Functional Programming with Haskell

CSC 372, Spring 2018
The University of Arizona
William H. Mitchell
whm@cs
Paradigms
Paradigms

Thomas Kuhn's *The Structure of Scientific Revolutions* (1962) describes a *paradigm* as a scientific achievement that is...

- "...sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity."
- "...sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to resolve."

Examples of works that documented paradigms:
- Newton's *Principia*
- Lavoisier's *Chemistry*
- Lyell's *Geology*
Paradigms, continued

Kuhn says a paradigm has:
- A world view
- A vocabulary
- A set of techniques for solving problems

A paradigm provides a conceptual framework for understanding and solving problems.

Kuhn equates a paradigm shift with a scientific revolution.
The imperative programming paradigm

*Imperative programming* is a very early paradigm that's still used.

Originated with machine-level programming:
- Instructions change memory locations or registers
- Branching instructions alter the flow of control

Examples of areas of study for those interested in the paradigm:
- Data types
- Operators
- Branching mechanisms and (later) control structures

Imperative programming fits well with the human mind's ability to describe and understand processes as a series of steps.
The imperative paradigm, continued

Language-wise, imperative programming requires:
• "Variables"—data objects whose values can change
• Expressions to compute values
• Support for iteration—a “while” control structure, for example.

Support for imperative programming is very common.
• Java
• C
• C++
• Python
• and hundreds more
• but not Haskell

Code inside a Java method or C function is likely imperative.
The procedural programming paradigm

An outgrowth of imperative programming was *procedural programming*:

- Programs are composed of bodies of code (procedures) that manipulate individual data elements or structures.
- Procedures encapsulate complexity.

Examples of areas of study:

- How to decompose a computation into procedures and calls
- Parameter-passing mechanisms in languages
- Scoping of variables and nesting of procedures
- Visualization of procedural structure

What does a language need to provide to support procedural programming?
The procedural paradigm, continued

Support for procedural programming is very common.
  • C
  • Python
  • Ruby
  • and hundreds more

The procedural and imperative paradigms can be combined:
  • Procedural programming: the set of procedures
  • Imperative programming: the contents of procedures

Devising the set of functions for a C program is an example of procedural programming.

Procedural programming is possible but clumsy in Java.
  – Classes devolve into collections of static methods and data
The object-oriented programming paradigm

The essence of the object-oriented programming paradigm: Programs are a system of interacting objects.

Dan Ingalls said,
"Instead of a bit-grinding processor plundering data structures, we have a universe of well-behaved objects that courteously ask each other to carry out their various desires."

Examples of areas of study:
• How to model systems as interacting objects
• Managing dependencies between classes
• Costs and benefits of multiple inheritance
• Documentation of object-oriented designs

What does a language need to support OO programming?
The object-oriented paradigm, continued

Brief history of the rise of the object-oriented paradigm:
• Simula 67 recognized as first language to support objects
• Smalltalk created broad awareness of OO programming
  (see https://archive.org/details/byte-magazine-1981-08)
• C++ started a massive shift to OO programming
• Java broadened the audience even further

Object-oriented programming fits Kuhn's paradigm definition well:
  World view:
    Systems are interacting objects
  Vocabulary:
    Methods, inheritance, superclass, instances
  Techniques:
    Model with classes, work out responsibilities and collaborators, don't have public data, etc.
The object-oriented paradigm, continued

Language support for OOP has grown since mid-1980s.

Many languages support OO programming but don't force it.
- C++
- Python
- Ruby

Java forces at least a veneer of OO programming.

The OO and imperative paradigms can be combined:
- OO: the set of classes and their methods
- Imperative: the code inside methods
Paradigms in a field of science are often incompatible.
  Example: geocentric vs. heliocentric model of the universe

Imperative programming is used both with procedural and object-oriented programming.
  Is imperative programming really a paradigm?

Wikipedia's Programming_paradigm has this:
  Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.

Are "programming paradigms" really paradigms by Kuhn's definition or are they just characteristics?
The level of a paradigm

Programming paradigms can apply at different levels:

• Making a choice between procedural and object-oriented programming fundamentally determines the nature of the high-level structure of a program.

• The imperative paradigm is focused more on the small aspects of programming—how code looks at the line-by-line level.

The procedural and object-oriented paradigms apply to *programming in the large*.

The imperative paradigm applies to *programming in the small*.

Do co-existing paradigms imply they're solving fundamentally different types of problems?
The influence of paradigms

The programming paradigms we know affect how we approach problems.

• If we use the procedural paradigm, we'll first think about breaking down a computation into a series of steps.

• If we use the object-oriented paradigm, we'll first think about modeling the problem with a set of objects and then consider their interactions.

• If we know only imperative programming, code inside methods and functions will be imperative.
Imperative programming revisited

Recall these language requirements for imperative programming:

• "Variables"—data objects whose values can change

• Expressions to compute values

• Support for iteration—a “while” control structure, for example.

Another:

• Statements are sequentially executed
Imperative summation

Here's an imperative solution in Java to sum the integers in an array:

```java
int sum(int a[]) {
    int sum = 0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum;
}
```

How does it exemplify imperative programming?
- The values of `sum` and `i` change over time.
- An iterative control structure is at the heart of the computation.
With Java's "enhanced for", also known as a for-each loop, we can avoid array indexing.

```java
int sum(int a[]) {
    int sum = 0;
    for (int val: a) {
        sum += val;
    }
    return sum;
}
```

Is this an improvement? If so, why?

Can we write `sum` in a non-imperative way?
Non-imperative summation

We can use recursion to get rid of loops and assignments, but...ouch!

```c
int sum(int a[])
{
    return sum(a, 0);
}

int sum(int a[], int i)
{
    if (i == a.length)
        return 0;
    else
        return a[i] + sum(a, i+1);
}
```

Which of the three versions is the easiest to believe it is correct?
Background:
Value, type, side effect
An expression is a sequence of symbols that can be evaluated to produce a value.

Here are some Java expressions:

'x'
i + j * k
f(args.length * 2) + n

Three questions to consider about an expression:

• What **value** does the expression produce?

• What's the **type** of that value?

• Does the expression have **any side effects**?

Mnemonic aid for the three: Imagine you're wearing a vest that's reversed. "vest" reversed is "t-se-v": type/side-effect/value.
What is the value of the following Java expressions?

3 + 4
7

1 < 2
true

"abc".charAt(1)
'b'

s = 3 + 4 + "5"
"75"

"a,bb,c3".split("",")
A String array with three elements: "a", "bb" and "c3"

"a,bb,c3".split("",")[2]
"c3"

"a,bb,c3".split("",")[2].charAt(0) == 'X'
false
Value, type, and side effect, continued

What is the type of each of the following Java expressions?

3 + 4
  int

1 < 2
  boolean

"abc".charAt(1)
  char

s = 3 + 4 + "5"
  String

"a,bb,c3".split("",")
  String []

"a,bb,c3".split("",")[2]
  String

"a,bb,c3".split("",")[2].charAt(0) == 'X'
  boolean

When we ask,

  "What's the type of this expression?"

we're actually asking this:

  "What's the type of the value produced by this expression?"
A "side effect" is a change to the program's observable data or to the state of the environment in which the program runs.

Which of these Java expressions have a side effect?

- $x + 3 \times y$
  
  No side effect. A computation was done but no evidence of it remains.

- $x += 3 \times y$
  
  Side effect: $3 \times y$ is added to $x$.

- $s.length() > 2 \; \text{||} \; s.charAt(1) == '#'$
  
  No side effect. A computation was done but no evidence of it remains.
Value, type, and side effect, continued

More expressions to consider wrt. side effects:

"testing".toUpperCase()
A string "TESTING" was created somewhere but we can't get to it. No side effect.

L.add("x"), where L is an ArrayList
An element was added to L. Definitely a side-effect!

System.out.println("Hello!")
Side effect: "Hello!" went somewhere.

window.checkSize()
We can't tell without looking at window.checkSize()!
The hallmark of imperative programming

Side effects are the hallmark of imperative programming.

Code written in an imperative style is essentially an orchestration of side effects.

Recall:

```c
int sum = 0;
for (int i = 0; i < a.length; i++)
    sum += a[i];
```

Can we program without side effects?
The Functional Paradigm
The functional programming paradigm

A key characteristic of the functional paradigm is writing functions that are like pure mathematical functions.

Pure mathematical functions:

• Always produce the same value for given input(s)

• Have no side effects

• Can be easily combined to produce more powerful functions

• Are often specified with cases and expressions
Functional programming, continued

Other characteristics of the functional paradigm:

• Values are never changed but lots of new values are created.

• Recursion is used in place of iteration.

• Functions are values. Functions are put into data structures, passed to functions, and returned from functions. Lots of temporary functions are created.

Based on the above, how well would the following languages support functional programming?

• Java?
• Python?
• C?
Haskell basics
What is Haskell?

Haskell is a pure functional programming language; it has no imperative features.

Designed by a committee with the goal of creating a standard language for research into functional programming.

First version appeared in 1990. Latest version is known as Haskell 2010.

Is said to be non-strict—it supports lazy evaluation.

Is not object-oriented in any way.
Haskell resources

Website: haskell.org
  All sorts of resources!

Books: (all on Safari Books Online)
  Learn You a Haskell for Great Good!, by Miran Lipovača
    http://learnyouahaskell.com (Known as LYAH.)

  Programming in Haskell, by Graham Hutton
    Note: See appendix B for mapping of non-ASCII chars!

  Thinking Functionally with Haskell by Richard Bird

  Real World Haskell, by O'Sullivan, Stewart, and Goerzen
    http://book.realworldhaskell.org (I'll call it RWH.)

Haskell 2010 Report (I'll call it H10.)
  http://haskell.org/definition/haskell2010.pdf
Getting Haskell

Windows

2.  Download Core (64 bit)
3.  Install it!
   • Under "Choose Components", deselect "Stack"

macOS

2.  Download Core (64 bit)
3.  Install it!

The latest version is 8.2.2. Lectura is running 8.0.1 but there should be no significant differences for our purposes.
On macOS and Linux machines like lectura we can interact with Haskell by running `ghci`:

```
% ghci
GHCi, version 8.0.1: ... :? for help
Loaded GHCi configuration from /p1/hw/whm/.ghci

Prelude> 3 + 4
7

Prelude> 1 > 2
False
```

With no arguments, `ghci` starts a read-eval-print loop (REPL): Expressions typed at the prompt (`Prelude>`) are evaluated and the result is printed.
Interacting with Haskell, continued

On Windows there's a choice between **ghci**:

And **WinGHCi**:

Suggested **WinGHCi** options: (File > Options)
- Prompt: Just a >
- Uncheck Print type after evaluation (for now)
When `ghci` starts up on macOS or Linux it looks for the file `~/.ghci` – a `.ghci` file in the user's home directory.

I have these two lines in my `~/.ghci` file on both my Mac and on lectura:

```plaintext
:set prompt "> "
import Text.Show.Functions
```

The first line simply sets the prompt to just "> ".

*The second line is very important:*

- It loads a module that lets functions be printed.
- Prints `<function>` for function values.
- Without it, lots of examples in these slides won't work!
Goofy fact: ~/.ghci must not be group- or world-writable!

If you see something like this,

```plaintext
*** WARNING: /home/whm/.ghci is writable by someone else, IGNORING!
Suggested fix: execute
'chmod go-w /home/whm/.ghci'
```

the suggested fix should work.

Details on .ghci and lots more can be found in
downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
On Windows, ghci and WinGHCi use a different initialization file:

\%APPDATA%\ghc\ghci.conf

(Note: the file is named ghci.conf, not .ghci!)

\%APPDATA\% represents the location of your Application Data directory. You can find that path by typing set appdata in a command window, like this:

C:/>set appdata
APPDATA=C:\Users\whm\AppData\Roaming

Combing the two, the full path to the file for me would be

C:\Users\whm\AppData\Roaming\ghc\ghci.conf
Extra Credit Assignment 1

For two assignment points of extra credit:

1. Run ghci (or WinGHCi) somewhere and try ten Haskell expressions with some degree of variety. (Not just ten additions, for example!)

2. Demonstrate that you've got import Text.Show.Functions in your ~/.ghci or ghc.conf file, as described on slides 35-37, by showing that typing negate produces <function>, like this:
   
   Prelude> negate
   <function>

3. Capture the interaction (both expressions and results) and put it in a plain text file, eca1.txt. No need for your name, NetID, etc. in the file. No need to edit out errors.

4. On lectura, turn in eca1.txt with the following command:

   % turnin 372-eca1 eca1.txt

Due: At the start of the next lecture after we hit this slide.
Collaborative Learning Exercise

Haskell by Observation

cs.arizona.edu/classes/cs372/spring18/cle-haskell-obs.html
Functions and function types
Calling functions

In Haskell, *juxtaposition* indicates a function call:

```haskell
> negate 3
-3

> even 5
False

> pred 'C'
'B'

> signum 2
1
```

Note: These functions and many more are defined in the Haskell "Prelude", which is loaded by default when ghci starts up.
Function call with juxtaposition is left-associative.

\[ \text{signum negate 2 means } (\text{signum negate}) \ 2 \]

> signum negate 2
<interactive>:11:1: error:
  • Non type-variable argument ...
  ...

We add parentheses to call \text{negate 2} first:

> signum (negate 2)
-1
Function call has higher precedence than any operator.

```
> negate 3+4
1
```

`negate 3 + 4` means `(negate 3) + 4`. Use parens to force `+` first:

```
> negate (3 + 4)
-7
```

```
> signum (negate (3 + 4))
-1
```
Haskell's `Data.Char` module has functions for working with characters. We'll use it to start learning about function types.

```
> import Data.Char  (import the `Data.Char` module)

> isLower 'b'
True

> toUpper 'a'
'A'

> ord 'A'
65

> chr 66
'B'

> Data.Char.ord 'G'  (uses a qualified name)
71
We can use ghci's `:type` command to see what the type of a function is:

```haskell
> :type isLower
isLower :: Char -> Bool
```

The type `Char -> Bool` says that `isLower` is a function that
1. Takes an argument of type `Char`
2. Produces a result of type `Bool`

The text

```
isLower :: Char -> Bool
```

is read as "isLower has type Char to Bool"
Recall:

\[
\begin{align*}
&> \text{toUpper } 'a' \\
&\quad 'A' \\
&> \text{ord } 'A' \\
&\quad 65 \\
&> \text{chr } 66 \\
&\quad 'B'
\end{align*}
\]

What are the types of those three functions?

\[
\begin{align*}
&> :t \text{toUpper} \\
&\text{toUpper} :: \text{Char} \rightarrow \text{Char}
\end{align*}
\]

\[
\begin{align*}
&> :t \text{ord} \\
&\text{ord} :: \text{Char} \rightarrow \text{Int}
\end{align*}
\]

\[
\begin{align*}
&> :t \text{chr} \\
&\text{chr} :: \text{Int} \rightarrow \text{Char}
\end{align*}
\]
What is the type of the following Java methods?

```java
jshell> Character.isLetter('4')
$1 ==> false
```

```java
jshell> Character.toUpperCase('a')
$2 ==> 'A'
```

```bash
% javap java.lang.Character | grep "isLetter\|toUpperCase"
 public static boolean isLetter(char);
 public static boolean isLetter(int);
 public static char toUpperCase(char);
 public static int toUpperCase(int);
```

**Important:**
- Java: common to think of a method's return type as the method's type
- Haskell: function's type has both type of argument(s) and return type
Type consistency

Like most languages, Haskell requires that expressions be type-consistent (or well-typed).

Here is an example of an inconsistency:

```haskell
> chr 'x'
<interactive>:1:5: error:
  • Couldn't match expected type ‘Int’ with actual type ‘Char’
  • In the first argument of ‘chr’, namely “x”

> :t chr
chr :: Int -> Char

> :t 'x'
'x' :: Char
```

`chr` requires its argument to be an `Int` but we gave it a `Char`. We can say that `chr 'x'` is ill-typed.
Type consistency, continued

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char
Sidebar: Key bindings in ghci

ghci uses the haskeline package to provide line-editing.

A few handy bindings:

- **TAB** completes identifiers
- **^A** Start of line
- **^E** End of line
- **^R** Incremental search through previously typed lines

More:

[https://github.com/judah/haskeline/wiki/KeyBindings](https://github.com/judah/haskeline/wiki/KeyBindings)

Windows: Use **Home** and **End** for start- and end-of-line
Sidebar: Using a REPL to help learn a language

ghci provides a REPL (read-eval-print loop) for Haskell.

How does a REPL help us learn a language?

Is there a REPL for Java?
   Java 9 has jshell. There's also javarepl.com.

What are some other languages that have a REPL available?

What characteristics does a language need to support a REPL?

If there's no REPL for a language, how hard is it to write one?
Type classes
Recall the `negate` function:

```
> negate 5
-5

> negate 5.0
-5.0
```

Speculate: What's the type of `negate`?
A type is a collection of related values." —Hutton

**Bool**, **Char**, and **Int** are examples of Haskell types.

Haskell also has **type classes**.

Type class:
A collection of types that support a specified set of operations.

**Num** is one of the many type classes defined in the Prelude.

Haskell's type classes are unrelated to classes in the OO sense.

**Important:**
The names of types and type classes are always capitalized.
The **Num** type class

```haskell
> :info Num
class Num a where
  (+) :: a -> a -> a
  (-) :: a -> a -> a
  (*) :: a -> a -> a
  negate :: a -> a
  abs :: a -> a
  signum :: a -> a
  fromInteger :: Integer -> a
```

A type must support all of these operations to be an instance of **Num**

```
instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double
```

The Prelude defines these types as instances of **Num**
Here's the type of `negate`:

```haskell
> :type negate
negate :: Num a => a -> a
```

The type of `negate` is specified using a `type variable`, `a`.

The portion `a -> a` specifies that `negate` returns a value having the same type as its argument.

"If you give me an `X`, I'll give you back an `X`." 

The portion `Num a =>` is a `class constraint`. It specifies that the type `a` must be an instance of the type class `Num`.

How can we state the type of `negate` in English?

`negate` accepts any value whose type is an instance of `Num`. It returns a value of the same type.
Type classes, continued

What type do integer literals have?

> :type 3
3 :: Num p => p

> :type (-27) -- Note: Parens needed!
(-27) :: Num p => p

Why are integer literals typed with a class constraint rather than just Int or Integer?
Type classes, continued

What's the type of a decimal fraction?

> :type 3.4
3.4 :: Fractional a => a

Will negate 3.4 work?

> :type negate
negate :: Num a => a -> a

> negate 3.4
-3.4

Speculate: Why does it work?
Haskell type classes form a hierarchy. The Prelude has these:
The arrow from **Num** to **Fractional** means that a **Fractional** can be used as a **Num**.

Given

\[
\text{negate} :: \text{Num } a \Rightarrow a \rightarrow a
\]

and

\[
5.0 :: \text{Fractional } a \Rightarrow a
\]

then

\[
\text{negate } 5.0 \text{ is valid.}
\]
What does the diagram show us other than the relationship between \textbf{Num} and \textbf{Fractional}?

It shows us types that are instances of \textbf{Num} and \textbf{Fractional}.

Do \texttt{:info Num} again. Do \texttt{:info Fractional}, too.
The Prelude has a `truncate` function:

```haskell
> truncate 3.4
3
```

What does the type of `truncate` tell us?

`truncate :: (Integral b, RealFrac a) => a -> b`

* `truncate` accepts any type that is an instance of `RealFrac`
* `truncate` returns a type that is an instance of `Integral`

Explore the `Integral` and `RealFrac` type classes with `:info`.
Type classes, continued

`:info Type` shows the classes that `Type` is an instance of.

> :info Int
data Int = GHC.Types.I# GHC.Prim.Int#
instance Eq Int
instance Ord Int
instance Show Int
instance Read Int
instance Enum Int
instance Num Int
instance Real Int
instance Bounded Int
instance Integral Int

Try `:info` for each of the classes.
In LYAH, *Type Classes 101* has a good description of the Prelude's type classes.

Note:
Type classes are not required for functional programming but because Haskell makes extensive use of them, we must learn about them.

Remember:
Haskell's type classes are unrelated to classes in the OO sense.
In essence, \texttt{negate :: Num a => a -> a} describes many functions:

\begin{itemize}
  \item \texttt{negate :: Integer -> Integer}
  \item \texttt{negate :: Int -> Int}
  \item \texttt{negate :: Float -> Float}
  \item \texttt{negate :: Double -> Double}
\end{itemize}

\texttt{negate} is a \textit{polymorphic function}. It handles values of many forms.

If a function's type has any type variables, it is a polymorphic function.

Does Java have polymorphic methods? Does C? Python?
Consider this excerpt from **Bounded**:

```
> :info Bounded
class Bounded a where
    minBound :: a
    maxBound :: a
...
```

What sort of things are `minBound` and `maxBound`? Polymorphic values!

How can we use them?
The construct ::type is an expression type signature.

A usage of it:

```haskell
> minBound::Char
'\NUL'

> maxBound::Int
9223372036854775807

> maxBound::Bool
True

> maxBound::Integer
<interactive>:9:1: error:
  * No instance for (Bounded Integer)
We can use :set +t to direct ghci to automatically show types:

> :set +t

> 3
3
it :: Num p => p

> 3 + 4.5
7.5
it :: Fractional a => a

> abs
<function>
  it :: Num a => a -> a

Use :unset +t to turn off display of types.
Sidebar: LHtLaL—introspective tools

:type, :info and :set +t are three introspective tools that we can use to help learn Haskell.

