
CSc 372, Spring 1997, Final Examination Solutions; page 1

CSc 372, Spring 1997
Final Examination Solutions

Problem 1: (2 points each; 20 points total)

Based on the material covered in class, in what language is the expression [10,20|30]
valid? What does it mean?

That expression has no meaning in Prolog based on the material covered but in Icon it's
an expression that has the result sequence {[10,20], [10,30]}.

What is the type of the following ML expression?

[([length],[1,2,3])]

(('a list -> int) list * int list) list

In ML, implement the well-studied map function in a way that yields the same type as the
built-in version of map. This is the type desired:

('a -> 'b) -> 'a list -> 'b list

fun map F [] = []
 | map F (x::xs) = F(x)::(map F xs)

In your own words, what does the term "object-oriented programming" mean?

A programming method where one creates a system of entities and orchestrates
interaction between them.

Cite a fundamental benefit of inheritance in C++.

Objects can be treated as being something more general than they really are.

What's unusual about this Prolog predicate?

f(L) :- g(L), fail, !.

The cut comes after fail and is thus never reached.

CSc 372, Spring 1997, Final Examination Solutions; page 2

Describe in English the form of the list L that would satisfy this predicate:

p(L) :- append(L1,L1,L).

A list that can be divided into two identical lists. Here's one: [1,2,3,1,2,3].

Consider this version of member which has been instrumented with calls to write/1:

member(X,L) :- write('A'), L = [X|_].
member(X,[_|T]) :- write('B'), member(X,T), write('C').

What would be printed in response to the following query?

| ?- member(3,[1,2,3]).

ABABACC
yes

Write the append/3 predicate.

append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1,L2,L3).

Name two significant things that Prolog has in common with any one of the other languages
that we studied.

Prolog and Icon have several things in common. Among them: automatic memory
management, backtracking, a heterogeneous list type, and a FORTRAN-based first
implementation.

Problem 2 (31 points):

Write an Icon program ckconn that analyzes test run output of connect from assignment
seven and determines for each test case if the output shown is a suitable configuration of
cables.

I was bit worried about putting a question of this size on the test and I tried to
compensate for that with a very direct advance hint via mail and by citing a possible
decomposition in the exam itself. I liked the fact that the problem required use of many
elements of Icon and was practical rather than contrived. But, you know what's said
about the best laid plans and the fact is that most persons didn't do very well on this
problem.

To help you understanding the grading, I thought of it as thirty point problem with five
parts: (1) parsing of the "case..." line, (2) parsing of the configuration, (3) verification of

CSc 372, Spring 1997, Final Examination Solutions; page 3

the configuration's length and matings, (4) verification that the cables used were drawn
from the ones supplied, (5) a main program to tie things together. Each part was worth
six points and there was a one point bonus for writing down anything. When grading I
deducted only for major flaws and omitted elements—code that appeared to be in the
ballpark got full credit. Most persons ended up in the mid to low 20s. There was a 28,
two 29s, and one 31.

link split

procedure do_case(s)
 cabs := []
 s ? {
 tab(upto('\['))
 pieces := split(tab(0), '[],\'')
 e2 := pull(pieces)
 len := pull(pieces)
 e1 := pull(pieces)

 every i := 1 to *pieces by 3 do
 put(cabs, pieces[i:i+3])
 }

 return [cabs,len,e1||e2]
end

procedure do_config(s)
 cabs := []

 s ? while e1 := move(1) do {
 len := *tab(many('-'))
 e2 := move(1)
 put(cabs, [e1,len,e2])
 }

 return cabs
end

procedure config_ok(cabs, len, ends)
 if (cabs[1][1] == ends[1]) | (cabs[-1][3] == ends[2]) then
 fail

 every len -:= (!cabs)[2]

 if len <= 0 then
 return
end

procedure sets_ok(In,Out)

CSc 372, Spring 1997, Final Examination Solutions; page 4

 t := table(0)
 every t[c_to_rep(!In)] +:= 1
 every t[c_to_rep(!Out)] -:= 1

 if !t < 0 then
 fail
 else
 return
end

procedure c_to_rep(cable)
 cable := sort(cable)
 return map(cable[1] || cable[2] || cable[3])
end

procedure main()

 while data := do_case(write(read())) do {
 confln := write(read())
 if confln[1] ~== "C" then {
 config := do_config(confln)

 if not config_ok(config, data[2], data[3]) |
 not sets_ok(data[1], config) |
 find("MM"|"FF", confln) then
 write("**ERROR**")
 }
 write(read())
 }
end

Problem 3 (8 points):

Write a Prolog predicate sort(L,SortedL) that describes the relationship that SortedL
is a list that has the elements of L in ascending order. Both lists may be assumed to consist
only of integers. The query sort([],[]) should succeed.

sort([],[]).
sort(L,[X|Sorted]) :-
 min(X,L),
 getone(X, L, Left),
 sort(Left,Sorted).

