
Prolog
CSC 372, Spring 2018

The University of Arizona
William H. Mitchell

whm@cs
CSC 372 Spring 2018, Prolog Slide 1

The name comes from "programming in logic".

Developed at the University of Marseilles (France) in 1972.

First implementation was in FORTRAN and led by Alain Colmeraurer.

Originally intended as a tool for working with natural languages.

Achieved great popularity in Europe in the late 1970s.

Was picked by Japan in 1981 as a core technology for their "Fifth
Generation Computer Systems" project.

Used in IBM's Watson for NLP (Natural Language Processing).

Prolog is a commercially successful language. Many companies have
made a business of supplying Prolog implementations, Prolog consulting,
and/or applications in Prolog.

A little background on Prolog

CSC 372 Spring 2018, Prolog Slide 2

There are no Prolog books on Safari.

Here are two Prolog books that I like:

Prolog Programming in Depth, by Covington, Nute, and Vellino
Available for free at
http://www.covingtoninnovations.com/books/PPID.pdf. That PDF is
scans of pages and is not searchable. This version of that PDF has had a
searchable text layer added.

Programming in Prolog, 5th edition, by Clocksin and Mellish ("C&M")
A PDF is available via a the UA library:
(http://link.springer.com.ezproxy1.library.arizona.edu/book/10.1007%2F978-3-642-55481-0)

A PDF of Dr. Collberg's Prolog slides for 372 is here:
http://cs.arizona.edu/classes/cs372/spring18/CollbergProlog.pdf

There's no Prolog "home page" that I know of.

We'll be using SWI Prolog. More on it soon.

Prolog resources

CSC 372 Spring 2018, Prolog Slide 3

http://www.covingtoninnovations.com/books/PPID.pdf
https://www2.cs.arizona.edu/classes/cs372/spring18/covington/PrologProgrammingInDepth.pdf
http://link.springer.com.ezproxy1.library.arizona.edu/book/10.1007/978-3-642-55481-0
http://cs.arizona.edu/classes/cs372/spring18/CollbergProlog.pdf

Facts and queries

CSC 372 Spring 2018, Prolog Slide 4

You'll eventually see lots of connections between elements of Prolog
and other languages, especially Haskell, but for the moment...

Step one with Prolog

Clear your mind!

CSC 372 Spring 2018, Prolog Slide 5

A Prolog program is a collection of facts, rules, and queries. We'll talk
about facts first.

Here is a small collection of Prolog facts:

$ cat foods.pl (in spring18/prolog/foods.PL)
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

These facts enumerate some things that are food. We might read them in
English like this: "An apple is food", "Broccoli is food", etc.

A fact represents a piece of knowledge that the Prolog programmer deems
to be useful. The name food was chosen by the programmer.

We can say that facts.pl holds a Prolog database or knowledgebase.

Facts and queries

CSC 372 Spring 2018, Prolog Slide 6

At hand:
$ cat foods.pl
food(apple).
food(broccoli).
...

food, apple, and broccoli are atoms, which can be thought of as multi-
character literals. Atoms are not strings! Atoms are atoms!

Here are two more atoms:
'bell pepper'
'Whopper'

An atom can be written without single quotes if it starts with a lower-case
letter and contains only letters, digits, and underscores.

Note the use of single quotes. (Double quotes mean something else!)

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 7

On lectura, we can start SWI Prolog and load a knowledgebase like this:
$ swipl foods.pl ("swipple")
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)
...
?- (?- is the swipl query prompt)

Once the knowledgebase is loaded we can perform queries:
?- food(carrot).
true.

?- food(pickle).
false.

Prolog responds based on the facts it has been given.
• We know that pickles are food but Prolog doesn't know that because there's

no fact that says so.

Prolog queries have one or more goals. The queries above have one goal.

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 8

Here's a fact: food(apple).
Here's a query: food(apple).

Facts and queries have the same syntax.

The meaning of food(apple). depends on where it appears:

• If food(apple). is typed at the interactive ?- prompt, it is a query.

• If the line food(apple). is in foods.pl, it is a fact.

Loading a file that contains a knowledgebase is also known as consulting
the file.

We'll see later that a knowledgebase can contain "rules", too. Facts and
rules are the two types of clauses in Prolog.

Try it: What does the query ?- listing(food). show?

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 9

After a .pl file has been consulted (loaded), we can query make. to cause
any modified files to be reconsulted (reloaded), after editing the file.

$ swipl foods.pl
Welcome to SWI-Prolog ...

?- food(pickle).
false.
[Edit foods.pl in a different window, and add food(pickle).]

?- make.
% /home/whm/372/foods compiled 0.00 sec, 2 clauses
true.

?- food(pickle).
true.

?- make.
true. (foods.pl hasn't changed since the last make)

Sidebar: Reconsulting with make

CSC 372 Spring 2018, Prolog Slide 10

An alternative to specifying a file on the command line is to consult using
a query:

$ swipl
Welcome to SWI-Prolog ...

?- [foods]. (do not include the .pl suffix)
% foods compiled 0.00 sec, 8 clauses
true.

Consulting a file via a query is commonly shown in texts.

The end result of the two methods is the same.

Sidebar: Consulting via query

CSC 372 Spring 2018, Prolog Slide 11

A query like food(apple) asks if it is known that apple is a food.

Speculate: What's the following query asking?

?- food(Edible).
Edible = apple <cursor is here>

Watch what happens when we type semicolons:
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
...
Edible = 'Big Mac'.

What's going on?

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 12

An alternative to specifying an atom, like apple, in a query is to specify a
variable. An identifier that starts with a capital letter is a Prolog variable.

?- food(Edible).
Edible = apple <cursor is here>

• The above query asks, "Tell me something that you know is a food."

• Prolog finds the first food fact, based on file order, and responds with
Edible = apple, using the variable name specified in the query.

• If the user is satisfied with the answer apple, pressing <ENTER>
terminates the query. Prolog responds by printing a period.

?- food(Edible).
Edible = apple . % User hit <ENTER>; Prolog printed the period.

?-

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 13

If for some reason the user is not satisfied with the response apple, an alternative
can be requested by typing a semicolon, without <ENTER>.

?- food(Edible).
Edible = apple ;
Edible = broccoli ;
...
Edible = 'Big Mac'.

?-

Facts are searched in the order they appear in foods.pl. Above, the user exhausts
all the facts by typing semicolons. Prolog prints '.' after the last.

IMPORTANT: A simple set of facts lets us perform two distinct computations:
(1) We can ask if something is a food.
(2) We can ask what all the foods are.

How could we make an analog for those two in Java, Haskell, or Ruby?

Facts and queries, continued

CSC 372 Spring 2018, Prolog Slide 14

For three points of extra credit:
(1) Get a copy of foods.pl and try the examples previously shown.

http://www2.cs.arizona.edu/classes/cs372/spring18/prolog/foods.pl
/cs/www/classes/cs372/spring18/prolog/foods.pl (on lectura)

(2) Create a small database (a file of facts) about something other than food
and demonstrate some queries with it using swipl. Minimum: 5 facts.

(3) Copy/paste a transcript of your swipl session into a plain text file named
eca5.txt.

(4) Before the next lecture starts, turnin 372-eca5 eca5.txt

Needless to say, feel free to read ahead in the slides and show experimentation
with the following material, too.

Experiment with syntax, too. Where can whitespace appear? What can appear in
a fact other than atoms like apple?

Look ahead a few slides for information about installing SWI Prolog on your
machine, or just use swipl on lectura.

Extra credit!

CSC 372 Spring 2018, Prolog Slide 15

Unlike SWI Prolog, most Prolog implementations use "yes" and "no" to
indicate whether an interactive query succeeds. Here's GNU Prolog:

% gprolog
GNU Prolog 1.3.0
| ?- [foods].
compiling foods.pl for byte code...

| ?- food(apple).
yes

| ?- food(pickle).
no

Most Prolog texts, including Covington and C&M use yes/no, too. Just
read "yes" as true. and "no" as false.

Remember: we're using SWI Prolog; GNU Prolog is shown above just for
contrast.

Sidebar: yes and no vs. true. and false.

CSC 372 Spring 2018, Prolog Slide 16

One way to think about a query is that we're asking Prolog if something
can be "proven" using the facts (and rules) it has been given.

The query
?- food(apple).

can be thought of as asking, "Can you prove that apple is a food?"

food(apple). is trivially proven because we've supplied a fact that says
that apple is a food.

The query
?- food(pickle).

produces false. because Prolog can't prove that pickle is a food based on
the database (the facts) we've supplied. (We've given it no rules, either.)

"Can you prove it?"

CSC 372 Spring 2018, Prolog Slide 17

Consider again a query with a variable:

?- food(F). % Remember that an initial capital denotes a variable.
F = apple ;
F = broccoli ;
F = carrot ;
...
F = 'Whopper' ;
F = 'Big Mac'.

?-
• The query asks, "For what value of F can you prove that F is a food?
• If we are not satisfied with the value of F that's presented, a semicolon directs

Prolog to search for another value of F for which food(F) can be proven.

The collection of knowledge at hand, a set of facts about what is a food, is trivial
but Prolog is capable of finding proofs for an arbitrarily complicated body of
knowledge expressed as facts and rules.

"Can you prove it?", continued

CSC 372 Spring 2018, Prolog Slide 18

write is one of many built-in predicates. It outputs a value.
?- write('Hello, world!').
Hello, world!
true.

Speculate: Why was "true." output, too?
Prolog is reporting that it's able to prove write('Hello, world!')!

A side-effect of "proving" write(X) is outputting the value of X!

Speculate: What does Prolog think we're doing when we type make. ?
We're wanting to see if make can be proven!
A side effect of "proving" make is the knowledgebase is reconsulted
(reloaded) if it's been modified.

"Can you prove it?", continued

CSC 372 Spring 2018, Prolog Slide 19

Getting and running SWI Prolog

CSC 372 Spring 2018, Prolog Slide 20

swi-prolog.org is the home page for SWI Prolog.

Lectura:
Just run swipl as shown on slide 8+.
Lectura has version 7.2.3 but that's fine for us.

Windows:
Go to http://swi-prolog.org/download/stable

The 32-bit version will be fine for our purposes:
SWI-Prolog 7.6.4 for Microsoft Windows (32 bit)
• Pick Typical as the Install type
• Use .pl for file extension (or .pro, to avoid a collision with

Perl)

Getting SWI Prolog

CSC 372 Spring 2018, Prolog Slide 21

TODO:
if "[FATAL ERROR: Could not find system resources]"

env -i HOME=$HOME swipl

http://swi-prolog.org/download/stable

Assuming you associated the .pl suffix with SWI Prolog, opening a .pl file
with File Explorer causes SWI Prolog to consult the file.

After editing a file in another window, query ?- make. to reconsult
it.

Running SWI Prolog on Windows

CSC 372 Spring 2018, Prolog Slide 22

macOS:
Go to http://swi-prolog.org/download/stable

Get SWI-Prolog 7.6.4 for MacOSX 10.6 (Snow Leopard) and
later on intel

You'll need XQuartz 2.7.11 for development tools that use graphics,
the handiest of which is perhaps the graphical tracer, launched with
the gtrace predicate. (We'll see gtrace later.)

• If you install XQuartz, set your firewall to block incoming
connections for X11.bin.

Getting SWI Prolog for macOS

CSC 372 Spring 2018, Prolog Slide 23

http://swi-prolog.org/download/stable

This alias in my ~/.bashrc lets me run swipl from Bash:
alias swipl='/Applications/SWI-Prolog.app/Contents/MacOS/swipl'

If you get an XQuartz error like the following,
$ swipl
?- help(write).
ERROR: /Applications/SWI-Prolog.app/Contents/swipl/xpce
/prolog/boot /pce_principal.pl:155:

dlopen(/Applications/SWI-Prolog.app/Contents/swipl/lib
/x86_64darwin15.6.0/pl2xpce.dylib, 1): Library not loaded: /opt
/X11/lib/libfontconfig.1.dylib [...lots more...]

use the following alias instead:
alias swipl="DISPLAY= /Applications/SWI-Prolog.app/
Contents/MacOS/swipl"

(Sets the environment variable DISPLAY to an empty string for this
invocation of swipl.)

SWI Prolog on macOS

CSC 372 Spring 2018, Prolog Slide 24

a space!

Getting help for predicates
To get help for a predicate, query help(predicate-name). On Windows you'll
see:

OS X will be similar, assuming you've got XQuartz installed. If not, or you're
using the swipl alias with "DISPLAY= ...", help will be text-based.

Help will be text based on lectura, but if you login to lectura from a Linux
machine in the CS labs with "ssh -X ...", you'll get window-based help there, too.

We'll later learn the meanings of +, -, ? et al. in predicate documentation.
CSC 372 Spring 2018, Prolog Slide 25

On all platforms a control-D or querying halt. exits SWI Prolog.
$ swipl
...
?- halt.
$

A control-C while a query is executing will produce an Action ... ?
prompt. Then typing an "h" produces a textual menu:

?- food(X).
X = apple ^C
Action (h for help) ? h
Options:
a: abort b: break
c: continue e: exit
g: goals s: C-backtrace
t: trace p: Show PID
h (?): help

Use a to return to Prolog's query prompt; e exits to Bash.

Getting out of SWI Prolog

CSC 372 Spring 2018, Prolog Slide 26

Building blocks

CSC 372 Spring 2018, Prolog Slide 27

We've seen that apple, food, and 'Big Mac' are examples of atoms.

Typing an atom as a query doesn't do what we might expect!

?- 'just\ntesting'.
ERROR: toplevel: Undefined procedure: 'just\ntesting'/0
(DWIM could not correct goal)

But we can output an atom with write.

?- write('just\ntesting').
just
testing
true.

Atoms composed of certain non-alphabetic characters do not require quotes:
?- write(#$&*+-./:<=>?^~\).
#$&*+-./:<=>?^~\
true.

Atoms

CSC 372 Spring 2018, Prolog Slide 28

We can use the predicate atom to query whether something is an atom:

?- atom(apple).
true.

?- atom('apple sauce').
true.

?- atom(Ant).
false.

?- atom(atom).
true.

How can we read atom(apple) with a "Can you prove it?" mindset?
"Can you prove apple is an atom?"

Atoms, continued

CSC 372 Spring 2018, Prolog Slide 29

Integer and floating point literals are numbers.
?- number(10).
true.

?- number(3.4).
true.

?- number('100').
false.

?- integer(1e2).
false.

Speculate: Are numbers atoms?
?- atom(100).
false.

Numbers

CSC 372 Spring 2018, Prolog Slide 30

Some arithmetic in Prolog:

?- 3 + 4.
ERROR: toplevel: Undefined procedure: (+)/2

?- y = 4 + 5.
false.

?- Y = 4 + 5.
Y = 4+5.

?- write(3 + 4 * 5).
3+4*5
true.

We'll learn about arithmetic later. J

Numbers, continued

CSC 372 Spring 2018, Prolog Slide 31

Here are some more examples of facts: (imagine these lines are in a file)
color(sky, blue). color(grass, green).

odd(1). odd(3). odd(5).

number(one, 1, 'English').
number(uno, 1, 'Spanish').
number(dos, 2, 'Spanish').

We can say that the facts above define three predicates: color, odd, and
number.

"The collection of clauses for a given predicate is called a procedure."––C&M

It's common to refer to predicates using predicate indicators like color/2, odd/1,
and number/3, where the number following the slash is the number of terms.

number/3 above doesn't collide with the built-in predicate number/1 we saw
earlier.

Predicates, terms, and structures

CSC 372 Spring 2018, Prolog Slide 32

A term is one of the following: atom, number, structure, variable.

Structures consist of a functor (always an atom) followed by one or more terms
enclosed in parentheses.
Here are examples of structures:

color(grass, green)

odd(1)

'number'('uno', 1, 'Spanish') % 's not needed around number and uno

lunch(sandwich(ham), fries, drink(coke))

What are the structure functors?
color, odd, number, and lunch, respectively.

What are sandwich(ham) and drink(coke)?
Terms of the lunch structure that are structures themselves.

A structure can serve as a fact or a goal, depending on the context.

Predicates, terms, and structures, continued

CSC 372 Spring 2018, Prolog Slide 33

Structures can have symbolic functors:
+(3,4)
+(3,*(4,5))
\/(x,y)

When Prolog encounters an expression with operators, it builds a
structure. display/1 can be used to examine such structures.

?- display(a+b*c+d^2).
+(+(a,*(b,c)),^(d,2))
true.

Some predicates evaluate structures but most do not, and simply treat the
structure as a value.

Structures with symbolic functors

+

+ ^

a

b

*

c

d 2

CSC 372 Spring 2018, Prolog Slide 34

Query help(op) to see the predefined operators and precedences. It shows this:

1200	xfx	-->, :-	
1200	fx	:-, ?-	
1100	xfy	;,	
1050	xfy	->, *->	
1000	xfy	,	
990	xfx	:=	
900	fy	\+	
700	xfx	<, =, =.., =@=, \=@=, =:=, =<, ==,	
		=\=, >, >=, @<, @=<, @>, @>=, \=, \==,	
		as, is, >:<, :<	
600	xfy	:	
500	yfx	+, -, /\, \/, xor	
500	fx	?	
400	yfx	*, /, //, div, rdiv, <<, >>, mod, rem	
200	xfx	**	
200	xfy	^	
200	fy	+, -, \	
100	yfx	.	
____1_	_fx__	$_______________________________________	

Sidebar: op/3

• Left column is precedence; 1200 is
lowest.

• xfy, yfx, fx, fy etc. are
specifications of associativity and
infix/prefix/postfix forms.

CSC 372 Spring 2018, Prolog Slide 35

Challenge: Using only display, figure
out the difference between xfx, xfy, and
yfx. Mail your findings to 372s18.

Operators can be created with op/3.
?- op(150,'xf',--). % precedence 150 postfix operator
true.

?- op(200, xfy, @).
true.

The f in xf and xfy (above) specify where the functor can appear wrt. the
operands.

?- display(x @ y @ zz--).
@(x,@(y,--(zz)))
true.

op/3, continued

CSC 372 Spring 2018, Prolog Slide 36

Most operators are not predicates—they can't be a goal in a query.
?- +(3,4).
ERROR: toplevel: Undefined procedure: (+)/2 ...

But a few operators are predicates. Two are \== and ==. Examples:
?- \==(this,that). % prefix form
true.

?- 3 == 3. % infix form
true.

?- 3 == 2+1.
false.

Reason: The number 3 is not equal to the structure 2+1.

How can we characterize the value produced by == and \==?
They don't produce a value! They simply succeed or fail.

