. performance but I consider the mix of types to be a
wart. Icon, for example, supports arbitrary precision integers but the implementation switches between a
word-sized representation for small values and a data structure for large values as needed. The
programmer only sees one type: integer. Ralph Griswold felt that languages should be simple and
consistent, and that the burden of making that so should fall on the implementors of the language.

Python, like Icon but unlike Haskell, supports arbitrary precision integers and only has one integer type:
int. I'm not familiar with the implementation of Python and don't know whether Python switches between
representations as needed, like Icon.

Many people are surprised to learn that Haskell doesn't provide any sort of overflow checking on Int
values. Note the difference between Int and Integer values produced below.

> 29408329043284028%8204230420424823
241272707750773653786886810627044
it :: Integer

> 29408329043284028*8204230420424823::Int
8300605119622015972 —— WAT?
it :: Int

Googling for "haskell int vs integer" turns up lots of good discussion about the two types.

Chapter 18 in H10 has the official word on the Int type. You'll see there are Int8, Intl16, Int32,
and Int64 types, too. (Remember, "H10" is my abbreviation for the Haskell 2010 Language Report.)

It's important to understand that choosing whether to provide a single integer type or multiple integer types
is simply a language design decision; there's no right or wrong answer. A single type conserves the mental
footprint of the user but multiple types offer speed and space benefits that can be dramatic, even pivotal, in
some cases.




I was pleasantly surprised to see how many students got this one right. Maybe I said the right thing in
class about Int vs. Integer and/or it connected well to existing knowledge.

Another comparative tidbit: JavaScript has only a single numeric type: number.
13. (Extra credit) What does REPL stand for?

Real-eval-print loop. Almost everybody got this one.



Quiz 4, February 3, 2015
3 minutes; 1 + 2+ %2+ 0+ 0 pomts; 2 pts total

1. Write sum list, which returns the sum of the numbers m list.
2. Write co list, which returns a count of the odd numbers in list.

3. Observe the following and answer this: What's the type of isLettex?

> :type isLetter
isLetter :: Char -> Bool

Questions 4 and 5 (below) are worth zero points! (I'm just curious.)

4. Write mem x list, which returns True 1ff x 1s in list.

5. Write last list, which returns the last element of list. Return undef
for the empty list.



Solutions

sum [] =0
sum (x:xXs) = X + sum xs

co[]=0

co (x:xs)
| oddx =1+ coxs
| otherwise = co xs

The type of isLetter is Char -> Bool

mem _ [] = False
mem e (X:Xs)
| e ==x =True
| otherwise = e ‘'mem’ xs

last [] = undefined
last [x] = x
last (_:xs) = last xs



Quiz 5, February 10, 2015
3 minutes; 1 + 2+ 2 + 2 + /42 points; 3 pts total

Write sum list, which returns the sum of the numbers in list.
(+¥2 point E.C. if idiomatic Haskell!)

Write map.
What 1s the type of map?
Fill in the blank below such the value shown ([1,4]) i1s produced.

> map [[1,2,3],[4,5]]
[1,4]

What 1s the relationship between the lengths of the mput and output
lists for map?

Zero points: Have you tried the a2 tester yet?



Solutions

sum []=0
sum (X:Xs) = X + sum Xs

map _ [] =[]
map f (x:xs) = fx : map f xs

map's type is (a -> b) -> [a] -> [b]

> map head [[1,2,3],[4,5]]
[1,4]

map's output list 1s always the same length as the input list.



Quiz 6, February 12, 2015
3 minutes; 2 points for taking it

Fill m the blank with an anonymous function that makes it work:

> map ( ) [10,20,30]
[15,25,35]

Write flip and uncurry. Reminder:

> flip take [10,20,30]
[10,20]

> uncurry take (2,[10,20,307)
[10,20]

Have you created a Chrome "search engme" or Firefox keyword, as
described m O(l) Navigation on the Web with "Custom Search
Engines™



Solutions
>map (\x->x+ 5)[10,20,30]
[15,25,35]
flipfxy=fyx
uncurry f (x,y) =f{xy

http://www.cs.arizona.edu/classes/cs372/spring15/0o1nav.pdf



http://www.cs.arizona.edu/classes/cs372/spring15/o1nav.pdf

Quiz 7, February 24, 2015
3 minutes; 2 point/answer; 3 points total

. Other than the fact that Haskell lists can't be changed, what's a major
difference between Ruby arrays and Haskell lists?

. What's a major difference between strings in Ruby and Java?

. In Ruby, given s="abc" what 1s the TYPE of s[0]?

. In Ruby, given s="testing" what 1s the VALUE of s[2,2]?

. Write a Ruby program that behaves like this:

$ ruby g7.rb
ab
cd

. Haskell folding functions take two arguments. What are good names for
them? (What does whm name them?) Don't worry about their order!