Problem 4 (6 points):

Write a Prolog predicate hexprint/0 that prints, one per line, each of the hexadecimal
numbers between 000 and fff inclusive but omitting those numbers where all the digits are
the same (000, 111, 222, ..., eee, fff). In all, 4080 lines are to be printed (16^3 minus 16
is 4080). Note that hexprint ultimately succeeds.

CSc 372, Spring 1997, Final Examination Solutions; page 5

notallsame([X,X,X]) :- !, fail.
notallsame(_).

hexdig(X) :- member(X,[0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f]).

hexprint :- hexdig(D1), hexdig(D2), hexdig(D3),
 notallsame([D1,D2,D3]),
 write(D1), write(D2), write(D3), nl, fail.
hexprint.

Problem 5 (6 points):

Write a Prolog predicate palsum/1 that succeeds if a list of integer lists is palindromic with
respect to the sums of the elements of the contained lists.

palsum([]).
palsum([_]).
palsum([H|T]) :- append(Middle,[Last],T), sum(H,Sum),
sum(Last,Sum),
 palsum(Middle).

Problem 6 (6 points):

It was said in class that a single Prolog predicate can take the place of several functions in
some other language. (1) Explain what's meant by that statement. (2) Write a Prolog
predicate that exhibits that property. (3) In some other language write a set of routines to
perform the various operations that the predicate can perform. NOTE: Don't get carried
away on this problem—conserve your time by using a simple predicate that illustrates the
point.

A predicate can perform different functions depending on what's instantiated. The
member predicate is a simple example:

member(X, [X|_]).
member(X, [_|T]) :- member(X,T).

Member can (1) test to see if a value is in a list (2) generate all values in a list (3)
generate lists containing a given value. The first two in Icon:

procedure is_member(x, L)
 if x === !L then return

 else fail
end

procedure members(L)
 suspend !L
end

CSc 372, Spring 1997, Final Examination Solutions; page 6

Problem 7 (4 points):

Among ML, C++, Icon, and Prolog, which language did you find the most interesting, and
why?

Answer-wise anything that was coherent earned all four points on this problem.

Personally, I find them all them pretty interesting, but if I had to pick one that's the most
interesting to me at the moment it would have to be Prolog.

The responses:

Icon 12.5
Prolog 11.5
C++ 4
ML 0

Problem 8 (4 points):

Among ML, C++, Icon, and Prolog, which language did you find the most difficult to learn.
Cite an element of the language that you had particular difficulty with.

As in the last problem, any sort of coherent response got all four points.

Of the group I found Prolog to be the most difficult. For one thing, I have a hard time
visualizing a Prolog computation that uses a lot of backtracking.

The responses:

Prolog 21
C++ 3
ML 3
Icon 1

Historical note: Last semester a show of hands poll at the final showed about a 50/50
split between Icon and Prolog with one for ML and zero for C++ as the most difficult
language.

Problem 9 (3 points):

Write an ML function f of type a' -> 'b -> 'a that exhibits the following behavior...

fun f x _ = x

Problem 10 (4 points):

CSc 372, Spring 1997, Final Examination Solutions; page 7

Write an ML function dups(s) that removes sequences of duplicated characters from a
string.

At the time of the test I hadn't written a solution for dups and while driving to campus I
convinced myself that the problem was harder than I first thought it was. I therefore added
biggest(L)as an alternative on the spot, but dups was actually very simple:

fun dups(s) =
 let
 fun dups1([]) = []
 | dups1([c]) = [c]
 | dups1(c1::c2::cs) =
 if c1 = c2 then
 dups1(c2::cs)
 else
 c1::dups1(c2::cs)
 in
 implode(dups1(explode(s)))
 end

Here's biggest:

exception Empty;
fun biggest [] = raise Empty
 | biggest [x] = x:int
 | biggest (x1::x2::xs) =
 if x1 > x2 then
 biggest(x1::xs)
 else
 biggest(x2::xs)

biggest can also be done with reduce, but I'll leave you to think about that one.