Operator predicates

CSC 372 Spring 2018, Prolog Slide 37

In conventional languages there are expressions.

A conventional REPL evaluates expressions and prints the value produced.

At swipl's query prompt we can see if one or more goals can be proven.

In the process of trying to prove all the goals, side effects like output may
occur and variables may be instantiated but the only result of evaluating
goals is success or failure.

So is swipl a REPL?

Is swipl a REPL?

CSC 372 Spring 2018, Prolog Slide 38

More queries

CSC 372 Spring 2018, Prolog Slide 39

Here's a new knowledgebase.

A query about green things:

?- color(Thing, green).
Thing = grass ;
Thing = broccoli ;
Thing = lettuce.

How can we state it in terms of "Can you prove...?"
For what things can you prove that their color is green?

More queries

$ cat foodcolor.pl
...food facts not shown...
color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

CSC 372 Spring 2018, Prolog Slide 40

How could we query for each thing and its color?
?- color(Thing,Color).
Thing = sky,
Color = blue ;

Thing = dirt,
Color = brown ;

Thing = grass,
Color = green ;

Thing = broccoli,
Color = green ;
...

How can we state it in terms of "Can you prove...?"
For what pairs of Thing and Color can you prove color(Thing,Color)?

More queries

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

CSC 372 Spring 2018, Prolog Slide 41

A query can contain more than one goal.

Here's a query that directs Prolog to find a
food that is green:

?- food(F), color(F,green).
F = broccoli ;
F = lettuce ;
false.

The query has two goals separated by a
comma, which indicates conjunction—both
goals must succeed in order for the query to
succeed.

How could we state with ~"can you prove"?
"Is there an F for which you can prove
both food(F) and color(F, green)?

Queries with multiple goals
$ cat foodcolor.pl
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(orange,orange).
color(rice, white).

CSC 372 Spring 2018, Prolog Slide 42

Let's see if any foods are blue:
?- color(F,blue), food(F).
false.

Note that the ordering of the goals was
reversed. How might the order make a
difference?
What if 100 food facts but 1000 color facts?

Goals are always tried from left to right.

What's the following query asking?
?- food(F), color(F,F).

Is there a food whose name is its color?

How about this one?
?- food(F), color(F,red), color(F,green).

Is there a food that is red and green?

Queries with multiple goals, continued
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(orange, orange).
color(rice, white).

CSC 372 Spring 2018, Prolog Slide 43

Which of the following is meant by color(apple,red)?

All apples are red.

Some apples are red.

Some apples have a red area.

Some apples have a red area at some point in time.

A red apple has existed.

Facts (and rules) are abstractions that we create for the purpose(s) at hand.

An abstraction emphasizes the important and suppresses the irrelevant.

Don't get bogged down by trying to perfectly model the real world!

Sidebar: The meaning of a fact

CSC 372 Spring 2018, Prolog Slide 44

Write these queries:

Who likes baseball?
?- likes(Who, baseball).

Who likes a food?
?- food(F), likes(Who,F).

Who likes green foods?
?- food(F), color(F,green),
likes(Who,F).

Who likes foods with the same color as
foods that Mary likes?

?- likes(mary,F), food(F),
color(F, C), food(F2), color(F2,C),
likes(Who,F2).

Even more queries

$ cat fcl.pl
food(apple).
...more food facts...

color(sky, blue).
...more color facts...

likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

CSC 372 Spring 2018, Prolog Slide 45

Are any two foods the same color?
?- food(F1), food(F2), color(F1,C), color(F2,C).
F1 = F2, F2 = apple, % an apple is the same color as an apple(!)
C = red ;

F1 = F2, F2 = broccoli,
C = green ;
...

How can we avoid those self-matches?
?- food(F1), food(F2), F1 \== F2, color(F1,C), color(F2,C).
F1 = broccoli,
F2 = lettuce,
C = green ;

F1 = carrot,
F2 = C, C = orange ;
...

Even more queries, continued

CSC 372 Spring 2018, Prolog Slide 46

A given body of knowledge may be represented in a variety of ways using
Prolog facts. Here is another way to represent the food and color
information.

What are orange foods?
?- thing(Name, orange, yes).
Name = carrot ;
Name = orange.

What things aren't foods?
?- thing(Name, _, no).
Name = dirt ;
Name = grass ;
Name = sky.

The underscore designates an anonymous variable:
• Any value matches
• We don't want to have the value associated with a variable
• No value is displayed

Alternative representations

thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(orange, orange, yes).
thing(rice, white, yes).
thing(sky, blue, no).

CSC 372 Spring 2018, Prolog Slide 47

What is green that is not a food?
?- thing(N,green,no).
N = grass ;
false.

What color is lettuce?
?- thing(lettuce,C,_).
C = green.

What foods are the same color as lettuce?
?- thing(lettuce,C,_), thing(N,C,yes), N \== lettuce.
C = green,
N = broccoli ;
false.

Is thing/3 better or worse than food/1 and color/2 combo?
• If you've had 460, how would thing/3 be described?

It can be said that thing/3 is a denormalized representation.

Alternate representation, continued
thing(apple, red, yes).
thing(broccoli, green, yes).
thing(carrot, orange, yes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, yes).
thing(orange, orange, yes).
thing(rice, white, yes).
thing(sky, blue, no).

CSC 372 Spring 2018, Prolog Slide 48

Consider this knowledgebase:
x(just(testing,date(5,14,2014))).
x(10).
x(10,20).

What will the following queries produce?
?- x(V).
V = just(testing, date(5, 14, 2014)) ;
V = 10.

?- x(A,B).
A = 10,
B = 20.

Having facts with a mix of types and arities is not a problem.

Predicate/goal mismatches

CSC 372 Spring 2018, Prolog Slide 49

Our knowledgebase as a one-liner:
x(just(testing,date(5,14,2014))). x(10). x(10, 20).

Here are some more queries:
?- x(abc).
false.

?- x([1,2,3]). % A list...
false.

?- x(a(b)).
false.

The goals in the queries have terms that are an atom, a list, and a structure.
There's no indication that those queries are fundamentally mismatched
with respect to the terms in the facts.

Prolog says "false" in each case because nothing it knows about aligns
with anything it's being queried about.

Predicate/goal mismatches, continued

CSC 372 Spring 2018, Prolog Slide 50

Our knowledgebase:
x(just(testing,date(5,14,2014))). x(10). x(10, 20).

Speculate: What will the following produce?

?- x(little,green,apples).
ERROR: Undefined procedure: x/3
ERROR: However, there are definitions for:
ERROR: x/1
ERROR: x/2

What does the following tell us?
?- write(a,b).
ERROR: stream `a' does not exist

We've seen write/1 but there must also be a write/2.

Predicate/goal mismatches, continued

CSC 372 Spring 2018, Prolog Slide 51

Unification

CSC 372 Spring 2018, Prolog Slide 52

Before talking about unification let's note that == and \== are tests.
• They are roughly equivalent to Haskell's == and /=, and Ruby's == and !=.

?- abc == 'abc'.
true.

?- 3 \== 1 + 2.
true.

Just like comparing tuples and lists in Haskell, and arrays in Ruby, structure
comparisons in Prolog are "deep". Two structures are equal if they have the same
functor, the same number of terms, and the terms are equal. (Recursive def'n.)

?- 3 + 4 == 4 + 3.
false.

?- abc(3 + 4 * 5) == abc(+(3,4*5)).
true.

== and \== are tests

CSC 372 Spring 2018, Prolog Slide 53

The = operator, which we'll read as "unify" or "unify with", provides one
way to do unification.

If a variable doesn't have a value it is said to be uninstantiated. At the
start of a query all variables are uninstantiated.

If we unify an uninstantiated variable with a value, the variable is
instantiated and unified with that value.

?- A = 10, write(A).
10
A = 10.

It can be read as "Unify A with 10 and write A."

That might look like assignment but it is not assignment!

Alternate reading: "Can you unify A with 10 and prove write(A)?"

Unification

CSC 372 Spring 2018, Prolog Slide 54

At hand:

?- A = 10, write(A).
10
A = 10.

An instantiated variable can be unified with a value only if the value equals
(==) whatever value the variable is already unified with.

?- A = 10, write(A), A = 20, write(A).
10
false.

The unification of the uninstantiated A with 10 succeeds, and write(A)
succeeds, but unification of A with 20 fails because 10 == 20 fails.

The query fails because its third goal, the unification A = 20, fails.

In essence the query is saying A must be 10 and A must be 20. Impossible!

Unification, continued

CSC 372 Spring 2018, Prolog Slide 55

The lifetime (scope) of a variable is the query in which it is instantiated.

?- A = 10, B = 20, write(A), write(', '), write(B).
10, 20
A = 10,
B = 20.

If we use A, B, and (out of the blue) C in the next query, we find they are
uninstantiated:

?- write(A), write(', '), write(B), write(', '), write(C).
_G1571, _G1575, _G1579
true.

Writing the value of an uninstantiated variable produces _G<NUMBER>.
• swipl version difference: latest version produces _<NUMBER>

Unification, continued

CSC 372 Spring 2018, Prolog Slide 56

Consider the following:
?- A = B, C = 10, C = B, write(A).
10
A = B, B = C, C = 10.

The code above...
Unifies A and B (but both are still uninstantiated).
Unifies C and 10, instantiating C.
Unifies C and B.

Because A and B are already unified this also instantiates A and B
to 10.

How will an initial instantiation for A affect the query?
?- A = 3, A = B, C = 10, C = B, write(A).
false.

Try it: See if swapping the operands of = makes a difference.

Unification, continued

CSC 372 Spring 2018, Prolog Slide 57

• With uninstantiated variables, unification has a behavior when unifying
with values that resembles conventional assignment.

• With instantiated variables, unification has a behavior when unifying
with values that resembles comparison.

• Unification of uninstantiated variables seems like aliasing of some sort.

However, do not think of unification as assignment, comparison and
aliasing rolled into one. Think of unification as a distinct new concept!

Another way to think about unification:
Unification is not a question or an action, it is a demand!

X = 3 is a goal that demands that X must be 3. If not, the goal fails.

Yet another:
Unifications create constraints that Prolog upholds.

Unification, continued

CSC 372 Spring 2018, Prolog Slide 58

Unification works with structures, too.
?- x(A, B) = x(10,20).
A = 10,
B = 20.

?- f(X, Y, Z) = f(just, testing, f(a,b,c+d)).
X = just,
Y = testing,
Z = f(a, b, c+d).

?- f(X, Y, f(P1,P2,P3)) = f(just, testing, f(a,b,c+d)).
X = just,
Y = testing,
P1 = a,
P2 = b,
P3 = c+d.

Unification with structures

CSC 372 Spring 2018, Prolog Slide 59

TODO: See notes

?- pair(A, A) = pair(3,5).
false.

?- pair(A, A) = pair(3,3).
A = 3.

?- lets(r,a,d,a,r) = lets(C1,C2,C3,C2,C1).
C1 = r,
C2 = a,
C3 = d.

?- f(X,20,Z) = f(10,Y,30), New = f(Z,Y,X).
X = 10,
Z = 30,
Y = 20,
New = f(30, 20, 10).

Unification with structures, continued

CSC 372 Spring 2018, Prolog Slide 60

Consider again this interaction:
?- food(F).
F = apple ;
F = broccoli ;
...

The query food(F) causes Prolog to search for facts that unify with food(F).

Prolog is able to unify food(apple) with food(F). It then shows that F is unified
with apple.

When the user types semicolon, F is uninstantiated and the search for another fact
to unify with food(F) resumes with the fact following food(apple).

food(broccoli) is unified with food(F), F is unified with broccoli, and the user
is presented with F = broccoli.

The process continues until Prolog has found all the facts that can be unified with
food(F) or the user is presented with a value for F that is satisfactory.

Unification with structures, continued

CSC 372 Spring 2018, Prolog Slide 61

Instead of saying a variable is uninstantiated, we can say that it is a free
variable or an unbound variable.

Similarly, we can say "X is bound" instead of "X is instantiated".

A term can be characterized as being ground if it contains no
uninstantiated (free) variables.

?- ground(coffee).
true.

?- ground(coffee(Beans)).
false.

?- A=10, B=7, ground(A+B+C*3).
false.

Alternate terminology

CSC 372 Spring 2018, Prolog Slide 62

Query evaluation mechanics

CSC 372 Spring 2018, Prolog Slide 63

Goals, like food(fries) or color(What, Color) can be thought of as
having four ports:

In the Active Prolog Tutor, Dennis Merritt describes the ports in this way:

call: Using the current variable bindings, begin to search for the
clauses which unify with the goal.

exit: Set a place marker at the clause which satisfied the goal.
Update the variable table to reflect any new variable bindings.
Pass control to the right.

redo: Undo the updates to the variable table [that were made by this
goal]. At the place marker, resume the search for a clause which
unifies with the goal.

fail: No (more) clauses unify, pass control to the left.

Understanding query execution with the port model

call
fail redo

exit
goal

call
fail redo

exit
goal2

CSC 372 Spring 2018, Prolog Slide 64

Example:
?- food(X).
X = apple ;
X = broccoli ;
X = carrot ;
X = lettuce ;
X = rice.

?-

The port model, continued

call

fail redo

exit

food(X)

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

CSC 372 Spring 2018, Prolog Slide 65

trace/0 activates "tracing" for a query.

?- trace, food(X).
Call: (7) food(_G1571) ? creep
Exit: (7) food(apple) ? creep

X = apple ;
Redo: (7) food(_G1571) ? creep
Exit: (7) food(broccoli) ? creep

X = broccoli ;
Redo: (7) food(_G1571) ? creep
Exit: (7) food(carrot) ? creep

The port model, continued

call

fail redo

exit

food(X)

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

Tracing shows the transitions through each port. The first transition is a call to
the goal food(X). The value shown, _G1571, stands for the uninstantiated
variable X. We next see that goal being exited, with X instantiated to apple.
The user isn't satisfied with the value, and by typing a semicolon forces the redo
port to be entered, which causes X, previously bound to apple, to be
uninstantiated. The next food fact, food(broccoli) is tried, instantiating X to
broccoli, exiting the goal, and presenting X = broccoli to the user. (etc.)

CSC 372 Spring 2018, Prolog Slide 66

The port model, continued

call

fail food(F) redo/fail likes(Who,F)

exit/call

redo/fail color(F,green)

exit/call exit

redo

Who likes green foods?
?- food(F), likes(Who,F), color(F,green).

food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(orange).
food(rice).

color(sky, blue).
color(dirt, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).

likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

Next: Trace it! (Use ?- nodebug. when done.)
CSC 372 Spring 2018, Prolog Slide 67

We've seen that write/1 always succeeds and, as a side effect, outputs the
term it is called with.

?- write(apple), write(' '), write(pie).
apple pie
true.

writeln/1 is similar, but appends a newline.
?- writeln(apple), writeln(pie).
apple
pie
true.

nl/0 outputs a newline. (Note the blank lines before and after middle.)
?- nl, writeln(middle), nl.

middle

true.

Producing output

CSC 372 Spring 2018, Prolog Slide 68

The predicate format/2 is conceptually like printf in Ruby, C, and others.
?- format('x = ~w\n', 101).
x = 101
true.

~w is one of many format specifiers. The "w" indicates to output the
value using write/1. Use help(format/2) to see all the specifiers. (Don't
forget the /2!)

If more than one value is to be output, the values must be in a list.
?- format('label = ~w, value = ~w, x = ~w\n', ['abc', 10, 3+4]).
label = abc, value = 10, x = 3+4
true.

We'll see more on lists later but for now note that we make a list by
enclosing zero or more terms in square brackets. Lists are heterogeneous,
like Ruby arrays.

Producing output, continued

CSC 372 Spring 2018, Prolog Slide 69

A first attempt to print all the foods:

?- food(F), format('~w is a food\n', F).
apple is a food
F = apple ;
broccoli is a food
F = broccoli ;
carrot is a food
F = carrot ;
...

Ick—we have to type semicolons to cycle through them!

Any ideas?

Producing output, continued

CSC 372 Spring 2018, Prolog Slide 70

Second attempt: Force alternatives by specifying a goal that always fails.
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
carrot is a food
...

This query is a loop! food(F) unifies with the first food fact and instantiates F to
its term, the atom apple. Then format is called, printing a string with the value
of F interpolated. 1 == 2 always fails. Control then moves left, into the redo port
of format. format doesn't erase the output but it doesn't have an alternatives
either, so it fails, causing the redo port of food(F) to be entered. F is
uninstantiated and food(F) is unified with the next food fact in turn, instantiating
F to broccoli. The process continues, with control repeatedly moving back and
forth until all the food facts have been tried.

Producing output, continued

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

CSC 372 Spring 2018, Prolog Slide 71

At hand:
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
...

The activity of moving leftwards through the goals is known as
backtracking.

We might say, "The query gets a food F, prints it, fails, and then
backtracks to try the next food."

Prolog does not analyze things far enough to recognize that it will never be
able to "prove" what we're asking. Instead it goes through the motions of
trying to prove it and as side-effect, we get the output we want. This is a
key idiom of Prolog programming.

Backtracking

call

fail food(F) redo/fail format(...)

exit/call

redo/fail 1 == 2

exit/call exit

redo

CSC 372 Spring 2018, Prolog Slide 72

At hand:
?- food(F), format('~w is a food\n', F), 1 == 2.
apple is a food
broccoli is a food
...
false.

Predicates respond to "redo" in various ways.

• "redo" for food(F) simply uninstantiates (unbinds) F and searches for another
food clause to unify with and instantiate F again. If there is one, the goal exits
(control goes to the right). If not, it fails (control goes to the left).

• For format('~w is a food\n', F) "redo" causes the goal to fail, but the output
isn't somehow retracted. (!)

• We'll see other kinds of responses, too, but "redo" always causes any previous
unifications to be undone.

Backtracking, continued

CSC 372 Spring 2018, Prolog Slide 73

The predicate fail/0 always fails. It's important to understand that an
always-failing goal like 1 == 2 produces exhaustive backtracking but in
practice we'd use fail instead:

?- food(F), format('~w is a food\n', F), fail.
apple is a food
broccoli is a food
...
rice is a food
false.

In terms of the four-port model, think of fail as a box whose call port is
"wired" to its fail port:

The predicate fail

call

fail food(F) redo/fail format(...)

exit/call

redo/fail fail

exit/call

CSC 372 Spring 2018, Prolog Slide 74

The built-in predicate between/3 can be used to instantiate a variable to
a sequence of integer values:

?- between(1,3,X).
X = 1 ;
X = 2 ;
X = 3.

Problem: Print this sequence:
000
001
010
011
100
101
110
111

?- between(0,1,A),between(0,1,B),between(0,1,C),
format('~w~w~w\n', [A,B,C]), fail.

