
CSc 372 Mid-term examination solution key; page 1 of 8

CSc 372, Spring 1996

Mid-term Examination Solution Key

Problem 1 (6 points):

State a definition for the term "programming language".

In the slides, a programming language is said to be "a notation for the description of

computation".

Name a language element or capability one would almost certainly find in a language that

supports imperative programming.

Ideal answers included "a looping construct" and "the ability to change values via

assignment".

Name a language element or capability one would almost certainly find in a language that

supports functional programming.

Ideal answers included "recursion", "functions", and "use of functions as values".

Problem 2 (4 points):

Write ML expressions having the following types:

int * string list

(1, ["x"])

int * (int * (int * int) list)

(1, (1, [(1,1)]))

Define ML functions named f and g having the following types. The functions need not

perform any meaningful computation. You may define additional functions to help produce

the desired types.

f: (int -> int) * int -> bool

fun g(1) = 1
fun f(g, 1) = g(1) = 1

g: int -> int -> int list

fun f 1 2 = [1, 2]

CSc 372 Mid-term examination solution key; page 2 of 8

Problem 3 (6 points):

Consider the following ML function definitions:

fun h(x::xs) = x = 2
fun f(a,b,g) = h(g(a^"x")::b)

For each of the following identifiers, what type would ML infer, given the above definitions

for h and f.

f? string * int list * (string -> int) -> bool

g? string -> int

h? int list -> bool

a? string

b? int list

x? int

Problem 4 (3 points):

The following ML function definition is an example of using an exception.

exception NotOne;
fun f(n) = if n <> 1 then (raise NotOne) else n

Rewrite f to make better use of ML's pattern matching facilities.

exception NotOne;
fun f(1) = 1
 | f(n) = raise NotOne

Problem 5 (3 points):

What is meant by the ML warning "non-exhaustive match"?

There is a type-compatible tuple that is not matched by any of the patterns defining a

function.

What is one possible implication of the warning?

A match exception may be encountered when the function is executed.

Write an ML function that would produce that warning.

fun f(1) = 1

CSc 372 Mid-term examination solution key; page 3 of 8

Problem 6 (4 points):

Consider this fragment of a function definition:

fun f(x,y,z::zs) = ...

What values would be bound to x, y, z, and zs for this call, assuming that the body of the

function f is compatible with the given values?

f([1]::[],(2,[3]),[[4,5,6]])

x? [[1]]

y? (2, [3])

z? [4, 5, 6]

zs? []

Specify a function body for f that for the above argument tuple would produce the value 21.

That is, instead of the "..." shown above, complete the function definition. (Hint: Don't make

this too hard!)

fun (x,y,z::xs) = 21

What is the type of f, given the function body you specified in the previous part of this

problem?

'a * 'b * 'c list -> int

Problem 7 (5 points):

Write a function named length of type int list -> int that calculates the length of a

list of integers. ...

fun length([]) = 0
 | length((_:int)::xs) = 1 + length(xs);

Many persons defined a length function with type 'a list -> int. Others, in

trying to force the int list type ended up with a function that summed the

elements in the list instead of counting them.

CSc 372 Mid-term examination solution key; page 4 of 8

Problem 8 (8 points):

Write an ML function avglen of type 'a list list -> real that computes the

average number of elements in a list of lists. For example, if a list L contained an empty list

and a list with five elements, avglen(L) would return 2.5. If the list is empty, raise the

exception EmptyList.

fun avgLen(L) =
let

fun sum([]) = 0
 | sum(x::xs) = x + sum(xs)
val lens = map length L

in
if length(L) = 0 then raise EmptyList
 else real(sum(lens)) / real(length(L))

This problem was not intended to be difficult but in fact it had a relatively low

success rate. The key observation is that the essence of the problem is calculate the

average of a list of integers.

Problem 9 (8 points):

Write an ML function F_L_eq of type ''a list -> bool that returns true if the first

element in a list is equal to the last element, and returns false otherwise. If called with an

empty list, F_L_eq should return false.

fun F_L_eq([]) = false
 | F_L_eq([x]) = true
 | F_L_eq(x::xs) =
 let
 fun last([x]) = x
 | last(_::xs) = last(xs)
 in
 x = last(xs)
 end

Problem 10 (4 points) (*)

Write an ML function f(FL,VL) that takes a list of functions (FL) and a list of values (VL)

and produces a list of lists wherein the first list contains the results of applying each function

in FL to the first elment in VL, and so forth, such that the Nth list contains the results of

applying each function in FL to the Nth element in VL.

fun f(FL, []) = []
 | f(FL, v::vs) =

let
fun apply_each([], x) = []
 | apply_each(f::fs, x) = f(x)::apply_each(fs, x)

in
apply_each(FL, v)::f(FL, vs)

CSc 372 Mid-term examination solution key; page 5 of 8

end

Problem 11 (3 points)

Lists in Icon and ML share a common syntax for literal specification of lists—the expression

[1,2,3] specifies a simple list in both languages. But, ML places a constraint on lists that

Icon does not—many lists that are valid in Icon are not valid in ML.

What is the constraint that ML places on lists that Icon does not?

Lists in ML must be homogeneous—all elements must be of the same type. Elements

in an Icon list can be of differing types.

Give an example of a list that is valid in Icon, but not valid in ML.

[1, 1.0]

Problem 12 (2 points) (*)

Define ML functions named f and g having the following types. The functions need not

perform any meaningful computation. You may define additional functions to help produce

the desired types.

f: (string -> int) list -> int

fun f(g::gs) = g("x") + 1;

g: string -> int -> real -> bool list

fun g "" 1 2.0 = [true]

 Another way:

fun g s i r = [s = "x", i = 1, r = 1.0];

Problem 13 (4 points)

Icon's reverse(s) built-in function produces a reversed copy of a string s. Write an Icon

procedure Reverse(s) to do the same thing. Of course, Reverse may not use reverse.

procedure Reverse(s)
 r := ""
 every r := !s || r
 return r
end

 Another way:

procedure Reverse(s)
 r := ""

CSc 372 Mid-term examination solution key; page 6 of 8

 every i := 1 to *s do
 r := s[i] || r
 return r
end

I had intended Reverse to be a trivial problem to serve as a warm-up for the Icon portion of

the exam, but only a handful of persons produced a solution that would actually work.

A number of persons produced solutions that used list manipulation functions such as push

and pull to manipulate strings, but in fact those functions don't work on strings. Despite

that, such solutions typically received full credit.

Problem 14 (8 points)

Write an Icon procedure Point(s) that takes a string representation of a point in 2D

cartesian space such as "(10,20)" and if the string is well-formed, returns the X and Y

coordinates as integers in a list. If the string is not well-formed, Point(s) fails.

procedure Point(s)
 s ? {
 ="(" &
 x := tab(many(&digits)) &
 ="," &
 y := tab(many(&digits)) &
 =")" & pos(0) &
 return [integer(x),integer(y)]
 }

end

A number of persons tried to solve this with split, but if split was used you

needed to use the three-argument form and examine each piece produced. Most of the

split-based solutions would accept strings such as ",,2,,,3,," or "()()2()3()",

or worse.

Problem 15 (8 points)

Write an Icon program that reads standard input and produces a histogram of line lengths

encountered.

procedure main()
 hist := table("")

 while line := read() do
 hist[*line] ||:= "*"

 every pair := !sort(hist) do
 write(pair[1], "\t", pair[2])

end

CSc 372 Mid-term examination solution key; page 7 of 8

Problem 16 (9 points):

Imagine a file with a format such as this:

02.sting
01.just te
10. this out

...

Write a program that reads such a file on standard input, assembles the lines in order based

on the sequence numbers, and writes to standard output a sequence of fixed length lines. The

full set of sequence numbers may be non-consecutive, as shown above, but there will be no

duplicated sequence numbers.

procedure main(args)
 len := args[1] | 10

 lines := []

 while line := read() do
 put(lines, line)

 lines := sort(lines)
 out := ""
 every line := !lines do {
 out ||:= (line ? (tab(upto('.')+1) & tab(0)))
 }

 out ? {
 while write(move(len))
 write(tab(0))
 }
end

Problem 17 (3 points):

Write an Icon procedure cons(x,y) that approximates the ML operation x::y as closely

as possible. If the approximation is poor, explain the difficulty.

procedure cons(x,y)
return [x] ||| y

end

 It was also satisfactory to use a solution such as this:

procedure cons(x,y)
return push(y,x)

end

CSc 372 Mid-term examination solution key; page 8 of 8

 if it was noted that the approximation was poor because list y is changed as a side-effect.

Problem 18 (3 points) (*):

Write a procedure size(x) that has the same result as *x for values of x that are a

string, list, or table. You may not use the * operator in your solution.

procedure size(x)
 count := 0
 every !x & count +:= 1
 return count
end

Problem 19 (6 points) (*):

Write an Icon program to read standard input and print out the largest integer found in the

input. ...

procedure main()
 while line := read() do {
 line ? while tab(upto(&digits)) do {
 val := tab(many(&digits))
 if /maxval | (val > maxval) then
 maxval := val
 }

 }

 write(\maxval|"No integers")
end

Several persons approached this problem with split, but it is necessary to split on

~&digits rather than whitespace to achieve a correct solution.

Problem 20 (3 points) (*):

Icon has language elements to support imperative programming, but could Icon adequately

support functional programming? Present an argument in support of your answer.

An argument can be made either way and therefore, answering either "yes" or "no"

earned a point. A reasonable argument of any sort earned two more points.

I would argue that most of the functional solutions we studied could be implemented

in Icon with a minimum of difficulty, aside from Icon lacking an equivalent to ML's

pattern matching facility. (It is said that Icon supports pattern matching via string

scanning, but that is a completely different facility that shares the same name.)

CSc 372 Mid-term examination solution key; page 9 of 8

On the other hand, Icon has nothing like anonymous functions, composition, or

currying and therefore Icon's handling of functions as values, a cornerstone of

functional programming, falls short.

CSc 372 Final Examination Solution Key; page 1

CSc 372, Spring 1996

Final Examination Solution Key

Problem 1 (10 points):

What is the difference between a class and an object?

An object is an instance of a class. In software, classes are used to create objects,

specifying structure and behavior. In the real-world, classes are used to group

objects.

What is the proper way to view the relationship between function members and data

members in a C++ class?

Data members exist solely to support the operation of the function members. A class

with no function members should have no data members.

Under what circumstances should a data member in a C++ class be public?

Never.

What is the difference between the class relationships of inheritance and containment?

Containment is the "has-a" relationship; it should be used when instances of a class in

some sense contain instances of another class. The containment might be physical or

logical. Inheritance is the "is-a" relationship; it should be used when an instance of a

class can be thought of as being an instance of another class.

As described by the instructor, what is the primary benefit of inheritance?

The ability to write code in terms of something general, such as a geometric shape,

and then use that code with instances of derived classes that are specialized, such as

circles and triangles.

CSc 372 Final Examination Solution Key; page 2

Problem 2 (5 points):

Write a set of C++ class declarations that capture the relationships shown in this Booch

Notation class diagram:

class A {};

class E {};

class B: public A {
E itsE;
};

class C: public B {};

class D {
B itsB;
};

Problem 3 (20 points):

#include <iostream.h>
#include "string.h"

class ReplStr {
 public:

ReplStr() {}
ReplStr(String s, int n) {

itsStr = s.Repl(n);
}

int Length() { return itsStr.Length(); }

String GetString() { return itsStr; }

int operator==(ReplStr rhs) {
return itsStr == rhs.itsStr;
}

int operator!=(ReplStr rhs) {
return !(this->GetString() == rhs.itsStr);
}

ReplStr operator+(ReplStr rhs)
{

String r = GetString() + rhs.GetString();

return ReplStr(r, 1);
}

CSc 372 Final Examination Solution Key; page 3

 private:
String itsStr;
};

ostream& operator<<(ostream& o, ReplStr s)
{

o << s.GetString();
return o;

}

 (5) Describe a pattern of usage for which your implementation would have poor

performance characteristics and explain the difficulty. If you believe your

implementation has uniformly good performance characteristics, make an argument

to support that claim.

The choice to represent a ReplStr as a String makes for a simple

implementation but could be very inefficient. If nothing else, construction of

the String could be deferred until the first time GetString is called.

(Note that length can be calculated given only the base and replication count.)

Problem 4 (5 points):

Fully implement classes Bicycle, Tricycle, and the function CountWheels.

class Cycle {
 public:
 Cycle(char *owner) {
 itsOwner = new char[strlen(owner)+1];
 strcpy(itsOwner, owner);
 }

 virtual int GetNumWheels() = 0;
 char *GetOwner() { return itsOwner; }
 private:
 char *itsOwner;
 };

class Bicycle: public Cycle {
 public:
 Bicycle(char *owner) : Cycle(owner) {}
 virtual int GetNumWheels() { return 2; }
 };

class Tricycle: public Cycle {
 public:
 Tricycle(char *owner) : Cycle(owner) {}
 virtual int GetNumWheels() { return 3; }
 };

int CountWheels(Cycle *cycles[])

CSc 372 Final Examination Solution Key; page 4

{
 int wheels = 0;

 for (Cycle **cp = cycles; *cp; cp++)
 wheels += (*cp)->GetNumWheels();

 return wheels;
}

Problem 5 (5 points):

Write a Prolog predicate flip(L1,L2) that if given a list such as [a,b,c,d,e,f] as L1

it will instantiate L2 to be the list [b,a,d,c,f,e]. That is, it flips the position of each

element in a list on a pair-wise basis. flip should fail if given a list with an odd length.

flip([],[]).

flip([X1,X2|XS],[X2,X1|NewXS]) :- flip(XS, NewXS).