When learning a language, look for such tools early on.

Some type-related tools in other languages:
   Python: type(expr) and repr(expr)

   JavaScript: typeof(expr)

   PHP: var_dump(expr1, expr2, ...)

   C: sizeof(expr)

   Java: getClass(); /var in jshell.

What's a difference between ghci's type and Java's getClass()?
Here's a Java program that makes use of the "boxing" mechanism to show the type of values, albeit with wrapper types for primitives.

```java
public class exprtype {
    public static void main(String args[]) {
        showtype(3 + 'a');
        showtype(3 + 4.0);
        showtype("(2<F".toCharArray());
        showtype("a,b,c".split("","));
        showtype(new HashMap());
    }
    private static void showtype(Object o) {
        System.out.println(o.getClass());
    }
}
```

Output:

```
class java.lang.Integer
class java.lang.Double
class [C
class [Ljava.lang.String;
class java.util.HashMap  (Note: no String or Integer—type erasure!)
```
More on functions
Writing simple functions

A function can be defined at the REPL prompt. Example:

```haskell
> double x = x * 2
double :: Num a => a -> a  (:set +t is in effect)
```

```haskell
> double 5
10
it :: Num a => a
```

```haskell
> double 2.7
5.4
it :: Fractional a => a
```

General form of a function definition for the moment:

```
function-name parameter = expression
```

Function and parameter names must begin with a lowercase letter or an underscore.
Two more functions:

\[
\begin{align*}
> \text{neg } x &= -x \\
\text{neg} &\colon \text{Num } a \Rightarrow a \rightarrow a & \quad (\text{\texttt{:set } +t \textit{ is in effect}}) \\
> \text{toCelsius } \text{temp} &= (\text{temp} - 32) \times 5/9 \\
\text{toCelsius} &\colon \text{Fractional } a \Rightarrow a \rightarrow a
\end{align*}
\]

The determination of types based on the operations performed is known as \textit{type inferencing}. (More on it later!)

Problem: Write \texttt{isPositive } x \text{ which returns } \texttt{True} \text{ iff } x \text{ is positive.}

\[
> \text{isPositive } x &= x > 0 \\
\text{isPositive} &\colon (\text{Num } a, \text{ Ord } a) \Rightarrow a \rightarrow \texttt{Bool}
\]
We can use :: type to constrain a function's type:

\[
\begin{align*}
> \text{neg } x &= -x :: \text{Int} \\
\text{neg} &= \text{Int} \rightarrow \text{Int}
\end{align*}
\]

\[
\begin{align*}
> \text{toCelsius temp} &= (\text{temp} - 32) \times \frac{5}{9} :: \text{Double} \\
\text{toCelsius} &= \text{Double} \rightarrow \text{Double}
\end{align*}
\]

:: type has low precedence; parentheses are required for this:

\[
\begin{align*}
> \text{isPositive } x &= x > (0::\text{Int}) \\
\text{isPositive} &= \text{Int} \rightarrow \text{Bool}
\end{align*}
\]

Note that :: type applies to an expression, not a function.

We'll use :: type to simplify some following examples.
Sidebar: loading functions from a file

We can put function definitions in a file.

The file `simple.hs` has four function definitions:

```haskell
% cat simple.hs
double x = x * 2 :: Int
neg x = -x :: Int
isPositive x = x > (0::Int)
toCelsius temp = (temp - 32) * 5/(9::Double)
```

We'll use the extension `.hs` for Haskell source files.

Generally, code from the slides will be (poorly organized) here:
[https://www2.cs.arizona.edu/classes/cs372/spring18/haskell/] (on lectura)
Assuming `simple.hs` is in the current directory, we can load it with `:load` and see what we got with `:browse`.

```ghci
% ghci
> :load simple  (assumes .hs suffix)
[1 of 1] Compiling Main ...
Ok, one module loaded.

> :browse
double :: Int -> Int
neg :: Int -> Int
isPositive :: Int -> Bool
toCelsius :: Double -> Double
```
ghci is clumsy to type! I've got an hs alias in my ~/.bashrc:
  alias hs=ghci

I specify the file I'm working with as an argument to hs.
  % hs simple
  [1 of 1] Compiling Main ( simple.hs, interpreted )
  Ok, one module loaded.
  > ... experiment ...

After editing in a different window, I use :r to reload the file.
  > :r
  [1 of 1] Compiling Main ( simple.hs, interpreted )
  Ok, one module loaded.
  > ... experiment some more...

Lather, rinse, repeat.
Functions with multiple arguments
Here's a function that produces the sum of its two arguments:

> add x y = x + y :: Int

Here's how we call it: (no commas or parentheses!)

> add 3 5
8

Here is its type:

> :type add
add :: Int -> Int -> Int

The operator -> is right-associative, so the above means this:

add :: Int -> (Int -> Int)

But what does that mean?
Recall our negate function:

\[
\text{neg } x = -x :: \text{Int}
\]

\[
\text{neg} :: \text{Int} -> \text{Int}
\]

Here's \texttt{add} again, with parentheses added to show precedence:

\[
\text{add } x \ y = x + y :: \text{Int}
\]

\[
\text{add} :: \text{Int} -> (\text{Int} -> \text{Int})
\]

\texttt{add} is a function that takes an integer as an argument and produces a function as its result!

\texttt{add 3 5} means \texttt{(add 3) 5}

Call \texttt{add} with the value 3, \textit{producing a nameless function}. Call that nameless function with the value 5.
Consider the following expression:

\[ r = f \ a \ b \ + \ g \ c \ b(a) \]

1. Fully parenthesize it to show the order of operations

2. Write some code to precede it such that \( r \) gets bound to 3.
Collaborative Learning Exercise

Haskell Functions

http://cs.arizona.edu/classes/cs372/spring18/cle-3-functions.html
Partial applications
Partial application

When we give a function fewer arguments than it requires, the resulting value is a *partial application*. It is a function.

We can bind a name to a partial application like this:

```haskell
> plusThree = add 3
plusThree :: Int -> Int
```

The name `plusThree` now references a function that takes an `Int` and returns an `Int`.

What will `plusThree 5` produce?

```haskell
> plusThree 5
8
```

`it :: Int`
Partial application, continued

At hand:

\[ add \ x \ y = x + y :: \text{Int} \]
\[ add :: \text{Int} \to (\text{Int} \to \text{Int}) \quad -- \text{parens added} \]

\[ > \text{plusThree} = \text{add} \ 3 \]
\[ \text{plusThree} :: \text{Int} \to \text{Int} \]

Imagine \text{add} and \text{plusThree} as machines with inputs and outputs:

![Diagram](image)

Analogy: \text{plusThree} is like a calculator where you've clicked 3, then +, and handed it to somebody.
Partial application, continued

At hand:

> add x y = x + y :: Int
add :: Int -> (Int -> Int) -- parens added

Another: (with parentheses added to type to aid understanding)

> add3 x y z = x + y + z :: Int
add3 :: Int -> (Int -> (Int -> Int))

These functions are said to be defined in **curried** form, which allows partial application of arguments.

LYAH nails it:

... functions in Haskell are curried by default, which means that a function that seems to take several parameters actually takes just one parameter and returns a function that takes the next parameter and so on.
A little history:
• The idea of a partially applicable function was first described by Moses Schönfinkel.
• It was further developed by Haskell B. Curry.
• Both worked with David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

$log_2 n$
Another model of partial application

When an argument is provided to a function...
- The next parameter is dropped
- The argument's value is "wired" into the expression
- The result is a new function with one less parameter

\[ f(x, y) = (y \times x + x) :: \text{Int} \]  
--- \( f :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \)

\[ g = f 3 \]
\[ g :: \text{Int} \rightarrow \text{Int} \]  
--- as if we'd done this: \( g(y) = y \times 3 + 3 \)

\[ g 5 \]
\[ 18 \]

\[ f 3 5 \]
\[ 18 \]

Everybody: Try it!
Consider this function:
\[ f(x, y, z) = x + y + y \cdot z \]

\[ f_1 = f \, 3 \]
is equivalent to
\[ f_1(y, z) = 3 + y + y \cdot z \]

\[ f_2 = f_1 \, 5 \]
is equivalent to
\[ f_2(z) = 3 + 5 + 5 \cdot z \]

\[ \text{val} = f_2 \, 7 \]
is equivalent to
\[ \text{val} = f \, 3 \, 5 \, 7 \]
and
\[ \text{val} = f_1 \, 5 \, 7 \]
Some key points about functions

• The general form of a function definition (for now):

\[ \text{name \ param\,\,1\,\,param\,\,2\,\,...\,\,param\,N = expression} \]

• A function with a type like \text{Int} \rightarrow \text{Char} \rightarrow \text{Char} takes two arguments, an \text{Int} and a \text{Char}. It produces a \text{Char}.

• Remember that \rightarrow is a right-associative type operator.

\text{Int} \rightarrow \text{Char} \rightarrow \text{Char} means \text{Int} \rightarrow (\text{Char} \rightarrow \text{Char})

• A function call like

\[ f \, x \, y \, z \]

means

\[ ((f \, x) \, y) \, z \]

and (conceptually) causes two temporary, unnamed functions to be created.
Key points, continued

• Calling a function with fewer arguments than it requires creates a *partial application*, a function value.

• There's really nothing special about a partial application—it's just another function.
Functions are values

A fundamental characteristic of a functional language: **functions are values** that can be used as flexibly as values of other types.

The following creates a function **and** binds the name **add** to it.

```plaintext
> add x y = x + y
```

The following binds the name **plus** to the expression **add**.

```plaintext
> plus = add
```

Either name can be used to reference the function value:

```plaintext
> add 3 4
7
> plus 5 6
11
```
What does the following suggest to you?
> :info add
add :: Num a => a -> a -> a

> :info +
class Num a where
  (+) :: a -> a -> a
...
  infixl 6 +

Operators in Haskell are simply functions that have a symbolic name bound to them.

Infixl 6 + shows that the symbol + can be used as a infix operator that is left associative and has precedence level 6.

Use :info to explore these operators: ==, >, +, *, |, ^, ^^ and **.
Function/operator equivalence

To use an operator like a function, enclose it in parentheses:

```
> (+) 3 4
7
```

Conversely, we can use a function like an operator by enclosing it in backquotes:

```
> 3 `add` 4
7
```

```
> 11 `rem` 3
2
```

Speculate: do `add` and `rem` have precedence and associativity?
Haskell lets us define custom operators.

% cat plusper.hs
infixl 6 +%
x +% percentage = x + x * percentage / 100

Usage:
> 100 +% 1
101.0
> 12 +% 25
15.0

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and others can be used in custom operators.

Haskell's standard modules define LOTS of custom operators.
Reference: Operators from the Prelude

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Left associative operators</th>
<th>Non associative operators</th>
<th>Right associative operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>!!</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>^, ^^, **</td>
<td></td>
<td>^, ^^, **</td>
</tr>
<tr>
<td>7</td>
<td>*, /, <code>div</code>, <code>mod</code>, <code>rem</code>, <code>quot</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+, -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>:) ++</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>==, /=, &lt;, &lt;=, &gt;, &gt;=, <code>elem</code>, <code>notElem</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>&amp;&amp;</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>&gt;&gt;, &gt;&gt;&gt;=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>$, $!, <code>seq</code></td>
</tr>
</tbody>
</table>

Note: From page 51 in Haskell 2010 report
Squeezed in for flip, to avoid adding a slide.

> :set +t

> add x y = x + y

add :: Num a => a -> a -> a

What has Haskell inferred (figured out)?

- Both arguments must have same type.
- That type must be an instance of the **Num** class.
- A value of that same type is returned.

**Type Inferencing**
Haskell does type inferencing:
• The types of values are inferred based on the operations performed on the values.
• Inferences based on assumption that there are no errors.

Example:

```haskell
> isCapital c = c >= 'A' && c <= 'Z'
isCapital :: Char -> Bool
```

Process:
1. c is being compared to 'A' and 'Z'
2. 'A' and 'Z' are of type Char
3. c must be a Char
4. The result of &&, of type Bool, is returned
Recall `ord` in the `Data.Char` module:

```
> :t ord
ord :: Char -> Int
```

What type will be inferred for `f`?

```
f x y = ord x == y
```

1. The argument of `ord` is a `Char`, so `x` must be a `Char`.

2. The result of `ord`, an `Int`, is compared to `y`, so `y` must be an `Int`.

Let's try it:

```
> f x y = ord x == y
f :: Char -> Int -> Bool
```
Type inferencing, continued

Recall this example:

```haskell
> isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool
```

`:info` shows that `>` operates on types that are instances of `Ord`:

```haskell
> :info >
class Eq a => Ord a where
    (> ) :: a -> a -> Bool
...
```

1. Because `x` is an operand of `>`, Haskell infers that the type of `x` must be a member of the `Ord` type class.

2. Because `x` is being compared to `0`, Haskell also infers that the type of `x` must be an instance of the `Num` type class.
If a contradiction is reached during type inferencing, it's an error.

The function below uses \( x \) as both a \( \text{Num} \) and a \( \text{Char} \).

\[
> \text{g x y} = \text{x > 0 && x > '0'}
\]

<interactive>:1:13: error:

- No instance for \((\text{Num Char})\) arising from the literal ‘0’
- In the second argument of ‘(>)’, namely ‘0’
  In the first argument of ‘(&&)’, namely ‘x > 0’
  In the expression: \( x > 0 && x > '0' \)

What does the error "No instance for (Num Char)" mean?

\( \text{Char} \) is not an instance of the \( \text{Num} \) type class.

(:info Num shows instance Num Int, instance Num Float, etc.)
Type Specifications
Type specifications for functions

Even though Haskell has type inferencing, a common practice is to specify the types of functions.

Here's a file with several functions, each preceded by its type:

```haskell
% cat typespecs.hs
min3::Ord a => a -> a -> a -> a
min3 x y z = min x (min y z)

isCapital :: Char -> Bool
isCapital c = c >= 'A' && c <= 'Z'

isPositive :: (Num a, Ord a) => a -> Bool
isPositive x = x > 0
```
Sometimes type specifications can backfire.

What's a ramification of the difference between the types of `add1` and `add2`?

```
add1::Num a => a -> a -> a
add1 x y = x + y
```

```
add2::Integer -> Integer -> Integer
add2 x y = x + y
```

`add1` can operate on *Nums* but `add2` requires *Integers*.

Challenge: Without using `::type`, show an expression that works with `add1` but fails with `add2`.
Type specification for functions, continued

Two pitfalls related to type specifications for functions:
- Specifying a type, such as `Integer`, rather than a type class, such as `Num`, may make a function's type needlessly specific, like `add2` on the previous slide.

- In some cases the type can be plain wrong without the mistake being obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:
Try writing functions without a type specification and see what type gets inferred. If the type looks reasonable, and the function works as expected, add a specification for that type.

Type specifications can prevent Haskell's type inferencing mechanism from making a series of bad inferences that lead one far away from the actual source of an error.
Indentation
A Haskell source file is a series of *declarations*. Here's a file with two declarations:

```
% cat indent1.hs
add :: Integer -> Integer -> Integer
add x y = x + y
```

**Rule**: A declaration can be continued across multiple lines by indenting subsequent lines more than the first line of the declaration.

These weaving declarations are poor style but are valid:

```
add
   ::
       Integer -> Integer -> Integer
add x y =
    
        x + y
```
Indentation, continued

Rule: A line that starts in the same column as did the previous declaration ends that previous declaration and starts a new one.

```hs
% cat indent2.hs
add :: Integer -> Integer -> Integer
add x y =
x + y
```

```ghci
% ghci indent2
...
indent2.hs:3:1: error:
    parse error (possibly incorrect indentation ...)
3  x + y
   ^
```

Note that 3:1 indicates line 3, column 1.
Guards
Recall this characteristic of mathematical functions:
"Are often specified with cases and expressions."

This function definition uses *guards* to specify three cases:

\[
\text{sign } x \mid x < 0 = -1 \\
\mid x == 0 = 0 \\
\mid \text{otherwise} = 1
\]

Notes:
- This definition would be found in a file, not typed in *ghci*.
- *sign x* appears just once. First guard might be on next line.
- The guards appear between \( | \) and \( = \), and produce *Bools*.
- What is *otherwise*?
Guards, continued

Problem: Using guards, define a function smaller, like min:

```haskell
> smaller 7 10
7

> smaller 'z' 'a'
'a'
```

Solution:

```haskell
smaller x y
  | x < y = x
  | otherwise = y
```
Problem: Write a function \texttt{weather} that classifies a given temperature as hot if 80+, else nice if 70+, and cold otherwise.

\begin{verbatim}
> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"
\end{verbatim}

Hint: guards are tried in turn.

Solution:

\begin{verbatim}
weather temp | temp >= 80 = "Hot!"
            | temp >= 70 = "Nice"
            | otherwise = "Cold!"
\end{verbatim}
if-else
Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4

3

How does it compare to Java's if-else?
Java's **if-else** is a **statement**. It **cannot** be used where a value is required.  
```
System.out.println(if 1 < 2 then 3 else 4);
```

Does Java have an analog to Haskell's **if-else**?

The conditional operator:  
```
1 < 2 ? 3 : 4
```

It's an **expression** that **can** be used when a value is required.

Java's **if-else** statement has an **else**-less form but Haskell's **if-else** does not.  Why doesn't Haskell allow it?