Sidebar: between

How about
this one?

10101000
10101001
10101010
10101011
10111000
10111001
10111010
10111011

CSC 372 Spring 2018, Prolog Slide 75

Rules

CSC 372 Spring 2018, Prolog Slide 76

Facts are one type of Prolog clause. The other type of clause is a rule.

Here's a rule:
increasing(A,B,C) :- A < B, B < C.

If all the goals in a rule are true, then the rule is true.

Usage:
?- increasing(2,5,10).
true.

?- increasing(5,10,3).
false.

Rule anatomy:

Rule basics

CSC 372 Spring 2018, Prolog Slide 77

increasing(A,B,C) :- A < B, B < C.

body

neck

head

A rule:
increasing(A,B,C) :- A < B, B < C.

A query that uses the rule:
?- increasing(2,5,10).

As part of query processing, the terms in the head of the rule are unified
with terms in the query.
• Looks like parameter passing in other languages.
• But the underlying mechanism is unification, with all that implies.

The scope of the variables A, B, and C is only this rule.

Rule basics, continued

CSC 372 Spring 2018, Prolog Slide 78

Problem: Write a rule that tells Prolog how to prove that three values are
in decreasing order.

Usage:
?- decreasing(10,3,2).
true.

?- decreasing(10,3,12).
false.

Solution:
decreasing(A,B,C) :- increasing(C,B,A).

For reference:
increasing(A,B,C) :- A < B, B < C.

increasing/3 and decreasing/3 are in spring18/prolog/rules2.pl

Rule basics, continued

CSC 372 Spring 2018, Prolog Slide 79

Prolog borrows from the idea of Horn Clauses in symbolic logic. A
simplified definition of a Horn Clause is that it represents logic like this:

If Q1, Q2, Q3, ..., Qn, are all true, then P is true.

In Prolog we might represent a three-element Horn clause with this rule:

p :- q1, q2, q3.

The query

?- p.

which asks Prolog to "prove" p, causes Prolog to try and prove q1, then
q2, and then q3. If it can prove all three, and can therefore prove p,
Prolog will respond with true. (If not, then false.)

Note that this is an abstract example—we haven't defined the predicates
q1/0 et al.

Sidebar: Horn Clauses

CSC 372 Spring 2018, Prolog Slide 80

SKIP

increasing/3 and decreasing/3 are predicates with one clause.

A predicate can have many clauses. Prolog will try each clause in turn.

Problem: Write a predicate ordered(A,B,C) that's true iff its three terms
are in either increasing or decreasing order.

Examples:
?- ordered(1,2,3).
true .

?- ordered(7,3,5).
false.

Solution:
ordered(A,B,C) :- increasing(A,B,C).
ordered(A,B,C) :- decreasing(A,B,C).

Rule basics, continued

CSC 372 Spring 2018, Prolog Slide 81

Again:
A predicate can have many clauses. Prolog will try each clause in turn.

Recall food/1:
food(apple).
food(broccoli).
...

For reference:
ordered(A,B,C) :- increasing(A,B,C).
ordered(A,B,C) :- decreasing(A,B,C).

The same mechanism makes...
?- food(F). cycle through the food/1 facts
?- ordered(3,1,5) try both increasing(3,1,5) and decreasing(3,1,5).

Rule basics, continued

CSC 372 Spring 2018, Prolog Slide 82

Here's a collection of values expressed as facts:
v(10). v(7). v(12). v(3).

Problem: Write a query that will print all combinations of those values that
are in increasing order:

?-

7 10 12
3 10 12
3 7 10
3 7 12
false.

How does it work?

Problem: Write the above in Java, Haskell, or Ruby.

Example: finding increasing sequences

CSC 372 Spring 2018, Prolog Slide 83

v(A), v(B), v(C), increasing(A,B,C),
format('~w ~w ~w~n', [A,B,C]), fail.

Problem: Package the preceding query as a predicate all_incr/0:
?- all_incr.
Increasing:
7 10 12
3 10 12
3 7 10
3 7 12
true.

Solution: (almost)
all_incr :-

writeln('Increasing:'),
v(A), v(B), v(C),
increasing(A,B,C),
format('~w ~w ~w~n', [A,B,C]),
fail.

Example, continued

CSC 372 Spring 2018, Prolog Slide 84

Execution:
?- all_incr.
Increasing:
7 10 12
3 10 12
3 7 10
3 7 12
false.

What's wrong, and why?

In rules2.pl:
all_incr :- writeln('Increasing:'), v(A), v(B), v(C),

increasing(A,B,C), format('~w ~w ~w~n', [A,B,C]), fail.

Execution:
?- all_incr.
...
false.

all_incr's rule cannot be proven but in the process of trying prove it, the
desired lines are printed.

How can we get both the output we want and a query that succeeds?

Solution:
all_incr :- writeln('Increasing:'), ...the rest..., fail.
all_incr.

Example, continued

CSC 372 Spring 2018, Prolog Slide 85

At hand:
all_incr :- writeln('Increasing:'), ...the rest..., fail.
all_incr.

Remember: Each clause of a predicate is tried in turn.

What happens:
• We do the query ?- all_incr.
• The first clause of all_incr ultimately fails but output is produced as a

side-effect.
• The second clause of all_incr, a fact, is trivially proven.

Example, continued

CSC 372 Spring 2018, Prolog Slide 86

Write a predicate p(A, R, B) that tests whether the relationship R holds
between A and B.

Usage:
?- p(3, lt, 4). % The atom lt represents "less than"
true .

?- p(5,gt,3).
true.

?- p(2,eq,1).
false.

Solution:
p(A, lt, B) :- A < B.
p(A, eq, B) :- A == B.
p(A, gt, B) :- A > B.

Problem

CSC 372 Spring 2018, Prolog Slide 87

At hand:
p(A, lt, B) :- A < B.
p(A, eq, B) :- A == B.
p(A, gt, B) :- A > B.

What else can we do with p/3 besides seeing if a particular relationship
holds?

?- p(3,R,4).
R = lt .

?- p(3,X,2).
X = gt.

Problem, continued

CSC 372 Spring 2018, Prolog Slide 88

At hand: (in rules2.pl)
p(A, lt, B) :- A < B.
p(A, eq, B) :- A == B.
p(A, gt, B) :- A > B.

Prolog predicates either succeed or fail. There's no notion of returning a
value.

Instead, predicates that need to produce a result use instantiation, and
underlying it, unification.

Given
?- p(4,R,3).

Prolog responds with
R = gt.

meaning "I can prove p(4,R,3) if R is gt."

We can then use R in a later goal in the same query:
?- p(4,R,3), ..., q(R), ...

Instantiation as "return"

CSC 372 Spring 2018, Prolog Slide 89

Recall between/3:
?- between(1,3,X).
X = 1 ;
X = 2 ;
X = 3.

A new rule:
nl_when(N, When) :- N == When, nl.
nl_when(_,_).

What does the following query do?
?- between(1,3,X), between(1,3,Y), p(X,R,Y),

format('~w ~w ~w, ',[X,R,Y]), nl_when(Y,3), fail.
1 eq 1, 1 lt 2, 1 lt 3,
2 gt 1, 2 eq 2, 2 lt 3,
3 gt 1, 3 gt 2, 3 eq 3,
false.

Instantiation as "return", continued

CSC 372 Spring 2018, Prolog Slide 90

Some examples of instantiation as "return" with built-in predicates:
?- atom_length(testing, Len).
Len = 7.

?- upcase_atom(testing, Caps).
Caps = 'TESTING'.

?- char_type('A', T).
T = alnum ;
T = alpha ;
...
T = upper(a) ;
...
T = xdigit(10).

Instantiation as "return", continued

CSC 372 Spring 2018, Prolog Slide 91

Some predicates will fill in uninstantiated terms.

?- term_to_atom(date(10,1,1891), A).
A = 'date(10,1,1891)'.

?- term_to_atom(date(M,D,Y), 'date(10,1,1891)').
M = 10,
D = 1,
Y = 1891.

Joseph Astier, 372 Fall 1996, said,
"A Prolog predicate is like a DC motor: If you apply electricity to the
motor, the rotor turns. If you turn the rotor, it generates electricity."

(Original Thought!)

Instantiation as "return", continued

CSC 372 Spring 2018, Prolog Slide 92

Replacements: 92+

In Prolog, what is ten-four?
A two-term structure with the functor '-'. Its terms are the atoms ten
and four. (display(ten-four) shows -(ten,four).)

Consider this predicate:
swap_struct(X-Y, R) :- R = Y-X.

Usage:
?- swap_struct(ten-four, X).
X = four-ten.

?- swap_struct(X, 10-20).
X = 20-10.

Can swap_struct be simplified?
swap_struct(X-Y, Y-X).

Instantiation as "return", continued

A little more...
?- swap_struct(a-b*c,R).
R = b*c-a.

?- swap_struct(a-b+c,R).
false.

CSC 372 Spring 2018, Prolog Slide 93

Problem: Using term_to_atom write a predicate with this behavior:
?- swap('ten-four', R).
R = 'four-ten'.

Solution:
swap2(A, Result) :-

term_to_atom(First-Second, A),
term_to_atom(Second-First, Result).

Instantiation as "return", continued

CSC 372 Spring 2018, Prolog Slide 94

Problem: Write a predicate with these four behaviors:
?- describe_food(apple-X).
X = red.

?- describe_food(X-green).
X = broccoli ;
X = lettuce ;
false.

?- describe_food(X).
X = apple-red ;
X = broccoli-green ;
...
X = orange-orange ;
X = rice-white.

Solution:
describe_food(Food-Color) :- food(Food), color(Food,Color).

Instantiation as "return", continued

The fourth:
?- describe_food(apple-red).
true.

?- describe_food(apple-blue).
false.

CSC 372 Spring 2018, Prolog Slide 95

What is the output of the following query?
?- writeln(food(F)), fail.
food(_6100)
false.

What's happening?
We're calling writeln with a one-term structure, with functor food,
whose term is the uninstantiated variable F.

Unlike expressions in conventional languages, Prolog goals don't nest.

Nested goals

CSC 372 Spring 2018, Prolog Slide 96

Recall between(1,10,X). Here's what help(between) shows:
between(+Low, +High, ?Value)

Low and High are integers, High >= Low. If Value is an integer,
Low =< Value =< High. When Value is a variable it is successively
bound to all integers between Low and High. ...

• If an argument has a plus prefix, like +Low and +High, it means that
the argument is an input to the predicate and must be instantiated.

• A question mark indicates that the argument can be input or output, and
thus may or may not be instantiated.

The documentation implies that between can (1) generate values and (2)
test for membership in a range.

?- between(1,10,X).
X = 1 ;
...

?- between(1,10,5).
true.

Sidebar: Describing predicates

Note: This is a documentation convention;
do not use the + and ? symbols in code!

CSC 372 Spring 2018, Prolog Slide 97

Another:
term_to_atom(?Term, ?Atom)

True if Atom describes a term that unifies with Term. When
Atom is instantiated, Atom is converted and then unified with
Term. ...

Here is a successor predicate:
succ(?Int1, ?Int2)

True if Int2= Int1+1 and Int1>=0. At least one of the arguments
must be instantiated to a natural number. ...

What are two ways succ/2 can be used?
?- succ(10,N).
N = 11.

?- succ(N,10).
N = 9.

Describing predicates, continued

CSC 372 Spring 2018, Prolog Slide 98

Here is the synopsis for format/2:
format(+Format, +Arguments)

Speculate: What does sformat/3 do?
sformat(-String, +Format, +Arguments)

The minus in -String indicates that the term should be an uninstantiated
variable.

?- sformat(S, 'x = ~w', 1).
S = "x = 1".

Describing predicates, continued

CSC 372 Spring 2018, Prolog Slide 99

Arithmetic

CSC 372 Spring 2018, Prolog Slide 100

We've seen that there are predicates for comparisons but not for arithmetic
operations:

?- 3 == 4.
false.

?- 3 + 4.
ERROR: toplevel: Undefined procedure: (+)/2

Why is this the case?
• Queries succeed or fail.

• The result of a comparison can be viewed as success or failure but
there's simply no place for the result of 3 + 4 to appear. (There's no
"outlet" for it.)

Why are there no arithmetic predicates?

CSC 372 Spring 2018, Prolog Slide 101

The predicate is(?Value, +Expr) evaluates Expr, a structure representing
an arithmetic expression, and unifies the result with Value.

?- is(X, 3+4*5).
X = 23.

The atom is has been defined to be an operator using op/3.

?- X is 3 + 4, Y is 7 * 5, Z is X / Y.
X = 7,
Y = 35,
Z = 0.2.

All variables in a structure being evaluated by is/2 must be instantiated.
?- A is 3 + X.
ERROR: is/2: Arguments are not sufficiently instantiated
(The query ?- ground(3+X). fails––the term 3+X has free variables.)

is/2

CSC 372 Spring 2018, Prolog Slide 102

is/2 supports a number of arithmetic operations. Here are some of them:

-X negation
X + Y addition
X * Y multiplication
X / Y division—produces float quotient
X // Y integer division
X rem Y integer remainder
integer(X) truncation to integer
float(X) conversion to float
sign(X) sign of X: -1, 0, or 1

?- X is 77777777777777777777777*3333333333333333333333333.
X = 259259259259259259259256640740740740740740740741.

?- X is 10 // 3.
X = 3.

?- X is e ** sin(pi). What are e and pi? Is sin a Prolog"function"?
X = 1.0000000000000002.

Arithmetic, continued

help(rem) is a quick way to open
up the documentation section with
the arithmetic operations.
help(op) shows precedence.

CSC 372 Spring 2018, Prolog Slide 103

Problem: Write a predicate around/3 that works like this:
?- around(P ,7, N).
P = 6,
N = 8.

Solution:
around(Prev,X,Next) :- Prev is X - 1, Next is X + 1.

We can use around to test, too, but the second term must be "ground".

?- around(1,2,3).
true.

?- around(1,X,3).
ERROR: is/2: Arguments are not sufficiently instantiated

Arithmetic, continued

CSC 372 Spring 2018, Prolog Slide 104

Here are some predicates to compute the area of shapes. Note the use of
unification to "label" the structure's term(s).

area(rectangle(W,H), A) :- A is W * H.
area(circle(R), A) :- A is pi * R ** 2.

Usage:
?- area(circle(3), A).
A = 28.274333882308138.

?- area(rectangle(5,7), A).
A = 35.

Problem: A "figure 8" is two circles touching at a point. Write another
clause for area/2 so that area(figure8(3,4),A) will work.

area(figure8(R1,R2), A) :-
area(circle(R1),A1), area(circle(R2),A2), A is A1 + A2.

Arithmetic, continued

CSC 372 Spring 2018, Prolog Slide 105

Do the following queries work?
?- area(rect(pi*3,sqrt(e/2)),R).
R = 10.98761340505857.

?- A=5, B=A, C is A+B, area(rect(A+B,area(figure8(B,C))),R).
ERROR: Arithmetic: `figure8/2' is not a function

Arithmetic, continued

CSC 372 Spring 2018, Prolog Slide 106

There are several numeric comparison operators.

X =:= Y numeric equality
X =\= Y numeric inequality
X < Y numeric less than
X > Y numeric greater than
X =< Y numeric equal or less than (NOTE the order, not <= !)
X >= Y numeric greater than or equal

Just like is/2, these operators evaluate their operands. Examples of usage:

?- 3 + 5 =:= 2*3+2.
true.

?- X is 3 / 5, X > X*X.
X = 0.6.

?- X is random(10), X > 5.
false.

?- X is random(10), X > 5.
X = 9.

Note that the comparisons produce no value; they simply succeed or fail.

Comparisons

CSC 372 Spring 2018, Prolog Slide 107

The "singleton" warning(!)

CSC 372 Spring 2018, Prolog Slide 108

Here's a predicate add(+X,+Y, ?Sum):
$ cat add.pl
add(X, Y, Sum) :- S is X + Y.

Bug: Sum is used in the head but S is used in the body!

Observe what happens when we load it:
$ swipl add.pl
Warning: /cs/www/classes/cs372/spring18/prolog/add.pl:1:

Singleton variables: [Sum,S]
...

What is Prolog telling us with that warning?
The variables Sum and S appear only once in the rule on line 1.

Fact: If a variable appears only once in a rule, its value is never used.

A singleton warning may indicate a misspelled or misnamed variable.
Pay attention to singleton warnings!

The "singleton" warning

CSC 372 Spring 2018, Prolog Slide 109

Note that singleton warnings appear before "Welcome to SWI-Prolog"!

$ swipl print_stars.pl (first version)
Warning: /cs/www/classes/cs372/spring18/prolog/print_stars.pl:1:

Singleton variables: [X]
Warning: /cs/www/classes/cs372/spring18/prolog/print_stars.pl:2:

Singleton variables: [N]
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)
Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under certain
conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

All errors found when consulting a file appear BEFORE "Welcome to SWI...".

Singleton warnings are easy to overlook!

CSC 372 Spring 2018, Prolog Slide 110

Recursive predicates

CSC 372 Spring 2018, Prolog Slide 111

Predicates can be recursive.

Here is a recursive predicate that prints the integers from 1 through N:

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Usage:
?- printN(3).
1
2
3
true .

Note that we're asking if printN(3) can be proven. The side effect of Prolog
proving it is that the numbers 1, 2, and 3 are printed.

Is printN(0). needed? How about N > 0?

Which is better—the above or using between/3?

Recursive predicates

CSC 372 Spring 2018, Prolog Slide 112

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

printN(0).
printN(N) :- N > 0, M is N - 1, printN(M), writeln(N).

Here's a correct definition for factorial:
factorial(0, 1).
factorial(N, F) :- N > 0,

M is N - 1,
factorial(M, FM),
F is N * FM.

Here is a common mistake:
factorial(0, 1).
factorial(N, F) :- N > 0,

M is N - 1,
factorial(M, F),
F is N * F.

What's the mistake?
Under what circumstances does F is N * F succeed?

Sidebar: A common mistake with recursion

CSC 372 Spring 2018, Prolog Slide 113

Usage:
?- factorial(4,F).
false.

Here's a predicate that tests whether a number is odd:

odd(N) :- N mod 2 =:= 1.

Note that N mod 2 works because =:= evaluates its operands.

An alternative:

odd(1).
odd(N) :- odd(M), N is M + 2.

How does the behavior of the two differ?

Generating alternatives with recursion

CSC 372 Spring 2018, Prolog Slide 114

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

Usage:
?- odd(5).
true .

?- odd(X).
X = 1 ;
X = 3 ;
X = 5 ;
...