Problem 6 (5 points):

State in your own words the relationship expressed by each of the rules of the append

predicate:

append([],L,L).

The list L appended to the empty list is the list L.

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

The list L2 appended to the list having head X and tail L1 is the list with head

X and tail L3 where L3 is the result of appending L2 to L1.

Problem 7 (5 points):

Write a Prolog predicate trim(L, SL, NL) that describes the relation that the list NL is

the list L with the list SL removed if SL is a prefix or suffix of L. Note that if SL is a both a

prefix and a suffix, two alternatives should be generated.

trim(L, SL, NL) :- append(SL, NL, L).
trim(L, SL, NL) :- append(NL, SL, L).

Problem 8 (5 points):

Do EITHER part (8a) or part (8b), but not both. If you work on both, CLEARLY mark

which solution you wish to have graded.

 (8a) Write a predicate maxint/2 that if given a list of integers will find the largest

element in the list. maxint should fail if given an empty list.

CSc 372 Final Examination Solution Key; page 5

maxint([X],X).

maxint([X1,X2|XS], M) :-
 X1 > X2, maxint([X1|XS], M).

maxint([X1,X2|XS], M) :- X1 =< X2, maxint([X2|XS], M).

 (8b) Write a predicate sum_check/2 that determines if a given integer is the sum of a list

of integers.

sum_check(0,[]).
sum_check(Sum, [H|T]) :-

sum_check(TSum, T), Sum is H + TSum.

Problem 9 (5 points):

Write a Prolog predicate find_missing/3 that can be called with any two arguments

instantiated and if the two supplied arguments are equal, the uninstantiated argument is

instantiated to the value of the other two.

three_eq(X,X,X).

Problem 10 (5 points):

 (1) Write a Prolog query that expresses Is there is a person who knows both Bob and

Mary?:

knows(X,bob), knows(X,mary).

 (2) Write a Prolog query that expresses Does Mary know anyone who works on a different

shift than she?:

knows(mary,X), shift(mary,S), \+shift(X, S).

 (3) Define a new clause for knows/2 that expresses A person knows everyone who works

on the same shift.

knows(X,Y) :- shift(X,S), shift(Y,S), X \== Y.

 (4) Define a predicate by_shift that prints a list of employees by shift.

by_shift :- report, fail.

report :- write('Day:'), nl, shift(day), nl.
report :- write('Night: '), nl, shift(night), nl.

shift(X) :- shift(P,X), write(' '), write(P).

CSc 372 Final Examination Solution Key; page 6

Problem 11 (3 points):

Write an ML function allsame(L) of type ''a list -> bool that returns true if all

the elements in a list are equal and false otherwise. allsame([]) should return false.

fun allsame([]) = false
 | allsame([x]) = true
 | allsame(x1::x2::xs) = x1 = x2 andalso allsame(x2::xs)

Problem 12 (2 points):

Consider this function definition:

fun f(x,g) = x::g(x-1)

What types would ML infer for:

f? int * (int -> int list) -> int list

g? int -> int list

x? int

Problem 13 (5 points):

Write an Icon program tac to read a text file on standard input and print on standard output

the lines of the file in reverse order—last line first; first line last.

procedure main()
 lines := []

 while push(lines, read())

 while write(get(lines))
end

Problem 14 (20 points):

If you don't know this by now, I doubt that telling you one more time will help...

CSc 372 Final Examination Solution Key; page 7

Extra Credit Problems

(1 point) Andrew Koenig's paper, An Anecdote About ML Type Inference, describes an

incident in which ML's type inferencing system produced a surprising result. What was that

result?

It was detected that a program would not terminate.

(2 points) Name five programming languages that originated before 1980.

ML, Icon, C, C++, and Prolog

(2 points) In C, write a recursive version of the library function strlen(char*). You may

not use any library functions, or perform any assignment, augmented assignment, or

increment/decrement operations. In other words, write strlen using a functional style.

int strlen(char *p)
{

if (!*p)
return 0;

else
return 1 + strlen(p + 1);

}

(1 point) Who was the person that first described the notion of partially evaluated functions,

such as that provided with currying in ML?

Schonfinkel. (Curry came along later.)

(1 point) Name a popular operating system in which Prolog is utilized.

Windows NT

(5 points) Do a great job on question 14.

Did you?

CSc 372, Fall 1996, Mid-Term Examination Solutions; page 1

CSc 372, Fall 1996

Mid-Term Examination Solutions

Problem 1: (2 points each; 4 points total)

State the type of each of the two following expressions, or if the expression is not

valid, state why.

(1,2,(1=2,1+2),"x")

int * int * (bool * int) * string

[[],[1],[1,2]]

int list list

Problem 2: (2 points each; 8 points total)

Consider this M L function definition:

fun f(a,b,c) = (b, a(b), c(a)) = ("x", 2, [1])

State the type that will be deduced for each of the following: (2 points each)

a: string -> int

b: string

c: (string -> int) -> int list

The type of the result produced by f: bool

Problem 3: (4 points)

W rite a function f that has the type int -> int -> int -> int -> bool.

You may use literals (constants) but you may not use any explicit type specifications

such as x:int.

fun f a b c d = a + b + c + d = 1 (* A. Freshwater *)

- or -

fun f 1 2 3 4 = true

Problem 4: (12 points)

W rite a function ints_to_strs(L,c) that for the int list L and the string

c produces a list of strings where the ith element in the resulting list is a string

composed of N replications of c where N is the ith elem ent in the input list.

M ost solutions took this form:

CSc 372, Fall 1996, Mid-Term Examination Solutions; page 2

fun repl(s, 0) = ""
 | repl(s, n) = s ^ repl(s, n-1);

fun ints_to_strs([], _) = []
 | ints_to_strs(x::xs, s) = repl(s, x) :: ints_to_strs(xs, s)

Problem 5: (12 points)

W rite a function len(L) of type string list list -> int that produces the

total number of characters in all the strings in the lists contained in L. (12 points)

fun len(L) = size(reduce(op^,reduce(op@, L))) (* P. Holland *)

Problem 6: (10 points)

W rite a function pair(L) that accepts an 'a list as an argument and produces a

list of tuples containing consecutive pairs of elem ents from the list L.

exception OddLength;

fun pair([]) = []
 | pair([x]) = raise OddLength
 | pair(x1::x2::xs) = (x1,x2)::pair(xs)

Problems 7 and 8: (26 and 10 points, respectively)

class Food {
 public:
 virtual int GetUnits() = 0;
 };

class Burger: public Food {
 public:
 int GetUnits() { return 25; }
 };

class Fries: public Food {
 public:
 int GetUnits() { return 15; }
 };

CSc 372, Fall 1996, Mid-Term Examination Solutions; page 3

class Eater {
 public:
 Eater(int capacity)
 : itsMax(capacity), itsBurps(0), itsValue(0) {}

 void Eat(int units) {
 itsValue += units;
 while (itsValue >= itsMax) {
 cout << "burp!" << endl;
 itsBurps++;
 itsValue -= itsMax;
 }
 }

 void Eat(Food *fp) {
 Eat(fp->GetUnits());
 }

 int BurpCount() const { return itsBurps; }

 private:
 int itsMax, itsBurps, itsValue;
 };

ostream& operator<<(ostream& o, Eater& E)
{
 o << "Eater at " << &E << " has burped " << E.BurpCount()

<< " times" << endl;

 return o;
}

Problem 9: (2 points each; 14 points total)

Answer each of the following questions related to object-oriented programming in

general and C++ in particular.

W hat is the difference between a class and an object?

An object is an instance of a class.

W hat is the purpose of a constructor?

To initialize an object.

W hat is the purpose of a destructor?

To reclaim resources acquired during the lifetime of the object.

If a class has no member functions, how many data members should it have?

"Zero" is a reasonable answer, but with proper rationale the answer "any

number" is also acceptable.

CSc 372, Fall 1996, Mid-Term Examination Solutions; page 4

Challenge or defend this statement: In C++, one possible reason to have a public

data member is to avoid the overhead of calling a function to access that data.

Using an inline member function maintains encapsulation but without any

performance penalty.

Challenge or defend this statement: The purpose of member functions is to provide

well-controlled access to data members.

No, the purpose of member functions is to provide the required behavior for

the class. Data members merely support member functions.

Describe a benefit provided by using inheritance.

Being able to treat an object as being something more general than it really is.

Optional Extra Credit Problems:

W hat is a practical reason to prefer pattern matching rather than using the hd and tl

functions in SM L? (2 points)

W ith pattern matching a non-exhaustive m atch can indicate a situation where

a usage of hd could produce an exception. Pattern matching can also be

argued for on the basis of efficiency and clarity.

W rite the m inimum am ount of code necessary to compile and run this code: (4

points)

The intended response was "class X {};" but a number of persons

observed that "typedef char X;" or "#define X char" was enough.

Could C++ be used effectively for functional programming? (5 points)

This could be argued successfully either way.

W rite in C a version of int strcmp(char *, char *) that uses no assignment

operators of any form, nor the ++ or -- operators. Recall that strcmp returns 0 if

the strings are equal and a non-zero value if the strings are not equal. (3 points)

int strcmp(char *a, char *b)
{
 if (*a == '\0' && *b == '\0') return 0;
 else if (*a == '\0' || *b == '\0') return 1;
 else if (*a == *b) return strcmp(a+1, b+1);
 else return 1;
}

CSc 372, Fall 1996, Final Examination Solutions; page 1

CSc 372, Fall 1996

Final Examination Solutions

Problem 1 (12 points):

For each of ML, C++, Icon, and Prolog, cite three elements in the language that are

unique to that language among this group of four.

ML: Type deduction, partial application of functions, no variables

C++: Supports an object oriented paradigm, type extensibility, templated functions.

Icon: Expression failure, string scanning, a compact but expressive set of built-in functions.

Prolog: Procedures (predicates) with multi-faceted behavior, the notion of unification,

 expressions represented as trees that are evaluated on demand.

Problem 2 (8 points):

Select one element from EACH set of three in the previous problem and describe a

benefit it provides to the programmer.

ML: A partial application can be used to create a more specialized function from a more

general function.

C++: Encapsulation of data in objects allows the data to change without requiring

modification to code that uses those objects.

Icon: The set of built-in functions is compact enough that I'm personally able to write Icon

programs of a significant size without needing to consult any reference material.

Prolog: The multi-faceted behavior of predicates allows one predicate to serve several

 purposes. For example, member/2 can be used to test for membership, generate

 elements, and more.

Problem 3 (5 points):

Write a predicate permute(L,P) that for a list L of 1, 2, or 3 elements instantiates P to

each permutation of the elements of L.

permute([A],[A]).
permute([A,B],[A,B]).
permute([A,B],[B,A]).
permute([A,B,C],[A,B,C]).
permute([A,B,C],[A,C,B]).
permute([A,B,C],[B,A,C]).
permute([A,B,C],[B,C,A]).
permute([A,B,C],[C,A,B]).
permute([A,B,C],[C,B,A]).

CSc 372, Fall 1996, Final Examination Solutions; page 2

Problem 4 (3 points):

The instructor's implementation of roman/2 used a series of facts of this form:

rdval('I',1).
rdval('V',5).
rdval('X',10).
etc.

Consider an attempt at an ML function to provide the same functionality as rdval/2:

fun rdval("I") = 1
 | rdval("V") = 5
 | rdval("X") = 10
etc.

Without particular regard to usage in roman/2, is the ML function a good approximation of

the rdval/2 predicate?

The ML function provides only half the functionality of the predicate, which can also

map from given decimal numbers to their Roman equivalent.

Problem 5 (7 points):

Write a predicate sum_ints(L,Sum) that produces a sum of the integers in list L. L might

contain things other than integers, but they should be ignored.

sum_ints([], 0).
sum_ints([H|T], Sum) :- integer(H), sum_ints(T, TSum),

Sum is H+TSum, !.
sum_ints([_|T], Sum) :- sum_ints(T, TSum), Sum is TSum.

Problem 6 (6 points):

Write a predicate assemble(L,Segments) that describes the relationship that the list L

can be assembled from two of the lists in Segments.

assemble(L, Segments) :- member(A,Segments), member(B,Segments),
 append(A,B,L).

Problem 7 (10 points):

cfa([], _, []).
cfa([Amt|Amts], Coins, [Change|MoreChange]) :-
 make_change(Coins, Amt, Change, Left),
 cfa(Amts, Left, MoreChange).

CSc 372, Fall 1996, Final Examination Solutions; page 3

Problem 8 (8 points):

Write an Icon procedure extract(s, m, n) that extracts a portion of a string that

represents a hierarchical data structure. m is a major index and n is a minor index. Major

sections of the string are delimited by slashes and are composed of minor sections separated

by colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one minor sections.

procedure extract(s, i, j)
 return split(split(s, '/')[i], ':')[j]
end

Problem 9 (6 points)

Write an Icon program that reads, on standard input, a list of words, one per line, and prints

the words that contain the letters a, b, and c in that order. The letters need not be consecutive

and there may be more than one occurrence of each.

procedure main()
 while line := read() do
 line ? {
 tab(upto('a')) & tab(upto('b')) & tab(upto('c')) &
 write(line)
 }
end

Problem 10 (6 points)

Write an Icon procedure revby2(s) that reverses the string on a character pair-wise basis

and returns the resulting string. NOTE: Your solution must use string scanning. In

particular you may not use string subscripting, sectioning, or the * operator.

procedure revby2(s)
 r := ""

 s ? {
 tab(0)
 while r ||:= move(-2)
 pos(1) | fail
 }

 return r
end

CSc 372, Fall 1996, Final Examination Solutions; page 4

Problem 11 (7 points):

Write an Icon program that prints on standard output, one per line, each minute of the day in

the form 12:22pm.

procedure main()
 every f("am")
 every f("pm")
end

procedure f(m)
 every write(right(12 | (1 to 11), 2, " "), ":",

 right(0 to 59, 2, "0"), m)
end

More concisely:

procedure main()
 every m := ("am"|"pm") &
 write(right(12 | (1 to 11), 2, " "), ":",

 right(0 to 59, 2, "0"), m)
end

Problem 12 (4 points):

Write an Icon program rev that reads a file redirected to standard input and writes out the

lines in the file in reverse order—last line first, first line last.

procedure main()
 L := []
 while push(L,read())
 while write(pop(L))
end

Problem 13 (9 points):

Write an ML function samesums(L) of type (int * int * int) list -> bool

that tests whether all the 3-tuples in L have the same sum.

fun sum3(a,b,c) = a+b+c:int

fun samesums([]) = true
 | samesums([t]) = true
 | samesums(t1::t2::ts) =
 sum3(t1) = sum3(t2) andalso samesums(t2::ts);

CSc 372, Fall 1996, Final Examination Solutions; page 5

Problem 14 (9 points)

Write code for a C++ class named X that exhibits the following elements...