Problem 11 (8 points):

Implement two C++ classes: MList and PrintableMList. ...

#include <iostream.h>

class MList {
 public:
 MList(int maxVal)
 : _maxVal(maxVal), _count(0), _closed(0) {}
 void operator<(int value) {
 if (!_closed && value <= _maxVal)
 _values[_count++] = value;
 }

 void close() { _closed = 1; }

CSc 372, Spring 1997, Final Examination Solutions; page 8

 int size() { return _count; }

 protected:
 int _maxVal, _count, _closed, _values[100];
 };

class PrintableMList : public MList {
 public:
 PrintableMList(int maxVal)
 : MList(maxVal) {}
 void print() {
 for (int i = 0; i < _count; i++)
 cout << _values[i] << " ";
 cout << endl;
 }
 };

EXTRA CREDIT SECTION

EC 1 (1 point):

Two of the programming languages mentioned during lectures that were first publicly
released after 1990. Name BOTH of them.

Limbo and Java

EC 2 (1 point):

Reigning world chess champion Garry Kasparov was recently defeated in a six game match
by IBM's Deep Blue system. What language was used to implement Deep Blue?

According to an interview with A. Joseph Hoane, Jr. that can be found at
www.chess.ibm.com/meet/html/d.4.5.a.html, it's written in C.

EC 3 (1 point):

Taking into account the syllabus, the slides for each language, homework assignments and
solutions, and the mid-term exam and solutions, how many pages of handouts have been
distributed in the course of this class? Your answer must be within 10% of the actual total.
Note that a sheet printed on both sides counts as two pages.

% cd /home/cs372/Handouts
% grep ^%%Page: *.ps | wc -l
 513
%

EC 4 (1 point):

Name a language that is an ancestor of Icon.

CSc 372, Spring 1997, Final Examination Solutions; page 9

SNOBOL4

EC 5 (1 point):

How many applications are included in the Prolog-1000 list? Pick one: (a) Less than 1000
(b) Exactly 1000 (c) More than 1000.

The copy parked in /home/cs372/Prolog/Prolog-1000 appears to have 502
entries, but is said to be "preliminary". However, I think that in class I might have said
that the list had more than one thousand entries and therefor, either (a) or (c) earned a
point.

EC 6 (1 point):

What piece of sports equipment is on the instructor's desk?

A bowling pin. (I put this question here as a token reward for those students who kept me
from being lonely during office hours!) Other responses were baseballs, footballs, and a
tennis racket.

EC 7 (1 point):

Write an Icon expression that is exactly ten characters in length and that evaluates to the
value "10" (a string). RESTRICTION: You may use no letters, digits, underscores, white
space characters, or parentheses.

My answer:

[[]]||[]

Mr. Klein was the only person who answered this question correctly. His answer:

"\\"||""

EC 8 (1 point):

Finish this sentence as yourself: "If I only remember one thing from CSc 372 it will be
_______."

If I only remember one thing from teaching CSc 372 this time around it will be nearly
losing my mind trying to think up some decent problems for the first C++ assignment.

EC 9 (1 point):

Without using a control structure (such as every or while) write an Icon expression that
prints the letters from "a" to "z".

CSc 372, Spring 1997, Final Examination Solutions; page 10

This is a classic example of omitting a key element of a question. I should have said
"...prints, one per line, the letters..." The answer I had in mind was this,

write(!&lcase) & 1 = 0

but a number of persons observed that the specifications could be met with this,

write(&lcase)

and that earned full credit.

EC 10 (1 point):

Write an Icon procedure allsame(s) that succeeds if all the characters in the string s are
the same and fails otherwise. For example, allsame("testing") should fail, but
allsame("++++") should succeed. allsame("") should fail.

procedure allsame(s)
 *cset(s) = 1 & return
end

EC 11 (1 point): (Written on the board...)

Sometimes in Tucson the only difference between the time and the temperature is a _____.

colon (For example, it might be 102 at 1:02.)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