What does odd(2) do?

How does odd(X) work?

Generating alternatives, continued

CSC 372 Spring 2018, Prolog Slide 115

Query: ?- odd(X).

odd(1).
odd(N) :- odd(M), N is M + 2.

odd(1).
odd(N) :- odd(M), N is M + 2.

odd(1).
odd(N) :- odd(M), N is M + 2.

odd(1).
odd(N) :- odd(M), N is M + 2.

Generating alternatives, cont.
odd(X)

exitcall
fail redo

odd(M)
exit/callcall

fail N is M+2
exit
redoredo/fail

odd(M)
exit/callcall

fail N is M+2
exit
redoredo/fail

odd(M)
exit/callcall

fail N is M+2
exit
redoredo/fail

odd(M)
exit/callcall

fail N is M+2
exit
redoredo/fail

CSC 372 Spring 2018, Prolog Slide 116

For reference:

odd(1).
odd(N) :- odd(M), N is M + 2.

The key point with generative predicates:
If an alternative is requested, another activation of the predicate is
created.

As a contrast, think about how execution differs with this set of clauses:

odd(1).
odd(3).
odd(5).
odd(N) :- odd(M), N is M + 2.

Generating alternatives, continued

CSC 372 Spring 2018, Prolog Slide 117

GOTO slide 129 (a8 Supplement)

Lists

CSC 372 Spring 2018, Prolog Slide 118

A Prolog list can be literally specified by enclosing a comma-separated
series of terms in square brackets:

[1, 2, 3]

[just, a, test, here]

[1, [one], 1.0, [a,[b,['c this']]]]

What's the output of the following?
?- write([1, 2, odd(3), 4+5, atom(6)]).
[1,2,odd(3),4+5,atom(6)]
true.

What's the result of the following?
?- [abc, 123].
ERROR: source_sink `abc' does not exist ...
A list literal as a query is taken as a request to consult files!

List basics

CSC 372 Spring 2018, Prolog Slide 119

Here are some unifications with lists:

?- [1,2,3,4] = [X,Y,Z].
false.

?- [X,Y] = [1,[2,[3,4]]].
X = 1,
Y = [2, [3, 4]].

?- Z = [X,Y,X], X = 1, Y = [2,3].
Z = [1, [2, 3], 1],
X = 1,
Y = [2, 3].

We'll later see a head-and-tail syntax for lists.

Unification with lists

CSC 372 Spring 2018, Prolog Slide 120

Problem: Write a predicate empty(X) that succeeds iff X is an empty list.
If called with something other than a non-empty list, it fails.

Examples:
?- empty([]).
true.

?- empty([3,4,5]).
false.

Solution:
empty([]).

What will the following do?
?- empty(10).
false.
?- empty(L).
L = [].

Unification with lists, continued

CSC 372 Spring 2018, Prolog Slide 121

Write a predicate as123(X) that succeeds iff X is a list with one, two, or
three identical elements. Example:

?- as123([a]), as123([b,b]), write(ok), as123([1,2,3]),
write('oops').

ok
false.

?- as123(L).
L = [_G2456] ;
L = [_G2456, _G2456] ;
L = [_G2456, _G2456, _G2456].

Solution:
as123([_]).
as123([X,X]).
as123([X,X,X]).

Unification with lists, continued

CSC 372 Spring 2018, Prolog Slide 122

SWI Prolog has a number of built-in predicates that operate on lists. One is nth0:
nth0(?Index, ?List, ?Elem)

True when Elem is the Index'th element of List. Counting starts at 0.

What's the question and answer for each of the following?
?- nth0(2, [a,b,a,d,c], X).
X = a.

?- nth0(0, [a,b,a,d,c], b).
false.

?- nth0(N, [a,b,a,d,c], a).
N = 0 ;
N = 2 ;
false.

?- nth0(N, [a,b,a,d,c], X).
N = 0,
X = a ;
N = 1,
X = b ;
...

Built-in list-related predicates

NOTE: nth0 makes for a good example
here, but use indexing judiciously! There
are often better alternatives!

CSC 372 Spring 2018, Prolog Slide 123

What is the third element of [a,b,a,d,c]?

Is b the first element of [a,b,a,d,c]?

Where does a occur in [a,b,a,d,c]?

What are the positions and values for all?

Recall:
as123([_]).
as123([X,X]).
as123([X,X,X]).

Problem: Using as123 and nth0, write a predicate with this behavior:

?- gen3(test, L).
L = [test] ;
L = [test, test] ;
L = [test, test, test].

Solution:
gen3(X,L) :- as123(L), nth0(0, L, X).

Does the order of the goals matter?

More:
?- gen3(test, [test]).
true .

?- gen3(test, [a,b]).
false.

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 124

What do you think length(?List, ?Len) does?
Get the length of a list:

?- length([10,20,30],Len).
Len = 3

Anything else?
Make a list of uninstantiated variables:

?- length(L,3).
L = [_G907, _G910, _G913].

Speculate—what will length(L,N) do?
?- length(L,N).
L = [],
N = 0 ;
L = [_G919],
N = 1 ;
L = [_G919, _G922],
N = 2 ...

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 125

What do you think reverse(?List, ?Reversed) does?
Unifies a list with a reversed copy of itself.

?- reverse([1,2,3],R).
R = [3, 2, 1].

?- reverse([1,2,3],[1,2,3]).
false.

Write palindrome(L).
palindrome(L) :- reverse(L,L).

Speculate—what's the result of reverse(X,Y).?
?- reverse(X,Y).
X = Y, Y = [] ;
X = Y, Y = [_G913] ;
X = [_G913, _G916],
Y = [_G916, _G913] ;
X = [_G913, _G922, _G916],
Y = [_G916, _G922, _G913] ;

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 126

What might numlist(+Low, +High, -List) do?
?- numlist(5,10,L).
L = [5, 6, 7, 8, 9, 10].

?- numlist(10,5,L).
false.

Problem: Write rev_numlist(+High, +Low, -List)
?- rev_numlist(10,5,L).
L = [10, 9, 8, 7, 6, 5].

Solution:
rev_numlist(High,Low,List) :-

numlist(Low,High,List0), reverse(List0,List).

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 127

sumlist(+List, -Sum) unifies Sum with the sum of the values in List.

?- numlist(1,5,L), sumlist(L,Sum).
L = [1, 2, 3, 4, 5],
Sum = 15.

Will the following work?

?- sumlist([1+2, 3*4, 5-6/7], Sum).
Sum = 19.142857142857142.

?- X = 5, sumlist([X+X, X-X, X*X, X/X],R).
X = 5,
R = 36.

Is it good that sumlist handles arithmetic structures, too?

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 128

a8 supplement
(Follows slide 117)

CSC 372 Spring 2018, Prolog Slide 129

In Haskell we can create a list like this:
10 : 20 : 30 : []

Here's an analog with a nested Prolog structure, indented for clarity:
cell(10,

cell(20,
cell(30, empty))))

• The first term of each (cons) cell structure is the head
• The second term is the tail.
• The atom empty represents an empty list.

A cons list structure

CSC 372 Spring 2018, Prolog Slide 130

At hand:
cell(10, cell(20, cell(30, empty)))) % like [10,20,30]
empty % like []

Problem: Write sum_cl(+CL, -Sum) that instantiates Sum to the sum of
the elements in CL.

?- sum_cl(empty, Sum).
Sum = 0.

?- sum_cl(cell(7,cell(5,empty)), Sum).
Sum = 12.

Solution:
sum_cl(empty, 0).
sum_cl(cell(Head,Tail), Sum) :-

sum_cl(Tail,TailSum), Sum is Head + TailSum.

A cons list structure, continued

CSC 372 Spring 2018, Prolog Slide 131

help(op) shows that there's a colon (:) operator that's right associative
(xfy) and with precedence 600.

Let's use that colon operator to build a structure and see what it looks like:
?- display(10:20:30:empty).
:(10,:(20,:(30,empty)))
true.

How does the structure above differ from the following?
cell(10,cell(20,cell(30,empty)))

The only difference is the functor, ':' vs. 'cell'!

Let's go symbolic

CSC 372 Spring 2018, Prolog Slide 132

At hand:
?- display(10:20:30:empty).
:(10,:(20,:(30,empty)))
true.

Recall:
sum_cl(empty, 0).
sum_cl(cell(Head,Tail), Sum) :-

sum_cl(Tail,TailSum), Sum is Head + TailSum.

Problem:
Convert sum_cl to work with structures like 10:20:30:empty.

?- sum_cl(10:20:30:empty,N).
N = 60.

?- sum_cl(empty,N).
N = 0.

Going symbolic, continued

CSC 372 Spring 2018, Prolog Slide 133

With 'cell' as a functor:
sum_cl(empty, 0).
sum_cl(cell(Head,Tail), Sum) :-

sum_cl(Tail,TailSum), Sum is Head + TailSum.

With ':' as a functor:
sum_cl(empty, 0).
sum_cl(Head:Tail, Sum) :-

sum_cl(Tail,TailSum), Sum is Head + TailSum.

Usage (again):
% swipl conslist.pl
?- sum_cl(5:3:7:2:empty,X).
X = 17.

Going symbolic, continued

CSC 372 Spring 2018, Prolog Slide 134

Problem:
Write a predicate member_cl(+Value, +ConsList) that tests
whether Value appears in ConsList.

?- member_cl(12, 3:1:7:12:empty).
true .

?- member_cl(xyz, just:a:test:of:this:empty).
false.

Solution:
member_cl(Value, Value : _).

% Value is a member of the list if it is the head.
member_cl(Value, _ : Tail) :- member_cl(Value, Tail).

% Value is a member of the list if it appears in the tail.

member_cl

CSC 372 Spring 2018, Prolog Slide 135

What will the following do?
?- member_cl(V, a:10:x(1):empty).
V = a ;
V = 10 ;
V = x(1) ;
false.

Problem: Fill in the blank to make the following work as shown.
?- A = a:b:empty, B = 10:20:empty,

.
a-10
a-20
b-10
b-20
false.

member_cl, continued

CSC 372 Spring 2018, Prolog Slide 136

member_cl(VA, A), member_cl(VB, B), writeln(VA-VB),fail

"cut"

CSC 372 Spring 2018, Prolog Slide 137

Problem: Implement a max/3 predicate:
?- max(10,20,M).
M = 20.

?- max(7,3,M).
M = 7 .

One solution: (max1.pl)
max(X, Y, X) :- X >= Y.
max(X, Y, Y) :- X < Y.

Question: Why is there a space here?

Motivation

CSC 372 Spring 2018, Prolog Slide 138

Here's another version of max/3. Does it work?
max(X, Y, X) :- X >= Y. % max2.pl
max(_, Y, Y). % If X isn't bigger, it must be Y!

Usage:
?- max(3,7,M).
M = 7.

?- max(7,3,M).
M = 7 ;
M = 3.

Motivation, continued

CSC 372 Spring 2018, Prolog Slide 139

Our broken max:
max(X, Y, X) :- X >= Y.
max(_, Y, Y).

We can make it work with a "cut", a predicate whose name is an
exclamation mark:

max(X, Y, X) :- X >= Y, !.
max(_, Y, Y).

The cut above says,
"If you get to me, don't try any further clauses of max.

Important: if we don't reach a cut, it has no effect.

Cut (!/0) is a control predicate, like fail/0. It affects the flow of control.

"cut"

CSC 372 Spring 2018, Prolog Slide 140

Here's a predicate that attempts to classify a value:
what(X,atom) :- atom(X). % cut2.pl
what(X,integer) :- integer(X).
what(X,float) :- float(X).
what(_,wat).

How does it behave?
?- what([7], W).
W = wat.

?- what(34, W).
W = integer ;
W = wat.

How can we fix it?

"cut", continued

CSC 372 Spring 2018, Prolog Slide 141

Solution:
what(X,atom) :- atom(X), !.
what(X,integer) :- integer(X), !.
what(X,float) :- float(X), !.
what(_,wat).

There's lots more to know about "cut", and lots of ways to make a mess
with it, but our usage of "cut" will be simple:

Use a cut when you want to say "if this rule succeeds, don't come back
and consider any further clauses of this predicate."

Other ways to think of it:
"This is my final answer."
"Burn the bridge!"

"cut", continued

CSC 372 Spring 2018, Prolog Slide 142

GOTO slide 118 (Lists)

Write a predicate sumGreater(+Target, -N, -Sum) that finds the
smallest N for which the sum of 1..N is greater than Target.

?- sumGreater(50, N, Sum).
N = 10,
Sum = 55 .

?- sumGreater(1000000, N, Sum).
N = 1414,
Sum = 1000405 .

Let's ignore Gauss's summation formula and have some fun with lists!

This is CLE 9, worth three points.
• Put NetIDs of tablemates in cle9.txt
• Submit with turnin 372-cle9 cle9.txt

Sidebar: Developing a list-based predicate goal-by-goal

CSC 372 Spring 2018, Prolog Slide 143

Speculate: What does atom_chars(?Atom, ?Charlist) do?
?- atom_chars(abc,L).
L = [a, b, c].

?- atom_chars(A, [a, b, c]).
A = abc.

Problem: write rev_atom/2. Hint: Write it as a test, the latter case.
?- rev_atom(testing,R).
R = gnitset.

?- rev_atom(testing,gnitset).
true.

Solution:
rev_atom(A,RA) :-

atom_chars(A,AL), reverse(AL,RL), atom_chars(RA,RL).

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 144

Problem: write eqlen(+A1,+A2), to test whether two atoms are the same
length.

?- eqlen(test,this).
true.

?- eqlen(test,it).
false.

Solution:
eqlen(A1,A2) :- atom_chars(A1,C1), length(C1,Len),

atom_chars(A2,C2), length(C2,Len).

(Note unification with Len vs. Len1 == Len2.)

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 145

msort(+List, -Sorted) unifies Sorted with a sorted copy of List:
?- msort([3,1,7], L).
L = [1, 3, 7].

?- atom_chars(prolog, L), msort(L,S), atom_chars(A,S).
L = [p, r, o, l, o, g],
S = [g, l, o, o, p, r],
A = gloopr.

If the list is heterogeneous, elements are sorted in "standard order":
?- msort([xyz, 5, [1,2], abc, 1, 3.4, x(a)], Sorted).
Sorted = [1, 3.4, 5, abc, xyz, x(a), [1, 2]].

sort/2 is like msort/2 but also removes duplicates.
?- sort([a, 5, [1,2], a, 1, 5, x(a), [1,2]], Sorted).
Sorted = [1, 5, a, x(a), [1, 2]].

Built-ins for lists, continued

CSC 372 Spring 2018, Prolog Slide 146

member(?Elem, ?List) succeeds when Elem can be unified with a
member of List.

member can be used to check for membership:

?- member(30, [10, twenty, 30]).
true.

member can be used to generate the members of a list:
?- member(X, [10, twenty, 30]).
X = 10 ;
X = twenty ;
X = 30.

What does the following do?
?- member(X, [10, twenty, 30]), number(X).
X = 10 ;
X = 30.

The member predicate

CSC 372 Spring 2018, Prolog Slide 147

Problem: Write uchars(+A,-C) that instantiates C to each of the unique
characters in the atom A in ascending order.

?- uchars(peep, C).
C = e ;
C = p.

Solution:
uchars(A,C) :- atom_chars(A,L), sort(L,S), member(C,S).

Problem, using uchars, print the capital letters in 'a Test Here'.
?-
H
T
false.

member, continued

CSC 372 Spring 2018, Prolog Slide 148

Recall:
?- char_type('A', T).
...
T = upper(a) ;
...

uchars('a Test Here',C), char_type(C,upper(_)), writeln(C), fail.

Problem: Write a predicate has_vowel(+Atom) that succeeds iff Atom
has a lowercase vowel.

?- has_vowel(ack).
true

?- has_vowel(pfft).
false.

Solution:
has_vowel(Atom) :-

atom_chars(Atom,Chars),
member(Char,Chars),
member(Char,[a,e,i,o,u]).

member, continued

CSC 372 Spring 2018, Prolog Slide 149

Here's how the documentation describes append/3:
?- help(append/3).
append(?List1, ?List2, ?List1AndList2)

List1AndList2 is the concatenation of List1 and List2

Usage:
?- append([1,2], [3,4,5], R).
R = [1, 2, 3, 4, 5].

?- numlist(1,4,L1), reverse(L1,L2), append(L1,L2,R).
L1 = [1, 2, 3, 4],
L2 = [4, 3, 2, 1],
R = [1, 2, 3, 4, 4, 3, 2, 1].

Speculate: What else can we do with append?

The append predicate

CSC 372 Spring 2018, Prolog Slide 150

What will the following do?
?- append(A, B, [1,2,3]).
A = [],
B = [1, 2, 3] ;
A = [1],
B = [2, 3] ;
A = [1, 2],
B = [3] ;
A = [1, 2, 3],
B = [] ;
false.

The query can be thought of as asking this:
"For what values of A and B is their concatenation [1,2,3]?

append, continued

CSC 372 Spring 2018, Prolog Slide 151

Think of append(L1,L2,L3) as demanding a relationship between the
three lists:

L3 must consist of the elements of L1 followed by the elements of L2.

If L1 and L2 are instantiated, L3 must be their concatenation.

If only L3 is instantiated then L1 and L2 represent (in turn) all the possible
ways to divide L3.

What are the other possibilities?

Important:
We can do a lot of list processing by establishing constraints with
append (and other predicates) and asking Prolog to find cases when
those constraints are true.

append is the Swiss Army Knife of list processing in Prolog!

append, continued

CSC 372 Spring 2018, Prolog Slide 152

Problem: Using append, write starts_with(?List, ?Prefix) that
expresses the relationship that List starts with Prefix.

?- starts_with([1,2,3,4], [1,2]).
true.

?- starts_with([1,2,3], L).
L = [] ;
L = [1] ;
L = [1, 2] ;
L = [1, 2, 3] ;
false.

Solution:
starts_with(L, Prefix) :- append(Prefix, _, L).

What will the following do?
?- starts_with(Start, [1,2,3]).
Start = [1, 2, 3|_G1182].

append, continued

CSC 372 Spring 2018, Prolog Slide 153

Problem: Write ends_with.
?- ends_with([a,b,c],[d,e]).
false.

?- ends_with([a,b,c],[b,c]).
true ;
false.

Solution:
ends_with(List, Suffix) :- append(_, Suffix, List).

append, continued

CSC 372 Spring 2018, Prolog Slide 154

Haskell meets Prolog:
?- take([1,2,3,4,5], 3, L).
L = [1, 2, 3].