Java's **if-else** vs. Java's conditional operator provides a good example of a **statement** vs. an **expression**.

Pythonistas: Is there an **if-else expression** in Python?

```
3 if 1 < 2 else 4
```
"A statement changes the \textit{state} of the program while an expression wants to \textit{express} itself."

— Victor Nguyen, CSC 372, Spring 2014
Guards vs. if-else

Which of the versions of `sign` below is better?

```
sign x
| x < 0 = -1
| x == 0 = 0
| otherwise = 1
```

```
sign x = if x < 0 then -1
           else if x == 0 then 0
           else 1
```

- We'll later see that *patterns* add a third possibility for expressing cases.
- For now, prefer guards over *if-else*.
A Little Recursion
A recursive function is a function that calls itself either directly or indirectly.

Computing the factorial of an integer \((N!)\) is a classic example of recursion.

\[
> \text{factorial 40} \\
81591528324789773434561126959611589427200000000000
\]

Write factorial in Haskell. (p.s. \(0!\) is 1)

\[
\text{factorial \(n\)} \\
| \quad n == 0 = 1 \\
| \quad \text{otherwise} = n * \text{factorial} (n - 1)
\]

What is the type of `factorial`?

\[
> \text{:type factorial} \\
\text{factorial :: (Eq a, Num a) => a -> a}
\]
Recursion, continued

One way to manually trace through a recursive computation is to underline a call, then rewrite the call with a textual expansion.

\[
\text{factorial } 4
\]
\[
= 4 \times \text{factorial } 3
\]
\[
= 4 \times 3 \times \text{factorial } 2
\]
\[
= 4 \times 3 \times 2 \times \text{factorial } 1
\]
\[
= 4 \times 3 \times 2 \times 1 \times \text{factorial } 0
\]
\[
= 4 \times 3 \times 2 \times 1 \times 1
\]

factorial \( n \)
\[
\begin{cases}
  n == 0 & = 1 \\
  \text{otherwise} & = n \times \text{factorial} (n - 1)
\end{cases}
\]
Lists
In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list.

```haskell
> [7, 3, 8]
[7,3,8]

it :: Num a => [a]
```

```haskell
> ['x', 10]

<interactive>:3:7:
  No instance for (Num Char) arising from the literal `10'
```

It is said that lists in Haskell are homogeneous.
The function `length` returns the number of elements in a list:

```
> length [3,4,5]
3

> length []
0
```

What's the type of `length`?

```
> :type length

length :: [a] -> Int
```

(Note: A white lie, to be fixed!)

With no class constraint specified, `[a]` indicates that `length` operates on lists containing elements of any type.
List basics, continued

The `head` function returns the first element of a list.

```haskell
> head [3,4,5]
3
```

What's the type of `head`?

```
head :: [a] -> a
```

Here's what `tail` does. How would you describe it?

```haskell
> tail [3,4,5]
[4,5]
```

What's the type of `tail`?

```
tail :: [a] -> [a]
```

Important: `head` and `tail` are good for learning about lists but we'll almost always use patterns to access list elements!
The ++ operator concatenates two lists, producing a new list.

```haskell
> [3,4] ++ [10,20,30]
[3,4,10,20,30]

> it ++ reverse(it)
[3,4,10,20,30,30,20,10,4,3]
```

What are the types of ++ and reverse?

```haskell
> :type (++)
(++) :: [a] -> [a] -> [a]

> :type reverse
reverse :: [a] -> [a]
```
Haskell has an *arithmetic sequence notation*:

```
>[1..20]  
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]  
<@

it :: (Enum a, Num a) => [a]  
```

```
> [-5,-3..20]  
[-5,-3,-1,1,3,5,7,9,11,13,15,17,19]  
```

```
> [10..5]  
[]  
```
Here are *drop* and *take*:

```haskell
> drop 3 [1..10]
[4,5,6,7,8,9,10]
```

```haskell
> take 5 [1.0,1.2..2]
[1.0,1.2,1.4,1.5999999999999999,1.7999999999999998]
```
Problem: **halves**

Problem:

Write `halves lst` that returns a list with the two halves of `lst`, a list. If `lst`'s length is odd, the second "half" is longer.

```haskell
> halves([1..10])
[[1,2,3,4,5],[6,7,8,9,10]]

> halves([1])
[[],[1]]
```

`halves` will be a little repetitious because we don't have the `where` clause in our toolbox yet.
Solution:

\[
\text{ln} = \text{length}
\]
\[
\text{halves lst} = [\text{take} (\text{ln lst `div` 2}) \text{lst}, \text{drop} (\text{ln lst `div` 2}) \text{lst}]
\]
List basics, continued

The !! operator produces a list's Nth element, zero-based:

```haskell
> [10,20..100] !! 3
40

> :type (!!)
(!!) :: [a] -> Int -> a
```

Speculate: do negative indexes work?
```haskell
> [10,20..100] !! (-2)
*** Exception: Prelude.(!): negative index
```

Important:
 Much use of !! might indicate you're writing a Java program in Haskell!
Haskell lists are values and can be compared as values:

```haskell
> [3,4] == [1+2, 2*2]
True
```

```haskell
True
```

```haskell
> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]
True
```

Conceptually, how many lists are created by each of the above?

In Haskell we'll write complex expressions using lists (and more) as freely as a Java programmer might write

\[ f(x) \times a = g(a,b) + c. \]
Comparing lists, continued

Lists are compared *lexicographically*:
- Corresponding elements are compared until an inequality is found.
- The inequality determines the result of the comparison.

Example:

\[
> [1,2,3] < [1,2,4] \\
\text{True}
\]

Why: The first two elements are equal, and \(3 < 4\).
We can make lists of lists.

```haskell
> x = [[1], [2,3,4], [5,6]]
```

Note the type: `x` is a list of `Num a => [[a]]`

What's the length of `x`?

```haskell
> length x
3
```
Lists of lists, continued

More examples:

```haskell
> x = [[1], [2,3,4], [5,6]]

> head x
[1]

> tail x
[[2,3,4],[5,6]]

> x !! 1 !! 2
4

> head (head (tail (tail x)))
5
```
Earlier I showed you this:

\texttt{\textit{length} :: [a] -> Int}

Around version 7.10 \texttt{length} was generalized to this:

\texttt{\textit{length} :: \texttt{Foldable} t \Rightarrow t a \rightarrow \text{Int}}

\textbf{We're going to think of} \texttt{\textit{Foldable} t \Rightarrow t a} \textbf{as meaning} \texttt{[a]}.

\textbf{Instead of} \texttt{\textit{sum} :: (\texttt{Num} a, \texttt{Foldable} t) \Rightarrow t a \rightarrow a}

\textbf{ Pretend this} \texttt{\textit{sum} :: \texttt{Num} a \Rightarrow [a] \rightarrow a}

\textbf{Instead of} \texttt{\textit{minimum} :: (\texttt{Ord} a, \texttt{Foldable} t) \Rightarrow t a \rightarrow a}

\textbf{ Pretend this} \texttt{\textit{minimum} :: \texttt{Ord} a \Rightarrow [a] \rightarrow a}
Strings are \([\text{Char}]\)

**Strings in Haskell are simply lists of characters.**

```haskell
> "testing"
"testing"
it :: [Char]

> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
it :: [Char]

> ["just", "a", "test"]
["just","a","test"]
it :: [[[Char]]]
```

What's the beauty of this?
All list functions work on strings, too!

```haskell
> asciiLets = ['A'..'Z'] ++ ['a'..'z']
> asciiLets :: [Char]

> length asciiLets
52

> reverse (drop 26 asciiLets)
"zyxwvutsrqponmlkjihgfedcba"

> :type elem
> elem :: Eq a => a -> [a] -> Bool

> isAsciiLet c = c `elem` asciiLets
> isAsciiLet :: Char -> Bool
```
The Prelude defines `String` as `[Char]` (a type synonym).

```haskell
> :info String
type String = [Char]
```

A number of functions operate on `Strings`. Here are two:

```haskell
> :type words
words :: String -> [String]

> :type unwords
unwords :: [String] -> String
```

What's the following doing?

```haskell
> unwords (tail (words "Just some words!"))
"some words!"
```
Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list has two parts:
- head: a value
- tail: a list of values (possibly empty)

The \(:\) ("cons") operator creates a list from a value and a list of values of that same type (or an empty list).

\[
\begin{align*}
> & \ 5 : [10, 20,30] \\
> & \ [5,10,20,30]
\end{align*}
\]

What's the type of the cons operator?

\[
\begin{align*}
> & \text{\texttt{\(:\)}} \\
> & \text{\texttt{(\(:\)}} \text{\texttt{:: a \to [a] \to [a]}}
\end{align*}
\]
"cons" lists, continued

The cons (:) operation forms a new list from a value and a list.

```haskell
> a = 5
> b = [10,20,30]
> c = a:b
[5,10,20,30]

> head c
5

> tail c
[10,20,30]

> d = tail (tail c)
> d
[20,30]
```
"cons" lists, continued

A cons node can be referenced by multiple cons nodes.

> a = 5
> b = [10,20,30]
> c = a:b
> d = tail (tail c) [20,30]

> e = 2:d [2,20,30]

> f = 1:c [1,5,10,20,30]
What are the values of the following expressions?

> 1:[2,3]
[1,2,3]

> 1:2
...error...

> chr 97:chr 98:chr 99:
"abc"

> []:[]
[]

> [1,2]:[]
[[1,2]]

> []:[1]
...error...

"cons" lists, continued

cons is right associative
chr 97:(chr 98:(chr 99:[]))
It's important to understand that `tail` does not create a new list. Instead it simply returns an existing cons node.

\[ a = [5,10,20,30] \]
\[ h = \text{head} \ a \]
\[ h = 5 \]
\[ t = \text{tail} \ a \]
\[ t = [10,20,30] \]
\[ t2 = \text{tail} \ (\text{tail} \ t) \]
\[ t2 = [30] \]
A little on performance

What operations are likely fast with cons lists?
- Get the head of a list
- Get the tail of a list
- Make a new list from a head and tail ("cons up a list")

What operations are likely slower?
- Get the Nth element of a list
- Get the length of a list

With cons lists, what does list concatenation involve?
> m=[1..10000000]
> length (m++[0])
100000001
The head of a list is a one-element list.
   False, unless...
   ...it's the head of a list of lists that starts with a one-element list
The tail of a list is a list.
   True
The tail of an empty list is an empty list.
   It's an error!
\[ \text{length (tail (tail x)) == (length x) – 2} \]
   True (assuming what?)
A cons list is essentially a singly-linked list.
   True
A doubly-linked list might help performance in some cases.
   Hmm...what's the backlink for a multiply-referenced node?
Changing an element in a list might affect the value of many lists.
   Trick question! We can't change a list element. We can only
"cons up" new lists and reference existing lists.
Here's a function that produces a list with a range of integers:

```haskell
> fromTo first last = [first..last]
```

```haskell
> fromTo 10 15
[10,11,12,13,14,15]
```

Problem:

Write a recursive version of `fromTo` that uses the `cons` operator to build up its result.
One solution:

\[
\text{fromTo } \text{first } \text{last} \\
| \text{first } > \text{last } = [] \\
| \text{otherwise } = \text{first } : \text{fromTo } (\text{first}+1) \text{ last}
\]

Evaluation of \text{fromTo} 1 3 via substitution and rewriting:

\[
\begin{align*}
\text{fromTo } 1 & \text{ 3} \\
1 & : \text{fromTo } (1+1) \text{ 3} \\
1 & : \text{fromTo } 2 \text{ 3} \\
1 & : 2 : \text{fromTo } (2+1) \text{ 3} \\
1 & : 2 : \text{fromTo } 3 \text{ 3} \\
1 & : 2 : 3 : \text{fromTo } (3+1) \text{ 3} \\
1 & : 2 : 3 : \text{fromTo } 4 \text{ 3} \\
1 & : 2 : 3 : []
\end{align*}
\]

The \textbf{Enum} type class has \texttt{enumFromTo} and more.
fromTo, continued

Do \texttt{\small :set +s} to get timing and memory information, and make some lists. Try these:

```
fromTo 1 10
f = fromTo     -- \textit{So we can type} \texttt{f} \textit{instead of} \texttt{fromTo}
f 1 1000
f = fromTo 1    -- \textit{Note partial application}
f 1000
x = f 1000000
length x
take 5 (f 1000000)
```
List comprehensions

Here's a simple example of a list comprehension:

\[ [x^2 \mid x \leftarrow [1..10]] \]

\[ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] \]

In English:
Make a list of the squares of \( x \) where \( x \) takes on each of the values from 1 through 10.

List comprehensions are very powerful but in the interest of time and staying focused on the core concepts of functional programming, we're not going to cover them.

Chapter 5 in Hutton has some very interesting examples of practical computations with list comprehensions.

What are other languages with list comprehensions?
REPLACEMENTS! Discard 150+ in the old set

A little output
Handy: the `show` function

What can you tell me about `show`?

```haskell
show :: Show a => a -> String
```

`show` produces a string representation of a value.

```haskell
> show 10
"10"

> show [10,20]
"[10,20]"

> show show
"<function>"
```

Important: `show` does not produce output!

What's the Python analog for `show`?

Challenge: Write a Java analog for `show`. 
The `putStr` function outputs a string:

```haskell
> putStr "just\n\ntesting\n"
just
testing
```

Type:

```haskell
putStr :: String -> IO ()
```

- `IO ()`, the type returned by `putStr`, is an *action*.
- An action is an interaction with the outside world.
- An interaction with the outside world is a side effect.
- An action can hold/produce a value. (simplistic)
- The construct `()` is read as "unit".
- The unit type has a single value, unit.
- Both the type and the value are written as `()`.  
- Contrast: `getChar :: IO Char`
For the time being, we'll use this approach for functions that produce output:

- A helper function produces a ready-to-print string that represents all the output to be produced by the function.
  - We'll often use `show` to create pieces of the string.
  - The string will often have embedded newlines.

- The top-level function calls the helper function to get a string.

- The top-level function uses `putStr` to print that string returned by the helper.
Our approach, continued

A Java analog to our approach for functions that produce output:

```java
public class output {
    public static void main(String args[]) {
        System.out.print(computeOutput(args));
    }
    ...
}

Why print instead of println?
    If the output should end with a newline, computeOutput includes it.
```
Let's write a function to print the integers from 1 to N:

```haskell
> printN 3
1
2
3
```

First, write a helper, `printN'`:

```haskell
> printN' 3
"1\n2\n3\n"
```

Solution: (does appear on next slide)

```haskell
printN' n
  | n == 0 = ""
  | otherwise = printN' (n-1) ++ show n ++ "\n"
```
At hand:

\[
\text{printN'::Integer -> String -- Covered in flip!}
\]
\[
\text{printN' n}
\] 
\[
| \text{n == 0 = ""}
\] 
\[
| \text{otherwise = printN' (n-1) ++ show n ++ "\n"}
\]

Usage:

\[
> \text{printN' 10}
\]
\[
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"
\]

Let's write the top-level function:

\[
\text{printN::Integer -> IO ()}
\]
\[
\text{printN n = putStrLn (printN' n)}
\]
printN, continued

All together in a file:

% cat printN.hs
printN::Integer -> IO ()
printN n = putStrLn (printN' n)

printN'::Integer -> String
printN' n
  | n == 0 = ""
  | otherwise = printN' (n-1) ++ show n ++ "\n"

% ghci printN
...
> printN 3
1
2
3
Let's write `charbox`:

```haskell
> charbox 5 3 '*'

*****
******
*****

> :t charbox
charbox :: Int -> Int -> Char -> IO ()
```

How can we approach it?
Let's work out a sequence of computations with ghci:

```haskell
> replicate 5 '*'
"*****"

> it ++ 
"*****

> replicate 2 it
["*****
","*****
"] -- the type of it is [[Char]]

> :t concat
concat :: [[a]] -> [a]

> concat it
"*****
*****

> putStrLn it
*****
*****
```
charbox, continued

Let's write charbox':

\[
\begin{align*}
\text{charbox'} &: \text{Int} \rightarrow \text{Int} \rightarrow \text{Char} \rightarrow \text{String} \\
\text{charbox'} \ w \ h \ c &= \text{concat} \ (\text{replicate} \ h \ (\text{replicate} \ w \ c \ ++ \ "\n") )
\end{align*}
\]

Test:

\[
\begin{align*}
> \text{charbox'} \ 3 \ 2 \ '*'
\text{"***\n***\n"}
\end{align*}
\]

Now we're ready for the top-level function:

\[
\begin{align*}
\text{charbox} &: \text{Int} \rightarrow \text{Int} \rightarrow \text{Char} \rightarrow \text{IO} () \\
\text{charbox} \ w \ h \ c &= \text{putStr} \ (\text{charbox'} \ w \ h \ c)
\end{align*}
\]

- Should we have used a helper function charrow rowLen char?
- How does this approach contrast with how we'd write it in Java?
Patterns
Imagine a function that computes the sum of a list's elements.

\[
\text{> sumElems } [1..10] \\
55
\]

\[
\text{> :type sumElems} \\
\text{sumElems :: Num a => [a] -> a}
\]

Implementation:

\[
\text{sumElems list} \\
| \text{list == [] = 0} \\
| \text{otherwise = head list + sumElems (tail list)}
\]

• It works but it's not idiomatic Haskell.
• We should use \textit{patterns} instead!
In Haskell we can use *patterns* to bind names to elements of data structures.

> \([x, y] = [10, 20]\)
> x
> 10
> y
> 20

> \([\text{inner}] = [[[2, 3]]]\)
> \text{inner}
> [2, 3]

**Speculate:** Given a list like \([10, 20, 30]\) how could we use a pattern to bind names to the head and tail of the list?
We can use the cons operator in a pattern.

\[
> \text{h}:t = [10,20,30]
\]

\[
> \text{h}
10
\]

\[
> \text{t}
[20,30]
\]

What values get bound by the following pattern?

\[
> \text{a}:\text{b}:\text{c}:\text{d} = [10,20,30]
\]

\[
> [\text{c, b, a}] \quad \text{-- Why in a list?}
[30,20,10]
\]

\[
> \text{d}
[] \quad \text{-- Why did I do [c, b, a] instead of [d, c, b, a]?
}\]
If some part of a structure is not of interest, we indicate that with an underscore, known as the *wildcard pattern*.

\[
>_ \_ : ( a : [b] ) : c = [ [1], [2, 3], [4] ]
\]

No binding is done for the wildcard pattern.