#include <iostream.h>

class X {
 public:
 X(int a, int b) : itsSum(a+b) {}
 int f() { return itsSum; }
 void make5();
 private:
 X() :itsSum(0) {}
 int itsSum;
 };

void X::make5()
{
 X a, xs[3];
 X *p = new X();

 cout << a.f() + p->f() + xs[0].f() + xs[1].f() + xs[2].f()
 << endl;

}

ostream& operator<<(ostream& o, X& x)
{
 o << "an X at " << &x;
 return o;
}

EC 1 (5 points):

Name five programming languages that originated before 1985.

ML, C++, Icon, Prolog, and C.

EC 2 (5 points max):

For one point each, name a programming language and the person generally credited as

being the designer of the language.

ML—Robin Milner et al.

C++—Barne Stroustrup

Icon—Ralph Griswold

Prolog—Alain Colmeraurer

Java—James Gosling

EC 3 (1 point):

What is the instructor's favorite programming language?

I guess that if I've got a favorite it would have to be Icon, but it really depends on the

CSc 372, Fall 1996, Final Examination Solutions; page 6

situation. Any answer here was worth a point.

EC 4 (1 point):

Name a popular operating system in which Prolog plays a role in system configuration.

Windows NT

EC 5 (2 points)

Languages can be grouped according to various aspects of the language. Group the

languages we studied according to their type checking philosophy.

One possible grouping is that type-checking is done at compile time in ML and C++,

but at run time in Icon and Prolog.

EC 6 (3 points)

Write an Icon program that reads a list of words like that described in problem 12 and prints

out the words that consist of solely of the hex digits a-f. Examples of such words: added,

beef, dead, facade.

procedure main()
 while line := map(read()) do
 if *(line -- 'abcdef') = 0 then
 write(line)
end

EC 7 (1 point)

Among ML, C++, Icon, and Prolog, which is your favorite?

Any answer here was worth a point.

EC 8 (2 points)

Of all that we covered, which one language feature did you find most interesting?

For me, it's probably ML's ability to support partial applications of functions.

EC 9 (5 points)

In the same style as problems 1 and 2, name three differences between Java and C++ and for

any one of those differences explain the benefit provided to the programmer.

Automatic memory management, function bodies must appear in the class definition,

and there can be no global functions or data.

CSc 372, Fall 1996, Final Examination Solutions; page 7

EC 10 (2 points)

Why are static class members an essential element of Java?

Because there are no global functions or global data.

EC 11 (1 point)

What is the Prolog 1000?

A compilation of applications implemented in Prolog.

CSc 372, Spring 1997, Mid-term Examination Solutions; page 1

CSc 372, Spring 1997

Mid-term Examination Solutions

Problem 1: (1 points each; 4 points total)

State the type of each of the following expressions, or if the expression is not valid, state

why. For example, the type of the expression 3+4 is int.

([1, 2], [3.0, 4.0])

int list * real list

(map size) (explode "abcd")

int list

("x", (2, "y"), ([3, "z"]))

Invalid: [3, "z"] attempts to form a heterogeneous list

(length, [size, length o explode])

('a list -> int) * (string -> int) list

Problem 2: (2 points)

Consider this ML function definition: fun f(x) = [x 1, 2] What type will be

deduced for f?

(int -> int) -> int list

Problem 3: (1 point each; 5 points total)

Consider these two ML function definitions:

fun f(_) = 1
fun g(a,b,c) = if a = f(c) then b else [c,a]

State the type that will be deduced for each of the following:

a: int
b: int list
c: int

The return type of f: int

The return type of g: int list

CSc 372, Spring 1997, Mid-term Examination Solutions; page 2

Problem 4: (3 points)

Write a function f that has the type int -> int list -> bool.

fun f 1 [1] = true

Problem 5: (9 points)

Write a function tossbig(L,N) of type string list * int -> string list that

produces a list consisting of the elements in L that have a size less than N.

fun tossbig([], _) = []
 | tossbig(s::ss, n) =
 if size(s) < n then s::tossbig(ss, n)
 else tossbig(ss,n)

Or, a non-recursive solution using filter from the slides:

fun tossbig([], _) = []
 | tossbig(L, n) = filter(fn(s) => size(s) < n, L)

Problem 6: (9 points)

Write a function samesums of type (int * int) list -> bool that produces true if

adding the two elements of each tuple in turn produce the same sum.

fun samesums [] = true
 | samesums [_] = true
 | samesums ((a,b)::(c,d:int)::ts) =

a+b = c+d andalso samesums((c,d)::ts)

Problem 7: (12 points)

Write a function block(w,h) of type int * int -> unit that prints a block of x's

having a width of w and height of h. You may assume that w and h are greater than or equal

to 1. Your solution must be NON-RECURSIVE in nature.

When this problem was written, an answer like this was envisioned:

fun block(w,h) =
 let
 fun row _ =

implode (map (fn(x) => "x") (m_to_n(1,w))) ^ "\n"
 in
 print(implode ((map row) (m_to_n(1,h))))
 end

However, some persons observed that the solution could be simplified with repl, from the

second assignment:

fun block(w, h) = print(repl(repl("x", w) ^ "\n", h))

If I had considered that repl might be used, I would have specifically excluded it, but I

CSc 372, Spring 1997, Mid-term Examination Solutions; page 3

since I did not, I considered solutions using repl to be perfectly acceptable, even though

that essentially side-stepped the purpose of the problem.

Problem 8: (6 points)

Write a function c_block of type int -> int -> unit that behaves like block, but

that allows partial application. You may use block in your solution.

fun c_block w h = block(w,h)

Problem 9: (30 points)

In this problem you are to implement a C++ class that models a television set that has a list

of favorite channels, each with a preferred volume. ...

class TV {
 ...
 private:
 int itsFavs[84];
 int itsCurChan;
 int itsCurVol;
 };

TV::TV()
 : itsCurChan(2), itsCurVol(5)
{
 for (int i = 2; i < 84; i++)
 itsFavs[i] = -1;
}

int ckRange(int low, int high, int val)
{
 if (val < low || val > high)
 return 0;
 else
 return 1;
}

void TV::SetVol(int vol)
{
 if (!ckRange(0, 10, vol))
 return;

 itsCurVol = vol;
}

void TV::SetChan(int chan)
{
 if (!ckRange(2, 83, chan))
 return;

 itsCurChan = chan;
}

void TV::SetFav()
{

CSc 372, Spring 1997, Mid-term Examination Solutions; page 4

 itsFavs[itsCurChan] = itsCurVol;
}

void TV::SetFav(int vol)
{
 if (!ckRange(0, 10, vol))
 return;

 itsFavs[itsCurChan] = vol;
}

void TV::NextFav()
{
 int i;
 for (i = itsCurChan+1; i <= 83; i++)
 if (itsFavs[i] != -1) {
 SetVol(itsFavs[i]);
 SetChan(i);
 return;
 }

 for (i = 2; i < itsCurChan; i++)
 if (itsFavs[i] != -1) {
 SetVol(itsFavs[i]);
 SetChan(i);
 return;
 }
}

void TV::Status()
{
 cout << "Channel is " << itsCurChan << ", volume is "

 << itsCurVol << endl;
}

Problem 10: (5 points)

With our String class in mind, overload the % operator so that an expression such as s %

c produces an int that is the zero-based position of the first occurrence of the character c in

the String s.

int operator%(const String& s, char c)
{
 char *p = strchr(s.GetPtr(), c);

 if (p == 0)
 return -1;
 else
 return p - s.GetPtr();
}

Problem 11: (2 points each; 6 points total)

Briefly answer each of the following questions related to object-oriented programming in

general and C++ in particular.

CSc 372, Spring 1997, Mid-term Examination Solutions; page 5

(a) What is the difference between a class and an object?

An object is an instance of a class.

(b) As you know, the destructor for a class X is a method named ~X. The rationale for this

choice of name is that "destruction is the complement of construction". However, the

instructor has contended on several occasions that the relationship between constructors and

destructors is in fact somewhat asymmetrical. Describe that asymmetry.

The responsibility of a constructor is to initialize an object. The destructor's

responsibility is to surrender resources acquired during the lifetime of the object.

(c) What is the key benefit provided by in-line functions in C++?

In-line functions provide access that is just as fast as directly referencing data

members, but without loss of encapsulation.

Problem 12: (9 points)

In this problem you are to implement a class called Ring that is a subclass of the Shape

class described in the slides.

class Ring: public Shape {
 public:
 Ring(double inner, double outer)
 : itsInner(inner), itsOuter(outer) {}

 double Area() {
 return itsOuter.Area() - itsInner.Area();
 }

 double Perimeter() {
 return itsOuter.Perimeter();
 }

 void Print(ostream& o) {
 o << "Ring; area = " << Area() << ", perim = "
 << Perimeter() << endl;
 }

 private:
 Circle itsInner, itsOuter;
 };

No changes are required in SumOfAreas or Biggest.

CSc 372, Spring 1997, Final Examination Solutions; page 1

CSc 372, Spring 1997

Final Examination Solutions

Problem 1: (2 points each; 20 points total)

Based on the material covered in class, in what language is the expression [10,20|30]

valid? What does it mean?

That expression has no meaning in Prolog based on the material covered but in Icon it's

an expression that has the result sequence {[10,20], [10,30]}.

What is the type of the following ML expression?

[([length],[1,2,3])]

(('a list -> int) list * int list) list

In ML, implement the well-studied map function in a way that yields the same type as the

built-in version of map. This is the type desired:

('a -> 'b) -> 'a list -> 'b list

fun map F [] = []
 | map F (x::xs) = F(x)::(map F xs)

In your own words, what does the term "object-oriented programming" mean?

A programming method where one creates a system of entities and orchestrates

interaction between them.

Cite a fundamental benefit of inheritance in C++.

Objects can be treated as being something more general than they really are.

What's unusual about this Prolog predicate?

f(L) :- g(L), fail, !.

The cut comes after fail and is thus never reached.

CSc 372, Spring 1997, Final Examination Solutions; page 2

Describe in English the form of the list L that would satisfy this predicate:

p(L) :- append(L1,L1,L).

A list that can be divided into two identical lists. Here's one: [1,2,3,1,2,3].

Consider this version of member which has been instrumented with calls to write/1:

member(X,L) :- write('A'), L = [X|_].
member(X,[_|T]) :- write('B'), member(X,T), write('C').

What would be printed in response to the following query?

| ?- member(3,[1,2,3]).

ABABACC
yes

Write the append/3 predicate.

append([], X, X).
append([X|L1], L2, [X|L3]) :- append(L1,L2,L3).

Name two significant things that Prolog has in common with any one of the other languages

that we studied.

Prolog and Icon have several things in common. Among them: automatic memory

management, backtracking, a heterogeneous list type, and a FORTRAN-based first

implementation.

Problem 2 (31 points):

Write an Icon program ckconn that analyzes test run output of connect from assignment

seven and determines for each test case if the output shown is a suitable configuration of

cables.

I was bit worried about putting a question of this size on the test and I tried to

compensate for that with a very direct advance hint via mail and by citing a possible

decomposition in the exam itself. I liked the fact that the problem required use of many

elements of Icon and was practical rather than contrived. But, you know what's said

about the best laid plans and the fact is that most persons didn't do very well on this

problem.

To help you understanding the grading, I thought of it as thirty point problem with five

parts: (1) parsing of the "case..." line, (2) parsing of the configuration, (3) verification of

CSc 372, Spring 1997, Final Examination Solutions; page 3

the configuration's length and matings, (4) verification that the cables used were drawn

from the ones supplied, (5) a main program to tie things together. Each part was worth

six points and there was a one point bonus for writing down anything. When grading I

deducted only for major flaws and omitted elements—code that appeared to be in the

ballpark got full credit. Most persons ended up in the mid to low 20s. There was a 28,

two 29s, and one 31.

link split

procedure do_case(s)
 cabs := []
 s ? {
 tab(upto('\['))
 pieces := split(tab(0), '[],\'')
 e2 := pull(pieces)
 len := pull(pieces)
 e1 := pull(pieces)

 every i := 1 to *pieces by 3 do
 put(cabs, pieces[i:i+3])
 }

 return [cabs,len,e1||e2]
end

procedure do_config(s)
 cabs := []

 s ? while e1 := move(1) do {
 len := *tab(many('-'))
 e2 := move(1)
 put(cabs, [e1,len,e2])
 }

 return cabs
end

procedure config_ok(cabs, len, ends)
 if (cabs[1][1] == ends[1]) | (cabs[-1][3] == ends[2]) then
 fail

 every len -:= (!cabs)[2]

 if len <= 0 then
 return
end

procedure sets_ok(In,Out)

CSc 372, Spring 1997, Final Examination Solutions; page 4

 t := table(0)
 every t[c_to_rep(!In)] +:= 1
 every t[c_to_rep(!Out)] -:= 1

 if !t < 0 then
 fail
 else
 return
end

procedure c_to_rep(cable)
 cable := sort(cable)
 return map(cable[1] || cable[2] || cable[3])
end

procedure main()

 while data := do_case(write(read())) do {
 confln := write(read())
 if confln[1] ~== "C" then {
 config := do_config(confln)

 if not config_ok(config, data[2], data[3]) |
 not sets_ok(data[1], config) |
 find("MM"|"FF", confln) then
 write("**ERROR**")
 }
 write(read())
 }
end

Problem 3 (8 points):

Write a Prolog predicate sort(L,SortedL) that describes the relationship that SortedL

is a list that has the elements of L in ascending order. Both lists may be assumed to consist

only of integers. The query sort([],[]) should succeed.

sort([],[]).
sort(L,[X|Sorted]) :-
 min(X,L),
 getone(X, L, Left),
 sort(Left,Sorted).

