
CSc 372, Spring 1997, Mid-term Examination; page 1 of 16

CSc 372, Spring 1997
Mid-term Examination

Thursday, March 13, 1997

READ THIS FIRST

Do not turn this page until you are told to begin.

This examination consists of 12 problems presented on 16 numbered pages.

On problems that ask you only to write code, you need not include any explanation in your
answer if you are confident it is correct. However, if an answer is incorrect, any
accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central to a
problem's solution, you are strongly encouraged to ask the instructor about it.

If you're completely puzzled on a problem, please ask for a hint.

Try to avoid leaving a problem completely blank—that will certainly earn no credit.

On the C++ problems you may use any language constructs you desire.

On the ML problems you may use only language constructs covered in class. You may not
use the hd or tl functions. The #N operator to extract elements from a tuple (e.g. #2(t))

may not be used.

When you have completed the exam, give it to the instructor and enter your name on the
exam sign-out log.

Print your name below and when told to begin, put your initials in the lower right hand
corner of each page, being sure to check that you have all the pages.

This is a seventy-five minute exam with a total of 100 points.

Name: _______________________________________

CSc 372, Spring 1997, Mid-term Examination; page 2 of 16

For the following ML-related problems you may assume you have at your disposal all the
functions discussed in class, such as m_to_n, reduce, and filter. You may also use
any of the built-in functions discussed in class such as size, length, map, etc.

If there is a function you would like to use but you are in doubt as to its suitability, please
ask.

You are encouraged to use helper functions (either in lets or not) in your solutions.

As mentioned on the cover page, hd, tl, and the #n operator are off-limits.

Problem 1: (1 points each; 4 points total)

State the type of each of the following expressions, or if the expression is not valid, state
why. For example, the type of the expression 3+4 is int.

([1, 2], [3.0, 4.0])

(map size) (explode "abcd")

("x", (2, "y"), ([3, "z"]))

(length, [size, length o explode])

Problem 2: (2 points)

Consider this ML function definition:

fun f(x) = [x 1, 2]

What type will be deduced for f?

CSc 372, Spring 1997, Mid-term Examination; page 3 of 16

Problem 3: (1 point each; 5 points total)

Consider these two ML function definitions:

fun f(_) = 1
fun g(a,b,c) = if a = f(c) then b else [c,a]

State the type that will be deduced for each of the following:

a:

b:

c:

The return type of f:

The return type of g:

Problem 4: (3 points)

Write a function f that has the type int -> int list -> bool. You may use literals
(constants) but you may not use any explicit type specifications such as x:int. The
behavior of the function is not important—the task is simply to produce the desired type.

CSc 372, Spring 1997, Mid-term Examination; page 4 of 16

Problem 5: (9 points)

Write a function tossbig(L,N) of type string list * int -> string list that
produces a list consisting of the elements in L that have a size less than N.

Examples:

- tossbig;
val it = fn : string list * int -> string list

- val SL = ["just", "a", "test", "right", "now"];
val SL = ["just","a","test","right","now"] : string list

- tossbig(SL, 4);
val it = ["a","now"] : string list

- tossbig(SL, 5);
val it = ["just","a","test","now"] : string list

- tossbig(explode "abc", 2);
val it = ["a","b","c"] : string list

- tossbig(explode "abc", 1);
val it = [] : string list

CSc 372, Spring 1997, Mid-term Examination; page 5 of 16

Problem 6: (9 points)

Write a function samesums of type (int * int) list -> bool that produces true if
adding the two elements of each tuple in turn produce the same sum.

Examples:

- samesums;
val it = fn : (int * int) list -> bool

- samesums([(0,3)]);
val it = true : bool

- samesums([(0,3),(2,1),(4,~1)]);
val it = true : bool

- samesums([(1,2),(3,0),(4,0),(5,0),(1,2)]);
val it = false : bool

- samesums([(0,0),(1,~1),(2,~2),(3,~3)]);
val it = true : bool

CSc 372, Spring 1997, Mid-term Examination; page 6 of 16

Problem 7: (12 points)

Write a function block(w,h) of type int * int -> unit that prints a block of x's
having a width of w and height of h. You may assume that w and h are greater than or equal
to 1.