The pattern mechanism is completely general—patterns can be arbitrarily complex.
Patterns, continued

A name can only appear once in a pattern.

```haskell
> a:a:[] = [3,3]
<interactive>: error: Multiple declarations of ‘a’
```

A failed pattern isn't manifested until we try to see what's bound to a name.

```haskell
> a:b:[] = [1]
> a
**** Exception: Irrefutable pattern failed for pattern a : b : []
```
Describe in English what must be on the right hand side for a successful match.

let (a:b:c) = ...
   A list containing at least two elements.
       Does [[10,20]] match?
       [20,30] ?
       "abc" ?

let [x:xs] = ...
   A list whose only element is a non-empty list.
       Does words "a test" match?
       [words "a test"] ?
       [[]] ?
       [[[[]]]] ?
Patterns in function definitions

Recall our non-idiomatic `sumElems`:

\[
\text{sumElems} \ \text{list} \\
\quad | \ \text{list} == [] = 0 \\
\quad | \ \text{otherwise} = \text{head list} + \text{sumElems (tail list)}
\]

How could we redo it using patterns?

\[
\text{sumElems} [] = 0 \\
\text{sumElems} (h:t) = h + \text{sumElems} t
\]

Note that `sumElems` appears on both lines and that there are no guards. `sumElems` has two clauses. (H10 4.4.3.1)

**The parentheses in `(h:t)` are required!!**

Do the types of the two versions differ?

\[
\text{(Eq a, Num a)} \Rightarrow [a] \rightarrow a \quad \text{-- with head/tail} \\
\text{Num a} \Rightarrow [a] \rightarrow a \quad \text{-- with pattern}
\]
Here's a buggy version of `sumElems`:

```haskell
buggySum [x] = x
buggySum (h:t) = h + buggySum t
```

What's the bug?

```haskell
goal 1
> buggySum [1..100]
5050
> buggySum []
*** Exception: slides.hs:(62,1)-(63,31):
Non-exhaustive patterns in function buggySum
Patterns in functions, continued

At hand:

\[
\text{buggySum} \ [x] = x \\
\text{buggySum} \ (h:t) = h + \text{buggySum} \ t
\]

If we use the \texttt{-fwarn-incomplete-patterns} option of \texttt{ghci}, we'll get a warning when loading:

\[
\%	ext{ ghci -fwarn-incomplete-patterns buggySum.hs} \\
\text{buggySum.hs:1:1: Warning:} \\
\quad \text{Pattern match(es) are non-exhaustive} \\
\quad \text{In an equation for ‘buggySum’: Patterns not matched: []}
\]

Suggestion: add a bash alias! (See us if you don't know how to.)

\[
\text{alias ghci="ghci -fwarn-incomplete-patterns"}
\]

Todo: Find a Windows analog.
Patterns in functions, continued

What's a little silly about the following list-summing function?

\[
\begin{align*}
sillySum \; [] & = 0 \\
sillySum \; [x] & = x \\
sillySum \; (h:t) & = h + sillySum \; t
\end{align*}
\]

The second clause isn't needed.
Consider a function that duplicates the head of a list:
> duphead [10,20,30]
[10,10,20,30]

Here's one way to write it, but it's repetitious:
\[
duphead (x:xs) = x:x:xs
\]

We can use an "as pattern" to bind a name to the list as a whole:
\[
duphead all@(x:xs) = x:all
\]

Can it be improved?
\[
duphead all@(x:_ ) = x:all
\]

The term "as pattern" perhaps comes from Standard ML, which uses an "as" keyword for the same purpose.
Patterns, then guards, then \texttt{if-else}

Good coding style in Haskell:
- Prefer patterns over guards
- Prefer guards over \texttt{if-else}

Patterns—first choice!
\begin{align*}
\text{sumElems} \; [] &= 0 \\
\text{sumElems} \; (h:t) &= h + \text{sumElems} \; t
\end{align*}

Guards—second choice...
\begin{align*}
\text{sumElems} \; \text{list} &= \\
| \; \text{list} &= [] &= 0 \\
| \; \text{otherwise} &= \text{head} \; \text{list} + \text{sumElems} \; (\text{tail} \; \text{list})
\end{align*}

\texttt{if-else}—third choice...
\begin{align*}
\text{sumElems} \; \text{list} &= \\
\text{if} \; \text{list} &= [] \; \text{then} \; 0 \\
\text{else} \; \text{head} \; \text{list} + \text{sumElems} \; (\text{tail} \; \text{list})
\end{align*}

And, these comparisons imply that \texttt{list}'s type must be an \texttt{Eq}!
"Throughout the assignment I tried to keep in mind that I should use patterns first then guards if patterns didn't work.

"However, as I was doing the assignment, I realized that sometimes I couldn't see the patterns until I had written them as guards, so I would go back and change them.

"As I continued with the assignment, this happened less because the more code I wrote the more I was able to see patterns before I had them written as guards."

—Kelsey McCabe, Spring 2016, a3/observations.txt
Patterns, then guards, then if-else

Recall this example of guards:

\[
\text{weather temp} \mid \text{temp} \geq 80 = "\text{Hot!}" \\
\mid \text{temp} \geq 70 = "\text{Nice}" \\
\mid \text{otherwise} = "\text{Cold!}" 
\]

Can we rewrite \texttt{weather} to have three clauses with patterns? No.

The pattern mechanism doesn't provide a way to test ranges.

Design question: should patterns and guards be unified?
Revision: the general form of a function

An earlier general form of a function definition:

```
name param1 param2 ... paramN = expression
```

Revision: A function may have one or more clauses, of this form:

```
function-name pattern1 pattern2 ... patternN
```

```
| guard-expression1 |
\{ \} = result-expression1
```

```
| guard-expressionN |
\{ \} = result-expressionN
```

The set of clauses for a given name is the binding for that name. (See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is true, the corresponding expression is evaluated.
At hand, a more general form for functions:

\[
function-name \ pattern_1 \ pattern_2 \ \ldots \ pattern_N
\]

\[
\{ \ | \ guard-expression_1 \ \} = result-expression_1
\]

\[
\ldots
\]

\[
\{ \ | \ guard-expression_N \ \} = result-expression_N
\]

How does

\[
\text{add } x \ y = x + y
\]

conform to the above specification?

- \( x \) and \( y \) are trivial patterns
- \text{add} has one clause, which has no guard
If the patterns of a clause match but all guards fail, the next clause is tried. Here's a contrived example:

```haskell
f (h:_) | h < 0 = "negative head"
f list | length list > 3 = "too long"
f (_:_) = "ok"
f [] = "empty"
```

Usage:

```haskell
> f [-1,2,3]
"negative head"

> f []
"empty"

> f [1..10]
"too long"
```

How many clauses does \( f \) have?

4

What if 2\(^{\text{nd}}\) and 3\(^{\text{rd}}\) clauses swapped?

3\(^{\text{rd}}\) clause would never be matched!

What if 4\(^{\text{th}}\) clause is removed?

Warning re "non-exhaustive patterns" exception on \( f [] \) (if -fwarn-incomplete-patterns specified).
REPLACEMENTS! Discard 179+ in the old set

Recursive functions on lists
Simple recursive list processing functions

Problem: Write \texttt{len x}, which returns the length of list \texttt{x}.

\begin{verbatim}
> len []
0

> len "testing"
7
\end{verbatim}

Solution:

\begin{verbatim}
len [] = 0
len (_:t) = 1 + len t  -- since head isn't needed, use _
\end{verbatim}
Problem: Write \texttt{odds x}, which returns a list having only the odd numbers from the list \texttt{x}.

\begin{verbatim}
> odds [1..10]
[1,3,5,7,9]

> take 10 (odds [1,4..100])
[1,7,13,19,25,31,37,43,49,55]
\end{verbatim}

Handy: \texttt{odd :: Integral a => a -> a -> Bool}

Solution:

\begin{verbatim}
odds [] = []
odds (h:t)
  | odd h = h:odds t
  | otherwise = odds t
\end{verbatim}
Simple list functions, continued

Problem: write `isElem x vals`, like `elem` in the Prelude.
> `isElem 5 [4,3,7]`
False

> `isElem 'n' "Bingo!"
True

> "quiz` `isElem` words "No quiz today!"
True

Solution:

```haskell
isElem _ [] = False  -- Why a wildcard?
isElem x (h:t)
  | x == h = True
  | otherwise = x `isElem` t
```
Simple list functions, continued

Problem: Write a function that returns a list's maximum value.

> maxVal "maximum" 'x'

> maxVal [3,7,2] 7

> maxVal (words "i luv this stuff") "this"

Recall that the Prelude has \texttt{max :: Ord a \Rightarrow a \rightarrow a \rightarrow a}

One solution:

\[
\begin{align*}
\text{maxVal} \ [x] &= x \\
\text{maxVal} \ (x:xs) &= \text{max} \ x \ (\text{maxVal} \ xs) \\
\text{maxVal} \ [] &= \text{error} \ "\text{empty list}"
\end{align*}
\]
Sidebar: C and Python challenges

C programmers:
• Write `strlen` in C in a functional style. (No loops or assignments.)
• Do `strcmp` and `strchr`, too!
• Mail us!

Python programmers:
• In a functional style write `size(x)`, which returns the number of elements in the string, list, or range `x`.
  Restriction: You may not use `type()` or `len()`.
• Mail us!
Tuples
A Haskell *tuple* is an ordered aggregation of two or more values of possibly differing types.

```haskell
> (1, "two", 3.0)
(1,"two",3.0)
it :: (Num a, Fractional c) => (a, [Char], c)

> (3 < 4, it)
(True,(1,"two",3.0))
it :: (Num a, Fractional c) => (Bool, (a, [Char], c))

> (head, tail, [words], putStr)
(<function>,<function>,[<function>],<function>)
it :: ([a1] -> a1, [a2] -> [a2], [String -> [String]], String -> IO ())
```

Note that we can't create analogous lists for the above tuples, due to the mix of types. Lists must be homogeneous.
A function can return a tuple:
\[
pair \ x \ y = (x,y)
\]

What's the type of \texttt{pair}?
\[
pair :: a \rightarrow b \rightarrow (a, b)
\]

Usage:
\[
> \ \text{pair} \ 3 \ 4
(3,4)
\]
\[
> \ \text{pair} \ (3,4)
<\text{function}>
\]
\[
> \ \text{it} \ 5
((3,4),5)
\]
The Prelude has two functions that operate on 2-tuples.

```haskell
> p = pair 30 "forty"

> p
(30,"forty")

> fst p
30

> snd p
"forty"
```
Recall: patterns used to bind names to list elements have the same syntax as expressions to create lists.

Patterns for tuples have the same syntax as expressions to create tuples.

Problem: Write `middle`, to extract a 3-tuple's second element.

```haskell
> middle ("372", "ILC 119", "Mitchell")
"ILC 119"
```

```haskell
> middle (1, [2], True)
[2]
```

(Solution on next slide. Don't peek! This means you!)
At hand:

```haskell
> middle (1, [2], True)
[2]
```

Solution:

```haskell
middle (_, m, _) = m
```

What's the type of `middle`?

```haskell
middle :: (a, b, c) -> b
```

Will the following call work?

```haskell
> middle(1,[[2,3]],4)
[[2,3]]
```
Problem: Write a function `swap` that behaves like this:

```haskell
> swap ('a',False)
(False,'a')
```

```haskell
> swap (1,(2,3))
((2,3),1)
```

Solution:

```haskell
> swap (x,y) = (y,x)
```

What is the type of `swap`?

```haskell
swap :: (b, a) -> (a, b)
```
Here's the type of \texttt{zip} from the Prelude:
\begin{verbatim}
zip :: [a] -> [b] -> [(a, b)]
\end{verbatim}

Speculate: What does \texttt{zip} do?  \textit{(Pythonistas: Silence please!)}

\begin{verbatim}
> zip ["one","two","three"] [10,20,30]
["one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6),('g',7),('h',8),('i',9),('j',10), ...more..., ('x',24),('y',25),('z',26)]
\end{verbatim}

What's especially interesting about the second example?  
[1..] is an infinite list!  \texttt{zip} stops when either list runs out.
Problem: Write \texttt{elemPos}, which returns the zero-based position of a value in a list, or -1 if not found.

\begin{verbatim}
> elemPos 'm' ['a..'z']
12
\end{verbatim}

Hint: Have a helper function do most of the work.

Solution:

\begin{verbatim}
elemPos x vals = elemPos' x (zip vals [0..])

elemPos' _ [] = -1
elemPos' x ((val,pos):vps)
  | x == val = pos
  | otherwise = elemPos' x vps
\end{verbatim}
What's wrong below?

```haskell
> x = ((1,2),(3,4,5))
> fst x
(1,2)
```

```haskell
> snd x
(3,4,5)
```

```haskell
> fst (snd x)
<interactive> error: Couldn't match expected type '(a, b0)' with actual type '(Integer, Integer, Integer)'
```

What's wrong with `fst (snd x)`?

```
fst :: (a, b) -> a
```

- We can write a function that handles a list of arbitrary length.
- We can't write a function that operates on a tuple of arbitrary "arity".
The **`Eq`** type class and tuples

`:info Eq` shows many lines like this:

```haskell
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)
```

Speculate: What's being specified by the above?

One of them:

```haskell
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
```

If values of each of the three types `a`, `b`, and `c` can be tested for equality then 3-tuples of type `(a, b, c)` can be tested for equality.

The **`Ord`** and **`Bounded`** type classes have similar instance declarations.
Lists vs. tuples

Type-wise, lists are homogeneous; tuples are heterogeneous.

Using a tuple lets type-checking ensure that an exact number of values is being aggregated, even if all values have the same type. Example: A 3D point could be represented with a 3-element list but using a 3-tuple guarantees points have three coordinates.

In our Haskell we can't write functions that operate on tuples of arbitrary arity.

If there were Head First Haskell, it would no doubt have an interview with List and Tuple, each arguing their own merit.
Sidebar: To curry or not to curry?

Consider these two functions:

```haskell
> add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a
```

Usage:

```haskell
> add_c 3 4
7

> add_t (3,4)
7
```

Which is better, `add_c` or `add_t`?

**Important:** Note the difference in types!
The where clause
The \texttt{where} clause

Intermediate values and/or helper functions can be defined using an optional \texttt{where clause} for a function.

Here's a declaration that shows the syntax; \texttt{the computation is not meaningful}.

\begin{verbatim}
  f x
  | x < 0 = g a + g b
  | a > b = g b
  | otherwise = c + 10

  where {
    a = x * 5;
    b = a * 2 + x;
    g t = log t + a;
    c = a * 3;
  }
\end{verbatim}

The \texttt{where clause} specifies bindings that may be needed when evaluating the guards and their associated expressions.

Like variables defined in a method or block in Java, \texttt{a}, \texttt{b}, \texttt{c} and \texttt{g} are not visible outside the the function \texttt{f}.
The \texttt{where} clause, continued

\textit{A Computer Science Tapestry} by Owen Astrachan shows an interesting way to raise a number to a power:

```haskell
power base expo
  | expo == 0 = 1.0
  | even expo = semi * semi
  | otherwise = base * semi * semi
where {  
  semi = power base (expo `div` 2)  
}
```

Binding \texttt{semi} in a \texttt{where} clause avoids lots of repetition.

Exercise for the mathematically inclined: Figure out how it works.
Recall:

> halves ['a'..'z']
("abcdefgijklm","nopqrstuvwxyz")

halves lst =

[take (length lst `div` 2) lst, drop (length lst `div` 2) lst]

Problem: Rewrite halves to be less repetitious. Also, have it return a tuple instead of a list.

Solution:

halves lst = (take halflen lst, drop halflen lst)
where {
    halflen = (length lst `div` 2)
}
The *layout rule*
The *layout rule* for *where* (and more)

This is a valid declaration with a *where* clause:

\[
f x = a + b + g a \text{ where } \{ \ a = 1; b = 2; g x = -x \ \}
\]

The *where* clause has three declarations enclosed in braces and separated by semicolons.

We can take advantage of Haskell's *layout rule* and write it like this instead:

\[
f x = a + b + g a \\
\quad \text{where} \\
\quad a = 1 \\
\quad b = 2 \\
\quad g x = -x
\]

Besides whitespace what's different about the second version?
At hand:
\[ f \ x = a + b + g \ a \]
\[
\text{where}
\]
\[ a = 1 \\
\[ b = 2 \\
\[ g \ x = -x
\]

The absence of a brace after \textbf{where} activates the layout rule.

The column position of the first token after \textbf{where} establishes the column in which declarations in the \textbf{where} must start.

Note that the declaration of \textbf{g} is continued onto a second line; if the minus sign were at or left of the line, it would be an error.
The layout rule, continued

Don't confuse the layout rule with indentation-based continuation of declarations! (See slides 106-108.)

The layout rule allows omission of braces and semicolons in where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies

1. outside of where/do/let/of blocks
2. inside where/do/let/of blocks when the layout rule is triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?
Literals in patterns
Literals in patterns

Literal values can be part or all of a pattern. Here's a 3-clause binding for \( f \):

\[
\begin{align*}
    f\ 1 & = 10 \\
    f\ 2 & = 20 \\
    f\ n & = n
\end{align*}
\]

Usage:

\[
\begin{align*}
    > f\ 1 \\
    10
\end{align*}
\]

\[
\begin{align*}
    > f\ 3 \\
    3
\end{align*}
\]

For contrast, with guards:

\[
\begin{align*}
    f\ n \\
    |\ n == 1 & = 10 \\
    |\ n == 2 & = 20 \\
    |\ otherwise & = n
\end{align*}
\]

Remember: Patterns are tried in the order specified.
Here's a function that classifies characters as parentheses (or not):

```haskell
parens c
  | c == '(' = "left"
  | c == ')' = "right"
  | otherwise = "neither"
```

Could we improve it by using patterns instead of guards?