Problem 4 (6 points):

Write a Prolog predicate hexprint/0 that prints, one per line, each of the hexadecimal

numbers between 000 and fff inclusive but omitting those numbers where all the digits are

the same (000, 111, 222, ..., eee, fff). In all, 4080 lines are to be printed (16^3 minus 16

is 4080). Note that hexprint ultimately succeeds.

CSc 372, Spring 1997, Final Examination Solutions; page 5

notallsame([X,X,X]) :- !, fail.
notallsame(_).

hexdig(X) :- member(X,[0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f]).

hexprint :- hexdig(D1), hexdig(D2), hexdig(D3),
 notallsame([D1,D2,D3]),
 write(D1), write(D2), write(D3), nl, fail.
hexprint.

Problem 5 (6 points):

Write a Prolog predicate palsum/1 that succeeds if a list of integer lists is palindromic with

respect to the sums of the elements of the contained lists.

palsum([]).
palsum([_]).
palsum([H|T]) :- append(Middle,[Last],T), sum(H,Sum),
sum(Last,Sum),
 palsum(Middle).

Problem 6 (6 points):

It was said in class that a single Prolog predicate can take the place of several functions in

some other language. (1) Explain what's meant by that statement. (2) Write a Prolog

predicate that exhibits that property. (3) In some other language write a set of routines to

perform the various operations that the predicate can perform. NOTE: Don't get carried

away on this problem—conserve your time by using a simple predicate that illustrates the

point.

A predicate can perform different functions depending on what's instantiated. The

member predicate is a simple example:

member(X, [X|_]).
member(X, [_|T]) :- member(X,T).

Member can (1) test to see if a value is in a list (2) generate all values in a list (3)

generate lists containing a given value. The first two in Icon:

procedure is_member(x, L)
 if x === !L then return

 else fail
end

procedure members(L)
 suspend !L
end

CSc 372, Spring 1997, Final Examination Solutions; page 6

Problem 7 (4 points):

Among ML, C++, Icon, and Prolog, which language did you find the most interesting, and

why?

Answer-wise anything that was coherent earned all four points on this problem.

Personally, I find them all them pretty interesting, but if I had to pick one that's the most

interesting to me at the moment it would have to be Prolog.

The responses:

Icon 12.5

Prolog 11.5

C++ 4

ML 0

Problem 8 (4 points):

Among ML, C++, Icon, and Prolog, which language did you find the most difficult to learn.

Cite an element of the language that you had particular difficulty with.

As in the last problem, any sort of coherent response got all four points.

Of the group I found Prolog to be the most difficult. For one thing, I have a hard time

visualizing a Prolog computation that uses a lot of backtracking.

The responses:

Prolog 21

C++ 3

ML 3

Icon 1

Historical note: Last semester a show of hands poll at the final showed about a 50/50

split between Icon and Prolog with one for ML and zero for C++ as the most difficult

language.

Problem 9 (3 points):

Write an ML function f of type a' -> 'b -> 'a that exhibits the following behavior...

fun f x _ = x

Problem 10 (4 points):

CSc 372, Spring 1997, Final Examination Solutions; page 7

Write an ML function dups(s) that removes sequences of duplicated characters from a

string.

At the time of the test I hadn't written a solution for dups and while driving to campus I

convinced myself that the problem was harder than I first thought it was. I therefore added

biggest(L)as an alternative on the spot, but dups was actually very simple:

fun dups(s) =
 let
 fun dups1([]) = []
 | dups1([c]) = [c]
 | dups1(c1::c2::cs) =
 if c1 = c2 then
 dups1(c2::cs)
 else
 c1::dups1(c2::cs)
 in
 implode(dups1(explode(s)))
 end

Here's biggest:

exception Empty;
fun biggest [] = raise Empty
 | biggest [x] = x:int
 | biggest (x1::x2::xs) =
 if x1 > x2 then
 biggest(x1::xs)
 else
 biggest(x2::xs)

biggest can also be done with reduce, but I'll leave you to think about that one.

Problem 11 (8 points):

Implement two C++ classes: MList and PrintableMList. ...

#include <iostream.h>

class MList {
 public:
 MList(int maxVal)
 : _maxVal(maxVal), _count(0), _closed(0) {}
 void operator<(int value) {
 if (!_closed && value <= _maxVal)
 _values[_count++] = value;
 }

 void close() { _closed = 1; }

CSc 372, Spring 1997, Final Examination Solutions; page 8

 int size() { return _count; }

 protected:
 int _maxVal, _count, _closed, _values[100];
 };

class PrintableMList : public MList {
 public:
 PrintableMList(int maxVal)
 : MList(maxVal) {}
 void print() {
 for (int i = 0; i < _count; i++)
 cout << _values[i] << " ";
 cout << endl;
 }
 };

EXTRA CREDIT SECTION

EC 1 (1 point):

Two of the programming languages mentioned during lectures that were first publicly

released after 1990. Name BOTH of them.

Limbo and Java

EC 2 (1 point):

Reigning world chess champion Garry Kasparov was recently defeated in a six game match

by IBM's Deep Blue system. What language was used to implement Deep Blue?

According to an interview with A. Joseph Hoane, Jr. that can be found at

www.chess.ibm.com/meet/html/d.4.5.a.html, it's written in C.

EC 3 (1 point):

Taking into account the syllabus, the slides for each language, homework assignments and

solutions, and the mid-term exam and solutions, how many pages of handouts have been

distributed in the course of this class? Your answer must be within 10% of the actual total.

Note that a sheet printed on both sides counts as two pages.

% cd /home/cs372/Handouts
% grep ^%%Page: *.ps | wc -l
 513
%

EC 4 (1 point):

Name a language that is an ancestor of Icon.

CSc 372, Spring 1997, Final Examination Solutions; page 9

SNOBOL4

EC 5 (1 point):

How many applications are included in the Prolog-1000 list? Pick one: (a) Less than 1000

(b) Exactly 1000 (c) More than 1000.

The copy parked in /home/cs372/Prolog/Prolog-1000 appears to have 502

entries, but is said to be "preliminary". However, I think that in class I might have said

that the list had more than one thousand entries and therefor, either (a) or (c) earned a

point.

EC 6 (1 point):

What piece of sports equipment is on the instructor's desk?

A bowling pin. (I put this question here as a token reward for those students who kept me

from being lonely during office hours!) Other responses were baseballs, footballs, and a

tennis racket.

EC 7 (1 point):

Write an Icon expression that is exactly ten characters in length and that evaluates to the

value "10" (a string). RESTRICTION: You may use no letters, digits, underscores, white

space characters, or parentheses.

My answer:

[[]]||[]

Mr. Klein was the only person who answered this question correctly. His answer:

"\\"||""

EC 8 (1 point):

Finish this sentence as yourself: "If I only remember one thing from CSc 372 it will be

_______."

If I only remember one thing from teaching CSc 372 this time around it will be nearly

losing my mind trying to think up some decent problems for the first C++ assignment.

EC 9 (1 point):

Without using a control structure (such as every or while) write an Icon expression that

prints the letters from "a" to "z".

CSc 372, Spring 1997, Final Examination Solutions; page 10

This is a classic example of omitting a key element of a question. I should have said

"...prints, one per line, the letters..." The answer I had in mind was this,

write(!&lcase) & 1 = 0

but a number of persons observed that the specifications could be met with this,

write(&lcase)

and that earned full credit.

EC 10 (1 point):

Write an Icon procedure allsame(s) that succeeds if all the characters in the string s are

the same and fails otherwise. For example, allsame("testing") should fail, but

allsame("++++") should succeed. allsame("") should fail.

procedure allsame(s)
 *cset(s) = 1 & return
end

EC 11 (1 point): (Written on the board...)

Sometimes in Tucson the only difference between the time and the temperature is a _____.

colon (For example, it might be 102 at 1:02.)

CSc 372, Fall 2001, ML Examination Solutions; page 1

CSc 372, Fall 2001

ML Examination Solutions

Problem 1: (2 points each; 8 points total)

State the type of each of the following expressions, or if the expression is not valid, state

why. For example, the type of the expression 3+4 is int and the type of the expression

length is

'a list -> int.

(1, [2,3], 4.0)

int * int list * real

(reduce op+)

int list -> int

explode o rev o implode

Not valid – implode produces a string but rev requires an 'a list

[[[size]]]

(string -> int) list list list

Problem 2: (3 points each; 15 points total)

State the type of each of the following functions:

fun a (w,h) = w * h * 1

int * int -> int

fun f(x) = f(1) + f(2)

int -> int

fun f(L,(a,b)) = L = (a,b)

(''a * ''b) * (''a * ''b) -> bool

fun f(3,4) = (size,length)

int * int -> (string -> int) * ('a list -> int)

fun x y z = (y z) + z

(int -> int) -> int -> int

CSc 372, Fall 2001, ML Examination Solutions; page 2

Problem 3: (3 points each, 9 points total)

Edit or rewrite the following functions to make better use of the facilities of ML:

fun f(a,b,c) = [a-c, a+c]

fun f(a, _, c) = [a-c, a+c];

fun f(x,y) = x::y::1::2::[]

fun f(x,y) = [x,y,1,2];

fun f(n) = if n = 10 then true else if n = 5 then true else false;

fun f2(10) = true
 | f2(5) = true
 | f2(_) = false

Problem 4: (5 points)

Write the map function. The type of map is ('a -> 'b) -> 'a list -> 'b list

fun map F [] = []
 | map F (x::xs) = F(x)::(map F xs)

Problem 5: (7 points)

Create a function abslist(L) of type real list -> real list that produces a copy

of L with each value in the output list being the absolute value of the corresponding value in

the input list. Assume there is NO function like Java's Math.abs() to compute absolute

value–do the absolute value computation yourself.

fun abslist(L) = map (fn(x) => if x < 0.0 then ~x else x) L

Problem 6: (7 points)

Your instructor suffered the great embarrassment of distributing a version of gather that

has a bug: If called with an empty list it should return [] but in fact it returns [[]].

Example:

- gather([], 10);
val it = [[]] : int list list

Change this:

fun gather(L, limit) =

to this:

fun gather([], _) = []
 | gather(L, limit) =

CSc 372, Fall 2001, ML Examination Solutions; page 3

Problem 7: (15 points)

In this problem you are to create TWO functions, doubler and quadrupler. doubler is

of type string list list -> string list list and "doubles" each letter in the

strings. quadrupler is of the same type, but quadruples each letter.

fun doubler L =
 let
 fun f([]) = []

 | f(c::cs) = c::c::f(cs)
 in
 (map (map (implode o f o explode))) L
 end

val quadrupler = doubler o doubler

Problem 8a: (7 points)

Create a function genlist that takes a list of integers and for each integer N in the list,

produces a list with N instances of the number 1. You may assume that all the values are

non-negative.

val genlist = map ((map (fn(_) => 1)) o iota)

Problem 8b: (7 points)

Create a function genlist_inv that performs the inverse operation of genlist. The only

value appearing in the lists will be the integer 1 (one).

val genlist_inv = map sum

An acceptable answer is to use length instead of sum,

val genlist_inv = map length

but if you try it out with the interpreter, you'll find that you get an error about type variables

not being generalized.

Problem 8c: (2 points)

What is the type of genlist_inv o genlist o genlist_inv ?

int list list -> int list

CSc 372, Fall 2001, ML Examination Solutions; page 4

Problem 9: (18 points)

Create a function tacdel(fname) that reads the file named by fname and prints (using

the print function) the lines in the file in reverse order, and if a line contains the character

"@", the line "<D>" appears in its place.

fun tacdel(fname) =
let

val bytes = read_all_bytes(fname)
fun lmapper(s) =

if member(#"@", explode s) then "<D>" else s
val lines = map lmapper (rev (split #"\n" bytes))

 in
 print(concat(ien(lines, 1, "\n")))
 end

CSc 372, Fall 2001, Icon Examination Solutions; page 1

CSc 372, Fall 2001

Icon Examination Solutions
Problem 1: (15 points)

Write a program tacdel that reads lines from standard input and prints the lines in the file in reverse

order. If a line contains the character "@", the line "<D>" appears in place of that line.

procedure main()
 L := []
 while line := read() do
 if line ? find("@") then
 push(L, "<@>")
 else
 push(L, line)
 every write(!L)
end

Problem 2: (15 points)

Write a program idiff that examines two files named on the command line and if the files are not

identical, prints "Diffs". If the files are identical, idiff produces no output.

procedure main(a)
 x := read_file(a[1])
 y := read_file(a[2])

 if *x ~= *y then stop("Diffs")
 every i := 1 to *x do
 if x[i] ~== y[i] then
 stop("Diffs")
end

Problem 3: (15 points)

Write a program paldate that searches for palindromic dates between January 1, 2001 and

December 31, 2099 and prints those dates. Represent a date such March 15, 2001 like this: 3/15/1.