Your solution must be NON-RECURSIVE in nature. You may use recursive routines such
as m_to_n and map, but you may not invent any recursive routines yourself.

Examples:

- block;
val it = fn : int * int -> unit

- block(5,3);
xxxxx
xxxxx
xxxxx
val it = () : unit

- block(2,2);
xx
xx
val it = () : unit

- block(1,1);
x
val it = () : unit

CSc 372, Spring 1997, Mid-term Examination; page 7 of 16

Problem 8: (6 points)

Write a function c_block of type int -> int -> unit that behaves like block, but
that allows partial application. You may use block in your solution.

Examples:

- c_block;
val it = fn : int -> int -> unit

- c_block 5;
val it = fn : int -> unit

- it 3;
xxxxx
xxxxx
xxxxx
val it = () : unit

- c_block 2 2;
xx
xx
val it = () : unit

CSc 372, Spring 1997, Mid-term Examination; page 8 of 16

Problem 9: (30 points)

In this problem you are to implement a C++ class that models a television set that has a list
of favorite channels, each with a preferred volume. The television set has channels ranging
from 2 to 83 and volume levels of 1, 2, 3, ..., 10.

class TV {
 public:
 TV();
 //
 // Initializes a TV, setting the channel to 2 and
 // the volume to 5

 void SetVol(int vol);
 //
 // Sets the volume to the level vol. Attempts to set
 // the volume to less than 0 or more than 10 are ignored.

 void SetChan(int chan);
 //
 // Sets the current channel to chan. Attempts to set the
 // channel to be less than 2 or more than 83 are ignored.

 void SetFav();
 //
 // Marks the current channel as a favorite channel and
 // records the current volume as the preferred volume
 // for the channel.

 void SetFav(int vol);
 //
 // Marks the current channel as a favorite channel and
 // establishes vol as the preferred volume for the
 // channel. If the volume is less than 0 or more than
 // 10, SetFav is ignored. SetFav does not change the
 // the current volume.

 // For both forms of SetFav, if the current channel has
 // already been selected as a favorite, the only effect
 // is to possibly change the preferred volume. Note that
 // there is no way to indicate that a channel is no
 // longer a favorite.

 void NextFav();
 //
 // Goes to the next higher channel marked as a favorite
 // and sets the preferred volume. After channel 83,
 // NextFav wraps around to 2 and continues, if necessary.
 //
 // If no favorites are marked, no change is made.

 void Status();
 //
 // Prints current channel and volume.

};

An annotated example of operation follows. The only output produced by the program are
the boldface lines beginning "Channel is ...".

CSc 372, Spring 1997, Mid-term Examination; page 9 of 16

void main()
{
 TV tv;

 tv.Status();
Channel is 2, volume is 5
 (Initial conditions)

 tv.SetChan(9);
 tv.SetFav(10);

 tv.Status();
Channel is 9, volume is 5
 (Channel 9 was established as a favorite with preferred volume of 5)

 tv.SetChan(12);
 tv.NextFav();
 tv.Status();

Channel is 9, volume is 10
 (Starting from channel 12, just marked as a favorite, the search for
 the next favorite channel goes through 83 and back around to channel
 9, with a preferred volume of 10.)

 tv.SetChan(13);
 tv.SetVol(3);
 tv.SetFav();
 tv.Status();

Channel is 13, volume is 3

 (At this point, channels 9 and 13 have been marked as favorites, with
volumes of 10 and 3, respectively.)

 tv.NextFav();
 tv.Status();

Channel is 9, volume is 10

 tv.NextFav();
 tv.Status();

Channel is 13, volume is 3

 tv.SetChan(8);
 tv.SetFav(0);
 tv.SetVol(4);
 tv.SetChan(50);

 tv.NextFav(); tv.Status();
Channel is 8, volume is 0

 tv.NextFav(); tv.Status();
Channel is 9, volume is 10

 tv.NextFav(); tv.Status();
Channel is 13, volume is 3

 tv.NextFav(); tv.Status();
Channel is 8, volume is 0

}

CSc 372, Spring 1997, Mid-term Examination; page 10 of 16

Your task in this problem is to specify the private portion of the TV class and
implementations for each method. You need not recopy the public portion shown above.
Hints: (1) For a central data structure my solution uses an 84 element int array with the Nth
element holding a preferred volume if channel N is a favorite channel. (2) The purpose of
this problem is to determine if you can put together a C++ class. With that purpose in mind,
I don't intend to deduct for minor programming problems such as off-by-one errors.