```haskell
parens '(' = "left"
parens ')' = "right"
parens _  = "neither"
```

Which is better?

Remember: Patterns, then guards, then `if-else`. 
not is a function:

> :type not
not :: Bool -> Bool

> not True
False

Problem: Using literals in patterns, define not.

Solution:
not True = False
not _ = True -- Using wildcard avoids comparison
A pattern can be:

- A literal value such as 1, 'x', or True
- An identifier (bound to a value if there's a match)
- An underscore (the wildcard pattern)
- A tuple composed of patterns
- A list of patterns in square brackets (fixed size list)
- A list of patterns constructed with : operators
- Other things we haven't seen yet

Note the recursion.

Patterns can be arbitrarily complex.

3.17.1 in H10 shows the full syntax for patterns.
Larger examples
Imagine a function that counts occurrences of even and odd numbers in a list.

\[
\text{countEO } [3,4,5] \\
(1,2) \quad \text{-- one even, two odds}
\]

Code:

\[
\text{countEO } [] = (0,0) \quad \text{-- no odds or evens in []} \\
\text{countEO } (x:xs) \\
\quad | \text{odd } x = (\text{evens}, \text{odds}+1) \\
\quad | \text{otherwise } = (\text{evens}+1, \text{odds}) \\
\text{where} \\
\quad (\text{evens}, \text{odds}) = \text{countEO } xs \quad \text{-- do counts for tail first!}
\]
At hand:

\[
\text{countEO \ [\ ] = (0,0)}
\]
\[
\text{countEO \ (x:xs)}
\]
| \text{odd x = (evens, odds + 1)}
| \text{otherwise = (1 + evens, odds)}
\]

where \((\text{evens, odds}) = \text{countEO \ xs}\)

Here's one way to picture this recursion:

\[
\text{countEO \ [10,20,25]} \quad \text{returns} \quad (2,1) \text{ (result of } (1 + 1,1))
\]
\[
\text{countEO \ [20,25]} \quad \text{returns} \quad (1,1) \text{ (result of } (1 + 0,1))
\]
\[
\text{countEO \ [25]} \quad \text{returns} \quad (0,1) \text{ (result of } (0,0 + 1))
\]
\[
\text{countEO \ [\ ]} \quad \text{returns} \quad (0,0)
\]
Imagine a robot that travels on an infinite grid of cells. Movement is directed by a series of one character commands: n, e, s, and w.

Let's write a function `travel` that moves the robot about the grid and determines if the robot ends up where it started (i.e., it got home) or elsewhere (it got lost).

If the robot starts in square R the command string `nnnn` leaves the robot in the square marked 1.

The string `nenene` leaves the robot in the square marked 2.

`nnessw` and `news` move the robot in a round-trip that returns it to square R.
Usage:

```haskell
> travel "nnnn" -- ends at 1
"Got lost; 4 from home"

> travel "nenene" -- ends at 2
"Got lost; 6 from home"

> travel "nnessw"
"Got home"
```

How can we approach this problem?
One approach:
1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian plane.
2. Sum the X and Y displacements to yield a net displacement.

Example:
Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:
Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)
First, let's write a helper function to turn a direction into an \((x,y)\) displacement:

\[
\text{mapMove :: Char -> (Int, Int)} \\
\text{mapMove 'n' = (0,1)} \\
\text{mapMove 's' = (0,-1)} \\
\text{mapMove 'e' = (1,0)} \\
\text{mapMove 'w' = (-1,0)} \\
\text{mapMove c = error ("Unknown direction: " ++ [c])}
\]

Usage:

\[
> \text{mapMove 'n'} \\
(0,1)
\]

\[
> \text{mapMove 'w'} \\
(-1,0)
\]
Next, a function to sum x and y displacements in a list of tuples:

> sumTuples [(0,1),(1,0)]
(1,1)

> sumTuples [mapMove 'n', mapMove 'w']
(-1,1)

Implementation:

```haskell
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)
  where
    (sumX, sumY) = sumTuples ts
```
travel itself:

```haskell
travel :: [Char] -> [Char]
travel s
  | disp == (0,0) = "Got home"
  | otherwise = "Got lost; " ++ show (abs x + abs y) ++
                 " from home"

where
  tuples = makeTuples s
  disp@(x,y) = sumTuples tuples -- note "as pattern"

makeTuples :: [Char] -> [(Int, Int)]
makeTuples [] = []
makeTuples (c:cs) = mapMove c : makeTuples cs
```

As is, `mapMove` and `sumTuples` are at the top level but `makeTuples` is hidden inside `travel`. How should they be arranged?
travel s
| disp == (0,0) = "Got home"
| otherwise = "Got lost; " ... 
where
  tuples = makeTuples s
disp = sumTuples tuples

makeTuples [] = []
makeTuples (c:cs) =
  mapMove c:makeTuples cs

mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)
mapMove c = error ...

sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)
  where
    (sumX, sumY) = sumTuples ts

Sidebar: top-level vs. hidden functions

Top-level functions can be tested after code is loaded but functions inside a where block are not visible.

The functions at left are hidden in the where block but they can easily be changed to top-level using a shift or two with an editor.

Note: Types are not shown, to save space.
Consider a function `tally` that counts character occurrences in a string:

```haskell
> tally "a bean bag"
a 3
b 2
  
  g 1
n 1
e 1
```

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

In a nutshell: `[(a',3),(b',2),( ',2),(g',1),(n',1),(e',1)]`
Let's start by writing \texttt{incEntry} \texttt{c} \texttt{tuples}, which takes a list of (\texttt{character, count}) tuples and produces a \texttt{new} list of tuples that reflects the addition of the character \texttt{c}.

\texttt{incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]}

Calls to \texttt{incEntry} with 't', 'o', 'o':

\begin{verbatim}
> incEntry 't' []
[('t',1)]

> incEntry 'o' it
[('t',1),('o',1)]

> incEntry 'o' it
[('t',1),('o',2)]
\end{verbatim}
incEntry c tups

| tups is a list of (Char, Int) tuples that indicate how many times a character has been seen. A possible value for tups:
| [('b',1),('a',2)]

incEntry produces a copy of tups with the count in the tuple containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [] = [(c, 1)]
incEntry c ((char, count):entries)
  | c == char = (char, count+1) : entries
  | otherwise = (char, count) : incEntry c entries
Next, let's write \texttt{mkentries s}. It calls \texttt{incEntry} for each character in the string \texttt{s} in turn and produces a list of \texttt{(char, count)} tuples.

\texttt{mkentries :: [Char] -> [(Char, Int)]}

Usage:

\begin{verbatim}
> mkentries "tupple"
[(t',1),('u',1),('p',2),('l',1),'e',1)]

> mkentries "cocoon"
[(c',2),('o',3),('n',1)]
\end{verbatim}

Code:

\begin{verbatim}
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
  where
    mkentries' [ ] entries = entries
    mkentries' (c:cs) entries =
      mkentries' cs (incEntry c entries)
\end{verbatim}
{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]
insert v (x:xs)
  | isOrdered (v,x) = v:x:xs
  | otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []
sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]
{- fmtEntries prints (char,count) tuples one per line -}
fmtEntries [] = ""
fmtEntries ((c, count):es) =
    [c] ++ " " ++ (show count) ++ "\n" ++ fmtEntries es

{- top-level function -}
tally s = putStrLn (fmtEntries (sort (mkentries s)))

> tally "cocoon"
 o 3
c 2
n 1

• How does this solution exemplify functional programming? (slide 28+)
Running `tally` from the command line

Let's run it on lectura...

```bash
% code=/cs/www/classes/cs372/spring18/haskell

% cat $code/tally.hs
... everything we've seen before and now a main:
main = do
  bytes <- getContents -- reads all of standard input
  tally bytes

% echo -n cocoon | runghc $code/tally.hs
 o 3
 c 2
 n 1
```
tally from the command line, continued

code/genchars N generates N random letters:

% code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million letters:

% code/genchars 1000000 |
time runghc code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
% head -3 out
s 19553
V 19448
J 19437
Let's try a compiled executable.

% cd $code
% ghc --make -rtsopts tally.hs
% ls -l tally
-rwxrwxr-x 1 whm whm 1118828 Jan 26 00:54 tally

% ./genchars 1000000 > 1m
% time ./tally < 1m > out
real 0m7.367s
user 0m7.260s
sys 0m0.076s
Here are user CPU times for implementations of `tally` in several languages. The same one-million letter file was used for all timings.

<table>
<thead>
<tr>
<th>Language</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haskell</td>
<td>7.260</td>
</tr>
<tr>
<td>Ruby</td>
<td>0.548</td>
</tr>
<tr>
<td>Icon</td>
<td>0.432</td>
</tr>
<tr>
<td>Python 2</td>
<td>0.256</td>
</tr>
<tr>
<td>C w/ gcc -O3</td>
<td>0.016</td>
</tr>
</tbody>
</table>

However, our `tally` implementation is very simplistic. An implementation of `tally` by an expert Haskell programmer, Chris van Horne, ran in 0.008 seconds. (See `spring18/haskell/tally-cwvh[12].hs`.)

Then I revisited the C version (`tally2.c`) and got to 3x faster than Chris' version with a one-billion character file.
Real world problem: "How many lectures?"

Here's an early question when planning a course for a semester:

"How many lectures will there be?"

How should we answer that question?

Google for a course planning app?

No! Let's write a Haskell program! 😊
One approach:

> classdays ...arguments...

#1 H 1/15 (for 2015...)
#2 T 1/20
#3 H 1/22
#4 T 1/27
#5 H 1/29
...

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?
Let's start with something simple:

> classdays (1,15) (5,6) [('H',5),('T',2)]

#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5

The first and last days are represented with \((\text{month},\text{day})\) tuples.

The third argument shows the pattern of class days: the first is a Thursday, and it's five days to the next class. The next is a Tuesday, and it's two days to the next class. Repeat!
Date handling

There's a `Data.Time.Calendar` module but writing two minimal date handling functions provides good practice.

> toOrdinal (12,31)
365  -- 12/31 is the last day of the year

> fromOrdinal 32
(2,1)  -- The 32\textsuperscript{nd} day of the year is February 1.

What's a minimal data structure that could help us?

\[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)\]

\[(1,31)\] The last day in January is the 31\textsuperscript{st} day of the year

\[(7,212)\] The last day in July is the 212\textsuperscript{th} day of the year
toOrdinal and fromOrdinal

offsets =
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212),(8,243),(9,273),(10,304),(11,334),(12,365)]

> toOrdinal (12,31) 365

> fromOrdinal 32 (2,1)

toOrdinal (month, day) = days + day
  where
    (_,days) = offsets!!(month-1)

fromOrdinal ordDay =
  fromOrdinal' (reverse offsets) ordDay
  where
    fromOrdinal' ((month,lastDay):t) ordDay
      | ordDay > lastDay = (month + 1, ordDay - lastDay)
      | otherwise = fromOrdinal' t ordDay
    fromOrdinal' [] _ = error "invalid month?"
Recall:

> classdays (1,15) (5,6) [('H',5),('T',2)]

#1 H 1/15
#2 T 1/20
...

Ordinal dates for (1,15) and (5,6) are 15 and 126, respectively.

With the Thursday-Tuesday pattern we'd see the ordinal dates progressing like this:

15, 20, 22, 27, 29, 34, 36, 41, ...

\[\begin{array}{cccccccc}
15 & 20 & 22 & 27 & 29 & 34 & 36 & 41 \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\
5 & 2 & 5 & 2 & 5 & 2 & 5 & ...
\end{array}\]
Imagine this series of calls to a helper, `showLecture`:

```
showLecture 1 15 'H'
showLecture 2 20 'T'
showLecture 3 22 'H'
showLecture 4 27 'T'
...
showLecture 32 125 'T'
```

Desired output:
```
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5
```

What computations do we need to transform
```
showLecture 1 15 'H'
```
into
```
"#1 H 1/15\n"
```
We have: `showLecture 1 15 'H'`
We want: "#1 H 1/15"

Let's write `showOrdinal :: Integer -> [Char]`

> `showOrdinal 15`

"1/15"

```haskell
showOrdinal ordDay = show month ++ "/" ++ show day 
where 
  (month,day) = fromOrdinal ordDay
```

Now we can write `showLecture`:

```haskell
showLecture lecNum ordDay dayOfWeek = 
  "#" ++ show lecNum ++ " " ++ [dayOfWeek] ++ 
  " " ++ showOrdinal ordDay ++ "\n"
```

1 is lecture #1; 15 is 15th day of year
Recall:

```
showLecture 1 15 'H'
showLecture 2 20 'T'
...
showLecture 32 125 'T'
```

Let's "cons up" a list out of the results of those calls...

```
> showLecture 1 15 'H' :
    showLecture 2 20 'T' :
    "...more..." : -- I literally typed "...more..."
    showLecture 32 125 'T' : []
    ['#1 H 1/15\n', '#2 T 1/20\n', "...more...", '#32 T 5/5\n']
```

How close are the contents of that list to what we need?
Now let's imagine a recursive function `showLectures` that builds up a list of results from `showLecture` calls:

```
showLectures 1 15 126 [('H',5),('T',2)]  "#1 H 1/15\n"
showLectures 2 20 126 [('T',2),('H',5)]  "#2 T 1/20\n"
...
showLectures 32 125 126 [('T',2),('H',5)]  "#32 T 5/5\n"
showLectures 33 127 126 [('H',5),('T',2)]
```

Result:

```
["#1 H 1/15\n","#2 T 1/20\n", ... ,"#33 H 5/5\n"]
```

Now let's write `showLectures`:

```
showLectures lecNum thisDay lastDay
    (pair@(dayOfWeek, daysToNext):pairs)
    | thisDay > lastDay = []
    | otherwise = showLecture lecNum thisDay dayOfWeek
                 : showLectures (lecNum+1) (thisDay + daysToNext)
                 lastDay (pairs ++ [pair])
```
Finally, a top-level function to get the ball rolling:

```haskell
classdays first last pattern = putStrLn (concat result)
  where
      result =
          showLectures 1 (toOrdinal first) (toOrdinal last) pattern
```

Usage:

```haskell```
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
...
#31 H 4/30
#32 T 5/5
```

Full source is in `spring18/haskell/classdays.hs`
Errors
What syntax errors do you see in the following file?

```haskell
% cat synerrors.hs
F x =
    | x < 0 == y + 10
    | x != 0 = y + 20
  otherwise = y + 30
where
  g x:xs = x
  y =
    g [x] + 5
  g2 x = 10

Syntax errors
What syntax errors do you see in the following file?

```hs
% cat synerrors.hs
F x =
    | x < 0 == y + 10
    | x != 0 = y + 20
otherwise = y + 30
where
g x:xs = x
y =
g [x] + 5
    g2 x = 10
```

- Function name starts with cap.
- no = before guards
- =, not == before result
- use /= for inequality
- missing | before otherwise
- continuation should be indented
- violates layout rule
- Needs parens: (x:xs)
In my opinion, producing understandable messages for type errors is what ghci is worst at.

If no polymorphic functions are involved, type errors are typically easy to understand.

```haskell
> :type chr
chr :: Int -> Char

> chr 'x'
  Couldn't match expected type `Int' with actual type `Char'
  In the first argument of 'chr', namely 'x'
  In the expression: chr 'x'
  In an equation for 'it': it = chr 'x'
```
Type errors, continued

Code and error:

\[
f x y
  \begin{cases}
    x == 0 = [] \\
    \text{otherwise} = f x
  \end{cases}
\]

\text{Couldn't match type 'p0 -> [a]' with '[a]'}

\text{Expected type: t -> [a]}

\text{Actual type: t -> p0 -> [a]}

The first clause implies that \( f \) returns [a] but the second clause returns a partial application, of type \( p0 -> [a] \), a contradiction.
Type errors, continued

Code:

```haskell
countEO (x:xs)
    | odd x = (evens, odds+1)
    | otherwise = (evens+1, odds)
where (evens,odds) = countEO
```

Error:

```
Couldn't match expected type '(a1, b)'
with actual type '[a] -> (a1, b)'
Probable cause: countEO is applied to too few arguments
In the expression: countEO
```

What's the problem?

It's expecting a tuple, (a1,b) but it's getting a function, [a] -> (a1,b)

Typically, instead of errors about too few (or too many) function arguments, you get function types popping up in unexpected places.
Type errors, continued

Here's an example of omitting an operator:

```haskell
> add3 x y z = x + y z
> add3 4 5 6

<interactive>:@9:1: error:
Non type variable argument in the constraint:
Num (t -> a) (Use FlexibleContexts to permit this)
```

Looking at the type of `add3` sheds some light on the problem:

```haskell
> :t add3
add3 :: Num a => a -> (t -> a) -> t -> a
```

A function type unexpectedly being inferred for `y` suggests we should look at how `y` is being used.

Try it: See if a type declaration for `add3` leads to a better error.
Is there an error in the following?

\[
\begin{align*}
  f \; [] &= [] \\
  f \; [x] &= x \\
  f \; (x:xs) &= x : f \; xs
\end{align*}
\]

Occurrences check: cannot construct the infinite type: \( a \sim [a] \)

- Expected type: \([a]\)
- Actual type: \([[a]]\) \( ("a \text{ is a list of as"--whm}) \)

In the expression: \( x : f \; xs \)
In an equation for 'f': \( f \; (x : xs) = x : f \; xs \)

The second and third clauses are fine by themselves but together they create a contradiction.

Technique: Comment out clauses (and/or guards) to find the troublemaker, or incompatibilities between them.
Recall \texttt{ord :: Char --> Int}.

Note this error:

\begin{verbatim}
> ord 5
No instance for (Num Char) arising from the literal `5'
\end{verbatim}

The error "\texttt{No instance for (TypeClass Type)}" means that \texttt{Type} (\texttt{Char}, in this case) is not an instance of \texttt{TypeClass} (\texttt{Num}).

\begin{verbatim}
> :info Num
....
instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double
\end{verbatim}

\texttt{instance Num Char} doesn't appear
Debugging
Debugging in general

My advice in a nutshell:
Don't need to do any debugging in Haskell!

My usual development process in Haskell:
1. Work out expressions at the ghci prompt.
2. Write a function using those expressions and put it in a file.
3. Test that function at the ghci prompt.
4. Repeat with the next function.

With conventional languages I might write dozens of lines of code before trying them out.

With Haskell I might write a half-dozen lines of code before trying them out.
The `trace` function

The `Debug.Trace` module has a `trace` function.

Observe:

```haskell
> import Debug.Trace -- put it in your ghci config file
> :t trace
trace :: String -> a -> a

> trace "a tuple" (True, 'x')
a tuple
(True, 'x')
```

What's happening?

- `trace string value` returns `value` but also outputs `string` as a side-effect. (!)
- Great for debugging!
- Completely subverts Haskell's isolation of the side-effects of output.
Here's a trivial function:

```haskell
f 1 = 10
f n = n * 5 + 7
```

Let's augment it with tracing:

```haskell
import Debug.Trace

f 1 = trace "f: first case" 10
f n = trace "f: default case" n * 5 + 7
```

Execution:

```
> f 1
f: first case
10

> f 3
f: default case
22
```
Let's add `trace` calls to `sumElems`:

```haskell
sumElems [] = trace "sumElems []" 0
sumElems lst@(h:t) =
    trace ("sumElems " ++ show lst) h + sumElems t
```

Execution:

```haskell
> sumElems [5,1,4,2,3]
sumElems []
sumElems [3]
sumElems [2,3]
sumElems [4,2,3]
sumElems [1,4,2,3]
sumElems [5,1,4,2,3]
15
```

Unfortunately, due to Haskell's lazy evaluation, the output's order is the opposite of what we'd expect. But it does show "progression".
Here's `countEO` with tracing:

```haskell
import Debug.Trace

countEO [] = (0,0)
countEO list@(x:xs)
  | odd x = (evens, odds+1)
  | otherwise = (evens+1, odds)

where

result = countEO xs
(evens,odds) =
  trace ("countEO " ++ show xs ++ " --> " ++ show result) result
```

Execution:

```haskell
> countEO [3,2,4]  
((countEO [] --> (0,0))
countEO [4] --> (1,0)  
countEO [2,4] --> (2,0)
2,1)
```

Before tracing the `where` was:

`(evens,odds) = countEO xs`
Recall this clause for `buildingAtHeight`:

\[
\text{buildingAtHeight} (\text{width}, \text{height}, \text{ch}) \ n = \\
\text{replicate width (if n > height then ' ' else ch)}
\]

Outputting `width`, `height`, and `ch` with labels is tedious:

\[
\text{buildingAtHeight} (\text{width}, \text{height}, \text{ch}) \ n = \\
\text{trace ("width " ++ show width ++ ", height: " ++ show height ++ ", ch: " ++ show ch)}
\]

\[
\text{replicate width (if n > height then ' ' else ch)}
\]

Example of trace output: \(\text{width: 3, height: 2, ch: 'x'}\)

We can use a tuple to simplify the `trace` call:

\[
\text{buildingAtHeight} (\text{width}, \text{height}, \text{ch}) \ n = \\
\text{trace (show ("width:"}, \text{width}, \text{"height"}, \text{height}, \text{"ch"}, \text{ch}))}
\]

\[
\text{replicate width (if n > height then ' ' else ch)}
\]

Example of trace output: \("width:"3,"height":2,"ch":',x')\)
Sidebar: Tracing in Icon

Icon has a built-in tracing mechanism.