A straightforward solution is this:

procedure main()
 t := table(31)
 every t[4|6|9|11] := 30
 t[2] := 28
 every m := 1 to 12 do
 every d := 1 to t[m] do
 every y := 1 to 99 do {
 s := m || "/" || d || "/" || y
 write(reverse(s) == s)
 }
end

CSc 372, Fall 2001, Icon Examination Solutions; page 2

With a little thought about the possibilities, the program can simplified:

procedure main()
 every m := 1 to 12 do
 every d := (1 to 9) | 11 | 22 do
 every y := 1 to 21 do {
 s := m || "/" || d || "/" || y
 write(reverse(s) == s)
 }
end

Problem 4: (24 points)

Write a program total that reads merchandise descriptions and prices and then computes the total

for a list of items to purchase.

procedure main()
 p := table()
 while line := read() do {
 if line == "." then
 break
 reverse(line) ? {
 price := reverse(tab(upto(' ')))
 if price[-1] == "c" then
 price := price[1:-1] * .01
 else
 price := price[2:0] * 1.0
 tab(many(' '))
 item := reverse(tab(0))
 p[item] := price
 }
 }

 total := 0
 while total +:= p[read()]
 write("$", total)
end

Problem 5: (7 points)

Write a procedure intmem(i, L) that returns &null if the integer i is contained in the list L and

fails otherwise. L may contain values of any type.

procedure intmem(i, L)
 return integer(!L) = i & &null
end

CSc 372, Fall 2001, Icon Examination Solutions; page 3

Problem 6: (10 points)

Write a program sumints that reads lines on standard input and prints the sum of all integers found.

Restriction: Your solution must be based on string scanning. The only types you may use are

integers, strings, and character sets. You may not any comparison operators such as ==.

procedure main()
 sum := 0
 while line := read() do
 line ? while tab(upto(&digits)) do
 sum +:= tab(many(&digits))

 write(sum)
end

Problem 7: (6 points)

According to the instructor, what is the unique aspect of Icon's expression evaluation mechanism?

Expressions can produce zero, one, or many results.

Name one thing that the instructor doesn't like about Icon or has identified as a problem with the

language. Here's one thing you can't mention: unexpected failure.

Some examples:

t := table([]) doesn't mix well with push and put

Semicolon insertion can lead to surprises

No well-defined and documented library to do things like reversing a list

There are no built-in functions in Icon to do things like reverse lists, compare all elements of two lists,

or do a "deep copy" of a list. What did the instructor cite as the likely reason for the absence of

functions like that?

The limited memory space (< 64k of compiled code) for the initial UNIX implementation and

relative difficulty of writing those functions in C.

Problem 8: (8 points)

Fill in the blanks:

The instructor described the function move as being a "lone wolf". He said that tab "works well

with others".

The result of a successful comparison in Icon is the right hand operand.

We studied a total of 8 string scanning functions. Of those, two changed the position

and five of them returned a position . pos is one-of-a-kind.

EXTRA CREDIT SECTION (one point each)

(a) Write the result sequence of (?"xxx" || !"xxx" || *"xxx")

CSc 372, Fall 2001, Icon Examination Solutions; page 4

][.every (?"xxx" || !"xxx" || *"xxx");
 "xx3" (string)
 "xx3" (string)
 "xx3" (string)

(b) If the string s contains your login name, what is string(cset(s[1:4]))[1:-2]?

][s := "whm" & string(cset(s[1:4]))[1:-2];
 r := "h" (string)

][s := "yourname" & string(cset(s[1:4]))[1:-2];
 r := "o" (string)

(c) Which one of the following principal contributors to Icon have not been mentioned in class: Steve

Wampler, Bob Alexander or Tim Korb?

(d) Cite up to three elements of Icon that are "syntactic sugar". (one point each)

The unary \ and / operators

It can be argued that the the augmented operators, such as +:=, are syntactic sugar.

Two elements we didn't talk about, the repeat and case expressions, are reasonably

thought of as syntactic sugar.

(e) Given this program, args.icn:

procedure main(args)
 every write(!args)
end

what does args print when run like this: "args < in.dat >out.dat"?

It produces no output.

(f) Describe a situation where tab(n) and move(n) produce the same result, for a

particular subject, position, and value of n.

]["" ? tab(2);
Failure

]["" ? move(2);
Failure

CSc 372, Fall 2001, Prolog Examination Solutions; page 1

CSc 372, Fall 2001

Prolog Examination Solutions

Problem 1: (5 points)

Show an example of each of the following:

A fact: p.

A rule: p :- q.

A query: p.

A clause: p.

An atom: p

Problem 2: (2 points)

What is the relationship between facts, rules, and clauses?

Facts and rules are clauses.

Problem 3: (5 points)

True or false: The following is a working implementation of the member predicate, as studied in

class:

member(X, [X]).
member(X, [_|T]) :- member(X, T).

False—it only succeeds if a value is the last element of the list.

Problem 4: (5 points)

True or false: The following is a working implementation of the length predicate, as studied in

class:

length([], 0).
length([_|T], Sum) :- length(T, Sum), Sum is Sum + 1.

False—Sum is Sum + 1 fails.

Problem 5: (12 points)

Write a predicate sumval(+List, +Value, -Sum) that produces the sum of all occurrences of

Value in the list List. Assume that Value and all elements in List are integers.

sumval([], _, 0).
sumval([X|T], X, Sum) :- sumval(T, X, TSum), Sum is X + TSum, !.
sumval([_|T], X, Sum) :- sumval(T, X, Sum).

CSc 372, Fall 2001, Prolog Examination Solutions; page 2

Problem 6: (4 points)

Write a predicate sumvals(+List, +ListOfValues, -Sum) that produces the sum of all

occurrences of members of the list ListOfValues in the list List. Assume that Value and all

elements in List are integers.

The order of values in ListOfValues is inconsequential. Note that a given value may appear

multiple times in ListOfValues but that does not affect the result.

sumvals([], _, 0).
sumvals([H|T], L, Sum) :- member(H, L), sumvals(T, L, TSum),

 Sum is H + TSum, !.
sumvals([_|T], L, Sum) :- sumvals(T, L, Sum).

Problem 7: (12 points)

Write a predicate listeq(+L1, +L2) that succeeds if the lists L1 and L2 are identical and fails

otherwise. L1 and L2 may be arbitrarily complicated lists but all values will be either integers or lists.

listeq(L,L).

Problem 8: (15 points)

Write a predicate consec(+Value, +N, +List) that succeeds if and only if List contains N

consecutive occurrences of Value. Assume that Value and all elements of List are atoms or

integers. Assume N > 0.

consec(Val, N, List) :- repl(Val, N, Vals),
 append(Vals, _, List), !.

consec(Val, N, [_|T]) :- consec(Val, N, T).

Problem 9: (15 points)

Write a predicate order3(+L1, -L2) that assumes that L1 contains three integers and instantiates

L2 to be a list of those integers in ascending order:

order3(L,[A,B,C]) :-
getone(A,L,R), getone(B,R,[C]), A =< B, B=< C, !.

Problem 10: (20 points)

In this problem you are to write a predicate inventory/0 that does an inventory calculation for a

fruit stand. [...]

inventory :- fruit(F), get_qty(F,Q), cost(F,C), TC is Q*C/100,
 format('~p: ~p at ~p = $~p~n', [F,Q,C,TC]), fail.
inventory.

get_qty(F,Q) :- qty(F,Q), !.
get_qty(_,0).

CSc 372, Fall 2001, Prolog Examination Solutions; page 3

Problem 11: (5 points)

For each of the two following queries, write in the values computed for each variable. If a query fails,

indicate it.

| ?- X = [1,2,3], Y = [4|X], [A,B|C] = Y.

A = 4
B = 1
C = [2,3]

| ?- A = [], B = 1, C = [A,B], B = 2, [D,E] = C.

This query fails because B can't be unified with both 1 and 2.

EXTRA CREDIT SECTION (one point each)

(a) What is the Prolog 1000?

A list of significant applications written in Prolog and related languages.

(b) In what country was Prolog developed?

France

(c) What country made a big investment in Prolog?

Japan, with its Fifth Generation project.

(d) What language was used for the first implementation of Prolog?

FORTRAN

(e) What is the sound of a combinatorial explosion?

Silence

(f) What is inaccurate about this specification: append(+L1,+L2,-L3)?

The correct specification is append(?L1, ?L2, ?L3). All, some, or none of the arguments

might be specified.

(g) Why is a warning about a singleton variable significant?

The variable is question is used only once. That might indicate a misspelled name or other

error.

(h) In a Prolog library you see these two predicates: get_chr(+Number, -Char) and

get_ord(+Char, -Number). What's odd about that?

With Prolog, one predicate can perform both calculations.

CSc 372, Fall 2001, Final Examination Solutions; page 1

CSc 372, Fall 2001

Final Examination Solutions

Problem 1: (7 points)

Write an Emacs Lisp function change that changes every letter in the current buffer to "x", and

every decimal digit to "#".

(defun change ()
 (interactive)
 (goto-char 1)
 (let (ch)
 (while (not (eobp))
 (setq ch (char-after (point)))
 (delete-char 1)
 (cond
 ((letterp ch) (insert ?x))
 ((digitp ch) (insert ?#))
 (t (insert ch)))
)
)
)

Problem 2: (15 points—do only two of problems 2, 3, and 4)

Write a function ruler, bound to ESC-R, that inserts a "ruler" before the current line.

(defun ruler ()
 (interactive)
 (let ((w (1- (window-width))) (current (point)) start end)
 (forward-line 0)
 (setq start (point))
 (let ((n (/ w 10)) (i 1))
 (while (<= i n)
 (insert " " (int-to-string i))
 (setq i (1+ i)))
 (insert "\n")
 (setq i 1)
 (while (<= i w)
 (insert (int-to-string (% i 10)))
 (setq i (1+ i)))
 (insert "\n")
)
 (read-char)
 (delete-region start (point))
 (goto-char current)
)
)

(global-set-key "\eR" 'ruler)

CSc 372, Fall 2001, Final Examination Solutions; page 2

Problem 3: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function longest that positions the cursor at the beginning of the longest line

in the current buffer. If there are ties for the longest line, choose the first one.

(defun longest()
 (interactive)
 (goto-char 1)
 (let ((max -1) (last (point)) (maxpos 1) len)
 (while (not (eobp))
 (forward-line 1)
 (setq len (- (point) last))
 (cond
 ((> len max) (setq max len)
 (setq maxpos last)))
 (setq last (point))
)
 (goto-char maxpos)
)
)

Problem 4: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function marquee that displays a horizontally scrolling line of text.

(defun marquee (text)
 (interactive "sText? ")
 (get-empty-buffer "*m*")
 (switch-to-buffer "*m*")
 (insert-char ?\n (/ (window-height) 2))
 (setq pos (point))
 (insert text)
 (let (ch)
 (while t
 (goto-char pos)
 (setq ch (char-after pos))
 (delete-char 1)
 (end-of-line)
 (insert ch)
 (sit-for 0 70)
)
)
)

CSc 372, Fall 2001, Final Examination Solutions; page 3

Problem 5: (9 points)

Background: In Icon, built-in functions supply default values for omitted arguments when there's a

reasonable default. Emacs Lisp is very inconsistent in this regard. For example, the count for

forward-line is optional but the count for delete-char is required. The instructor believes

that consistent use of reasonable defaults would be an improvement for Emacs Lisp.

Problem: Identify two more elements from ML, Icon, Prolog, and/or Java that would be

improvements for Emacs Lisp. Briefly describe how Emacs Lisp would benefit from their inclusion.

The elements may be from the same language or from different languages.

One thing that comes to mind for me is to add object-orientation so that instead of a

big pile of functions we could have classes like Buffer, Window, etc. Buffer-

specific operations might be methods of the Buffer class, for example. It is the case

however, that a simpler module-based approach, somewhat like ML's structures,

would provide sufficient grouping to make the task of finding functions more

manageable.

For a second item, I think that Icon's idea of keywords—things like &subject and

&pos might be useful. For example, imagine &point. To move forward one might

say &point +:= 1. &point := 1 would go to the beginning of the buffer and

&point := 0 would go to the end of the buffer. Instead of several functions to

adjust the point, one would simply change the value of &point.

Problem 6: (6 points)

Write an ML function rm_prefix(P, L) that ASSUMES that P is a prefix of the list L

and returns a copy of L with P removed.

fun rm_prefix([],L) = L
 | rm_prefix(_::ps, _::xs) = rm_prefix(ps, xs);

Problem 7: (2 points)

Write an ML function listeq(L1, L2) that returns true if the lists L1 and L2 are

identical and returns false otherwise. Style does matter on this problem.

fun listeq(L1, L2) = L1 = L2;

Problem 8: (8 points)

Write an Icon procedure extsort(L) that accepts a list of file names and sorts them by

their extension.

procedure extsort(L)
 return swap(sort(swap(L)))
end

procedure swap(L)
 L2 := []

every w := split(!L, ".") do
 put(L2, w[2] || "." || w[1])

 return L2

CSc 372, Fall 2001, Final Examination Solutions; page 4

end

Problem 9: (8 points)

Write a Prolog predicate find(+N, [-A,-B,-C]) that produces all combinations of

integers between 1 and N inclusive such that N = A * B - C.

find(N,[A,B,C]) :- iota(N,L), getone(A,L,R), getone(B,R,R2),
 getone(C, R2, _), N is A * B - C.