Solutions

Other than the fact that Haskell lists can't be changed, what's a major difference between Ruby arrays and Haskell lists?
Ruby arrays are heterogenous.

What's a major difference between strings in Ruby and Java?
Three that come to mind: Ruby strings are mutable, accessible with indexing operators, and are indexable from the
right.

In Ruby, given s="abc" what is the TYPE of s[0]?

>> s = "abc"; s[0]
=> Ilall

>> jt.class
=> String

In Ruby, given s="testing" what is the VALUE of s[2,2]?

>> s = "testing"; s[2,2]
=> "St"

Write a Ruby program that behaves like this:

$ ruby q7.rb
ab
cd

Short answer:
puts "ab\ncd"

Long answer:
puts "ab"
puts "cd"



6. Haskell folding functions take two arguments. What are good names for them?
acm and elem (or val)

Other perfect answers:
aande
v, a
value and accumulator



Quiz 8, February 26, 2015
one minute; one point

1. Write a HASKELL function that behaves like this:

>f7
(7, [1, 1])

When you're done, briefly raise your hand.



>letfx = (x,[x,X])

>f7
(Z,[1,1])

> £99
(99,[99,99])

>1{'b'
('b',"bb")

Solutions



Quiz 9, March 5, 2015
3 minutes; 1+%+4+4+% point; 3 points total

1. Is Ruby's if-else more like Java's if-else or Haskell's if-else?
Support your answer with a very brief argument.

2. Write a method f that returns its argument unless it's called
without an argument, in which case 1t returns 8.

3. Using the iterator each, print all the elements in an array a.
4. What's the Ruby keyword that an iterator uses to invoke a block?
5. Briefly describe the essential characteristic of "duck typing".

EC % point: Define the term "iterator", as used in Ruby.



Solutions

. Ruby's if-else 1s most like Haskell's; both are expressions.

def f x=8
X
end

a.each {|x| puts x}

. yield

. Methods rely on the operations supported by values, not their
types.



Quiz 10, March 24, 2015
3 minutes; 2 point each; 2)2 points total

1. What value 1s produced by the following? "abc" =~ /b/
2. Roughly, what does show_match("abc", /b/) produce?

3. Write an RE that matches two digits separated by any two
characters, like these: 9xy9, 7++3, 7534

4. Write an RE that matches one or more 'a's followed by zero or
more 'b's, followed by two 'c's.

5. What are the shortest and longest strings matched by the
following RE? [A-Z]?[0-9]

EC 2 point: Write an RE that matches an 'a' followed by any one
character that is not a 'b’, followed by a 'c'. Examples: axc, a9c¢



5.

Solutions
What value is produced by the following? "abc" =~ /b/
>> "abc" =~ /b/
=>1]

Roughly, what does show_match("abc", /b/) produce?

>> show_match("abc", /b/)
=> "a<<b>>c"

Write an RE that matches two digits separated by any two
characters, like these: 9xy9, 7++3, 7534
/\d.\d/ or /[0-9]..[0-9]/

Write an RE that matches one or more ‘a’s followed by zero or
more 'b’s, followed by two 'c’s. /a+b*cc/

What are the shortest and longest strings matched by the

following RE? [A-Z]?[0-9] One or two characters.

EC ' point: /a[*b]c/



5.

0.

Quiz 11, April 2, 2015
3 minutes; 2 point each; 3 points total

. Write an example of a fact.

Write an example of an atom.
Write an example of a Prolog variable.

The file x.pl contains facts. How would you load them into
swipl?

What's a famous system that makes use of Prolog?

Write the query ?- oddnum(3). in terms of "Can you prove...".

EC % point: Why was the name "Prolog" chosen?

EC 7 point: When was Prolog created? (+/- five years)



3.

6.

Solutions
Write an example of a fact. {(X).

Write an example of an atom. atom
Write an example of a Prolog variable. F

The file x.pl contains facts. How would you load them into
swipl? swipl -1 x.pl or query [X].

What's a famous system that makes use of Prolog?
IBM's Watson, as seen on Jeopardy!

Write the query ?- oddnum(3). in terms of "Can you prove...".
Can you prove that 3 1s an odd number?

EC 72 point: Why was the name "Prolog" chosen?

Programming in Logic

EC % point: When was Prolog created? (+/- five years) 1972



Quiz 12, April 9, 2015
3 minutes;2+A4+1+1+%; 25 3% points total

1. Write an example of a structure with two terms.
2. Write an example of a predicate indicator.

3. Draw the box of the four-port model and label the ports. Be
sure to include the arrows for the ports. (1 point)

4. Consider the following query:
?- A=B, write(A), write(-), A=10, write(B), A=20.
What does 1t output, 1f anything?
Does it succeed or fail?