Here's `sumElems` in Icon:

```icon
% cat -n sumElems.icn
1  procedure main()
2    sumElems([5,1,4,2,3])
3  end
4
5  procedure sumElems(L)
6    if *L = 0 then
7      return 0
8    else
9      return L[1] + sumElems(L[1:-1])
10  end
```
I know of no better out-of-the-box tracing facility in any language.
ghci does have some debugging support but debugging is expression-based. Here's some simple interaction with it on countEO:

> :step countEO [3,2,4]
Stopped at countEO.hs:(1,1)-(6,29)
_result :: (t, t1) = _
> :step
Stopped at countEO.hs:3:7-11
_result :: Bool = _
x :: Integer = 3
> :step
Stopped at countEO.hs:3:15-29
_result :: (t, t1) = _
evens :: t = _
odds :: t1 = _
> :step
(Stopped at countEO.hs:6:20-29
_result :: (t, t1) = _
xs :: [Integer] = [2,4]

_countEO [] = (0,0)
_countEO (x:xs)
| odd x = (evens, odds+1)
| otherwise = (evens+1, odds)
where
(evens,odds) = countEO xs

_result shows type of current expression

Arbitrary expressions can be evaluated at the > prompt (as always).
Excursion:
A little bit with infinite lists
and lazy evaluation
Infinite lists

Here's a way we've seen to make an infinite list:

> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,^C

In essence, what does the following bind f to?

> f = (!!) [1,3..]
f :: (Num a, Enum a) => Int -> a

A function that produces the Nth odd number, zero-based.

• Yes, we could say \( f \ n = (n*2)+1 \) but that wouldn't be nearly as much fun! (This is functional programming!)

• I want you to be cognizant of performance but don't let concerns about performance stifle creativity!
Consider the following binding. Why does it complete?

> fives = [5,10..]

Haskell uses *lazy evaluation*. Values aren't computed until needed. (Simplistic; we'll refine it.)

How will the following expression behave?

> take (head fives) fives

[5,10,15,20,25]
Here is an expression that is said to be *non-terminating*:

```haskell
> length fives
...when tired of waiting...^C Interrupted.
```

The value of `length fives` is said to be \( \perp \) ("bottom").

But, we can bind a name to `length fives`:

```haskell
> numFives = length fives
numFives :: Int
```

It completes because Haskell hasn't yet needed to compute a value for `length fives`.

What does the following do?

```haskell
> numFives
...after a while...^CInterrupted.
```
Lazy evaluation, continued

We can use :print to explore lazy evaluation:
> fives = [5,10..]

> :print fives
fives = (_t1::[Integer]) -- ghci 7.8.3 behavior
fives = (_t1::(Enum a, Num a) => [a]) -- 8.2.2

> take 3 fives
[5,10,15]

What do you think :print fives will now show?
> :print fives
fives = 5 : 10 : 15 : (_t3::[Integer]) -- ghci 7.8.3
fives = (_t1::(Enum a, Num a) => [a]) -- 8.2.2
In fact, Haskell doesn't fully meet the requirements of lazy evaluation. The word "lazy" appears only once in the Haskell 2010 Report.

What Haskell does provide is *non-strict evaluation*: Function arguments are not evaluated until a value is needed.

Consider this function:

\[
\text{f } x \ y \ z = \text{if even } x \text{ then } y \text{ else } z
\]

What does the following expression produce?

\[
> \text{f } 4 \ 10 \ (\text{length } [1..])
\]

10

Why does it complete?

Because 4 is even, the value of \(z\) isn't needed and never computed.
At hand:

\[ f \ x \ y \ z = \text{if even } x \ \text{then } y \ \text{else } z \]

How will the following behave?

\[
> \ a = f \ 4 \ (\text{length } [1..]) \ 100 \\
> \ b = a + 1 \\
> \ c = [1,b] \\
> \text{length } c \\
2 \\
> \text{head } c \\
1 \\
> c \\
[1, ^C\text{Interrupted}] \\
\]

See wiki.haskell.org/Lazy vs. non-strict for the fine points of lazy evaluation vs. non-strict evaluation. Google for more, too.
How is the following Java expression evaluated?
\[ x = f(g(x+3), h()) \]

A model:
1. \( t_1 = x + 3 \)
2. \( t_2 = g(t_1) \)
3. \( t_3 = h() \)
4. \( x = f(t_2, t_3) \)

- Java uses strict evaluation
- Java guarantees* left to right evaluation of argument lists (JLS 15.7)
- Contrast: C does not guarantee L-to-R evaluation of argument lists.

What's a case in which Java's L-to-R guarantee makes a difference?
- If \( g \) and \( h \) do output.
- Output is a side-effect!

What's a non-output case where order would make a difference?
Speculate: Can infinite lists be concatenated?
> values = [1..] ++ [5,10..] ++ [1,2,3]
>
What will the following do?
> values > [1,2,3,5]
False

False due to lexicographic comparison of fourth elements: 4 < 5

How far did evaluation of values progress?
> :print values
values = 1 : 2 : 3 : 4 : (_t2::[Integer]) -- ghci 7.8.3
What does the following expression mean?

> threes = 3 : threes

threes is a list whose head is 3 and whose tail is threes!

> take 5 threes
[3,3,3,3,3]

How about the following?

> xys = ['x','y'] ++ xys

> take 5 xys
"xyxyx"

> xys !! 100000000
'x'

One more:

> x = 1 + x
> x
^CInterrupted.
Problem: write a function \texttt{intsFrom} that produces the integers from a starting value. (No, you can't use \texttt{[n..]})!

\begin{verbatim}
> intsFrom 1
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,....

> intsFrom 1000
[1000,1001,1002,1003,1004,1005,1006,1007,1008,....

> take 5 (intsFrom 1000000)
[1000000,1000001,1000002,1000003,1000004]
\end{verbatim}

Solution:

\texttt{intsFrom n = n : intsFrom (n + 1)}

Does \texttt{length (intsFrom (minBound::Int))} terminate?
Collaborative Learning Exercise

Infinite experimentation

cs.arizona.edu/classes/cs372/spring18/cle-4-infexp.html

Note to self: do push-cle 4
Higher-order functions
Recall this fundamental characteristic of a functional language:
Functions are values that can be used as flexibly as values of other types.

Here are some more examples of that. What do the following do?

> (if 3 < 4 then head else last) "abc"
'a'

> func = (tail, (: 100)

> nums = [1..10]

> fst func nums
[2,3,4,5,6,7,8,9,10]

> snd func nums
[100,1,2,3,4,5,6,7,8,9,10]
List of functions

Is the following valid?
> [take, tail, init]
Couldn't match type `[a2]' with `Int'
  Expected type: Int -> [a0] -> [a0]
  Actual type: [a2] -> [a2]
In the expression: init

What's the problem?
  take does not have the same type as tail and init.

Puzzle: Make [take, tail, init] valid by adding two characters.
Can functions be compared?

```
> add == plus
No instance for (Eq (Integer -> Integer -> Integer))
arising from a use of `=='
In the expression: add == plus
```

You might see a proof based on this in CSC 473:
If we could determine if two arbitrary functions perform the same computation, we could solve the halting problem, which is considered to be unsolvable.

Because functions can't be compared, this version of `length` won't work for lists of functions: (Its type: `(Num a, Eq t) => [t] -> a`)

```
len list@( _:t)
  | list == [] = 0
  | otherwise = 1 + len t
```
A simple higher-order function

Definition: A higher-order function is a function that (and/or)
- Has one or more arguments that are functions
- Returns a function

twice is a higher-order function with two arguments: f and x

\[
twice \ f \ x = f \ (f \ x)
\]

What does it do?

> twice tail [1,2,3,4,5] [3,4,5]

> tail (tail [1,2,3,4,5]) [3,4,5]
At hand:
> \text{twice } f \ x = f \ (f \ x) \\
> \text{twice tail } [1, 2, 3, 4, 5] \\
\quad [3, 4, 5] \\

Let's make the precedence explicit:
> \text{((twice tail) } [1, 2, 3, 4, 5]) \\
\quad [3, 4, 5] \\

Consider a partial application...
> \text{t2 = twice tail} \quad \text{-- like t2 } x = \text{tail (tail } x) \\
> \text{t2} \\
<\text{function}> \\
\text{it :: [a] -> [a]}
At hand:

> \texttt{twice \, f \, x} = \texttt{f \, (f \, x)}
> \texttt{twice \, tail \, [1,2,3,4,5]} \\
\quad [3,4,5]

Let's give \texttt{twice} a partial application!

> \texttt{twice \, (drop \, 2) \, [1..5]} \\
\quad [5]

Let's make a partial application with a partial application!

> \texttt{twice \, (drop \, 5)} \\
<\texttt{function}> \\
> \texttt{it \, ['a'..'z']} \\
"klmnpqrstuvwxyz"

Try these!

\texttt{twice \, (twice \, (drop \, 3)) \, [1..20]} \\
\texttt{twice \, (twice \, (take \, 3)) \, [1..20]}
At hand:
\[
twice \, f \, x = f \, (f \, x)
\]

What's the the type of \texttt{twice}?
\[
> :t \, twice
\]
\[
twice :: (t \rightarrow t) \rightarrow t \rightarrow t
\]

Parentheses added to show precedence:
\[
twice :: (t \rightarrow t) \rightarrow (t \rightarrow t)
\]
\[
twice \, f \, x = f \, (f \, x)
\]

What's the correspondence between the elements of the clause and the elements of the type?
The **map** function
Recall \( \text{double } x = x \times 2 \)

\textbf{map} is a Prelude function that applies a function to each element of a list, producing a new list:

\[
> \text{map double } [1..5] \\
[2,4,6,8,10]
\]

\[
> \text{map length } (\text{words } "a \ few \ words") \\
[1,3,5]
\]

\[
> \text{map head } (\text{words } "a \ few \ words") \\
"afw"
\]

Is \textbf{map} a higher order function?  
Yes! (Why?)  
Its first argument is a function.
At hand:
   > map double [1..5]
   [2,4,6,8,10]

Problem: Write map!
   
   map _ [] = []
   map f (x:xs) = f x : map f xs

What is its type?
   
   map :: (a -> b) -> [a] -> [b]

What's the relationship between the length of map's input and output lists?
   
   The lengths are always the same.
Mapping (via \texttt{map}) is applying a transformation (a function) to each of the values in a list, \textit{always} producing a new list of the same length.

\begin{verbatim}
> map chr [97,32,98,105,103,32,99,97,116] "a big cat"

> map isLetter it
[True,False,True,True,True,True,False,True,True,True]

> map not it
[False,True,False,False,False,True,False,False,False,False]

> map head (map show it) -- \textit{Note: show True is "True"}
"FTFFFTFFFTFF"
Here's another map:

> map weather [85,55,75]  
["Hot!","Cold!","Nice"]

This is equivalent:

> [weather 85, weather 55, weather 75]  
["Hot!","Cold!","Nice"]

- If functions have no side effects, we can immediately turn a mapping into a parallel computation.

- We might start each function call on a separate processor and combine the values when all are done.
map and partial applications

What's the result of these?

> map (add 5) [1..10]
[6,7,8,9,10,11,12,13,14,15]

> map (drop 1) (words "the knot was cold")
["he","not","as","old"]

> map (replicate 5) "abc"
["aaaaa","bbbbbb","cccccc"]
map and partial applications, cont.

What's going on here?

```haskell
> f = map double
> f [1..5]
[2,4,6,8,10]
```

```haskell
> map f [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]
```

Here's the above in one step:

```haskell
> map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]
```

Here's one way to think about it:

```haskell
[(map double) [1..3], (map double) [10..15]]
```
Instead of using `map (add 5)` to add 5 to the values in a list, we should use a `section` instead: (it's the idiomatic way!)

```
> map (5+) [1,2,3]
[6,7,8]  --[5+1,5+2,5+3]
```

More sections:

```
> map (10*) [1,2,3]
[10,20,30]
```

```
> map (++"*") (words "a few words")
["a","few","words"]
```

```
> map ("*"++) (words "a few words")
["*a","*few","*words"]
```
Sections have one of two forms:

(infix-operator value)  Examples: (+5), (/10)

(value infix-operator)  Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.

> map (3<=) [1..4]  [3 <== 1, 3 <== 2, 3 <== 3, 3 <== 4]
[False,False,True,True]

> map (<=3) [1..4]  [1 <== 3, 2 <== 3, 3 <== 3, 4 <== 4]
[True,True,True,False]

Sections aren't just for `map`; they're a general mechanism.

> twice (+5) 3
13
travel, revisited
Now that we're good at recursion...

Some of the problems on the next assignment will encourage working with higher-order functions by prohibiting you from writing any recursive functions!

Think of it as isolating muscle groups when weight training.

Here's a simple way to avoid what's prohibited:

Pretend that you don't understand recursion!

What's a base case? Is it related to baseball?
Why would a function call itself? How's it stop?
Is a recursive plunge refreshing?

If you were UNIX machines, I'd do `chmod 0` on an appropriate section of your brains.
Recall our traveling robot: (slide 214+)

> travel "nnee"
"Got lost"

> travel "nnss"
"Got home"

Recall our approach:
Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

How can we solve it without writing any recursive functions?
Recall:

```haskell
> :t mapMove
mapMove :: Char -> (Int, Int)
```

```haskell
> mapMove 'n'
(0,1)
```

Now what?

```haskell
> map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
```

Can we sum the tuples with `map`?
We have:

```
> disps = map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
```

We want: (2,3)

Any ideas?

```
> :t fst
fst :: (a, b) -> a
```

```
> map fst disps
[0,0,1,1,0]
```

```
> map snd disps
[1,1,0,0,1]
```
We have:

```haskell
> disps = map mapMove "nneen"
((0,1),(0,1),(1,0),(1,0),(0,1))
> map fst disps
[0,0,1,1,0]
> map snd disps
[1,1,0,0,1]
```

We want: (2,3)

Ideas?

```haskell
> :t sum
sum :: Num a => [a] -> a
> (sum (map fst disps), sum (map snd disps))
(2,3)
```
travel :: [Char] -> [Char]

travel s
  | totalDisp == (0,0) = "Got home"
  | otherwise = "Got lost"

where
  disps = map mapMove s
  totalDisp = (sum (map fst disps),
               sum (map snd disps))

Did we have to understand recursion to write this version of travel? No.

Did we write any recursive functions? No.

Did we use any recursive functions? Maybe. But using recursive functions doesn't violate the prohibition at hand.
Filtering
Another higher order function in the Prelude is \texttt{filter}:
\begin{verbatim}
> filter odd [1..10]
[1,3,5,7,9]

> filter isDigit "(800) 555-1212"
"8005551212"
\end{verbatim}

What's \texttt{filter f list} doing?

Producing the values in \texttt{list} for which \texttt{f} returns \texttt{True}.

Note: Think of \texttt{filter} as filtering \texttt{in}, not filtering \texttt{out}.

What is the type of \texttt{filter}?

\texttt{filter :: (a -> Bool) -> [a] -> [a]}
filter uses a predicate

filter's first argument (a function) is called a predicate because inclusion of each value is predicated on the result of calling that function with that value.

More...

> filter (<= 5) (filter odd [1..10])
[1,3,5]

> map (filter isDigit) ["br549", "24/7"]
["549","247"]

> filter (`elem` "aeiou") "some words here"
"oeeoeoee"

Note that (`elem` ...) is a section.

elem :: Eq a => a -> [a] -> Bool
At hand:

> filter odd [1..10]
[1,3,5,7,9]

> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Problem: Write filter!

filter _ [] = []
filter f (x:xs)
    | f x = x : filteredTail
    | otherwise = filteredTail
where
    filteredTail = filter f xs
Several Prelude functions use predicates. Here are two:

all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]
True
> all even [2,4,6,7]
False

dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
"testing 
> dropWhile isLetter it
" "

How could we find other Prelude functions that use predicates?
 or grep "(a -> Bool)" prelude-8.0.1.txt
For reference:

```haskell
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]

> filter odd [1..10]
[1,3,5,7,9]
```

**map:**
- transforms a list of values
- `length input == length output`

**filter:**
- selects values from a list
- `0 <= length output <= length input`

**map** and **filter** are in Python and JavaScript, to name two of many languages having them. (And, they're trivial to write!)
Anonymous functions
Anonymous functions

Imagine that for every number in a list we'd like to double it and then subtract five.

Here's one way to do it:

```haskell
> f n = n * 2 - 5
> map f [1..5]
[-3,-1,1,3,5]
```

We could instead use an *anonymous function* to do the same thing:

```haskell
> map (\n -> n * 2 - 5) [1..5]
[-3,-1,1,3,5]
```

What benefits does the anonymous function provide?
Anonymous functions, continued

At hand:
\[
\begin{align*}
f \, n &= n * 2 - 5 \\
\text{map } f \, [1..5]
\end{align*}
\]
vs.
\[
\begin{align*}
\text{map } (\lambda n \to n * 2 - 5) \, [1..5]
\end{align*}
\]

The most common use case for an anonymous function: (my guess)
Supply a simple "one-off" function to a higher-order function.

Anonymous functions...
- Directly associate a function's definition with its only use.
- Let us avoid the need to think up a good name for a function! 😊
- Can be likened to not using an intermediate variable:
  \[
  \begin{align*}
  \text{int } t &= a * 3 + g(a+b); \quad \text{// Java} \\
  &\text{return } f(t);
  \\
  \text{vs.}
  &\text{return } f(a * 3 + g(a+b));
  \end{align*}
  \]
Anonymous functions, continued

The general form of an anonymous function:
\[
\text{pattern}_1 \ldots \text{pattern}_N \rightarrow \text{expression}
\]

Simple syntax suggestion: enclose the whole works in parentheses.
\[
\text{map (}\text{n} \rightarrow \text{n} \times 2 - 5) \ [1..5]\n\]

These terms are synonymous with "anonymous function":
- **Lambda abstraction** (H10)
- **Lambda expression**
- Just **lambda** (LYAH).

The \ character was chosen due to its similarity to \(\lambda\) (Greek lambda), used in the **lambda calculus**, another system for expressing computation.
Anonymous functions, continued

What will ghci say?
   > \x y -> x + y * 2
   <function>
   > it 3 4
   11

\x y -> x + y * 2 is an expression whose value is a function.

Here are three ways to bind the name double to a function that doubles a number:
   double x = x * 2

   double = \x -> x * 2

   double = (*2)
Anonymous functions are commonly used with higher order functions such as `map` and `filter`.

```haskell
> map (\w -> (length w, w)) (words "a test now")
[(1,"a"),(4,"test"),(3,"now")]
```

```haskell
> map (\c -> 
  "{" ++ [c] ++ "}") "anon."
["{a","n","o","n","."]}
```

```haskell
> filter (\x -> head x == last x) (words "pop top suds")
["pop","suds"]
```
From the previous slide:

> map \( \langle w \rightarrow (\text{length } w, w) \rangle \) (words "a test now")

\[
[(1, "a"), (4, "test"), (3, "now")]
\]

A rough Java analogy: (spring18/haskell/javamap.java)

```java
ArrayList<Object[]> result = new ArrayList<>();

for (String s: "a test now".split(" "))
    result.add(new Object[] {s.length(), s});
```

An anonymous function given to `map` is a bit like the body of an enhanced `for` in Java.