Problem 10: (10 points)

Pick one interesting element from any of the languages we have studied and, in the style of

an e-mail note, describe that element to a colleague familiar only with Java programming.

Be sure to talk about the syntactic form, the operation, and describe a practical usage of the

element.

When describing the idea of this course to someone I often use member in

Prolog as an example of an interesting way to do something in another

language:

In Prolog I might define a predicate called member that tests for membership

in a list. Here is the definition of member:

member(X, [X|_]).
member(X, [_|T]) :- member(X, T)

That says that X is a member of any list of which it is the first element or any

list that it is a member of the tail. An interesting thing about Prolog is that

because predicates describe relationships, we can use that same predicate to

generate the elements in a list:

?- member(X, [1, 2, 3]).
X = 1? ;
X = 2? ;
X = 3?

Problem 11: (10 points)

Present an argument either for or against the prospect of a single language becoming

dominant for the majority of software development. Here are some points to possibly

consider: What major elements would a dominant language need to have? How might such a

language come into existence? What are forces that would work in opposition to a language

becoming dominant?

Before Java's quick rise to popularity I was more skeptical about the prospect

of a single language being dominant but Java, with all its problems, has

nonetheless transformed much of the programming landscape. I have to think

that a language of comparable complexity that addresses Java's weaknesses

might have a chance of becoming dominant across many, if not most

application areas.

CSc 372, Fall 2001, Final Examination Solutions; page 5

It seems that a language with a potential of dominance would have to come

from academia or the open source community. Vendors have a bad track

record of supporting ideas from other vendors, no matter how good they are.

Ideas that emerge from neutral parties often have a greater likelihood of

widespread adoption.

In terms of language characteristics, it seems that object-orientation, a

conventional syntactic structure, automatic memory management, and the

potential of efficient execution are all musts.

With regard to opposing forces, it seems to be the case that successful

software systems grow and grow. A dominant language would probably grow

and grow until at some point it became clear that a language with a subset of

the capabilities would serve just as well in many cases and perhaps excel in

other areas. A crisp new language would perhaps attract those who like to be

different and perhaps the cycle would repeat itself.

Problem 12: (10 points)

For five points each, answer TWO of the following questions. If more than two questions are

answered, only the first answers on the paper will be graded.

(A) In languages like Java, C++, and ML, words like "if", "fun", and "class" are called

reserved words—they can't be used for variable or routine names. The PL/I language has no

reserved words. One can write statements like if = while + then(else). What are

some advantages and/or disadvantages to having no reserved words? Disregard issues related

to compiling languages with no reserved words.

A big advantage is that you don't have work around reserved words when choosing

variable names. I've many times wanted to use the variable "to" in an Icon program

but that conflicts with to-by.

 In terms of negatives, there is the potential for writing code like the above, but that's

rarely a problem in practice. Also, it's difficult to write ad-hoc source code analysis

tools to deal with programs written in such languages.

(B) Icon has several polymorphic operators and functions. For example, the unary * operator

returns the number of elements in an object. The delete function removes elements from

sets and tables. What are some tradeoffs that a language designer must take into account when

considering inclusion of a polymorphic operation in a language?

There can be a tendency to have a polymorphic operator cover too much ground. For

example, should Icon's ! operator handle numbers as well? Should the delete

function operate on lists as well? There can also be a problem when it comes to

naming an operation but using an operator instead of a function is one way to avoid

the question of what-to-call-it.

(C) Imagine a language that has heterogeneous lists like Prolog, Icon, and Lisp, but that also

has a tuple type that is very similar to ML. Present an argument either for or against the claim

that if a language has heterogeneous lists, tuples provide no additional benefit.

CSc 372, Fall 2001, Final Examination Solutions; page 6

Python is a language that has heterogenous lists as well as tuples. Python's tuples are

immutable—they can't be changed—and in Learning Python that immutability is cited

as the best reason for the co-existence of the two mechanisms. I have used Icon's lists

as tuples in various situations and there is something that feels a little bit

uncomfortable about it, but I can't put my finger on it—maybe it is mutability.

(D) What do Java's exception handling mechanism and Icon's failure mechanism have in

common?

The common element is the situation of an expression for which there's no reasonable

result. In Icon an out of bounds array index fails; in Java an exception is thrown.

Exceptions are far more general but much more cumbersome to use. It would be nice

to have a mechanism with the generality of exceptions and Icon's conciseness of

expression.

(E) The instructor said that "every programmer should have a language like Icon in their

toolbox". What are the characteristics of Icon, and similar languages, that make it worthwhile

to know such a language in addition to mainstream languages like Java and C++? (Or, argue

that knowing a single language like Java or C++, and knowing it well, is all that's needed.)

The common elements that I see are (1) simple I/O, (2) good string handling, (3) data

types like lists and tables, and (4) a library that's sufficiently well-designed that you

don't need to look up the arguments for every other function.

(F) A language implemented in C, such as Emacs Lisp, typically has some library functions

coded in C and the balance coded in the language itself. What factors influence whether a

function is implemented in the language itself?

One way to think about built-in functions is which can be implemented in the

language and which cannot. For example, there's no way to exactly implement Icon's

push/pop/pull/... functions with the other mechanisms of the language—you

can't write those functions in Icon.

Another consideration is efficiency. It may possible to implement a function in Lisp,

but if the function is long-running and heavily used, it might be better written in C.

A third issue is complexity. A function may be sufficiently complicated that it is

impractical to write in the implementation language.

EXTRA CREDIT SECTION (one point each)

(a) What's the difference between a hack and programming technique?

When you do it, it's a programming technique. When somebody else does it, it's a

hack.

(b) Order these languages from oldest to youngest: Icon, Java, Lisp, ML, Prolog.

Lisp, Prolog, ML, Icon, Java

(c) Write an expression that is valid in three of the languages we studied but with a notably

CSc 372, Fall 2001, Final Examination Solutions; page 7

different interpretation in each.

Good question!

(d) As of midnight on December 12, how many messages have been sent to the CSc 372

mailing list? (Your answer must be within 10%.)

280 messages

(e) The instructor has immediate plans to rewrite the Icon assignments in another language to

see how that language compares to Icon. What's the language?

Python

(f) What is the type of rm_prefix (problem 6)?

'a list * 'b list -> 'b list

CSc 372, Fall 2006

 Mid-Term Examination Solutions

TOP SECRET

Circumstances have still not allowed two students to take a make-up for this exam. Guard

these solutions and your exam closely.

A word about grading

The best way to be sure your work is scored equitably is get a problem right—there's no chance of being given the

wrong amount of partial credit. We try very hard to make equivalent deductions for equivalent errors but it's very

hard, especially with a large class. In some cases specific deductions and/or extra credit awards are cited below. If

a mark on your exam differs from one of those you should definitely let me know. If you find that you got a lower

mark than a colleague for a similar error, let me know. In some cases it might be that your friend got lucky. If so,

I won't change your friend's mark but I also won't compound the error by making the same wrong deduction for

you.

If you believe that an answer for one of the code-centric questions is correct then before coming to see me you

should get on a machine and see if it actually works. If it does, come and see me. If it doesn't work then figure out

the smallest change that makes it work. If you still think the deduction is inequitable then come and see me.

Please double-check that the scores written on each problem match the scores on the cover sheet.

As the syllabus states, you're encouraged to contest any score that you don't think is equitable.

Problem 1: (5 points; average 4.61, median 5)

The instructor often says "In ML we never change anything; we only make new things." What does he mean by

that?

Here are my favorite complete answers:

"Everything is immutable."—Qiyam Tung

"There are no variables in ML, only aliases to unchangeable pieces of data."—Garrett Hoxie

A common error was to have a variable-centric answer, perhaps saying simply that a val might hide an earlier

binding of the same name. That was a 1.5 point deduction.

Problem 2: (5 points; average 4.36, median 5)

(a) Write an ML function fun firstLast(L) that returns a tuple consisting of the first and last elements of

the list L.

fun last [x] = x
 | last (_::xs) = last(xs)

fun firstLast(x::xs) = (x, last(x::xs))

(b) What is the type of firstLast?

'a list -> 'a * 'a

Problem 3: (5 points; average 2.28, median 1.5)

Flatten one-element lists.

val f = map hd

I was surely disappointed by the results on this one. I wish more students had put down something that worked,

even if it was longer than I requested. Some students even erased answers and left it blank. Remember that on my

exams something is no worse than nothing—give me a chance to give you partial credit. A blank is a zero, period.

Problem 4: (6 points; average 4.67, median 6)

Write an ML function eo(L) that returns a list consisting of every other element of the list L. (That is, the 2nd,

4th, 6th, 8th, ... elements.)

fun eo(x::y::more) = y::(eo more)
 | eo _ = []

Problem 5: (12 points; average 8.59, median 9)

Without writing a function that is directly or indirectly recursive, write an ML function ints_to_string(L)
that produces a string representation of L, an int list.

fun ints_to_string [] = ""
 | ints_to_string L =
 let
 val almost =
 concat(map (fn(s) => ", " ^ Int.toString(s)) L)
 in
 implode(List.drop(explode almost, 2))
 end

I ended up working through a fairly similar problem—printN—during the Q&A session so I tried to compensate

for that by saying a lot about it in a follow-up note to the list on Monday night.

Common errors were a trailing ", " (-3); a tl too few (-1); producing just the integers, no commas (-5); and

doing little more than map Int.toString (-8).

Problem 6: (15 points; average 13.03, median 15)

Without writing a function that is directly or indirectly recursive, write an ML function show_lists(L) of

type (string * int list) list -> unit that prints the contents of L, prefixing each int list with

the specified label.

fun its' [] = "<empty>"
 | its' L = ints_to_string L;

fun show_lists(L) =
 print(concat(map
 (fn(label, IL) => label ^ ": " ^ (its' IL) ^ "\n") L))

Many solutions for both problem 5 and problem 6 used folding instead of a map and concat (or folding with

op^). I see that as good news and bad news: I think that shows great understanding of folding but always seek the

simplest solution—it has the greatest chance of being correct.

We ended up grading this problem in a somewhat qualitative fashion. For the most part we classified solutions as

"A", "B", "C", "D", or "F" and awarded 15, 12.5, 10, 5, or zero points, respectively. If you see something like "A-

15" on yours, that's why.

A very common error was to return unit list instead of unit. We didn't deduct for that but did award a point

of extra credit if unit was returned. (Be sure we gave it to you if that's what you did.)

Problem 7: (10 points; average 1.83, median 0)

Consider a folding that operates on an int list with an even number of values, all greater than zero, and

produces a list of pair-wise sums: [1st+2nd, 3rd+4th, ..., (N-1)th+Nth]

A fair number of students solved this problem or got close enough to make me happy. Mr. Bressel's

solution was surely the best. I'd like you to think more about this problem so I'm not going to publish a

solution here but if you're dying to know, see me or get to know Mr. Stout, Mr. D. Nguyen, Mr. Ghigliotti,

Mr. Shokirev, Mr. Patki, Mr. Sarando, Mr. Tung, Mr. Bressel, Mr. Sortelli, Mr. Wallis, or Mr. Nation.

(alphabetical by login name)

Problem 8: (4 points; average 2.25, median 2)

(a) Is the following ML function declaration valid? If valid, what is the type of f1? If not valid, explain why it is

not valid.

fun f1 () f2 () = [f2];

It's valid. The type is unit -> 'a -> unit -> 'a list

I posted a question very similar to this to the mailing list. Remember that I think of my postings to that

list as part of the course material.

There were a few exceptions but if you put down any type we usually considered that as evidence that you

viewed the declaration as being valid and gave you a point for that.

(b) Write an ML function g whose type is

int -> (int list * int) -> (string list) -> (bool * real)

fun f 1 ([1],1) [""] = (true,1.0);

Problem 9: (4 points; average 2.71, median 3.25)

(a) Using nothing but a val binding and the composition operator, create an ML function f(s) that returns a

copy of the string s with the first and last characters removed. Assume that size(s) >= 2.

val f = implode o rev o tl o rev o tl o explode;

(b) As you've defined it, what is the type of f? (Don't forget to properly account for the intermediate functions in

the composition.)

string -> string

A few students fell victim to the bum steer about the intermediate functions. I guess they overlooked slide 162 and

missed the time or two in class when I specifically said to watch out for this on an exam.

Problem 10: (16 points; average 9.85, median 12)

Write a Ruby program that reads from standard input a script of interaction with irb and combines the

expressions and results on a single line, vertically aligning the results, based on the longest input expression.

Each combined line is followed by a blank line.

exprs = []
results = []

if ARGV.length != 0
 gap = ARGV[0].to_i
else
 gap = 1
end

while line = STDIN.gets
 exprs << line.chomp
 results << (STDIN.gets || (puts "Error: short input"; exit))
end

longest = exprs.max{|a,b| a.size <=> b.size }.size

for e in exprs
 printf("%s%s\n", e.ljust(longest) + (" " * gap), results.shift)
end

Common deductions: Doesn't handle command line option (-2); doesn't handle "short input" case (-2); doesn't

bother at all with alignment (-4); gets alignment wrong (-2). A lot of solutions aligned columns based on the

longest input line instead of only considering the expressions (-2).

Problem 11: (2 points; average 1.62, mean 2)

Write a Ruby program that reads all lines from standard input and prints them on standard output in reverse

order, last line first, first line last. Assume there is at least one line and that the file ends with a newline.

For two points of extra credit, have less than 25 characters in your solution.

puts readlines.reverse

I figured this one would be a cream puff since (1) it was the first thing we wrote in Ruby (slide 9), (2) I posed an

in-class challenge to do this, and (3) I wrote the above on the Elmo when discussing (2)!