5. What 1s the following query asking?
?- color(lettuce,C1l), color(broccoli,C2), C1 == C2.

EC 7 point: Rewrite #5's query to make better use of the language.



Solutions

1. Write an example of a structure with two terms. a(b,c).
2.  Write an example of a predicate indicator. write/1

3. Draw the box of the four-port model and label the ports. Be sure to include
the arrows for the ports. (1 point)

call exit
fail goal redo

4. Consider the following query.
?- A=B, write(A), write(-), A=10, write(B), A=20.
What does it output, if anything? _GNum-10
Does it succeed or fail? It fails.

5. Whatis the following query asking?
?- color(lettuce,C1), color(broccoli,C2), Cl == C2.
Originally I wrote, "Are lettuce and broccoli the same color?" but
"What color(s) do lettuce and broccoli have in common?" is more accurate.

EC % point: Rewrite #5's query to make better use of the language.
?- color(lettuce,C), color(broccoli,C).



Quiz 13, April 13, 2015
3 minutes; 3 points total

1. Write an example of a predicate indicator.

2. Here 1s a Haskell function:
double x =x * 2

Write a Prolog version of double.
3. Write a Prolog predicate f that has this behavior:
?- {(X).
X=1; (usertyped semicolon)
X=2; (usertyped semicolon)
X =4,

Don't overthink it! Do the simplest thing that works!




Solutions
1. Write an example of a predicate indicator. write/1

2. Haskell: doublex=x*2
Prolog: double(X,R) :-Ris X * 2.

3. Write a Prolog predicate f that has this behavior:

?- f(X).
X=1;
X=2;
X=4

Solution: £(1). £(2). £(4).



Quiz 14, April 21, 2015
2 minutes; 1+1 points; 2 points total

The predicate head(?List, PHead) expresses the relationship that the
first element of List 1s Head.

?- head([10,20,30], L).
L = 10.

?- head([10,20,30], 5).
false.

?- head(L, 5).
L=1[5|_G2567].

Problems
1. Write head using append/3.
2. Write head without using append/3.




Solutions

head(L, H) :- append([H], _, L).

head([H|_], H).



Quiz 15, April 28, 2015
2 minutes; 2 points

Is Prolog statically typed or dynamically typed? Present an argument
that supports your answer.

Extra credit, 1 point: Make 1t a really good argument.



Solutions
Prolog 1s dynamically typed. Consider the following predicate:

(7).
f(seven).

The goal £(X) can instantiate X first to a number and then an atom.
Because the type of X can vary from call to call, Prolog 1s clearly
dynamically typed.



Quiz 16, April 28, 2015
2 minutes; 3 points

1. The Jar Wars animated movie talked about the "Tiger". What
1s/was the Tiger?

2. Based on what we looked at on Tuesday, 1s Java, Haskell, Ruby,
or Prolog the most syntactically similar to Groovy?

3. In terms of datatypes, which language has the most in common
with Groovy: Java, Haskell, Ruby, or Prolog?

EC 7 point: In the context of Java, who 1s Duke?



Solutions

1. The Jar Wars animated movie talked about the "Tiger". What

is/was the Tiger?
"Tiger" was the code name for version 1.5 of Java, which

introduced generics, among other things.

2. Based on what we looked at on Tuesday, is Java, Haskell, Ruby,
or Prolog the most syntactically similar to Groovy?
Ruby.

3. In terms of datatypes, which language has the most in common
with Groovy: Java, Haskell, Ruby, or Prolog?
Java.

EC % point: In the context of Java, who is Duke?
The Java mascot.




Quiz 17, May 3, 2015
3 minutes; 3 points

1. What's the 1dea of failure in Icon?
2. What's a generator in Icon?

3. Approximately how many primitive operations does Icon's string
scanning facility comprise?

EC 7 pt:  What language was Icon first implemented in?

EC 2 pt: Assuming s 1s a string, write Icon code to print the
characters at the odd positions in s, one per line.



Solutions

1. What's the idea of failure in Icon?
A expression can fail to produce a result. It's not zero, it's not
null, 1t's not false. There 1s simply no result.

Failure propagates outward, causing enclosing expressions to
fail.

2. What's a generator in Icon?
A simple definition: An expression that can produce more
than one result.

3. Approximately how many primitive operations does Icon's string
scanning facility comprise? Nine procedures and the ? operator.

EC 7% pt:  What language was Icon first implemented in? Ratfor
EC % pt: Assuming s is a string, write Icon code to print the
characters at the odd positions in s, one per line.
every write(s[1 to *s by 2])



	q1
	q2
	q3
	q4
	q5
	q6
	q7
	q8
	q9
	q10
	q11
	q12
	q13
	q14
	q15
	q16
	q17