?- take([1,2,3,4,5], N, L).
N = 0,
L = [] ;
N = 1,
L = [1] ;
N = 2,
L = [1, 2] ;
...

Solution:
take(L, N, Result) :- length(Result, N), append(Result, _, L).

append, continued

CSC 372 Spring 2018, Prolog Slide 155

Write sumsegs(+List, +N, -Sums), where Sums is a list with the sum of
the first N elements of List, then the sum of the next N, and so forth.

?- sumsegs([1, 2, 3, 4, 5, 6],2,R).
R = [3, 7, 11] ;
false.

?- sumsegs([1,2,3,4,5,6],4,R).
R = [10] ;
false.

?- sumsegs([1,2,3,4,5,6],7,R).
R = [] ;
false.

How can we approach it?

Practice with append: sumsegs

CSC 372 Spring 2018, Prolog Slide 156

For reference:
?- sumsegs([1, 2, 3, 4, 5, 6], 2, R).
R = [3, 7, 11] ;

Solution:
% If fewer than N elements remain, produce an empty list.
sumsegs(List, N, []) :- length(List,Len), Len < N.

sumsegs(List, N, Sums) :-
% Get the first N elements into Seg and compute their sum.
length(Seg, N), append(Seg, Rest, List), sumlist(Seg, Sum),

% Compute the sums for the rest of the list.
sumsegs(Rest, N, RestOfSums),

% Specify the result by forming a list whose first element is the
% sum of the first segment followed by the sums for the rest of the list.
append([Sum], RestOfSums, Sums).

sumsegs, continued

Key technique!

CSC 372 Spring 2018, Prolog Slide 157

?- sumsegs([3, 1, 5, 7, 4], 2, R).

sumsegs(List, N, Sums) :-

length(Seg, N), append(Seg, Rest, List), sumlist(Seg, Sum),

sumsegs(Rest, N, RestOfSums),

sumsegs(List, N, Sums) :-

length(Seg, N), append(Seg, Rest, List), sumlist(Seg, Sum),

sumsegs(Rest, N, RestOfSums),

sumsegs(List, N, []) :- length(List,Len), Len < N.

append([Sum], RestOfSums, Sums).

append([Sum], RestOfSums, Sums).

R = [4, 12] . CSC 372 Spring 2018, Prolog Slide 158A video for 156-158 is on the web.

Let's activate tracing on sumsegs:
$ swipl slides.pl
?- trace(sumsegs).
% sumsegs/3: [call,redo,exit,fail]
true.

[debug] ?- sumsegs([3,1,5,7,4],2,R).
T Call: (8) sumsegs([3, 1, 5, 7, 4], 2, _2544)
T Redo: (8) sumsegs([3, 1, 5, 7, 4], 2, _2544)
T Call: (9) sumsegs([5, 7, 4], 2, _2890)
T Redo: (9) sumsegs([5, 7, 4], 2, _2890)
T Call: (10) sumsegs([4], 2, _2914)
T Exit: (10) sumsegs([4], 2, [])
T Exit: (9) sumsegs([5, 7, 4], 2, [12])
T Exit: (8) sumsegs([3, 1, 5, 7, 4], 2, [4, 12])

R = [4, 12] .

sumsegs, continued

CSC 372 Spring 2018, Prolog Slide 159

Replacements: 159+

Here's a predicate that generates successive N-long chunks of a list:
chunk(L, N, Chunk) :-

length(Chunk, N), append(Chunk, _, L).

chunk(L, N, Chunk) :-
length(Junk, N), append(Junk, Rest, L), chunk(Rest, N, Chunk).

Usage:
?- chunk([1,2,3,4,5],2,L).
L = [1, 2] ;
L = [3, 4] ;
false.

?- numlist(1,100,L), chunk(L,5,C), sumlist(C,Sum), between(300,350,Sum).
L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [61, 62, 63, 64, 65],
Sum = 315 ;

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
C = [66, 67, 68, 69, 70],
Sum = 340 ;
false.

Generation with append

CSC 372 Spring 2018, Prolog Slide 160

Here's chunk again. How does it work?
chunk(L,N,Chunk) :-

length(Chunk,N), append(Chunk,_,L).

chunk(L,N,Chunk) :-
length(Junk, N), append(Junk,Rest,L), chunk(Rest,N,Chunk).

Consider the call chunk([a,b,c,d,e,f], 2, Chunk):
The first clause produces the first N elements of L. (Chunk = [a,b])

The second clause first uses length and append to form a list Rest that is L
minus the first N elements (Rest = [c,d,e,f]).

The second clause then calls chunk([c,d,e,f], 2, Chunk), creating another
activation of chunk.

Its first clause will produce the first N elements of [c,d,e,f].
Its second clause will end up calling chunk([e,f], 2, Chunk) creating a
third activation of chunk.

Important: Note the similarity to odd on slide 115.

?- chunk([1,2,3,4,5],2,L).
L = [1, 2] ;
L = [3, 4] ;
false.

CSC 372 Spring 2018, Prolog Slide 161

Recall sumsegs:
?- sumsegs([1, 2, 3, 4, 5, 6],2,R).
R = [3, 7, 11] ;
false.

Problem: Instead of producing a list, generate the sums:
?- gensums([1,2,3,4,5,6,7], 2, R).
R = 3 ;
R = 7 ;
R = 11 ;
false.

Two solutions, one with chunk and one without:
gensums(List, N, Sum) :-

chunk(List, N, Seg), sumlist(Seg, Sum).

gensums2(List, N, Sum) :-
sumsegs(List, N, Sums), member(Sum, Sums).

gensums (practice with generation)

CSC 372 Spring 2018, Prolog Slide 162

A problem from a past semester:
Write splits(+List,-Split). It unifies Split with each "split" of List
in turn.

Example:
?- splits([3,1,5,7], S).
S = [3]/[1, 5, 7] ;
S = [3, 1]/[5, 7] ;
S = [3, 1, 5]/[7] ;
false.

"The concept encountered in splits.pl is simple in hindsight, but
represents something pivotal to even vaguely understanding Prolog.
There was a moment several minutes ago when it finally struck me
that append is *not* a function, but some ephemeral statement of fact
with several combinations of conditions that satisfy it."

––Bailey Swartz, Spring '15

"Getting it" with append

CSC 372 Spring 2018, Prolog Slide 163

findall/3

CSC 372 Spring 2018, Prolog Slide 164

Here are some examples with a new predicate, findall:

?- findall(F, food(F), Foods).
Foods = [apple, broccoli, carrot, lettuce, orange, rice].

?- findall(pos(N,X), nth0(N, [a,b,a,d,c], X), Posns).
Posns = [pos(0, a), pos(1, b), pos(2, a), pos(3, d), pos(4, c)].

?- findall(X, (between(1,100,X), X rem 13 =:= 0), Nums).
Nums = [13, 26, 39, 52, 65, 78, 91].

In your own words, what does findall do?

The findall predicate

CSC 372 Spring 2018, Prolog Slide 165

For reference:
?- findall(F, food(F), Foods).
Foods = [apple, broccoli, carrot, lettuce, orange, rice].

SWI's documentation: (with a minor edit)
findall(+Template, :Goal, -List)

Create a list of the instantiations Template gets successively on
backtracking over Goal and unify the result with List. Succeeds
with an empty list if Goal has no solutions.

• Template is not limited to being a single variable. It might be a structure.

• The second argument can be a single goal, or several goals joined with
conjunction.

• The third argument is instantiated to a list of terms whose structure is
determined by the template. Above, each term is just an atom.

findall, continued

CSC 372 Spring 2018, Prolog Slide 166

For reference:
findall(+Template, :Goal, -Bag) (The colon in :Goal means"meta-argument")

Examples to show the relationship of the template and the resulting list:
?- findall(x, food(F), Foods).
Foods = [x, x, x, x, x, x].

?- findall(x(F), food(F), Foods).
Foods = [x(apple), x(broccoli), x(carrot), x(lettuce), x(orange), x(rice)].

?- findall(1-F, food(F), Foods).
Foods = [1-apple, 1-broccoli, 1-carrot, 1-lettuce, 1-orange, 1-rice].

What does findall remind you of?

Important:
findall is said to be a higher-order predicate. It's a predicate that takes a goal,
food(F) in this case.

findall, continued

CSC 372 Spring 2018, Prolog Slide 167

Here's a case where :Goal is a conjunction of two goals.

?- findall(F-C, (food(F),color(F,C)), FoodsAndColors).
FoodsAndColors = [apple-red, broccoli-green, carrot-orange,
lettuce-green, orange-orange, rice-white].

display sheds some light on that conjunction:

?- display((food(F),color(F,C))).
,(food(_G835),color(_G835,_G838))
true.

The conjunction is a two-term structure whose functor is a comma.

findall, continued

,

food color

F F C

CSC 372 Spring 2018, Prolog Slide 168

Original Thought from Noah Sleiman, Spring '14 :
"An easy way to think of it when using the uninstantiated first term (to
find the elements of interest) is this:

findall(What I call it, How I got it, Where I put it)"

Another view:
• Think of the template (the first argument) as a paper form with some

number of blanks to fill in.
• Each time the goal produces a result, we fill out a copy of that form

and put it on the list.
• A list of the filled-out forms is the result of findall.

findall, continued

Food: ______
Color: _______

Food: apple
Color: red

Food: lettuce
Color: green

Food: orange
Color: orange

CSC 372 Spring 2018, Prolog Slide 169

member and findall are somewhat inverses of each other.

If we want to generate values from a list, we can use member:
?- member(X, [a,b,c]).
X = a ;
X = b ;
X = c.

If we have a query that generates values, we can make a list with findall:
?- findall(X, member(X, [a,b,c]), Values).
Values = [a, b, c].

member vs. findall

CSC 372 Spring 2018, Prolog Slide 170

Problem: Write a predicate sumlists that produces a list of the sums of
integer lists.

?- sumlists([[1,2], [10,20,30], []],Sums).
Sums = [3, 60, 0].

Recall sumlist:
?- sumlist([1,2,3],Sum).
Sum = 6.

Solution:
sumlists(Lists, Sums) :-

findall(Sum, (member(List,Lists),sumlist(List,Sum)), Sums).

Note that findall's goal is a conjunction of two goals.

Practice with findall

CSC 372 Spring 2018, Prolog Slide 171

Problem: Write a variant of sumlists that requires sums to meet a
minimum:

?- minsums([[10,20,30],[1,2,3],[50]], 25, Sums).
Sums = [sum([10, 20, 30], 60), sum([50], 50)].

?- minsums([[10,20,30],[1,2,3],[50]], 250, Sums).
Sums = [].

Note that the result is a list of structures holding both the list and its sum.

Solution:
minsums(Lists, Min, Sums) :-

findall(
sum(List,Sum),
(member(List,Lists),sumlist(List,Sum),Sum>=Min),
Sums).

Practice with findall, continued

CSC 372 Spring 2018, Prolog Slide 172

What's happening in the following query?
?- X=a, findall(X-Y, member(Y, [a,b,c]), Values), write(X-Y).
a-_G1095
X = a,
Values = [a-a, a-b, a-c].

The scope of variables created during a findall query is limited to that
query.

Above, X is bound prior to the findall and can be used in it.

The Y inside the findall is unrelated to the Y in write(X-Y).

A scoping issue with findall

CSC 372 Spring 2018, Prolog Slide 173

Low-level list processing

CSC 372 Spring 2018, Prolog Slide 174

The list [1,2,3] can be specified in terms of a head and a tail, like this:

[1 | [2, 3]]

More generally, a list can be specified as a sequence of initial elements and
a tail.

The list [1,2,3,4] can be specified in any of these ways:

[1 | [2,3,4]]

[1,2 | [3,4]]

[1,2,3 | [4]]

[1,2,3,4 | []]

General form: [E1, E2, ..., En | Tail]

Heads and tails

Haskell equivalents:
1:[2,3,4]

1:2:[3,4]

1:2:3:[4]

1:2:3:4:[]

CSC 372 Spring 2018, Prolog Slide 175

What instantiations are produced by these unifications?
?- [X, Y | T] = [1, 2, 3].
X = 1,
Y = 2,
T = [3].

?- [X, Y | T] = [1, 2].
X = 1,
Y = 2,
T = [].

?- [1, 2 | [3,4]] = [H | T].
H = 1,
T = [2, 3, 4].

?- A = [1], B = [A|A].
A = [1],
B = [[1], 1].

Unifications with lists

CSC 372 Spring 2018, Prolog Slide 176

Here's a rule that describes the relationship between a list and and its head:

head(L, H) :- L = [H|_].
The head of L is H if L unifies with a list whose head is H.

Usage:
?- head([1,2,3],H).
H = 1.

?- head([2],H).
H = 2.

?- head([],H).
false.

?- L = [X,X,b,c], head(L, a).
L = [a, a, b, c],
X = a.

Can we make better use of unification and define head/2 more concisely?
head([H|_], H).

The head of a list whose head is H is H.

Simple list predicates

CSC 372 Spring 2018, Prolog Slide 177

Note the contrast between Haskell and Prolog:

Haskell:
head is a function that produces the first element of a list.

Prolog:
head is a predicate that describes the relationship between a value and
the first element of a list.

In Prolog, head can:
• Produce the first element of a list.
• See if the first element of a list is a given value.
• Produce a list that will unify with any list whose head is a given

value.

Prolog vs. Haskell

CSC 372 Spring 2018, Prolog Slide 178

Recall the built-in member/2:
?- member(1, [2,1,4,5]).
true ;
false.

?- member(a, [2,1,4,5]).
false.

?- member(X, [2,1,4,5]).
X = 2 ;
X = 1 ;
X = 4 ;
X = 5.

Implementing member

CSC 372 Spring 2018, Prolog Slide 179

Problem: Implement the built-in member(?Elem, ?List) predicate with
two clauses, a fact and a rule. Think of them this way:

X is a member of the list having X as its head.
member(X,[X|_]).

X is a member of the list having T as its tail iff X is a member of T.
member(X,[_|T]) :- member(X,T).

Exercise: Following the example of slide 116 or 158, trace through how
member generates elements from a list, like this:

?- member(X, [a,b,c]).
X = a ;
X = b ;
...

member, continued

CSC 372 Spring 2018, Prolog Slide 180

Problem: Define a predicate last(L,X) that describes the relationship
between a list L and its last element, X.

?- last([a,b,c],X).
X = c.

?- last([],X).
false.

Solution:
last([X],X).
last([_|T],X) :- last(T,X).

What does the following produce?
?- last(L,last), head(L,first), length(L,3).
L = [first, _G1736, last] ;
...crickets...

Implementing last

CSC 372 Spring 2018, Prolog Slide 181

Problem: Define a predicate allsame(L) that describes lists in which all elements
have the same value. allsame([]) fails.

?- allsame([a,a,a]).
true

?- L = [A,B,C], allsame(L), B = 7, write(L).
[7,7,7]
L = [7, 7, 7],
A = B, B = C, C = 7 .

?- length(L,5), allsame(L), head(L,x).
L = [x, x, x, x, x] .

Solution:
allsame([_]).
allsame([X,X|T]) :- allsame([X|T]).

What's a simple way to test allsame?
?- allsame(L).
L = [_G1635] ;
L = [_G1635, _G1635] ;
...

allsame

CSC 372 Spring 2018, Prolog Slide 182

Write a predicate adjacent(?A, ?B, ?L) that expresses the relationship that
A and B are adjacent in the list L. (But, in the order A, B.)

?- adjacent(3, 4, [1,2,3,4,5]).
true ;
false.

?- adjacent(a, X, [a,b,a,a,c,a]).
X = b ;
X = a ;
X = c ;
false.

?- adjacent(A,B,[1,2,3,4]).
A = 1, B = 2 ;
A = 2, B = 3 ;
A = 3, B = 4 ;
false.

adjacent

?- adjacent(A,B,L).
L = [A, B|_G28] ;
L = [_G30, A, B|_G28] ;
L = [_G30, _G36, A, B|_G28] ;

Solution: (hint––use append!)
adjacent(A,B,L) :- append(_, [A,B|_], L).

CSC 372 Spring 2018, Prolog Slide 183

Write a predicate sf_gen that generates elements from a list in this order:
Second, first, fourth, third, sixth, fifth, ...

Usage:
?- sf_gen([a,b,c,d,e],X).
X = b ;
X = a ;
X = d ;
X = c ;
false. % doesn't produce e because it would break the pattern.

sf_gen

CSC 372 Spring 2018, Prolog Slide 184

Solution:
% Produce the second element.
sf_gen([_,X|_], X).

% Produce the first element, if at least two.
sf_gen([X,_|_], X).

% Get rid of the first two elements and start all over.
sf_gen([_,_|T], X) :- sf_gen(T,X).

sf_gen([a, b|[c,d,e]], X) :- sf_gen([c,d,e], X).

sf_gen, continued
?- sf_gen([a,b,c,d,e],X).
X = b ;
X = a ;
X = d ;
X = c ;

CSC 372 Spring 2018, Prolog Slide 185

A reified example of the third clause

Problem: Implement a slight variant of the built-in numlist predicate.
?- numlist(5,10,L).
L = [5, 6, 7, 8, 9, 10].

?- numlist(5,1,L). % the built-in numlist fails for this case
L = [].

Solution, v1:
numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, Result) :-
Next is Low + 1,
numlist(Next, High, Rest),
Result = [Low|Rest].

What happens if we remove the cut?

Implementing numlist

numlist(1,4, Result) :-
Next is 1 + 1,
numlist(2, 4, Rest),

Rest gets bound to [2,3,4]
Result = [1|[2,3,4]].

CSC 372 Spring 2018, Prolog Slide 186

Solution, v1:
numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, Result) :-
Next is Low + 1,
numlist(Next, High, Rest),
Result = [Low|Rest].

How can we make better use of unification?
numlist(Low, High, []) :- Low > High, !.

numlist(Low, High, [Low|Rest]) :-
Next is Low + 1,
numlist(Next, High, Rest).

numlist, continued

CSC 372 Spring 2018, Prolog Slide 187

Problem: Write a predicate that behaves like the built-in length/2.

?- length([],N).
N = 0.

?- length([a,b,c,d], N).
N = 4.

?- length(L,1).
L = [_G901] .

?- length(L,N).
L = [],
N = 0 ;
L = [_G913],
N = 1 ;
L = [_G913, _G916],
N = 2 ;
...

Implementing length

Solution:
length([], 0).
length([_|T], Len) :-

length(T,TLen),
Len is TLen + 1.

CSC 372 Spring 2018, Prolog Slide 188

Exercise: Work through how the
fourth example generates.

Recall the description of the built-in append predicate:
?- help(append/3).
append(?List1, ?List2, ?List1AndList2)

List1AndList2 is the concatenation of List1 and List2

The usual definition of append:

append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

How does it work?