CSc 372, Spring 1997, Mid-term Examination; page 11 of 16

[Additional space for solution for problem 9]

CSc 372, Spring 1997, Mid-term Examination; page 12 of 16

Problem 10: (5 points)

With our String class in mind, overload the % operator so that an expression such as s %
c produces an int that is the zero-based position of the first occurrence of the character c in
the String s. If s contains no occurrences of c, negative one should be produced. You
may choose to implement the operator as a member function or a free-standing function.
Recall that the C library function char *strchr(const char *s, char c) returns
the address of the first occurrence of c in s.

Your solution should simply consist of the function or method definition itself.

Example:

String str = "testing";
int p1 = str % 's';
int p2 = str % 'x';

cout << "p1 = " << p1 << ", p2 = " << p2 << endl;

Output:

p1 = 2, p2 = -1

CSc 372, Spring 1997, Mid-term Examination; page 13 of 16

Problem 11: (2 points each; 6 points total)

Briefly answer each of the following questions related to object-oriented programming in
general and C++ in particular.

(a) What is the difference between a class and an object?

(b) As you know, the destructor for a class X is a method named ~X. The rationale for this
choice of name is that "destruction is the complement of construction". However, the
instructor has contended on several occasions that the relationship between constructors and
destructors is in fact somewhat asymmetrical. Describe that asymmetry.

(c) What is the key benefit provided by in-line functions in C++?

CSc 372, Spring 1997, Mid-term Examination; page 14 of 16

Problem 12: (9 points)

In this problem you are to implement a class called Ring that is a subclass of the Shape
class described in the slides. A ring can be thought of as a disk with a circular center region
removed. In the following diagram, the black region is a Ring:

An instance of Ring is created by specifying the radius of the inner circle and the radius of
the outer circle. A ring having the proportions of the one shown above might be created in
this way:

Ring r(0.75, 1.0);

The radius of the inner circle is specified first and may be assumed to be non-negative and
not greater than the radius of the outer circle. The area of a ring is the difference of the areas
of the two circles. The perimeter of a ring is the perimeter of the outer circle.

Your first task in this problem is to specify a full class definition and member
implementations for Ring as a subclass of Shape. You are to work with this definition of
Shape:

class Shape {
 public:
 virtual double Area() = 0;
 virtual double Perimeter() = 0;
 virtual void Print(ostream& o) = 0;
 };

If your implementation of Ring requires changes in Shape, show those changes.

CSc 372, Spring 1997, Mid-term Examination; page 15 of 16

Here is an example of Ring in operation:

void main()
{
 Ring r(.75, 1.0);
 r.Print(cout);

 Ring r1(0.0, 1.0);
 Ring r2(0.0, 2.0);
 Ring r3(1.0, 2.0);

 r1.Print(cout);
 r2.Print(cout);
 r3.Print(cout);
}

Output:

Ring; area = 1.37445, perim = 6.28319
Ring; area = 3.14159, perim = 6.28319
Ring; area = 12.5664, perim = 12.5664
Ring; area = 9.42478, perim = 12.5664

Recall the SumOfAreas and Biggest functions presented in the slides, which follow
below. Your second task in this problem is to indicate what changes that are required to
these routines in order for them to accommodate Rings in addition to Circles and
Rectangles, which the routines already handle.

double SumOfAreas(Shape *shapes[])
{
 double area = 0.0;

 for (int i = 0; shapes[i] != 0; i++) {
 Shape *sp = shapes[i];
 area += sp->Area();
 }

 return area;
}

Shape* Biggest(Shape *shapes[])
{

Shape *bigp = shapes[0];

for (int i = 0; shapes[i] != 0; i++) {
Shape *sp = shapes[i];
if (sp->Area() > bigp->Area())

bigp = shapes[i];
}

return bigp;
}

If you wish, you may use the Circle class in your implementation of Ring.

CSc 372, Spring 1997, Mid-term Examination; page 16 of 16

[Space for solution for problem 12]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