Challenge: Rewrite in Java the other two examples on the previous slide.
Sidebar: Three languages

A simple anonymous function in Haskell...

```haskell
> \s -> s ++ "-" ++ show (length s)
<function>
> it "abc"
"abc-3"
```

Python...

```python
>>> lambda s: s + '-' + str(len(s))
<function <lambda> at 0x10138af28>
>>> _('abc')               # underscore is like Haskell's it
'abc-3'
```

and JavaScript...

```javascript
> f = function (s) { return s + '-' + s.length }
> f("abc")
"abc-3"
```
Larger example: longest
Imagine a program to print the longest line(s) in a file, along with their line numbers:

% runghc longest.hs /usr/share/dict/web2
72632:formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificphilosophical
200796:tetraiodophenolphthalein
203042:thyroparathyroidectomize

Imagining that we don't understand recursion, how can we approach it in Haskell?
Let's work with a shorter file for development testing:
```%
% cat longest.1
```
data
to
test

`readFile` in the Prelude lazily returns the full contents of a file as a string:
```
> readFile "longest.1"
"data\nto\ntest\n"
```

To avoid wading into input yet, let's focus on a function that operates on the full contents of a file as a single string:
```
> longest "data\nto\ntest\n"
"l:\ndata\n3:test\n"
```
Let's work through a series of transformations of the data:

```haskell
> bytes = "data\nto\ntest\n"

> lns = lines bytes
   [("data","to","test")]
```

Note: To save space in this example, we'll show the value bound immediately after each binding.

Let's use `zip3` and `map length` to create (length, line-number, line) triples:

```haskell
> triples = zip3 (map length lns) [1..] lns
   [(4,1,"data"),(2,2,"to"),(4,3,"test")]
```
We have (length, line-number, line) triples at hand:

```haskell
triples :: [(Int, Int, String)]
triples = [(4,1, "data"), (2,2, "to"), (4,3, "test")]
```

Let's use `Data.List.sort :: Ord a => [a] -> [a]` on them:

```haskell
sortedTriples = reverse (Data.List.sort triples)
sortedTriples = [(4,3, "test"), (4,1, "data"), (2,2, "to")]
```

Note that by having the line length first, the triples are sorted first by line length. Ties are resolved by line number, which is second.

We reverse the list to put the tuples in descending order.
At hand:

```hs
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]
```

We'll handle ties by using `takeWhile` to get all the triples with lines of the maximum length.

Let's use a helper function to get the first element of a 3-tuple:

```hs
> first (len, _, _) = len
> maxLength = first (head sortedTriples)
4
```

We'll be using `first` elsewhere but if we weren't, we'd bind `maxLength` using a pattern:

```hs
(maxLength,_,_):_ = sortedTriples
```
At hand:

> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength
4

Let's use `takeWhile :: (a -> Bool) -> [a] -> [a]` to get the triples having the maximum length:

```haskell
> maxTriples = takeWhile
  (\triple -> first triple == maxLength) sortedTriples
[(4,3,"test"),(4,1,"data")]
```

anonymous function for `takeWhile`
At hand:

```haskell
> maxTriples
[(4,3,"test"),(4,1,"data")]
```

Let's map an anonymous function to turn the triples into lines prefixed with their line number:

```haskell
> linesWithNums =
  map (\(_,num,line) -> show num ++ "::" ++ line)
  maxTriples
["3:test","1:data"]
```

We can now produce a ready-to-print result:

```haskell
> result = unlines (reverse linesWithNums)
"1:data
3:test
"
Let's package up our work into a function:

```haskell
longest bytes = result
where
  lns = lines bytes
  triples = zip3 (map length lns) [1..] lns
  sortedTriples = reverse (Data.List.sort triples)
  maxLength = first (head sortedTriples)
  maxTriples = takeWhile
    (\triple -> first triple == maxLength) sortedTriples
  linesWithNums =
    map (\(_,num,line) -> show num ++ ":" ++ line) maxTriples
  result = unlines (reverse linesWithNums)
```

`first (x,_,_) = x`  

Look, Ma! No conditional code!
At hand:

> longest "data\nto\ntest\n" "l:data\n3:tes\n"

Let's add a **main** that handles command-line args and does I/O:

```haskell
% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do -- 'do' "sequences" its expressions
    args <- getArgs -- Get command line args as list
    bytes <- readFile (head args)
    putStrLn (longest bytes)
```

Execution:
```
$ runghc longest.hs /usr/share/dict/words # lectura
39886:electroencephalograph's
```
Composition

REPLACEMENTS! Discard 321+ in the old set
Function composition

Definition:

The *composition* of functions \( f \) and \( g \) is a function \( c \) that for all values of \( x \), \((c \ x)\) equals \((f \ (g \ x))\)

Here is a function that applies two functions in turn:

\[
\text{compose } f \ g \ x = f \ (g \ x)
\]

How many arguments does `compose` have?

Its type:

\[
(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
\]

> compose init tail [1..5]
[2,3,4]

> compose signum negate 3
-1
Haskell binds the symbolic variable dot to a "compose" function:

> :t (.)

(. :: (b -> c) -> (a -> b) -> a -> c)

Dot is an operator whose operands are functions. Its result is a function.

> numwords = length . words

> numwords "just testing this"
3

> map numwords ["a test", "up & down", "done"]
[2,3,1]

Ponder this: Given 'compose f g x = f (g x)', this works:

(.) = compose
At hand:

\[ \text{numwords} = \text{length} \ . \ \text{words} \]

A model:

```
"a b" → \text{words} → ["a","b"] → \text{length} → 2 → \text{numwords} → 2
```

Usage:

```haskell
> numwords "a b"
2
```
Problem: Using composition create a function that returns the next-to-last element in a list:

\[
\text{ntl} = \text{head} \ . \ \text{tail} \ . \ \text{reverse}
\]

\[
\text{ntl} = \text{last} \ . \ \text{init}
\]

Two solutions:
Problem: Recall \( \texttt{twice } f \ x = f \ (f \ x) \). Define \( \texttt{twice} \) as a composition.

Solution:
\[
\texttt{twice } f = f \ . \ f
\]

Problem: Use composition to create a function that reverses the words in a string:
\[
> f \ "\text{flip these words around}"
  "\text{pilf eseht sdrow dnuora}"
\]

Hint: \texttt{unwords} is the inverse of \texttt{words}.

Solution:
\[
f = \texttt{unwords} \ . \ (\texttt{map reverse}) \ . \ \texttt{words}
\]
Problem: Create a function to remove the digits from a string:

```
> rmdigits "Thu Feb  6 19:13:34 MST 2014"
"Thu Feb  :: MST  
```

Solution:

```
> rmdigits = filter (not . isDigit)
```

Given the following, describe \( f \):

```
> f = (*2) . (+3)
```

```
> map f [1..5]  
[8,10,12,14,16]
```

Would an anonymous function be a better choice for \( f \)'s computation?
Recalling the following, what's the type of \( f \)?

- head :: \([a] \rightarrow a\)
- length :: \([a] \rightarrow \text{Int}\)
- words :: \(\text{String} \rightarrow \text{[String]}\)
- show :: \(\text{Show} a \Rightarrow a \rightarrow \text{String}\)

\[
f = \text{head} \ . \ \text{show} \ . \ \text{length} \ . \ \text{words}
\]

Simple rule:
If a composition is valid, the type of the resulting function is based only on the input of the rightmost function and the output of the leftmost function.

What's the type of \( f \)?
String \( \rightarrow \) Char
Consider the following:
> s = "It's on!"
  > map head (map show (map not (map isLetter s)))
    "FFTFTFFFT"

Can we use composition to simplify it?
> map (head . show . not . isLetter) s
    "FFTFTFFFT"

Question: Is
map f (map g x)
always equivalent to the following?
map (f . g) x

If f and g did output, how would the output of the two cases differ?
What would be a better name for the following function?

\[ f_2 = f \cdot f \]

where \( f = \text{reverse} \cdot \text{dropWhile isSpace} \)

Credit: Eric Normand on Stack Overflow
Problem: Write `revstr s`, which reverses the string `s`.

Solution:

```
- val revstr = implode o rev o explode;
val revstr = fn : string -> string
```

`sml` runs Standard ML on lectura
Point-free style
(video)
Recall \texttt{rmdigits}: \\
\texttt{> rmdigits "Thu Feb 6 19:13:34 MST 2014"}
\texttt{"Thu Feb :: MST "}

What the difference between these two bindings for \texttt{rmdigits}?

\texttt{rmdigits s = filter (not . isDigit) s}

\texttt{rmdigits = filter (not . isDigit)}

The latter version is said to be written in \textit{point-free style}.

\textbf{A point-free binding of a function \texttt{f} has NO parameters!}
I think of point-free style as a natural result of fully grasping partial application and operations like composition.

Although it was nameless, we've already seen examples of point-free style, such as these:

- `nthOdd = (!!) [1,3..]`
- `t2 = twice tail`
- `numwords = length . words`
- `ntl = head . tail . reverse`

There's nothing too special about point-free style but it does save some visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free function operates on points that are not specifically cited.
Problem: Using point-free style, bind `len` to a function that works like the Prelude's `length`.

Handy:

```haskell
> :t const
const :: a -> b -> a

> const 10 20
10

> const [1] "foo"
[1]
```

Solution:

```
len = sum . map (const 1)
```

See also: *Tacit programming* on Wikipedia
Hocus pocus with higher-order functions
What's this function doing?
\[
f \ a = g \\
\text{where} \\
g \ b = a + b
\]

Type?
\[
f :: \text{Num } a \Rightarrow a \rightarrow a \rightarrow a
\]

Interaction:
\[
> f' = f 10 \\
> f' 20 \\
30
\]
\[
> f 3 4 \\
7
\]
Fact:
Curried function definitions are really just *syntactic sugar*—they just save some clutter. They don't provide something we can't do without.

Compare these two *completely equivalent* declarations for `add`:

```haskell
add x y = x + y
add x = add' where add' y = x + y
```

The result of the call `add 5` is essentially this function:

```haskell
add' y = 5 + y
```

The combination of the code for `add'` and the binding for `x` is known as a *closure*. It contains what's needed for execution at a future time.
In 1964 Peter Landin coined the term "syntactic sugar".

A language construct that makes something easier to express but doesn't add a new capability is called *syntactic sugar*. It simply makes the language "sweeter" for human use.

Two examples from C:
- "abc" is equivalent to a `char` array initialized with `{\'a\', \'b\', \'c\', \'\0\'}`
- `a[i]` is equivalent to `*(a + i)`

What's an example of syntactic sugar in Java?
   The "enhanced for": `for (int i: a) { ... }`
In Haskell a list like \[5, 2, 7\] can be expressed as \(5:2:7:[]\).
Is that square-bracket list literal notation syntactic sugar?

What about \([1..], [1,3..], ['a'..'z']\)?

The Enum type class has enumFrom, enumFromTo, etc.

Recall these equivalent bindings for double:

\[
double x = x \times 2
\]
\[
double = \lambda x \rightarrow x \times 2
\]

Is the first form just syntactic sugar?

What if a function has multiple clauses?

Are anonymous functions syntactic sugar?
"Syntactic sugar causes cancer of the semicolon."
—Alan J. Perlis.

Another Perlis quote:
"A language that doesn't affect the way you think about programming is not worth knowing."

Perlis was the first recipient of the ACM's Turing Award.
DIY currying in JavaScript

JavaScript doesn't provide the syntactic sugar of curried function definitions but we can do this:

```javascript
function add(x) {
    return function (y) { return x + y }
}
```

Try it in Chrome!

View>Developer> JavaScript Console brings up a console.

Type in the code for `add`.

```javascript
add(5)(3) // 8
a5 = add(5)
function (y) { return x + y }
[10,20,30].map(a5)
[15, 25, 35]
```
DIY currying in Python

```python
>>> def add(x):
...     return lambda y: x + y
...

>>> f = add(5)

>>> type(f)
<type 'function'>

>>> map(f, [10, 20, 30])
[15, 25, 35]
```
Another mystery function

Here's another mystery function:

\[
> \text{m } f \ x \ y = f \ y \ x
\]

\[
> \text{:type m} \\
\text{m :: (t1 -> t2 -> t) -> t2 -> t1 -> t}
\]

Can you devise a call to \text{m}?  

\[
> \text{m add 3 4} \\
7
\]

\[
> \text{m (+) "a" "b"} \\
"ba"
\]

What is \text{m} doing?
At hand:
\[ m \, f \, x \, y = f \, y \, x \]

\[ m \] is actually a Prelude function named \texttt{flip}:

\[
\begin{array}{c}
> \texttt{:t flip} \\
\texttt{flip} \quad \text{::} \ (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c \\
\end{array}
\]

Recall \texttt{take} \quad \text{::} \ \texttt{Int} \rightarrow \texttt{[a]} \rightarrow \texttt{[a]}

\[
> \texttt{flip take [1..10] 3} \\
[1,2,3]
\]

\[
> \texttt{ftake} = \texttt{flip take} \\
> \texttt{ftake [1..10] 3} \\
[1,2,3]
\]
At hand:

\[
\text{flip } f \ x \ y = f \ y \ x
\]

\[
> \ \text{map (flip take } "\text{Haskell}"\text{)} \ [1..7] \\
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]
\]

Problem: write a function that behaves like this:

\[
> f \ 'a'
["a","aa","aaa","aaaa","aaaaa",...\text{infinitely}...]
\]

Solution:

\[
f \ x = \text{map (flip replicate } x) \ [1..]
\]
From assignment 3:
   > splits "abcd"
   ["a","bcd"],("ab","cd"),("abc","d")]

Some students used the Prelude's `splitAt`:
   > splitAt 2 [10,20,30,40]
   ([10,20],[30,40])

Problem: Write a non-recursive version of `splits`.

Solution:
   \[
   \text{splits list} = \text{map (flip \text{splitAt list}) [}1..(\text{length list} - 1)]
   \]
The $ operator

$ is the "application operator". Here's what :info shows:

```
> :info ($)
($) :: (a -> b) -> a -> b
infixr 0 $   -- right associative infix operator with very
          -- low precedence
```

The following binding of $ uses an infix syntax:

```
f $ x = f x   -- Equivalent: ($) f x = f x
```

Usage:
```
> negate $ 3 + 4
-7
```

What's the point of it?
The $ operator, continued

$ is a low precedence, right associative operator that applies a function to a value:

$$ f \ x = f \ x $$(1)

Because + has higher precedence than $, the expression

$$ \text{negate} \ x = \text{negate} \ (3 + 4) $$

groups like this:

$$ \text{negate} \ (3 + 4) $$

Problem: Rewrite the following with parentheses instead of $:

$$ \text{filter} (\ >3) \ x = \text{filter} \ (>3) \ (\text{map} \ \text{length} \ (\text{words} \ "\text{up and down}")) $$

Don't confuse $ with . (composition)!
Problem: We're given a function whose argument is a 2-tuple but we wish it were curried so we could map a partial application of it.

\[ g :: (\text{Int}, \text{Int}) \rightarrow \text{Int} \]

\[ g (x,y) = x^2 + 3x*y + 2y^2 \]

\[ > g (3,4) \]

77

Solution: Curry \( g \) with \texttt{curry} from the Prelude!

\[ > \text{map (curry } g \ 3) \ [1..10]\]

\[ [20,35,54,77,104,135,170,209,252,299]\]

Your problem: Write \texttt{curry}! (And don't peek ahead!)
Currying the uncurried, continued

At hand:

\[
g :: (\text{Int, Int}) \rightarrow \text{Int}
\]
\[
> g (3,4)
77
\]
\[
> \text{map (curry } g \ 3) \ [1..10]
[20,35,54,77,104,135,170,209,252,299]
\]

Here's \textit{curry}:

\[
curry :: ((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c
\]
\[
curry f x y = f (x,y)
\]

Usage:

\[
> \text{cg } = \text{curry } g
\]
\[
> \text{:type cg}
\]
\[
cg :: \text{Int } \rightarrow \text{Int } \rightarrow \text{Int}
\]
\[
> \text{cg } 3 \ 4
77
\]
Currying the uncurried, continued

At hand:

\[
\text{curry} :: ((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c
\]
\[
\text{curry} \ f \ x \ y = f \ (x, \ y)
\]

\>

\[
\text{map} \ (\text{curry} \ g \ 3) \ [1..10]
\]
\[
[20,35,54,77,104,135,170,209,252,299]
\]

The key: \((\text{curry} \ g \ 3)\) is a partial application of \text{curry}!

Call: \text{curry} \ g \ 3

\[\downarrow \ \downarrow\]

Dcl: \text{curry} \ f \ x \ y = f \ (x, \ y)
\[
= g \ (3, \ y)
\]
Currying the uncurried, continued

At hand:

\[
\text{curry} :: ((a, b) \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c) \quad (\text{parentheses added})
\]
\[
\text{curry } f \ x \ y = f \ (x, \ y)
\]

> map (curry g 3) [1..5]
[20,35,54,77,104]

Effectively turns
\[
g \ (x,y) = x^2 + 3*x*y + 2*y^2
\]
into
\[
g \ y \ x = ...
\]

Let's get \text{flip} into the game!

> map (flip (curry g) 4) [1..5]
[45,60,77,96,117]

The counterpart of \text{curry} is \text{uncurry}:

> uncurry (+) (3,4)
7
function curry(f) {
  return function(x) {
    return function (y) { return f(x,y) }
  }
}

function add(x,y) {return x + y}
undefined

c_add = curry(add)

function (x) { return function (y) { return f(x,y) } }

add_5 = c_add(5)

function (y) { return f(x,y) }

[10,20,30].map(add_5)
[15, 25, 35]
Folding
We can *reduce* a list by a binary operator by inserting that operator between the elements in the list:

\[1,2,3,4\] reduced by + is \(1 + 2 + 3 + 4\)

\["a","bc","def"\] reduced by ++ is \"a\" ++ \"bc\" ++ \"def\"

Imagine a function `reduce` that does reduction by an operator.

\> reduce (+) [1,2,3,4]
\> 10

\> reduce (++) ["a","bc","def"]
\> "abcdef"

\> reduce max [10,2,4]
\> 10 -- think of 10 `max` 2 `max` 4
At hand:

\[
\begin{align*}
> \text{reduce } (+) [1,2,3,4] \\
&= 10
\end{align*}
\]

An implementation of `reduce`:

\[
\begin{align*}
\text{reduce } _ [] &= \text{error "emptyList"} \\
\text{reduce } _ [x] &= x \\
\text{reduce } op (x:xs) &= x \ `op` \ \text{reduce } op \ xs
\end{align*}
\]

Does `reduce + [1,2,3,4]` do

\[
((1 + 2) + 3) + 4
\]

or

\[
1 + (2 + (3 + 4))
\]

In general, when would the grouping matter?

If the operation is non-commutative, like division.
In the Prelude there's no `reduce` but there is `foldl1` and `foldr1`

```
> foldl1 (+) [1..4]
10

> foldl1 max "maximum"
'x'

> foldl1 (/) [1,2,3]
0.16666666666666666 -- behaves like _left_ associative: (1 / 2) / 3