Note the similarity to ++ in Haskell:
(++) [] rhs = rhs
(++) (x:xs) rhs = x : (xs ++ rhs)

But, Haskell's ++ only lets us concatenate lists. Prolog's append
expresses a relationship between three lists.

Implementing append

CSC 372 Spring 2018, Prolog Slide 189

At hand:
append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

?- trace, append([1,2,3],[a,b,c],X).
Call: (8) append([1, 2, 3], [a, b, c], _G971) ? creep
Call: (9) append([2, 3], [a, b, c], _G1097) ? creep
Call: (10) append([3], [a, b, c], _G1100) ? creep
Call: (11) append([], [a, b, c], _G1103) ? creep
Exit: (11) append([], [a, b, c], [a, b, c]) ? creep
Exit: (10) append([3], [a, b, c], [3, a, b, c]) ? creep
Exit: (9) append([2, 3], [a, b, c], [2, 3, a, b, c]) ? creep
Exit: (8) append([1, 2, 3], [a, b, c], [1, 2, 3, a, b, c]) ? creep

X = [1, 2, 3, a, b, c].

Note that all of the Exit: lines in the trace above show an append
relationship that's true.

Implementing append, continued

CSC 372 Spring 2018, Prolog Slide 190

Problem: Implement the built-in predicate delete.
?- delete([a,b,a,c,b,a], a, R).
R = [b, c, b].

Solution:
delete([], _, []).
delete([X|T], X, R) :- delete(T, X, R), !.
delete([E|T], X, [E|R]) :- delete(T, X, R).

How could we write it without a cut?
delete([], _, []).
delete([X|T], X, R) :- delete(T, X, R).
delete([E|T], X, [E|R]) :- E \== X, delete(T, X, R).

delete

CSC 372 Spring 2018, Prolog Slide 191

Traditionally, Prolog lists are structures. Here's GNU Prolog:
| ?- display([1,2,3]).
'.'(1,'.'(2,'.'(3,[])))

Essentially, ./2 is the "cons" operation in Prolog.

By default, lists are shown using the [...] notation:
| ?- X = .(a, .(b,.(.(3,[]),[]))).
X = [a,b,[3]]

We can write member/2 like this:
member(X, .(X,_)).
member(X, .(_,T)) :- member(X,T).

What does the following produce?
| ?- X = .(3,4).
X = [3|4].

In the SWI Prolog docs, 5.1 Lists are special, talks about SWI's handling of lists.
http://www.swi-prolog.org/pldoc/man?section=ext-lists

Lists are structures

A Lisp programmer would call this a "dotted-pair".

.

1 .

3

.

[]

2

CSC 372 Spring 2018, Prolog Slide 192

http://www.swi-prolog.org/pldoc/man?section=ext-lists

=../2, read as "univ", expresses a relationship between structures and lists:

?- f(a,b,c) =.. L.
L = [f, a, b, c].

?- f(a,g(c,d),e(f)) =.. L.
L = [f, a, g(c, d), e(f)].

?- 1*2+3/4 =.. L.
L = [+, 1*2, 3/4].

?- S =.. [writeln,hello], call(S). % call is a higher-order predicate
hello
S = writeln(hello).

"univ"

CSC 372 Spring 2018, Prolog Slide 193

Problem: Create a predicate functor that produces the functors in a binary
tree.

?- functor(1 * 2 + 3 / 4, F).
F = (+) ;
F = (*) ;
F = (/) ;
false.

Solution:
functor(S,F) :- S =.. [F|T], T \== [].
functor(S,F) :- S =.. [_,Left,_], functor(Left,F).
functor(S,F) :- S =.. [_,_,Right], functor(Right,F).

Which is the better name for this predicate, functor or functors?

"univ", continued

CSC 372 Spring 2018, Prolog Slide 194

C&M 5e p.130 says,
The predicate "=.." (pronounced "univ" for historical reasons)...

I asked about "univ" on the prolog channel on irc.freenode.net:
x77686d: C&M says that =.. is called "univ" for historical reasons.

Anybody know the story behind that?
dmiles: for a long time we could only used named operators
dmiles: why it was called univ instead of t2l .. i dont know
dmiles: oh unify vector
dmiles: erl v in prolog means array/vector

The first edition of C&M (1981) has that same line...

Sidebar: "univ"

CSC 372 Spring 2018, Prolog Slide 195

"Can't prove"

CSC 372 Spring 2018, Prolog Slide 196

The query \+goal succeeds if goal fails.

?- food(computer).
false.

?- \+food(computer).
true.

We'll read \+ as "can't prove".

Of course, Prolog only knows what we tell it...

?- \+food(cake).
true.

"can't prove"

CSC 372 Spring 2018, Prolog Slide 197

Example: What foods are not green?

?- food(F), \+color(F,green).
F = apple ;
F = carrot ;
F = orange ;
F = rice ;
F = 'Big Mac'.

If there's no color fact for a food, will the query above list that food?
Yes!

How can we see if there are any foods don't have a color fact?

?- food(F), \+color(F,_).
F = 'Big Mac'.

"can't prove", continued

CSC 372 Spring 2018, Prolog Slide 198

Describe the behavior of inedible/1:
inedible(X) :- \+food(X).

inedible(X) succeeds if something is not known to be a food.

?- inedible(rock).
true.

What will the query ?- inedible(X). do?
?- inedible(X).
false.

"can't prove", continued

CSC 372 Spring 2018, Prolog Slide 199

What's the following query asking?
?- color(X,_), \+food(X).
X = sky ;
X = dirt ;
X = grass ;
false.

What are things with known colors that aren't food?

Let's try reversing the goals:
?- \+food(X), color(X,_).
false.

Why do the results differ?
Variables are never instantiated by a "can't prove" goal.

Try ?- \+color(Thing, purple).

"can't prove", continued

CSC 372 Spring 2018, Prolog Slide 200

Here's an implementation of \+ using the higher-order predicate call/1
and a "cut-fail":

cant_prove(G) :- call(G), !, fail. % 'My final answer is "no".'
cant_prove(_).

Usage:
?- cant_prove(food(apple)).
false.

?- cant_prove(food(computer)).
true.

?- cant_prove(color(_,purple)).
true.

Is cant_prove a higher-order predicate?
Yes, it uses an argument as a goal.

"can't prove" with "cut-fail"

CSC 372 Spring 2018, Prolog Slide 201

Pit-crossing Puzzle

CSC 372 Spring 2018, Prolog Slide 202

Consider the problem of crossing over a series of pits using wooden
planks as bridges.

Here's a case with two pits:

----+ +--+ +-----
| | | |
| | | |
+------+ +--+
5 12 15 18

Pits are represented with pit/2 facts, with a starting position and a width:
pit(5,7). % Think of the pit as [5,12).
pit(15,3).

There may be any number of pit facts. Pits never overlap. Pits always
have some ground between them.

The problem

CSC 372 Spring 2018, Prolog Slide 203

Here's a crossing of distance 20 with the sequence of planks [3, 10, 10]:

=== ==========
==========

----+ +--+ +-------
| | | | ^
| | | | 20
+------+ +--+
5 12 15 18

• Planks must be placed so that both ends rest on solid ground, rather
than having an end over a pit.

• Planks must extend continuously from zero (the starting point) to, or
through, a specified length.

The problem, continued

Planks are drawn with
vertical offsets to show

their widths.

CSC 372 Spring 2018, Prolog Slide 204

The sequence [9, 11] is an invalid crossing:
=========

===========
----+ +--+ +----

| | | | ^
| | | | 20
+------+ +--+
5 12 15 18

It's invalid because the two planks meet over a pit, at distance 9.

• A joint at distance D is considered to be over a pit if
start-of-pit <= D < end-of-pit

• Over-pit distances for the above pits are 5-11 and 15-17.

• Valid joint starting positions include 4, 12, 13, 14, 18, 19, and more.

The problem, continued

CSC 372 Spring 2018, Prolog Slide 205

For reference, with two pits: pit(5,7) and pit(15,3):
----+ +--+ +-----

| | | |
| | | |
+------+ +--+
5 12 15 18

Problem: Write cross(+Distance, +Planks, -Solution).
?- cross(20, [10,10,3], S).
S = [3, 10, 10] .

?- cross(20, [9,11], S).
false.

?- cross(20, [1,2,4,5,5,9], S).
S = [4, 9, 1, 5, 2] .

The problem, continued

Distance D is over a pit if
pit-start <= D < pit-end

CSC 372 Spring 2018, Prolog Slide 206

At hand:
?- cross(20, [1,2,4,5,5,9], S).
S = [4, 9, 1, 5, 2] .

Let's start with a helper predicate:
layplanks(+Goal, +Supply, +Current, -Solution)
• It succeeds if we can reach from the Current distance to the Goal

with the given Supply of planks.
• Solution is instantiated to a suitable sequence of planks.

layplanks will be recursive. What's the base case? (English first!)
If we're at or past the goal distance, it takes no planks to reach the
goal distance.
layplanks(Goal, _, Current, []) :- Current >= Goal.

?- layplanks(10, [3,1,5], 12, S).
S = [] .

layplanks

CSC 372 Spring 2018, Prolog Slide 207

What should happen with a layplanks call like the following?
?- layplanks(20, [8,10,3], 0, S).

Pick a plank and see if we can add it to the solution.
• If so, then solve from the new distance with the remaining planks
• If not, pick a different plank.
• If no plank works, fail.

What if we pick 8?
We're over a pit!

What if we pick 3?
We're not over a pit, so we lay down the plank and see if we can go
from 3 to 20 with the remaining planks.

?- layplanks(20, [8,10], 3, S).
[this line removed!]

layplanks, continued

----+ +--+ +----
| | | |
+------+ +--+
5 12 15 18

CSC 372 Spring 2018, Prolog Slide 208

For reference:
Pick a plank and see if we can add it to the solution.
• If so, then solve from the new state with the remaining planks
• If not, pick a different plank.
• If no plank works, fail.

Current state:
?- layplanks(20, [8,10], 3, S).

What if we pick 8?
We're over a pit! (3+8 == 11)

What if we pick 10?
?- layplanks(20, [8], 13, S).

Picks 8 and does
?- layplanks(20, [], 21, S).
S = [] .

layplanks, continued

----+ +--+ +----
| | | |
+------+ +--+
5 12 15 18

CSC 372 Spring 2018, Prolog Slide 209

We can see the sequence of calls and returns with a spy point:
?- spy(layplanks).
% Spy point on layplanks/4
true.

[debug] ?- layplanks(20, [3,8,10], 0, S).
* Call: (8) layplanks(20, [3, 8, 10], 0, _2534) ? leap
* Call: (9) layplanks(20, [8, 10], 3, _2764) ? leap
* Call: (10) layplanks(20, [8], 13, _2776) ? leap
* Call: (11) layplanks(20, [], 21, _2794) ? leap
* Exit: (11) layplanks(20, [], 21, []) ? leap
* Exit: (10) layplanks(20, [8], 13, [8]) ? leap
* Exit: (9) layplanks(20, [8, 10], 3, [10, 8]) ? leap
* Exit: (8) layplanks(20, [3, 8, 10], 0, [3, 10, 8]) ? leap
S = [3, 10, 8] .

Note that once the recursion hits the base case, the solution is built tail-first as the
recursive calls to layplanks return.

The full sequence via a spy point

CSC 372 Spring 2018, Prolog Slide 210

layplanks needs to pick a plank and know which planks are left.

We'll use the built-in select for that:
select(?Elem, ?List1, ?List2)

Is true when List1, with Elem removed, results in List2.

Example:
?- select(Plank, [10,8,3], Remaining).
Plank = 10,
Remaining = [8, 3] ;
Plank = 8,
Remaining = [10, 3] ;
Plank = 3,
Remaining = [10, 8] ;
false.

Writing layplanks

An implementation of select:
select(X, [X|T], T).
select(X, [H|T], [H|N]) :- select(X, T, N).

CSC 372 Spring 2018, Prolog Slide 211

Recall our base case:
layplanks(Goal,_,Current,[]) :- Current >= Goal.

Now we're ready to write the recursive case:
layplanks(Distance, Planks, Current,) :-

% Pick a plank.
select(Plank, Planks, Remaining),

% See how far it extends.
NewEnd is Current + Plank,

% Be sure we're not over a pit.
\+over_pit(NewEnd), % todo!

% Solve it from here with the remaining planks.
layplanks(Distance, Remaining, NewEnd, MorePlanks).

Example: layplanks(20, [10,8,3], 0, S).

[Plank|MorePlanks]

CSC 372 Spring 2018, Prolog Slide 212

Problem: Write over_pit.
over_pit(N) :-

pit(Start,Width),
End is Start + Width,
N >= Start, N < End.

We still need to use layplanks(+Goal, +Supply, +Current, -Solution)
to write cross:

?- cross(20, [1,2,4,5,5,9], S).
S = [4, 9, 1, 5, 2] .

cross(Goal, Planks, Solution) :-
layplanks(Goal, Planks, 0, Solution).

Experiment with this! It's in cross.pl.

Loose ends

==== = ==
========= =====

----+ +--+ +----
| | | |
+------+ +--+
5 12 15 18

CSC 372 Spring 2018, Prolog Slide 213

Key point:
A failure when attempting to place the very last plank may cause
backtracking across predicate calls all the way back through the choice
of the first plank!

Here's the general pattern for problems involving finding a valid sequence
of parts, steps, movements, etc.:

• Pick one of the things to add to the solution
• If it can be added, compute the new state.
• If it can't be added, backtrack and pick a different thing, or fail.

• Solve it from the new state with the remaining things

Note that cross isn't very smart. It didn't even check to see if we had
enough planks to go the full distance, irrespective of the pits.

Prolog's automatic uninstantiation of variables when a goal's redo port is
entered makes backtracking easy!

Backtracking makes this work!

CSC 372 Spring 2018, Prolog Slide 214

Variations:
• What if some pits had fire but we had some steel "planks", too?

• What if we could cut planks?

• What if we could cut planks but had only a limited amount of gas for
our chainsaw?

• What if the space to cross were two-dimensional?

• What are some more variations?

Pit-crossing variations

CSC 372 Spring 2018, Prolog Slide 215

Brick laying puzzle

CSC 372 Spring 2018, Prolog Slide 216

Consider six bricks of lengths 7, 5, 6, 4, 3, and 5. One way they can be laid into
three rows of length 10 is like this:

Problem: Write a predicate laybricks that produces a suitable sequence of bricks
for three rows of a given length:

?- laybricks([7,5,6,4,3,5], 10, Rows).
Rows = [[7, 3], [5, 5], [6, 4]] ;
Rows = [[7, 3], [5, 5], [4, 6]] ;
Rows = [[7, 3], [6, 4], [5, 5]] .

?- laybricks([7,5,6,4,3,5], 12, Rows).
false.

In broad terms, how can we approach this problem?

Brick laying

7 3

5 5

6 4

CSC 372 Spring 2018, Prolog Slide 217

layrow produces a sequence of bricks for a row of a given length:

?- layrow([3,2,7,4], 7, BricksLeft, Row).
BricksLeft = [2, 7],
Row = [3, 4] ;

BricksLeft = [3, 2, 4],
Row = [7] ;

BricksLeft = [2, 7],
Row = [4, 3] ;
false.

Implementation:
layrow(Bricks, 0, Bricks, []). % A row of length zero consists of no

% bricks and doesn't touch the supply.

layrow(Bricks, RowLen, Left, [Brick|MoreBricksForRow]) :-
select(Brick, Bricks, Left0),
RemLen is RowLen - Brick, RemLen >= 0,
layrow(Left0, RemLen, Left, MoreBricksForRow).

Helper layrow

CSC 372 Spring 2018, Prolog Slide 218

Let's write lay3rows, which is hardwired for three rows:

lay3rows(Bricks, RowLen, [Row1,Row2,Row3]) :-
layrow(Bricks, RowLen, LeftAfter1, Row1),
layrow(LeftAfter1, RowLen, LeftAfter2, Row2),
layrow(LeftAfter2, RowLen, LeftAfter3, Row3),
LeftAfter3 = [].

What's the purpose of LeftAfter3 = []?

Usage:
?- lay3rows([2,1,3,1,2], 3, Rows).
Rows = [[2, 1], [3], [1, 2]] ;
...
Rows = [[2, 1], [1, 2], [3]] ;
...

How can we generalize it to N rows?

Three rows of bricks

CSC 372 Spring 2018, Prolog Slide 219

laybricks(+Bricks, +NRows, +RowLen, ?Rows) works like this:
?- laybricks([5,1,6,2,3,4,3], 3, 8, Rows).
Rows = [[5, 3], [1, 4, 3], [6, 2]] .

?- laybricks([5,1,6,2,3,4,3], 8, 3, Rows).
false.

?- laybricks([5,1,6,2,3,4,3], 2, 12, Rows).
Rows = [[5, 1, 6], [2, 3, 4, 3]] .

?- laybricks([5,1,6,2,3,4,3], 4, 6, Rows).
Rows = [[5, 1], [6], [2, 4], [3, 3]] .

Implementation:

laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-
layrow(Bricks, RowLen, BricksLeft, Row),
RowsLeft is Nrows - 1,
laybricks(BricksLeft, RowsLeft, RowLen, Rows).

N rows of bricks

CSC 372 Spring 2018, Prolog Slide 220

At hand:
laybricks([], 0, _, []).

laybricks(Bricks, Nrows, RowLen, [Row|Rows]) :-
layrow(Bricks, RowLen, BricksLeft, Row),
RowsLeft is Nrows - 1,
laybricks(BricksLeft, RowsLeft, RowLen, Rows).

laybricks requires that all bricks be used. How can we remove that
requirement?

Modify the base case:
laybricks(_, 0, _, []).

?- laybricks([4,3,2,1], 2, 3, Rows).
Rows = [[3], [2, 1]] .

We'll call this variant laybricks2.

N rows of bricks, continued

CSC 372 Spring 2018, Prolog Slide 221

Some facts for testing:

b(1, [7,5,6,4,3,5]).
b(2, [5,1,6,2,3,4,3]).
b(3, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4]). % 6x12
b(4, [8,5,1,4,6,6,2,3,4,3,3,6,3,8,6,4,1]). % 6x12 with extra 1

We can query b(N, Bricks) to set Bricks to a particular list.

?- b(1,Bricks), laybricks(Bricks, 2, 10, Rows).
false.

?- b(1,Bricks), laybricks2(Bricks, 2, 10, Rows). % laybricks2
Bricks = [7, 5, 6, 4, 3, 5],
Rows = [[7, 3], [5, 5]] .