Problem 12: (3 points; average 2.02, median 3)

Here is a line of code from a Ruby method:

line = (gets || return)

Imagining the reader to be a Java programmer with no knowledge whatsoever of Ruby, explain its operation in

each of the possible cases that might arise when it executes. Ignore the open-command-line-arguments-as-files-

and-read-them behavior of gets.

If gets produces a line then it is assigned to line. If not, the return terminates the current method.

Many students said mentioned something to the effect of "the value produced by return is then assigned to

line". That resulted in a deduction of 1.5.

Problem 13: (8 points; average 5.48, median 6.25)

Write a Ruby iterator named upto_limit(a, limit). The argument a is an array of integers; limit is an

integer. upto_limit yields the values of a in turn (a[0], a[1], ...) continuing while the sum of the yielded

values is less than or equal to limit. upto_limit returns a.

def upto_limit(a, limit)
 sum = 0
 for i in a
 sum += i
 if sum <= limit then
 yield i
 end
 end
 a
end

Common errors: Doesn't return a (-1.5); yields wrong values due to logic error (-1.5), prints instead of yielding—a

fundamental misunderstanding (-2.5).

If a solution simply yielded the values in a we only gave it two points but at the moment seems like too big of a

deduction. If you got that 2, see me and I'll change it to 3.5.

Problem 14: (5 points; average 2.85, median 4)

Write a Ruby method extract(s, m, n) that extracts a portion of a string that represents a hierarchical data

structure. m is a major index and n is a minor index. Major sections of the string are delimited by slashes and are

composed of minor sections separated by colons.

def extract(s,m,n)
 majors = s.split("/")
 majors.delete("")
 major = (majors[m-1] || return)

 minors = major.split(":")
 minors.delete("")
 minors[n-1]
end

A hint specified "Assume that "|20|1|300|".split("|") produces ["20", "1", "300"]. With that

in mind the delete("") calls above are not needed.

Common deductions: Using m and n instead of m-1 and n-1 (-0.5); not checking whether the major reference is

out of bounds (-0.5).

Extra Credit Section (one point each unless otherwise indicated; average 2.86, median 2; high 8)

(1) Imagine that you have an ML function named f and a Ruby method named f. Does [f] produce an

analogous result in both languages? If not, how do the results differ?

The result is different. In ML it is a list containing the function f. In Ruby it is an array that contains the

result of calling f.

(2) For up to three points name three programming languages developed at the University of Arizona and give

an example of a valid expression in each that involves an operator.

See slide 14 in intro.sli.pdf. I believe that 3+4 is a valid expression in all those languages except

perhaps SIL2.

We went ahead and gave a point for just the language name. If you cited a valid expression it was worth

another half-point per language.

(3) For one point each, write curry and uncurry in ML.

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

Very few got these right but quite a few got them reversed.

(4) Assuming that s is a string, what is a Ruby expression that produces the same effect as s.dup but is both

shorter and more difficult to type?

s+"" I believe that only one student, Mr. Tung, got this one.

(5) What element of Ruby most closely corresponds to an anonymous function in ML?

Blocks.

(6) Simplify this Ruby expression: if a[0] == nil then false else true end

The answer I had in mind was a[0] but that's a little inaccurate. Mr. Kovell and Mr. Maloney did better:

!!a[0]. (Do you see the difference?)

I should have said "Greatly simplify..." but since I didn't I accepted any expression that produced the same

result but that was simpler than the above.

(7) Cite a contribution to knowledge made by Ralph Griswold.

I hope that somebody will take the time to write a biography about Ralph. Here are a few thoughts I've got.

At Bell Labs Ralph led development of four SNOBOL languages. I believe he said SNOBOL took a day to

implement. SNOBOL2 took a week. SNOBOL3 took a month. SNOBOL4 took a year. SNOBOL4 was

very popular both in industry and academia. It was written with portability in mind and coded in a macro

language called SIL (SNOBOL Implementation Language). It was ported to dozens of different machines.

Quite a few books were written about SNOBOL4 by both him and others. For many years it was by far the

most popular unconventional language to use for non-numeric problems on mainframe computers.

A language that almost nobody's heard of is SL5—SNOBOL Language 5. Ralph led development of it here

at the University of Arizona and, as the name implies, it was a follow-on in the SNOBOL line. Ralph once

said, "SL5 had everything—you could even change the procedure call mechanism". But in the end the team

didn't like the overall result and the language was never released. It is fading into the sands of time.

I asked Ralph what his first ideas about Icon were and he said, "I was in the hospital [I don't know for what]

pondering SL5 and I kept thinking that there must be something simpler." That turned out to be Icon.

Great effort was taken to make Icon small (conceptually) but powerful. I remember once that Ralph

patiently listened while I rattled off a list of features that I thought would be good in Icon. He said "Go

ahead, but for every one feature you add, first find one to remove." He was exaggerating, but by only a tiny

amount.

Perl guru Damian Conway was asked in an interview, "What languages other than Perl do you enjoy

programming in?" He replied, "I'm very partial to Icon. It's so beautifully put together, so elegantly

proportioned, almost like a Renaissance painting." In the digibarn.com poster cited in the intro slides

Icon is described as "A general purpose language known for its beauty and grace."

Ralph founded this department and served as department head for many years. It's hard to imagine how

difficult it is to simultaneously and successfully teach classes, conduct original research and publish about it,

write successful grant proposals, build from scratch a department that is internationally recognized, direct

and coordinate the work of several graduate students, and on top of all that, keep an academic department

running smoothly, bearing in mind that a collection of professors, each with their own priorities and often-

strong opinions, are not easy to keep happy.

When Ralph "retired" he quickly rose to prominence in the weaving community by virtue of his interest and

pursuit of mathematical problems in weaving.

Here's a quote about Ralph from one of his graduate students who is now a professor: "As one of the

founders of the Bell Labs software culture which spawned UNIX, C, and many other essential contributions

to modern software, Ralph Griswold brought to his academic research not only brilliance, but also

experience and a value system that demanded that research ideas be tested by fire and proven useful and

usable by real users, not just good-looking diagrams in academic papers."—Clint Jeffery

When I started working for Ralph as a graduate student I discovered that my was education was just

beginning. He was probably the smartest guy I've ever known and surely the wisest, at least in this field.

One of the great fortunes of my life was working for him.

Things that Ralph clearly saw as good ideas over thirty years ago, such as run-time type checking, garbage

collection, and a well-designed collection of datatypes are now becoming widely accepted.

(8) (Up to five points.) Offer some intelligent observations about the applicability of type deduction, or

something similar, in Ruby.

There has been quite a bit of research on various aspects of figuring out types in languages that don't use

static typing, like Icon and Ruby. A fellow named Ken Walker wrote a type-inferencing Icon compiler about

a decade ago for his dissertation. I believe he found that as a rule "type consistency" held in about 80% of

the cases for the large body of Icon code that he tested with. You can read more here:

www.cs.arizona.edu/icon/ftp/doc/tr93_32.pdf.

Ruby is more slippery than Icon however. For example, in Icon you can be sure that something like x *
3.7 is always going to produce a floating point value. That's not so in Ruby. In Ruby you can't even be

sure that 2+2 is 4! However, a user who's interested in speeding up a Ruby program might be willing to

sacrifice mutability for performance.

Overall results

The average on the exam was 68.9 and the median was 67.25. Here is the full set of scores and a histogram:

 106.00, 104.00, 102.00, 96.50, 96.00, 91.50, 91.00, 90.50, 89.50,
 86.00, 85.00, 84.50, 84.50, 83.50, 82.00, 82.00, 81.00, 79.00,
 76.50, 75.50, 75.50, 75.50, 75.50, 74.50, 74.50, 71.50, 69.50,
 68.50, 67.50, 67.50, 67.00, 66.50, 66.50, 66.50, 66.00, 64.00,
 64.00, 63.50, 63.00, 62.50, 62.00, 60.50, 57.50, 57.00, 56.00,
 55.50, 55.50, 55.50, 55.50, 55.00, 53.50, 53.50, 53.50, 50.00,
 46.50, 45.25, 43.50, 42.50, 23.75, 18.50

 * *
 * *
 * *
 * * *
 * * *
 * * * * *
 * * * * * * * *
 * * * * * * * * *
 * * * * * * * * * * *
 * * * * * * * * * * * * * * *
 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

I want to think about it a little bit more but I'm currently leaning against any sort of class-wide adjustment of the

scores. If that were to happen I believe the maximum I'd add would be 6 points.

Page 1

CSc 372, Fall 2006

 Final Examination Solutions

Problem 1: (13 points; average: 10.8)

In this problem you are to write a Ruby program xref.rb that prints a cross-reference table of what identifiers appear on

which lines in a Ruby program.

ids = Hash.new([])
lnum = 1
while line = gets

line.scan($id_re).each {|id| ids[id] += [lnum] unless $kwds.include? id }
lnum += 1

end

ids.sort.each {
|pair|
id = pair[0]
lines = pair[1].uniq
printf("%s: %s\n", id, lines * ", ")
}

Problem 2: (8 points; average: 6.7)

The connect predicate on assignment 9 printed a representation of a sequence of cables. In this problem you are to write a

Ruby method parse_layout(s) that parses such a representation and returns an array of arrays representing the cables.

>> parse_layout("M---MF-MF----M")
=> [["m", 3, "m"], ["f", 1, "m"], ["f", 4, "m"]]

Here's what I thought of right off the bat:

def parse_layout(s)
 r = []

 s.downcase!
 while s =~ /([mf])(-+)([mf])/
 r << [$1, $2.size, $3]
 s[$&] = ""
 end

 r
end

Mr. Ghigliotti and Mr. Sortelli used an approach like this:

def parse_layout(s)
 s.downcase.scan(/([mf])(-+)([mf])/).map {|e1,ds,e2| [e1,ds.size,e2] }
end

Page 2

Problem 3: (2 points; average: 1.1)

Specify the contents of a Ruby source file, tptnf.rb, such that after loading it, 2+2 is not 4.

class Fixnum
 def + rhs
 0
 end
end

Common errors were to omit class Fixnum and to specify more than one parameter for the + method. (Remember that

a+b is like a.+(b)).

Problem 4: (4 points; average: 2.7)

(a) In a non-recursive way, implement between(+Low, +High, -Value).

between(Low, High, Value) :- numlist(Low, High, List), member(Value, List).

(b) In a non-recursive way, implement numlist(+Low, +High, -Value).

numlist(Low, High, List) :- findall(Value, between(Low, High, Value), List).

The answers for between were mostly correct but only about a dozen answers for numlist were correct.

Problem 5: (6 points; average: 4.1)

Write a Prolog predicate idpfx(+List, -Prefix) that instantiates Prefix to the longest prefix of List such that all

elements of the prefix are identical.

idpfx(L,P) :- reverse(L,R), append(_, P, R), allsame(P), !.

Problem 6: (14 points; average: 12.9)

Write a predicate show_cost(C) that prints a description and cost of the cable C. Cables are represented using a structure

with the functor cable. The structure cable(m,2,f) represents a 2-foot cable with a male connector on one end and a

female connector on the other.

show_cost(Cable) :-
order(Cable, cable(E1, Len, E2)),
map(E1,E1nm),
map(E2,E2nm),
cost(E1nm, E1Cost),
cost(E2nm, E2Cost),
cost(foot, FootCost),
Cost is FootCost * Len + E1Cost + E2Cost,
format('~w-foot ~w to ~w: $~2f~n', [Len, E1nm, E2nm, Cost]).

order(cable(E1, Len, f), cable(f, Len, E1)).
order(X, X).

map(m, male).
map(f, female).

Page 3

Problem 7: (7 points; average: 8.1)

Write a predicate halves(+L,-H1,-H2) that instantiates H1 and H2 to the first and second halves of

the list L, respectively. halves fails if L has an odd number of elements.

halves(L,H1,H2) :- append(H1,H2,L), length(H1,Len), length(H2,Len).

When I wrote my first solution for this I checked for an even number and then used length to form a half-sized list. I then

realized that a description of halving, "find a place to cut this so you get two equal parts", works in Prolog, too!

Problem 8: (8 points; average: 3.3)

Write a predicate wseq(+Words,-Seq) that finds a sequence of the atoms in Words such that the last character of each

atom is the same as the first character of the next atom. Here is a simple example:

wseq([W], [W]).

wseq(Ws, [W1,W2|Sorted]) :-
 select(W1, Ws, Rest),
 wseq(Rest,[W2|Sorted]),
 pair(W1,W2).

pair(A1,A2) :-
 atom_chars(A1,C1),
 atom_chars(A2,[C|_]),
 last(C1,C).

Problem 9: (2 points each; 16 points total; average: 12.1)

The expression (f 1 2) has meaning in both ML and Emacs Lisp. In Emacs Lisp it means to call the function f with the

arguments 1 and 2. Does it mean the same thing in ML? If not, what does it mean?

In ML it means ((f 1) 2) — call f with the argument 1. Then call the function produced by (f 1) with the

argument 2.

It's well known that thinking up names for variables and functions is not always easy and that bad names make code harder

to understand. This is sometimes called the "naming problem". It can be said that with respect to Java, one of our three

primary languages makes the naming problem worse. Another of the three lessens the naming problem. The third is roughly

neutral—it requires about as much naming as Java. Which language is which? Briefly state why.

I'd say that Prolog makes the naming problem worse because there's no nesting of expressions; ML makes things

better thanks to partial applications and anonymous; Ruby is neutral.

With the Icon programming language in mind, what's meant by the term "failure"? Show two distinct examples of

expressions that can fail or succeed depending on the values of the variables involved.