> foldr1 (/) [1,2,3]
1.5 -- behaves like _right_ associative: 1 / (2 / 3)
```

The types of both `foldl1` and `foldr1` are `(a -> a -> a) -> [a] -> a.`
Another folding function is foldl (no 1). Let's compare the types of foldl1 and foldl:

- foldl1 :: (a -> a -> a) -> [a] -> a
- foldl :: (a -> b -> a) -> a -> [b] -> a

What's different between them? (Eyes on the screen!)

First difference: foldl requires one more argument:

- > foldl (+) 0 [1..10]
  55

- > foldl (+) 100 []
  100

- > foldl1 (+) []
  *** Exception: Prelude.foldl1: empty list
foldl1 vs. foldl, continued

Again, the types:

\[
\text{foldl1} :: (a \to a \to a) \to [a] \to a \\
\text{foldl} :: (a \to b \to a) \to a \to [b] \to a
\]

Second difference:

foldl can fold a list of values into a different type! (This is BIG!)

Examples:

\[
> \text{foldl f1 0 ["just","a","test"]} \\
3 \quad \text{-- folded strings into a number}
\]

\[
> \text{foldl f2 "stars: " [3,1,2]} \\
"\text{stars: *****}" \quad \text{-- folded numbers into a string}
\]

\[
> \text{foldl f3 0 [(1,1),(2,3),(5,10)]} \\
57 \quad \text{-- folded two-tuples into a sum of products}
\]
For reference:

\[
\text{foldl} :: (a \to b \to a) \to a \to [b] \to a
\]

Here's another view of the type: (acm\_t stands for accumulator type)

\[
\text{foldl} :: (acm\_t \to elem\_t \to acm\_t) \to acm\_t \to [elem\_t] \to acm\_t
\]

foldl takes three arguments:
  1. A function that takes an accumulated value and an element value and produces a new accumulated value
  2. An initial accumulated value
  3. A list of elements

Recall:

\[
> \text{foldl} f1 0 ["just","a","test"]
3
\]

\[
> \text{foldl} f2 "stars: " [3,1,2]
"stars: *****"
\]
Recall:

\[
> \text{foldl } f1 \ 0 \ ["just","a","test"]
\]

3

Here are the computations that \text{foldl} did to produce that result

\[
> f1 \ 0 \ "just"
\]

1

\[
> f1 \ \text{it} \ "a"
\]

2

\[
> f1 \ \text{it} \ "test"
\]

3

Let's do it in one expression, using backquotes to infix \textit{f1}:

\[
> (0 \ `f1` \ "just") \ `f1` \ "a") \ `f1` \ "test"
\]

3

Note the parallels between these two.

\[
1 + 2 + 3 + 4 \text{ is the reduction we started this section with.}
\]
At hand:
  > f1 0 "just"
  1
  > f1 it "a"
  2
  > f1 it "test"
  3

Problem: Write a function \( f_1 \) that behaves like above.

Starter:
  \[
  f_1 :: \text{acm}_t \rightarrow \text{elem}_t \rightarrow \text{acm}_t \\
  f_1 \text{ acm elem} = \text{ acm + 1}
  \]

Congratulations! You just wrote a folding function!
Recall:

\[
\text{> foldl f2 "stars: " [3,1,2]}
\]

"stars: ******"

Here's what foldl does with f2 and the initial value, "stars: ":

\[
\text{> f2 "stars: " 3}
\]

"stars: ***"

\[
\text{> f2 it 1}
\]

"stars: ****"

\[
\text{> f2 it 2}
\]

"stars: ******"

Write f2, with this starter:

\[
f2 :: \text{acm\_t} \rightarrow \text{elem\_t} \rightarrow \text{acm\_t}
\]

\[
f2 \text{ acm elem} = \text{acm ++ replicate elem '*'}
\]

Look! Another folding function!
Folding abstracts a common pattern of computation:
   A series of values contribute one-by-one to an accumulating result.

The challenge of folding is to envision a function that takes nothing but an accumulated value (acm) and a single list element (elem) and produces a result that reflects the contribution of elem to acm.
   \[
   f2 \text{ acm elem} = \text{acm ++ replicate elem '*'}
   \]

SUPER IMPORTANT: A folding function never sees the list!

We then call foldl with (1) the folding function, (2) an appropriate initial value, and (3) a list of values.
   \[
   \text{foldl f2 "stars: " [3,1,2]}
   \]

foldl orchestrates the computation by making a series of calls to the folding function.
   \[
   > (("stars: " `f2` 3) `f2` 1) `f2` 2
   "stars: ******"
   \]
Recall:

\[
\text{foldl } f3 \ 0 \ [(1,1),(2,3),(5,10)]
\]

57

Here are the calls that foldl will make:

\[
\begin{align*}
&> f3 \ 0 \ (1,1) \\
&1
\\
&> f3 \ it \ (2,3) \\
&7
\\
&> f3 \ it \ (5,10) \\
&57
\end{align*}
\]

Problem: write \( f3 \)!

\[
f3 \ acm \ (a,b) = acm + a \times b
\]
Remember that
\[
\text{foldl } f \ 0 \ [10,20,30]
\]
is like
\[
((0 \ f\ 10) \ f\ 20) \ f\ 30
\]

Here's an implementation of foldl:
\[
\begin{align*}
\text{foldl } f \ \text{acm} \ [ ] &= \text{acm} \\
\text{foldl } f \ \text{acm} \ (\text{elem}:\text{elems}) &= \text{foldl } f \ (\text{acm } f \ \text{elem}) \ \text{elems}
\end{align*}
\]

We can implement foldl1 in terms of foldl:
\[
\begin{align*}
\text{foldl1 } f \ (x1:xs) &= \text{foldl } f \ x1 \ xs \\
\text{foldl1 } _ \ [ ] &= \text{error } "emptyList"
\end{align*}
\]
A non-recursive countEO

Let's use folding to implement our even/odd counter non-recursively.

> countEO [3,4,7,9]
(1,3)

Often, a good place to start on a folding is to **figure out what the initial accumulator value should be**. What should it be for `countEO`?

(0,0)

Given `countEO [3,4,7,9]`, what will be the calls to the folding function?

> f (0,0) 3
(0,1)
> f it 4
(1,1)
> f it 7
(1,2)
> f it 9
(1,3)

Problem: Write the folding function

```haskell
f (evens, odds) elem

| even elem = (evens + 1, odds)
| otherwise = (evens, odds + 1)
```

Problem: Write `countEO` as a `foldl` with `f`

```haskell
countEO nums = foldl f (0,0) nums
```
Folds with anonymous functions

If a folding function is simple, an anonymous function is typically used.

Let's redo our three earlier folds with anonymous functions:

> foldl (\acm _ -> acm + 1) 0 ["just","a","test"]
3

> foldl (\acm elem -> acm ++ replicate elem '*') "stars: " [3,1,2]
"stars: *****"

> foldl (\acm (a,b) -> acm + a * b) 0 [(1,1),(2,3),(5,10)]
57
The counterpart of foldl is foldr. Compare their meanings:

\[
\text{foldl } f \text{ zero } [e_1, e_2, ..., e_N] = (\ldots((\text{zero } \cdot f \cdot e_1) \cdot f \cdot e_2) \cdot f \ldots) \cdot f \cdot e_N
\]

\[
\text{foldr } f \text{ zero } [e_1, e_2, ..., e_N] = e_1 \cdot f \cdot (e_2 \cdot f \ldots (e_N \cdot f \cdot \text{zero})\ldots)
\]

"zero" represents the computation-specific initial accumulated value. Note that with foldl, zero is leftmost; but with foldr, zero is rightmost.

Their types, with long type variables:

\[
\text{foldl} :: (\text{acm} \rightarrow \text{val} \rightarrow \text{acm}) \rightarrow \text{acm} \rightarrow \text{[val]} \rightarrow \text{acm}
\]

\[
\text{foldr} :: (\text{val} \rightarrow \text{acm} \rightarrow \text{acm}) \rightarrow \text{acm} \rightarrow \text{[val]} \rightarrow \text{acm}
\]

Mnemonic aid:

- foldl's folding function has the accumulator on the left.
- foldr's folding function has the accumulator on the right.
Because cons (:) is right-associative, folds that produce lists are often done with `foldr`.

Imagine a function that keeps the odd numbers in a list:

```haskell
> keepOdds [5,4,2,3]
[5,3]
```

Implementation, with `foldr`:

```haskell
keepOdds list = foldr f [] lista
  where
    f elem acm
      | odd elem = elem : acm
      | otherwise = acm
```

What are the calls to the folding function?

```haskell
> f 3 [] -- rightmost first!
[3]
> f 2 it
[3]
> f 4 it
[3]
> f 5 it
[5,3]
```
filter and map with folds?

keepOdds could have been defined using filter:

\[ \text{keepOdds} = \text{filter \ odd} \]

Can we implement filter as a fold?

\[
\text{filter \ predicate \ list} = \text{foldr \ f} [\] \ \text{list}
\]

where

\[
\text{f \ elem \ acm} = \begin{cases} 
\text{predicate \ elem} = \text{elem} : \text{acm} \\
\text{otherwise} = \text{acm}
\end{cases}
\]

How about implementing map as a fold?

\[ \text{map \ f} = \text{foldr} (\ \text{\elem \ acm} \to \text{f \ elem} : \text{acm}) \ [\] \]

Is folding One Operation to Implement Them All?
Recall paired from assignment 3:

\[
> \text{paired } "((()))" \\
\text{True}
\]

Can we implement paired with a fold?

\[
\begin{align*}
\text{counter } (-1) \_ &= -1 \\
\text{counter total } '(' &= \text{total } + 1 \\
\text{counter total } ')' &= \text{total } - 1 \\
\text{counter total } \_ &= \text{total}
\end{align*}
\]

paired \( s = \text{foldl} \ \text{counter} \ 0 \ s \ \text{==} \ 0 \)

Point-free:

\[
\text{paired} = (0==) . \ \text{foldl} \ \text{counter} \ 0
\]
A progression of folds

Let's do a progression of folds related to finding vowels in a string.

First, let's count vowels in a string with a fold:

\[
\text{foldr } (\backslash \text{val acm} \rightarrow \text{acm + if val `elem` "aeiou" then 1 else 0}) 0 \text{ "ate"}
\]

\(2\)

Next, let's produce both a count and the vowels themselves:

\[
\text{foldr } (\backslash \text{letter acm@(n, vows) \rightarrow if letter `elem` "aeiou" then (n+1, letter:vows) else acm}) (0,[]) \text{ "ate"}
\]

\((2,"ae")\)

Note: s/val/letter/g
Finally, let's write a function that produces a list of vowels and their positions:

```haskell
> vowelPositions "Down to Rubyville!"
[('o',1),('o',6),('u',9),('i',13),('e',16)]
```

Solution:

```haskell
vowelPositions s = reverse result
  where (result, _) =
    foldl (\acm@(vows, pos) letter ->
      if letter `elem` "aeiou" then ((letter, pos):vows, pos+1)
      else (vows, pos+1))

([],0) s
```

The `foldl` produces a 2-tuple whose first element is the result, a list, but in reverse order.

This is another function that's a fold with a `wrapper`, like `paired`, earlier.
map vs. filter vs. folding

map:
transforms a list of values
length input == length output

filter:
selects values from a list
0 <= length output <= length input

folding
Input: A list of values and an initial value for accumulator
Output: A value of any type and complexity

True or false?
Any operation that processes a list can be expressed in terms of a fold, perhaps with a simple wrapper.
We can fold a list of anythings into anything!

Far-fetched folding:

Refrigerators in Gould-Simpson to
((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to
[("a", #), ("b", #), ..., ("$", #), ("CMD", #)]

[Backpack] to
(# pens, pounds of paper,
[(title, author, [page #s with the word "computer")])

[Furniture]
to a structure of 3D vertices representing a convex hull
that could hold any single piece of furniture.
User-defined types
A new type can be created with a `data` declaration.

Here's a simple `Shape` type whose instances represent circles or rectangles:

```haskell
data Shape =
    Circle Double  -- just a radius
    Rect Double Double -- width and height
    deriving Show
```

The shapes have dimensions but no position.

`Circle` and `Rect` are *data constructors*.

"`deriving Show"" declares `Shape` to be an instance of the `Show` type class, so that values can be shown using some simple, default rules.

`Shape` is called an *algebraic type* because instances of `Shape` are built using other types.
Instances of \texttt{Shape} are created by calling the data constructors:

\begin{verbatim}
> r1 = Rect 3 4
> r1
Rect 3.0 4.0

> r2 = Rect 5 3

> c1 = Circle 2

> shapes = [r1, r2, c1]

> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]
\end{verbatim}

Lists must be homogeneous—why are both \texttt{Rects} and \texttt{Circles} allowed in the same list?
The data constructors are just functions—we can use all our function-fu with them!

```haskell
> :t Circle
Circle :: Double -> Shape

> :t Rect
Rect :: Double -> Double -> Shape

> map Circle [2,3] ++ map (Rect 3) [10,20]
[Circle 2.0,Circle 3.0,Rect 3.0 10.0,Rect 3.0 20.0]
```
Functions that operate on algebraic types use patterns based on the type's data constructors.

```haskell
area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h
```

Usage:
```haskell
> r1
Rect 3.0 4.0

> area r1
12.0

> shapes
[Rect 3.0 4.0, Rect 5.0 3.0, Circle 2.0]

> map area shapes
[12.0, 15.0, 12.566370614359172]

> sum $ map area shapes
39.56637061435917
```
Let's make the **Shape** type an instance of the **Eq** type class.

What does **Eq** require?

```haskell
> :info Eq

```

```haskell
class Eq a where
    (==) :: a -> a -> Bool
    (=/=) :: a -> a -> Bool
```

We'll say that two shapes are equal if their areas are equal.

```haskell
instance Eq Shape where
    (==) r1 r2 = area r1 == area r2
```

Usage:

```haskell
> Rect 3 4 == Rect 6 2
True

> Rect 3 4 == Circle 2
False
```
Let's see if we can find the biggest shape:
> maximum shapes
No instance for (Ord Shape) arising from a use of `maximum'
Possible fix: add an instance declaration for (Ord Shape)

What's in Ord?
> :info Ord
class Eq a => Ord a where
  compare :: a -> a -> Ordering
  (<) :: a -> a -> Bool
  (>=) :: a -> a -> Bool
  (>) :: a -> a -> Bool
  (<=) :: a -> a -> Bool
  max :: a -> a -> a
  min :: a -> a -> a

Eq a => Ord a requires would-be Ord classes to be instances of Eq. (Done!)

Like == and /= with Eq, the operators are implemented in terms of each other.
Shape, continued

Let's make **Shape** an instance of the **Ord** type class:

```haskell
instance Ord Shape where
  (<) r1 r2 = area r1 < area r2  -- < and <= are sufficient
  (<=) r1 r2 = area r1 <= area r2
```

Usage:

```haskell
> shapes
[Rect 3.0 4.0,Rect 5.0 3.0,Circle 2.0]

> map area shapes
[12.0,15.0,12.566370614359172]

> maximum shapes
Rect 5.0 3.0

> Data.List.sort shapes
[Rect 3.0 4.0,Circle 2.0,Rect 5.0 3.0]
```

Note that we didn't need to write functions like `sumOfAreas` or `largestShape`—we can express those in terms of existing operations
Here's all the **Shape** code: (in `shape.hs`)

```haskell
data Shape =
    Circle Double |
    Rect Double Double deriving Show

area (Circle r) = r ** 2 * pi
area (Rect w h) = w * h

instance Eq Shape where
    (==) r1 r2 = area r1 == area r2

instance Ord Shape where
    (<) r1 r2 = area r1 < area r2
    (<=) r1 r2 = area r1 <= area r2
```

What would be needed to add a **Figure8** shape and a **perimeter** function?

How does this compare to a **Shape/Circle/Rect** hierarchy in Java?
Let's look at the `compare` function:

```haskell
> :t compare
compare :: Ord a => a -> a -> Ordering
```

`Ordering` is a simple algebraic type, with only three values:

```haskell
> :info Ordering
data Ordering = LT | EQ | GT
```

```haskell
> [r1,r2]
[Rect 3.0 4.0,Rect 5.0 3.0]

> compare r1 r2
LT

> compare r2 r1
GT
```
What is \texttt{Bool}?

What do you suppose \texttt{Bool} really is?

\texttt{Bool} is just an algebraic type with two values:
\begin{verbatim}
> :info Bool
data Bool = False | True
\end{verbatim}

\texttt{Bool} is an example of Haskell's extensibility. Instead of being a primitive type, like \texttt{boolean} in Java, it's defined in terms of something more basic.
Here's an algebraic type for a binary tree: (in `tree.hs`)

```haskell
data Tree a = Node a (Tree a) (Tree a)
    | Empty
  deriving Show
```

The `a` is a type variable. Our `Shape` type used `Double` values but `Tree` can hold values of any type!

```haskell
> t1 = Node 9 (Node 6 Empty Empty) Empty
> t1
Node 9 (Node 6 Empty Empty) Empty

> t2 = Node 4 Empty t1
> t2
Node 4 Empty (Node 9 (Node 6 Empty Empty) Empty)
```
Here's a function that inserts values, maintaining an ordered tree:

\[
\begin{align*}
\text{insert } \text{Empty} \, v &= \text{Node} \, v \, \text{Empty} \, \text{Empty} \\
\text{insert } (\text{Node} \, x \, \text{left} \, \text{right}) \, \text{value} &= \\
&\begin{cases}
\text{value} \leq x & (\text{Node} \, x \, \text{insert} \, \text{left} \, \text{value} \, \text{right}) \\
\text{otherwise} & (\text{Node} \, x \, \text{left} \, \text{insert} \, \text{right} \, \text{value})
\end{cases}
\end{align*}
\]

Let's insert some values...

\[
\begin{align*}
> & \text{t} = \text{Empty} \\
> & \text{insert t 5} \\
& \text{Node 5 Empty Empty}
\end{align*}
\]

\[
\begin{align*}
> & \text{insert it 10} \\
& \text{Node 5 Empty (Node 10 Empty Empty)}
\end{align*}
\]

\[
\begin{align*}
> & \text{insert it 3} \\
& \text{Node 5 (Node 3 Empty Empty) (Node 10 Empty Empty)}
\end{align*}
\]

Note that each insertion rebuilds some portion of the tree!
Here's an in-order traversal that produces a list of values:

```haskell
inOrder Empty = []
inOrder (Node val left right) =
  inOrder left ++ [val] ++ inOrder right
```

What's an easy way to insert a bunch of values?

```haskell
> t = foldl insert Empty [3,1,9,5,20,17,4,12]
> inOrder t
[1,3,4,5,9,12,17,20]

> inOrder $ foldl insert Empty "tim korb"
"bikmort"

> inOrder $ foldl insert Empty [Rect 3 4, Circle 1, Rect 1 2]
[Rect 1.0 2.0, Circle 1.0, Rect 3.0 4.0]
```
Here's an interesting type:

```haskell
> :info Maybe
data Maybe a = Nothing | Just a
```

Speculate: What's the point of it?

Here's a function that uses it:

```haskell
> :t Data.List.find
Data.List.find :: (a -> Bool) -> [a] -> Maybe a
```

How could we use it?

```haskell
> find even [3,5,6,8,9]
Just 6

> find even [3,5,9]
Nothing

> case (find even [3,5,9]) of { Just _ -> "got one"; _ -> "oops!"} "oops!"
```
In conclusion...
If we had a whole semester...

If we had a whole semester to study functional programming, here's what might be next:

• More with infinite data structures (like \( x = 1:x \))

• How lazy/non-strict evaluation works

• Implications and benefits of referential transparency (which means that the value of a given expression is always the same).

• Functors (structures that can be mapped over)

• Monoids (a set of things with a binary operation over them)

• Monads (for representing sequential computations)

• Zippers (a structure for traversing and updating another structure)

• And more!

Jeremiah Nelson and Jordan Danford are great local resources for Haskell!
Even if you never use Haskell again...

Recursion and techniques with higher-order functions can be used in most languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:
Functions are "first-class" values; anonymous functions are supported.

C
Pass a function pointer to a recursive function that traverses a data structure.

C#
Excellent support for functional programming with the language itself, and LINQ, too.

Java 8
Lambda expressions are in!

OCaml
"an industrial strength programming language supporting functional, imperative and object-oriented styles" – OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html