?- b(3,Bricks), laybricks(Bricks,6,12,Rows).
Bricks = [8, 5, 1, 4, 6, 6, 2, 3, 4|...],
Rows = [[8, 1, 3], [5, 4, 3], [6, 6], [2, 4, 3, 3], [6, 6], [8, 4]] .

Testing
laybricks(+Bricks, +NRows, +RowLen, ?Rows)

CSC 372 Spring 2018, Prolog Slide 222

Let's try a set of bricks that can't be laid into six rows of twelve:

?- b(4,Bricks), laybricks(Bricks,6,12,Rows).
...[the sound of a combinatorial explosion]...
^CAction (h for help) ? abort
% Execution Aborted

?- statistics.
8.240 seconds cpu time for 74,996,337 inferences
...
true.

The speed of a Prolog implementation is sometimes quoted in LIPS—
logical inferences per second.

2006 numbers, for contrast:
?- statistics.
8.05 seconds cpu time for 25,594,610 inferences

Testing, continued

CSC 372 Spring 2018, Prolog Slide 223

The Zebra Puzzle

CSC 372 Spring 2018, Prolog Slide 224

The Wikipedia entry for "Zebra Puzzle" presents a puzzle said to have been first
published in the magazine Life International on December 17, 1962. The facts:

• There are five houses.
• The Englishman lives in the red house.
• The Spaniard owns the dog.
• Coffee is drunk in the green house.
• The Ukrainian drinks tea.
• The green house is immediately to the right of the ivory house.
• The Old Gold smoker owns snails.
• Kools are smoked in the yellow house.
• Milk is drunk in the middle house.
• The Norwegian lives in the first house.
• The man who smokes Chesterfields lives in the house next to the man

with the fox.
• Kools are smoked in the house next to the house where the horse is kept.
• The Lucky Strike smoker drinks orange juice.
• The Japanese smokes Parliaments.
• The Norwegian lives next to the blue house.

The magazine article asked readers, "Who drinks water? Who owns the zebra?"

The Zebra Puzzle

CSC 372 Spring 2018, Prolog Slide 225

We can solve this problem by representing all the information with a set of goals
and asking Prolog to find the condition under which all the goals are true.

A good starting point is these three facts:
• There are five houses.
• The Norwegian lives in the first house.
• Milk is drunk in the middle house.

Those three facts can be represented with this goal:

Houses = [house(norwegian, _, _, _, _), % First house
_, % Second house
house(_, _, _, milk, _), % Middle house
_, _] % 4th and 5th houses

Instances of house structures represent knowledge about a house.

house structures have five terms: nationality, pet, smoking preference (remember,
it was 1962!), beverage of choice and house color.

Anonymous variables are used to represent "don't-knows".

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 226

Remember: house(Nation, Pet, Smoke, Drink, Color)

Some facts can be represented with goals that specify structures as
members of the list Houses, but with unknown position:

The Englishman lives in the red house.
member(house(englishman, _, _, _, red), Houses)

The Spaniard owns the dog.
member(house(spaniard, dog, _, _, _), Houses)

Coffee is drunk in the green house.
member(house(_, _, _, coffee, green), Houses)

How can we represent The green house is immediately to the right of the
ivory house.?

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 227

At hand:
The green house is immediately to the right of the ivory house.

Here's a predicate that expresses left/right positioning:
left_right(L, R, [L, R | _]).
left_right(L, R, [_ | Rest]) :- left_right(L, R, Rest).

Testing:
?- left_right(Left,Right, [1,2,3,4]).
Left = 1,
Right = 2 ;

Left = 2,
Right = 3 ;
...

Problem: Write a goal to express the green-to-right-of-ivory fact.
left_right(house(_, _, _, _, ivory),

house(_, _, _, _, green), Houses)

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 228

We have these "next to" facts:
• The man who smokes Chesterfields lives in the house next to the

man with the fox.
• Kools are smoked in the house next to the house where the horse is

kept.
• The Norwegian lives next to the blue house.

How can we represent these?

How can we use left_right(L, R, List) to write next_to(X, Y, List)?
next_to(X, Y, List) :- left_right(X, Y, List).
next_to(X, Y, List) :- left_right(Y, X, List).

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 229

These "next to" facts are at hand:
• The man who smokes Chesterfields lives in the house next to the man

with the fox.
• Kools are smoked in the house next to the house where the horse is kept.
• The Norwegian lives next to the blue house.

Remember: house(Nation, Pet, Smoke, Drink, Color)

How can we express the facts above as goals?
next_to(house(_, _, chesterfield, _, _),

house(_, fox, _, _, _), Houses)

next_to(house(_, _, kool, _, _),
house(_, horse, _, _, _), Houses)

next_to(house(norwegian, _, _, _, _),
house(_, _, _, _, blue), Houses)

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 230

Remember: house(Nation, Pet, Smoke, Drink, Color)
A few more simple house & member goals complete the encoding:

• The Ukrainian drinks tea.
member(house(ukrainian, _, _, tea, _), Houses)

• The Old Gold smoker owns snails.
member(house(_, snails, old_gold, _, _), Houses)

• Kools are smoked in the yellow house.
member(house(_, _, kool, _, yellow), Houses)

• The Lucky Strike smoker drinks orange juice.
member(house(_, _, lucky_strike, orange_juice, _)

Houses)

• The Japanese smokes Parliaments.
member(house(japanese, _, parliment, _, _), Houses)

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 231

A rule that comprises all the goals:

zebra(Houses, Zebra_Owner, Water_Drinker) :-
Houses = [house(norwegian, _, _, _, _), _,

house(_, _, _, milk, _), _, _],
member(house(englishman, _, _, _, red), Houses),
member(house(spaniard, dog, _, _, _), Houses),
member(house(_, _, _, coffee, green), Houses),
member(house(ukrainian, _, _, tea, _), Houses),
left_right(house(_,_,_,_,ivory), house(_,_,_,_,green), Houses),
member(house(_, snails, old_gold, _, _), Houses),
member(house(_, _, kool, _, yellow), Houses),
next_to(house(_,_,chesterfield,_,_),house(_, fox,_,_,_), Houses),
next_to(house(_,_,kool,_,_), house(_, horse, _, _, _), Houses),
member(house(_, _, lucky_strike, orange_juice, _), Houses),
member(house(japanese, _, parliment, _, _), Houses),
next_to(house(norwegian,_,_,_,_), house(_,_,_,_, blue), Houses),

% The questions of interest:
member(house(Zebra_Owner, zebra, _, _, _), Houses),
member(house(Water_Drinker, _, _, water, _), Houses).

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 232

The moment of truth:
?- zebra(_, Zebra_Owner, Water_Drinker).
Zebra_Owner = japanese,
Water_Drinker = norwegian ;
false.

The whole neighborhood:
?- zebra(Houses,_,_), member(H,Houses), writeln(H), fail.
house(norwegian,fox,kool,water,yellow)
house(ukrainian,horse,chesterfield,tea,blue)
house(englishman,snails,old_gold,milk,red)
house(spaniard,dog,lucky_strike,orange_juice,ivory)
house(japanese,zebra,parliment,coffee,green)
false.

?- statistics.
% Started at Wed Apr 25 00:53:50 2018
% 0.100 seconds cpu time for 467,242 inferences
...more.. (try it!)

Zebra Puzzle, continued

CSC 372 Spring 2018, Prolog Slide 233

Credits:
The code presented was adapted from code by Ng Pheng Siong in
sandbox.rulemaker.net/ngps/119

Siong apparently adapted it from prior work by Bill Clementson in
Allegro Prolog.

Credits

CSC 372 Spring 2018, Prolog Slide 234

Typing in Prolog

CSC 372 Spring 2018, Prolog Slide 235

Recall that with a statically typed language, the type of every variable and
expression can be determined by static analysis of code.

Is Prolog statically typed or dynamically typed? Or is it something else?

Wikipedia says, "Prolog is an untyped language." (4/25/2018)
Does Prolog not have types?

BCPL is sometimes described as an untyped language where all values are
word-sized objects.

Imagine a language where everything is a string. Is it untyped?

"A programming language is untyped if it allows [you] to apply any
operation on any data, and all datatypes are considered as sequences of
bits of various lengths."––http://progopedia.com/typing/untyped

Static or dynamic?

CSC 372 Spring 2018, Prolog Slide 236

There are only two clear references to data types in C&M:
p. 28: "The functor names the general kind of structure, and corresponds to a
datatype in an ordinary programming language."

p. 122, under "Classifying Terms": If we wish to define predicates which will
be used with a wide variety of argument types, it is useful to be able to
distinguish in the definition what should be done for each possible type."

Covington has several references to types, including these:
p. 93: "Terms of this form are called STRUCTURES. The functor is always
an atom, but the arguments can be terms of any type whatever."

p. 130: "If number_codes is given a string that doesn't make a valid
number, or if either of its arguments is of the wrong type, it raises a runtime
error condition."

Another voice:
ISO Prolog's exception handling mechanism has a type_error(Type,Term)
structure.

The books say...

CSC 372 Spring 2018, Prolog Slide 237

Let's see if any predicates concern types.
?- apropos(type).
...
integer/1 Type check for integer
rational/1 Type check for a rational number
number/1 Type check for integer or float
atom/1 Type check for an atom
blob/2 Type check for a blob
string/1 Type check for string

Can we produce a type error?
?- atom_length(a(1), Len).
ERROR: atom_length/2: Type error: `text' expected, found `a(1)'

Could we find the above error with static analysis?

Bottom line: I'm comfortable saying that Prolog has types.

swipl says...

CSC 372 Spring 2018, Prolog Slide 238

Again:
In a statically typed language, the type of every variable and
expression can be determined by static analysis of code.

Can we construct a Prolog program where a value's type cannot be
determined by looking at the code?

Here's such a program:
f('one'). f(a(1)).

prog :- f(X), random(2) > 0,
atom_length(X, Len), writeln(Len).

The type of X depends on a random number
and thus varies from run to run.

Therefore, Prolog is dynamically typed!

Back to "statically typed or dynamically typed?"

?- prog.
3
true .

?- prog.
false.

?- prog.
ERROR: atom_length:
Type error: ...

Right?
CSC 372 Spring 2018, Prolog Slide 239

Odds and ends

CSC 372 Spring 2018, Prolog Slide 240

In the mid-1990s Dr. Collberg developed a system that is able to discover
the instruction set, registers, addressing modes and more for a machine
given only a C compiler for that machine.

The basic idea:
Use the C compiler of the target system to compile a large number of
small but carefully crafted programs and then examine the machine
code produced for each program to make inferences about the
architecture.

End result:
A machine description that in turn can be used to generate a code
generator for the architecture.

The system is written in Prolog. What makes Prolog well-suited for this
task?

Paper:
cs.arizona.edu/~collberg/content/research/papers/collberg02automatic.pdf

Collberg's Architecture Discovery Tool

CSC 372 Spring 2018, Prolog Slide 241

http://www.cs.arizona.edu/~collberg/content/research/papers/collberg02automatic.pdf

The Prolog 1000 is a compilation of applications written in Prolog and
related languages. Here is a sampling of the entries:

AALPS
The Automated Air Load Planning System provides a flexible spatial
representation and knowledge base techniques to reduce the time
taken for planning by an expert from weeks to two hours. It
incorporates the expertise of loadmasters with extensive cargo and
aircraft data.

ACACIA
A knowledge-based framework for the on-line dynamic synthesis of
emergency operating procedures in a nuclear power plant.

ASIGNA
Resource-allocation problems occur frequently in chemical plans.
Different processes often share pieces of equipment such as reactors
and filters. The program ASIGNA allocates equipment to some given
set of processes. (2,000 lines)

The Prolog 1000

CSC 372 Spring 2018, Prolog Slide 242

Coronary Network Reconstruction
The program reconstructs a three-dimensional image of coronary networks
from two simultaneous X-Ray projections. The procedures in the
reconstruction-labelling process deal with the correction of distortion, the
detection of center-lines and boundaries, the derivation of 2-D branch
segments whose extremities are branching, crossing or end points and the 3-D
reconstruction and display.

All algorithmic components of the reconstruction were written in the C
language, whereas the model and resolution processes were represented by
predicates and production rules in Prolog. The user interface, which includes
a main panel with associated control items, was developed using Carmen, the
Prolog by BIM user interface generator.

DAMOCLES
A prototype expert system that supports the damage control officer aboard
Standard frigates in maintaining the operational availability of the vessel by
safeguarding it and its crew from the effects of weapons, collisions, extreme
weather conditions and other calamities. (> 68,000 lines)

The Prolog 1000, continued

CSC 372 Spring 2018, Prolog Slide 243

DUST-EXPERT
Expert system to aid in design of explosion relief vents in environments where
flammable dust may exist. (> 10,000 lines)

EUREX
An expert system that supports the decision procedures about importing and
exporting sugar products. It is based on about 100 pages of European
regulations and it is designed in order to help the administrative staff of the
Belgian Ministry of Economic Affairs in filling in forms and performing
other related operations. (>38,000 lines)

GUNGA CLERK
Substantive legal knowledge-based advisory system in New York State
Criminal Law, advising on sentencing, pleas, lesser included offenses and
elements.

MISTRAL
An expert system for evaluating, explaining and filtering alarms generated by
automatic monitoring systems of dams. (1,500 lines)

The full list is in prolog/Prolog1000.txt. Several are over 100K lines of code.

The Prolog 1000, continued

CSC 372 Spring 2018, Prolog Slide 244

1. DOS-PROLOG
http://www.lpa.co.uk/dos.htm
2. Open Prolog
http://www.cs.tcd.ie/open-prolog/
3. Ciao Prolog
http://www.clip.dia.fi.upm.es/Software/Ciao
4. GNU Prolog
http://pauillac.inria.fr/~diaz/gnu-prolog/
5. Visual Prolog (PDC Prolog and Turbo Prolog)
http://www.visual-prolog.com/
6. SWI-Prolog
http://www.swi-prolog.org/
7. tuProlog
http://tuprolog.alice.unibo.it/
8. HiLog
ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/hilog.pdf
9. ?Prolog
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lPro
log/
10. F-logic
http://www.cs.umbc.edu/771/papers/flogic.pdf
11. OW Prolog
http://www.geocities.com/owprologow/
12. FLORA-2
http://flora.sourceforge.net/
13. Logtalk
http://www.logtalk.org/

14. WIN Prolog
http://www.lpa.co.uk/
15. YAP Prolog
http://www.ncc.up.pt/~vsc/Yap
16. AI::Prolog
http://search.cpan.org/~ovid/AI-Prolog-
0.734/lib/AI/Prolog.pm
17. SICStus Prolog
http://www.sics.se/sicstus/
18. ECLiPSe Prolog
http://eclipse.crosscoreop.com/
19. Amzi! Prolog
http://www.amzi.com/
20. B-Prolog
http://www.probp.com/
21. MINERVA
http://www.ifcomputer.co.jp/MINERVA/
22. Trinc Prolog
http://www.trinc-prolog.com/

And 50 more!

Lots of Prologs
For a Fall 2006 honors section assignment, Maxim Shokhirev was given the task
of finding as many Prolog implementations as possible in one hour. His results:

CSC 372 Spring 2018, Prolog Slide 245

http://www.artima.com/forums/flat.jsp?forum=123&thread=182574
describes a "tiny Prolog in Ruby".

Here is member:

member[cons(:X,:Y), :X].fact
member[cons(:Z,:L), :X] <<= member[:L,:X]

Here's the common family example:

sibling[:X,:Y] <<= [parent[:Z,:X], parent[:Z,:Y], noteq[:X,:Y]]
parent[:X,:Y] <<= father[:X,:Y]
parent[:X,:Y] <<= mother[:X,:Y]

facts: rules with "no preconditions"
father["matz", "Ruby"].fact
mother["Trude", "Sally"].fact
...

query sibling[:X, "Sally"]
>> 1 sibling["Erica", "Sally"]

Ruby meets Prolog

CSC 372 Spring 2018, Prolog Slide 246

In conclusion...

CSC 372 Spring 2018, Prolog Slide 247

• Knowledgebase manipulation (slides 249-268 in prolog.pdf)
• Parsing with definite clause grammars (slides 269-285 in prolog.pdf)
• More with...

• Puzzle solving
• Higher-order predicates

• Expert systems
• Natural language processing
• Constraint programming

http://www.swi-prolog.org/pldoc/man?section=clpfd
• Look at Prolog implementation with the Warren Abstract Machine.

Continued study:
More in Covington and Clocksin & Mellish.
The Craft of Prolog by O'Keefe
The Art of Prolog by Sterling and Shapiro

If we had a whole semester...

CSC 372 Spring 2018, Prolog Slide 248

http://www.swi-prolog.org/pldoc/man?section=clpfd

Database (knowledgebase)
manipulation

CSC 372 Spring 2018, Prolog Slide 249

A Prolog program is a database of facts and rules.

The database can be changed dynamically by adding facts with assert/1
and deleting facts with retract/1.

A predicate to establish that certain things are foods:
makefoods :- % foods3.pl

assert(food(apple)),
assert(food(broccoli)), assert(food(carrot)),
assert(food(lettuce)), assert(food(rice)).

Evaluating makefoods adds facts to the database:
?- food(F). ("positive-control" test—be sure no foods already!)
ERROR: toplevel: Undefined procedure: food/1

?- makefoods.
true.

?- findall(F, food(F), L).
L = [apple, broccoli, carrot, lettuce, rice].

assert and retract

CSC 372 Spring 2018, Prolog Slide 250

A fact can be removed with retract:
?- retract(food(carrot)).
true.

?- food(carrot).
false.

retractall removes all matching facts.
?- retractall(food(_)).
true.

?- food(X).
false.

assert and retract, continued

CSC 372 Spring 2018, Prolog Slide 251

If we query makefoods multiple times, it makes multiple sets of food
facts.

?- makefoods.
true.

?- makefoods.
true.

?- findall(F,food(F),Foods).
Foods = [apple, broccoli, carrot, lettuce, rice, apple, broccoli,
carrot, lettuce|...].

Let's start makefoods with a retractall to get a clean slate every time.

makefoods :-
retractall(food(_)),
assert(food(apple)),
assert(food(broccoli)), assert(food(carrot)),
assert(food(lettuce)), assert(food(rice)).

assert and retract, continued

CSC 372 Spring 2018, Prolog Slide 252

Important: asserts and retracts are not undone with backtracking.

?- assert(f(1)), assert(f(2)), fail.
false.

?- f(X).
X = 1 ;
X = 2.

?- retract(f(1)), fail.
false.

?- f(X). A redo of retract(f(1)) did not restore f(1).
X = 2.

There is no ability to directly change a fact. Instead, a fact is changed by
retracting it and then asserting it with different terms.

assert and retract, continued

CSC 372 Spring 2018, Prolog Slide 253

A rule to remove foods of a given color (assuming the color/2 facts are
present):

rmfood(C) :- food(F), color(F,C),
retract(food(F)),
write('Removed '), write(F), nl, fail.

Usage:
?- rmfood(green).
Removed broccoli
Removed lettuce
false.

?- findall(F, food(F), L).
L = [apple, carrot, rice].

The color facts are not affected—color(broccoli, green) and
color(lettuce,green) still exist.

assert and retract, continued

CSC 372 Spring 2018, Prolog Slide 254

Here's a very simple calculator: (calc.pl)

?- calc.
> print.
0
> add(20).
> sub(7).
> print.
13
> set(40).
> print.
40
> exit.
true.

Note that the commands themselves are Prolog terms.

A simple calculator

CSC 372 Spring 2018, Prolog Slide 255

A loop that reads and prints terms:
calc0 :- prompt(_, '> '),

repeat, read(T), format('Read ~w~n', T), T = exit, !.

Interaction:
?- calc0.
> a.
Read a
> ab(c,d,e).
Read ab(c,d,e)
> exit.
Read exit
true.

How does the loop work?

prompt/2 sets the prompt that's printed when read/1 is called.

repeat/0 always succeeds. If repeat is backtracked into, it simply sends control
back to the right. (Think of its redo port being wired to its exit port.)

The predicate read(-X) reads a Prolog term and unifies it with X.

Simple calculator, continued

CSC 372 Spring 2018, Prolog Slide 256

Partial implementation:
init :-

retractall(value(_)),
assert(value(0)).

do(set(V)) :-
retract(value(_)),
assert(value(V)).

do(print) :- value(V), writeln(V).

do(exit).

calc :-
init, prompt(_, '> '),
repeat, read(T), do(T), T = exit, !.

How can add(N) and sub(N) be implemented? (No repetitious code,
please!)

Simple calculator, continued

?- calc.
> print.
0
> add(20).
> sub(7).
> print.
13
> set(40).
> print.
40
> exit.
true.

CSC 372 Spring 2018, Prolog Slide 257

add and subtract:

do(add(X)) :-
value(V0),
V is V0 + X,
do(set(V)).

do(sub(X0)) :-
X is -X0,
do(add(X)).

Could sub be shortened to the following?

do(sub(X)) :- do(add(-X)).

Try add(3+4*5), too.

Exercise: Add double and halve commands.

Simple calculator, continued

% Is this a nested call to set(V)?!

CSC 372 Spring 2018, Prolog Slide 258

We can use facts like we might use a Java map or a Ruby hash.

Imagine a word tallying program in Prolog:

?- tally.
|: to be or
|: not to be ought not
|: to be the question
|: (Empty line ends the input.)

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3
true.

Word tally

CSC 372 Spring 2018, Prolog Slide 259

read_line_to_codes produces a list of ASCII character codes for a line of input.

?- read_line_to_codes(user_input, Codes).
|: ab CD 12
Codes = [97, 98, 32, 67, 68, 32, 49, 50].

?- read_line_to_codes(user_input, Codes).
|: (hit ENTER)
Codes = [].

atom_codes can be used to form an atom from a list of codes.
?- atom_codes(Atom, [97, 98, 10, 49, 50]).
Atom = 'ab\n12'.

readline reads a line and produces an atom.
readline(Line) :-

read_line_to_codes(user_input, Codes),
atom_codes(Line, Codes).

?- readline(Line).
|: a test of this
Line = 'a test of this'.

Input handling for tally

CSC 372 Spring 2018, Prolog Slide 260

Let's use word(Word, Count) facts to maintain counts.

Let's write a count(Word) predicate to create and update word/2 facts.

Example of operation:
?- retractall(word(_,_)).
true.

?- count(test).
true.

?- word(W,C).
W = test,
C = 1.

?- count(this), count(test), count(now).
true.

?- findall(W-C, word(W,C), L).
L = [this-1, test-2, now-1].

Counting words

listing displays the clauses
for a predicate:

?- listing(word).
:- dynamic word/2.

word(this, 1).
word(test, 2).
word(now, 1).

true.

CSC 372 Spring 2018, Prolog Slide 261

For reference:
?- retractall(word(_,_)).

?- count(test), count(this), count(test), count(now).

?- findall(W-C, word(W,C), L).
L = [this-1, test-2, now-1].

Problem: Implement the predicate count.
count(Word) :-

word(Word,Count0),
retract(word(Word,_)),
Count is Count0+1,
assert(word(Word,Count)), !.

count(Word) :- assert(word(Word,1)).

count implementation

CSC 372 Spring 2018, Prolog Slide 262

tally clears the counts and then loops, reading lines and processing each.
tally :-

retractall(word(_,_)),
repeat,

readline(Line),
do_line(Line),
Line == '', !, % note that '' is an empty atom
show_counts.

How does tally terminate?

do_line breaks up a line into words and calls count on each word.
do_line('').
do_line(Line) :-

atomic_list_concat(Words, ' ', Line), % splits Line on blanks
member(Word, Words),
count(Word), fail.

do_line(_).

Top-level and a helper

CSC 372 Spring 2018, Prolog Slide 263

keysort/2 sorts a list of A-B structures on the value of the A terms.

?- keysort([zoo-3, apple-1, noon-4],L).
L = [apple-1, noon-4, zoo-3].

With keysort in hand we're ready to write
show_counts, to produce the output at right.

show_counts :-
writeln('\n-- Results --'),
findall(W-C, word(W,C), Pairs),
keysort(Pairs, Sorted),
member(W-C, Sorted),
format('~w~t~12|~w~n', [W,C]), fail.

show_counts.

Full source is in tally.pl

Showing the counts

-- Results --
be 3
not 2
or 1
ought 1
question 1
the 1
to 3

CSC 372 Spring 2018, Prolog Slide 264

What's a key difference between using Prolog facts and maps/hashes/etc.
to maintain word counts?

A hash or map can be passed around as a value, but Prolog facts are
fundamentally objects with global scope. The collection of word/2 facts
can be likened to a Ruby global, like $words = {}

How could we maintain multiple tallies simultaneously?
We could add an id of some sort as another term for word facts.

Example: We might tally word counts for quotations in a document
separately from word counts for body content. Calls to count might look
like this,

count(Type, Word)

and create facts like these:
word(quotes, testing, 3)
word(body, testing, 10)

Facts vs. Java maps, Ruby hashes, etc.

Analogy: Imagine a Ruby constant
HASH that is the instance of Hash.

CSC 372 Spring 2018, Prolog Slide 265

Consider a stack of blocks, each of which is uniquely labeled with a letter:

This arrangement could be represented with these facts:

Problem: Define a predicate clean that will print a sequence of blocks to remove
from the floor such that no block is removed until nothing is on it.

What's a suitable sequence of removals for the above diagram?
a, c, e, b, d, f, g

Another: a, b, c, d, e, f, g.

Example: Unstacking blocks

a b

c d

gfe

floor

on(a,c). on(c,e). on(e,floor).
on(a,d). on(c,f). on(f,floor).
on(b,d). on(d,f). on(g,floor).

on(d,g).

CSC 372 Spring 2018, Prolog Slide 266

Here's one solution: (blocks.pl)

removable(B) :- \+on(_,B).

remove(B) :-
removable(B),
retractall(on(B,_)),
format('Remove ~w\n', B).

remove(B) :-
on(Above,B),
remove(Above),
remove(B).

clean :- on(B,floor), remove(B), clean, !.
clean :- \+on(_,_).

How long would in be in Java or Ruby?

Can we tighten it up?

Unstacking blocks, continued

a b

c d

gfe

floor

?- clean.
Remove a
Remove c
Remove e
Remove b
Remove d
Remove f
Remove g
true.

on(a,c). on(a,d). on(b,d). ...

CSC 372 Spring 2018, Prolog Slide 267

A more concise solution:

clean :-
on(Block,_), \+on(_,Block),
format('Remove ~w\n', Block),
retractall(on(Block,_)), clean, !.

clean :- \+on(_,_).

Output:
?- clean.
Remove a
Remove b
Remove c
Remove d
Remove e
Remove f
Remove g
true.

Unstacking blocks, continued

a b

c d

gfe

floor

Previous sequence:
?- clean.
Remove a
Remove c
Remove e
Remove b
Remove d
Remove f
Remove g
true.

on(a,c). on(a,d). on(b,d). ...

Find a block that's on something
and that has nothing on it, and
remove it.

Recurse, continuing as long as
there's a block that's on
something.

CSC 372 Spring 2018, Prolog Slide 268

Parsing and grammars

Credit: The first part of this section borrows heavily from chapter
12 in Covington.

CSC 372 Spring 2018, Prolog Slide 269

Here is a grammar for a very simple language. It has four productions.

Sentence => Article Noun Verb

Article => the | a

Noun => dog | cat | girl | boy

Verb => ran | talked | slept

Here are some sentences in the language:
the dog ran
a boy slept
the cat talked

the, dog, cat, etc. are terminal symbols—they appear in the strings of the language.
Generation terminates with them.

Sentence, Article, Noun and Verb are non-terminal symbols—they can produce
something more.

Sentence is the start symbol. We can generate sentences by starting with it and
replacing non-terminals with terminals and non-terminals until only terminals remain.

A very simple grammar

CSC 372 Spring 2018, Prolog Slide 270

Here is a simple parser for the grammar, expressed as clauses: (parser0.pl)

sentence(Words) :-
article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).
article([a| Left], Left).
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Usage:
?- sentence([the,dog,ran]).
true .

?- sentence([the,dog,boy]).
false.

?- sentence(S). % Generates all valid sentences
S = [the, dog, ran] ;
S = [the, dog, talked] ;
S = [the, dog, slept] ;
...

A very simple parser

Sentence => Article Noun Verb
Article => the | a
Noun => dog | cat | girl | boy
Verb => ran | talked | slept

CSC 372 Spring 2018, Prolog Slide 271

For reference:
sentence(Words) :-

article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

article([the|Left], Left).
article([a| Left], Left).
noun([Noun|Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

Note that the heads for article, noun, and verb all have the same form.

Let's look at a clause for article and a unification:

article([the|Left], Left).

?- article([the,dog,ran], Remaining).
Remaining = [dog, ran] .

If Words begins with the or a, then article(Words, Remaining) succeeds and
unifies Remaining with the rest of the list. The key idea: article, noun, and
verb each consume an expected word and produce the remaining words.

A very simple parser, continued

CSC 372 Spring 2018, Prolog Slide 272

sentence(Words) :-
article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

A query sheds light on how sentence operates:
?- article(Words, Left1), noun(Left1, Left2),

verb(Left2, Left3), Left3 = [].
Words = [the, dog, ran],
Left1 = [dog, ran],
Left2 = [ran],
Left3 = [] .
?- sentence([the,dog,ran]).
true .

Each goal consumes one word. The remainder is then the input for the
next goal.

Why is verb's result, Left3, unified with the empty list?

A very simple parser, continued

CSC 372 Spring 2018, Prolog Slide 273

Here's a convenience predicate that splits up a string and calls sentence.
s(String) :-

concat_atom(Words, ' ', String), sentence(Words).

sentence(Words) :-
article(Words, Left1), noun(Left1, Left2), verb(Left2, []).

Usage:
?- s('the dog ran').
true .

?- s('ran the dog').
false.

A very simple parser, continued

CSC 372 Spring 2018, Prolog Slide 274

Prolog's grammar rule notation provides a convenient way to express these
stylized rules. Instead of this,

sentence(Words) :-
article(Words, Left0), noun(Left0, Left1), verb(Left1, []).

article([the| Left], Left).
article([a| Left], Left).
noun([Noun| Left], Left) :- member(Noun, [dog,cat,girl,boy]).
verb([Verb|Left], Left) :- member(Verb, [ran,talked,slept]).

we can take advantage of grammar rule notation and say this,

sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

Note that the literals (terminals) are specified as singleton lists.

The semicolon is an "or". Alternative: noun --> [dog]. noun --> [cat]. ...

Grammar rule notation

This is Prolog source code, too!

CSC 372 Spring 2018, Prolog Slide 275

$ cat parser1.pl
sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

listing can be used to see the clauses generated for that grammar.

?- [parser1].
...

?- listing(sentence).
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).
article(A, B) :-

(A=[a|B]
; A=[the|B]
).

Note that the predicates generated for sentence, article and others have an
arity of 2.

Grammar rule notation, continued

CSC 372 Spring 2018, Prolog Slide 276

At hand: (a definite clause grammar)
sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].
verb --> [ran]; [talked]; [slept].

?- listing(sentence).
sentence(A, D) :- article(A, B), noun(B, C), verb(C, D).

?- listing(article).
article(A, B) :- (A=[a|B]; A=[the|B]).

?- sentence([a,dog,talked,to,me], Leftover).
Leftover = [to, me] .

?- sentence([a,bird,talked,to,me], Leftover).
false.

Remember that sentence, article, verb, and noun are non-terminals. dog,
cat, ran, talked, are terminals, represented as atoms in singleton lists.

Grammar rule notation, continued

CSC 372 Spring 2018, Prolog Slide 277

Below we've added a second term to the call to sentence, and mixed in a regular
rule for verb along with the grammar rule.

s(String) :- % parser1a.pl
concat_atom(Words, ' ', String), sentence(Words,[]).

sentence --> article, noun, verb.
article --> [a]; [the].
noun --> [dog]; [cat]; [girl]; [boy].

verb --> [ran]; [talked]; [slept].
verb([Verb|Left], Left) :- verb0(Verb).

verb0(jumped). verb0(ate). verb0(computed).

?- s('a boy computed').
true .

?- s('a boy computed pi').
false.

Grammar rule notation, continued

CSC 372 Spring 2018, Prolog Slide 278

We can insert ordinary goals into grammar rules by enclosing the goal(s) in curly
braces.

Here is a chatty parser that recognizes the language described by the regular
expression a*:

parse(S) :- atom_chars(S,Chars), string(Chars, []). % parser6.pl

string --> as.

as --> [a], {writeln('got an a')}, as.
as --> [], {writeln('empty match')}.

Usage:
?- parse(aaa).
got an a
got an a
got an a
empty match
true .

Goals in grammar rules

?- parse(aab).
got an a
got an a
empty match
empty match
empty match
false.

What if the as clauses are
swapped?

?- parse(aaa).
empty match
got an a
empty match
got an a
empty match
got an a
empty match
true.

CSC 372 Spring 2018, Prolog Slide 279

We can add parameters to the non-terminals in grammar rules. The
following grammar recognizes a* and produces the length, too.

parse(S, Count) :- % parser6a.pl
atom_chars(S,Chars), string(Count,Chars, []).

string(N) --> as(N).

as(N) --> [a], as(M), {N is M + 1}.
as(0) --> [].

Usage:
?- parse(aaa, N).
N = 3 .

?- parse(aaab, N).
false.

Parameters in non-terminals

CSC 372 Spring 2018, Prolog Slide 280

Here is a grammar that recognizes aNb2Nc3N: (parser7a.pl)

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []).

string([N,NN,NNN]) -->
as(N), {NN is 2*N}, bs(NN), {NNN is 3*N}, cs(NNN).

as(N) --> [a], as(M), {N is M +1}.
as(0) --> [].

bs(N) --> [b], bs(M), {N is M +1}.
bs(0) --> [].

cs(N) --> [c], cs(M), {N is M +1}.
cs(0) --> [].

?- parse(aabbbbcccccc, L).
L = [2, 4, 6] .

?- parse(aabbc, L).
false.

Can this language be described with a regular expression?

Parameters in non-terminals, continued

CSC 372 Spring 2018, Prolog Slide 281

How could we handle aXbYcZ where X <= Y <= Z?

?- parse(abbbccc, L).
L = [1, 3, 3] .

?- parse(ccccc, L).
L = [0, 0, 5] .

?- parse(aaabbc, L).
false.

parse(S,L) :- atom_chars(S,Chars), string(L, Chars, []). % parser7b.pl

string([X,Y,Z]) --> as(X), bs(Y), {X =< Y}, cs(Z), {Y =< Z}.

as(N) --> [a], as(M), {N is M+1}.
as(0) --> [].

bs(N) --> [b], bs(M), {N is M+1}.
bs(0) --> [].

cs(N) --> [c], cs(M), {N is M+1}.
cs(0) --> [].

Parameters in non-terminals, continued

CSC 372 Spring 2018, Prolog Slide 282

Problem: Write a parser that recognizes a string of digits and creates an integer
from them:

?- parse('4341', N).
N = 4341 .

?- parse('1x3', N).
false.

Solution:
parse(S,N) :- % parser8.pl

atom_chars(S, Chars), intval(N,Chars,[]), integer(N).

intval(N) --> digits(Digits), { atom_number(Digits,N) }.

digits(Digit) --> [Digit], {digit(Digit)}.
digits(Digits) --> [Digit], {digit(Digit)},

digits(More), {concat_atom([Digit,More],Digits)}.

digit('0'). digit('1'). digit('2'). ...

How do the digits(...) rules work?

Accumulating an integer

CSC 372 Spring 2018, Prolog Slide 283

Consider a parser that recognizes lists consisting of positive integers and lists:

?- parse('[1,20,[30,[[40]],6,7],[]]').
true .

?- parse('[1,20,,[30,[[40]],6,7],[]]').
false.

?- parse('[1, 2 , 3]'). % Whitespace! How could we handle it?
false.

Implementation: (list.pl)
parse(S) :- atom_chars(S, Chars), list(Chars, []).

list --> ['['], values, [']'].
list --> ['['], [']'].

values --> value.
values --> value, [','], values.

value --> digits(_). % digits(...) from previous slide
value --> list.

A list recognizer

CSC 372 Spring 2018, Prolog Slide 284

These parsing examples are far short of what's done in a compiler. The first phase
of compilation is typically to break the input into "tokens". Tokens are things like
identifiers, individual parentheses, string literals, etc.

Input text like this,
[1, [30+400], 'abc']

might be represented as a stream of tokens with this Prolog list:
[lbrack, integer(1), comma, lbrack, integer(30), plus, integer(400),
rbrack, comma, atom(abc), rbrack]

The second phase of compilation is to parse the stream of tokens and generate
code (traditional compilation) or execute it immediately (interpretation).

We could use a pair of Prolog grammars to parse source code:
• The first one would parse character-by-character and generate a token

stream like the list above. (A scanner.)
• The second grammar would parse that token stream.

"Real" compilation

CSC 372 Spring 2018, Prolog Slide 285