When an expression is evaluated in Icon it either succeeds and produces a result or it fails and produces no result.

Failure propagates to enclosing expressions and they fail in turn.

Two examples of expressions that can fail are x < y and s[n].

Prolog has predicates for comparison like >/2 and ==/2 but it does not have predicates for arithmetic like, +/2 and */2.

Why is that?

Success or failure itself is a meaningful result that is manifested by control continuing through the goal (or not).

Arithmetic expressions need to produce a result but an expression like 3 + 4 simply doesn't provide a place to

specify a result. Arithmetic predicates would need to look like add(3,4,R) and things would get clumsy fast.

Page 4

Which does Prolog use—compile-time type checking or run-time type checking? Or does the notion of type-checking not

really apply to Prolog? Support your answer with a brief argument.

A number of students said that Prolog has no type checking—type mismatches simply produce "No" but that's

incorrect. Consider X is 3 + abc. There's no error when that code is loaded but there is an error when that

goal is evaluated.

Ruby's designer elected to have string[n] produce a integer character code instead of a one-character string. Ignoring

possible performance considerations write a brief argument either in favor of this design decision or against it.

I personally think this is a terrible idea but that's perhaps because I'm used to Icon, which produces a one-character

string for string[n].

Write a simple Ruby method that takes advantage of duck typing and briefly explain how duck typing allows the code to be

simpler, or more expressive, or etc.

The method

def double x
 return x + x
end

"doubles" x by adding it to itself. This has meaning for any type that has provided a meaning for addition.

The term "duck typing" appears to have originated in the Ruby community but the idea has been around for years;

routines like double are said to be "polymorphic".

What is meant by the term "syntactic sugar"?

A syntactic construct that is not necessary but provides a more convenient way to express something.

Problem 10: (1 point each; 4 points total; average: 2.5)

Characterize each statement below as true or false.

 F The instructor prefers the term "scripting language" to categorize languages like Icon, Perl, Python, and Ruby.

It's true that I made a practice of calling Ruby a "scripting language" but I also said that in general I don't like that

term to describe languages like Icon, Perl, Python, and Ruby. The industry may well be stuck with "scripting

language" by now but an alternative I prefer is "agile language". However, when you start trying to characterize

agile languages you often end up with only one thing in common: dynamic typing, so maybe "dynamically typed

language" is the best term.

Lisp is an interesting case: it's dynamically typed but I think its syntax is sufficiently cumbersome to make me

hesitate saying it's agile.

I think the term "scripting language" should be reserved for languages that let one orchestrate a series of commands

in another computational domain with little interaction between the domains and/or little knowledge of either

domain in the other domain. For example, most shells support scripts that string together commands but the only

communication between the two domains is via command line arguments, termination codes, and standard

input/output. The shell has no knowledge of what cat, ls, find, etc. are doing and the programs have no

knowledge of the shell—they simply take arguments, maybe handle standard input/output, and produce an exit code.

 F In Icon, the expression write(1 to 10) prints the numbers from 1 through 10.

Just about everybody missed this one. When write(1 to 10) is evaluated the generator 1 to 10 produces 1,

Page 5

the first value in its result sequence, and that is written out. To get all the numbers you need to put in a context

where the generator is resumed until it is exhausted, like every write(1 to 10) or write(1 to 10) &

p(), where p is a procedure that always fails.

 F The Prolog fact p([A,B,C]) indicates that p(X) is true iff X is a three-element list whose values are all different.

The use of three different variables allows unification with three different values but it does not require them to be

different.

 T The regular expression /[a-z][x][123]/ can be written more concisely.

/[a-z]x[123]/ (A one-character character class is equivalent to a single character.)

Problem 11: (18 points)

The average on the essay questions was 16.53.

Problem 12: (6 points, EXTRA CREDIT; average: 1.74)

Using the parsing idiom supported by Prolog's rule notation, write a predicate parse(S) that parses a simple Ruby string

subscripting expression and outputs a line representing a method call that performs the same computation.

?- parse('s[1]').

s.charAt(1)

Yes

?- parse('line[10,20]').

line.substr(10,20)

Yes

parse(S) :- atom_chars(S,C), subexpr(R, C, []), show(R).

subexpr(sub(Id,D)) --> id(Id), lbrack, digits(D), rbrack.
subexpr(sub(Id,D1,D2)) --> id(Id), lbrack, digits(D1), [','], digits(D2), rbrack.

show(sub(Id,D)) :- format('~w.charAt(~w)~n', [Id, D]).
show(sub(Id,D1,D2)) :- format('~w.substr(~w,~w)~n', [Id, D1, D2]).

lbrack --> ['['].
rbrack --> [']'].

In many answers the format calls were in the grammar rules. There was no deduction for that but it's not entirely correct.

The problem with printing in the rules is that there may be trailing characters, like 's[1]x'. If so the printing is

premature.

Extra Credit Section (one half-point each unless otherwise indicated; average: 4.0)

NOTE: In general, incorrect but humorous answers worked, too.

(1) What programming language in the SNOBOL/Icon family was developed between SNOBOL4 and Icon?

Lots of students said "SNOBOL5" but it was "SL5" (SNOBOL Language 5).

(2) Name a programming language that allegedly supports more than seven (7) programming paradigms.

Page 6

I made the briefest mention of it while looking at the Wikipedia "Multi-Paradigm" page during the last class but Oz is

claimed to support eight programming paradigms. It can also be argued that due to its flexibility Lisp can support any

paradigm so I accepted Lisp as an answer as well.

(3) Order these languages by age, oldest to youngest: Java, Icon, Lisp, ML, Ruby, Scala.

I'd say the order is Lisp, ML, Icon, Ruby, Java, Scala but Java and Ruby are very close. As long as those two were

consecutive either order was acceptable for them. I counted an answer as correct if at most a single deletion yielded a

valid ordering.

(4) (2 points) Write an ML function eq(L1,L2) of type 'a list * 'a list -> bool that returns true iff the

lists L1 and L2 are equal. Be sure to accommodate lists that contain lists.

It wasn't very conservation-minded to allow so much space for such a short answer but here's all you need:

fun eq(L1,L2) = L1 = L2

I should have deducted a little bit for fun eq(L1,L2) = if L1 = L2 then true else false, but I

looked the other way.

(5) Imagining that Ruby has Icon's notion of failure, rewrite the following code to take advantage of failure:

for i in 0...len

c = self[start+i]

 if c then

 r += c.chr

 end

end

There would be no need to see if c was nil:

for i in 0...len
r += self[start+i].chr

end

(6) What is a connection of sorts between Java and constraint programming?

James Gosling's Ph.D. dissertation concerned the algebraic manipulation of constraints.

(7) In three words or less, describe Icon in terms of the languages we studied this semester.

What I had in mind was "Ruby meets Prolog" but other answers worked, too.

(8) In three words or less, describe Scala in terms of the languages we studied this semester.

What I had in mind was "Java meets ML".

(9) The names Java, Ruby and Icon are not acronyms. Create a humorous acronym for each that is somehow related to

the language, like Lisp: Lost In Stupid Parentheses. (1/2 point each)

I was surprised by the number of good ones that turned up. I wish I had time to quote them all.

(10) (1 point) In SWI-Prolog the query ?- X. produces an "Easter Egg" that alludes to a well-known book. What is the

title of that book?

tHHGttG

Page 7

(11) Who was the central character in the short film Jarwars Episode III, Revenge of the <T>?

Duke Vader

(12) According to assigned reading, the only well-known scholarly paper published by Bill Gates concerned what problem?

I believe that just about the only reading I assigned (rather than only suggested) was in the assignment 9 write-up:

"There's even a Wikipedia article about pancake sorting. (Read it!)"

(13) On every lecture day the instructor ate breakfast at Millie's Pancake House. Estimate the total number of pancakes

he consumed at Millie's during those breakfasts.

Zero. I prefer their waffles! I'll sometimes have the German Pancake but there was never enough time for one of

those on lecture days.

Only Mr. Hoskins got this one, speculating that I was probably too busy flipping them to eat any.

(14) (2 points) In any language you wish, write a program to read this exam as plain text on standard input and output

the total number of points for all the regular problems, i.e., don't worry about this extra credit section.

sum = 0
while line = gets
 if line.chomp! =~ /(\d+) points(total)?\)$/ then
 sum += $1.to_i
 end
end
puts sum

Mr. Merrill's solution was unique: The language he chose was English!

Overall statistics

The average on the exam was 86.57; the median was 85.5.

Here is the full set of scores:

110.00, 109.00, 108.00, 105.00, 104.50, 104.00, 103.00, 103.00, 102.00, 101.50,
99.00, 98.50, 98.00, 98.00, 97.00, 96.00, 95.00, 95.00, 94.50, 93.50, 92.00,
90.00, 90.00, 89.50, 87.50, 87.00, 87.00, 85.50, 85.50, 85.50, 84.50, 84.50,
83.50, 83.00, 82.50, 82.00, 82.00, 81.50, 81.00, 79.50, 78.50, 77.00, 76.00,
75.00, 75.00, 73.50, 73.50, 72.00, 70.50, 70.50, 69.50, 64.00, 64.00, 58.00,
46.50

Here is a histogram:

 *
 *
 *
 *
 * * * * *
 * * * * * * *
 * * * * * * * *
 * * * * * * * * *
 * * * * * * * * * *
 * * * * * * * * * * * *
 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Solutions for

CSC 372 Haskell Mid-term Exam

Feburary 28, 2014

Problem 1: (15 points) Mean and median: 10.8, 10.5

What is the type of the following values? If the expression is invalid, briefly state why.

Assume numbers have the type Int. Remember that the type of True is Bool.

"x"

[Char] or String

(1,'x',[True])

(Int, Char, [Bool])

["x":[]]
[[[Char]]]
A little tricky, and gotten wrong by many, typically one set of brackets short. Think about turning

"x":[] into ["x"], then [['x']] and then adding the outer brackets for [[['x']]], to get

[[[Char]]].

head
[a] -> a

not . not . isLetter
Char -> Bool

map not
[Bool] -> [Bool]

(+1) . (0<)

Invalid, since (0<) produces a Bool, and Bools can't be added.

\x -> x + 1
Int -> Int

[1,'2',"3"]

Invalid, due to multiple types.

isDigit . chr . head . (:[]) . (+3) . ord . chr
Int -> Bool

As I mentioned at least a couple of times in class, if a composition is valid you only need to look at the

input of the rightmost function and the output of the leftmost function to know the type of the full

composition.

Page 1 of 7

Problem 2: (12 points) (two points each) Mean and median: 10.7, 11

Using no functions other than helper functions you write yourself, implement the following Prelude functions.

Note: There will be a ½-point penalty for each case of not using the wildcard pattern (the underscore) where it would be

appropriate.

I forgot to specify handling for empty lists for head and tail so we didn't take that case into account when grading.

head [] = error "empty"
head (h:_) = h

tail [] = error "empty"
tail (_:t) = t

length [] = 0
length (_:t) = 1 + length t

sum [] = 0
sum (h:t) = h + sum t

last [] = error "shortList"
last [x] = x
last (_:t) = last t

snd (_,x) = x

Problem 3: (10 points) Mean and median: 9.3, 10

Write a function prswap that swaps the elements of a list on a pair-wise basis. That is, the first and second elements are

swapped, the third and fourth are swapped, etc.

ASSUME the list has an even number of elements but is possibly empty.

There are no restrictions on this problem.

A few approached this with a helper function for tracking the position and I think there were even a handful that used folding

but my intention was a simple recursive solution:

prswap [] = []
prswap (a:b:xs) = b:a:prswap xs

Several students used a take 2/drop 2 approach, like this:

prswap [] = []
prswap list = reverse (take 2 list) ++ prswap (drop 2 list)

One of the general wisdoms I've learned for languages that support cons lists is that cons is always preferred over

concatenation. Cons simply makes a new node but concatentation is done by making a series of cons nodes with each of the

elements in the left operand. Here's the source for ++ from the Haskell Prelude:

(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

Page 2 of 7

Something like [1,2,3] ++ [4,5,6] is effectively 1:2:3:[4,5,6]

With all that in mind I'd think that the take 2, drop 2, concat version would be much slower and take far more memory but

with :set +s in my .ghci I see the following.

% cat prswap.hs
prswap1 [] = []
prswap1 (a:b:xs) = b:a:prswap1 xs

prswap2 [] = []
prswap2 list = reverse (take 2 list) ++ prswap2 (drop 2 list)

m = [1..10000000]

run1 = length $ prswap1 m

run2 = length $ prswap2 m

% ghci prswap.hs
...
> run1
10000000
(3.87 secs, 1765864896 bytes)

% ghci prswap.hs (Fresh run of ghci, to get a clean slate.)
...
> run2
10000000
(4.97 secs, 3325445008 bytes)

The cons version is faster but only by about 20%. The cons version has half as much memory throughput but I imagined it'd

be a smaller fraction of the concat version. Results were similar with repeated testing.

I've clearly got a lot to learn about Haskell!

This is also a good example of a bad assumption about performance. I've seen plenty of those in my career, both by myself

and others, and I've learned that nothing takes the place of running cases and looking at the numbers. But even then, pitfalls

abound!

Problem 4: (10 points) Mean and median: 9.5, 10

Write a function rotabc that changes a's to b's, b's to c's and c's to a's in a string. Only lowercase

letters are affected.

There are no restrictions on this problem but it must be written out in full detail—no ditto marks, abbreviations, etc. It must

be ready for an ASU or UNC-CH CS graduate to type in.

Here's a solution written by an N. C. State University grad:

rotabc = map f
 where
 f 'a' = 'b'
 f 'b' = 'c'
 f 'c' = 'a'
 f c = c

I'd hoped that most students would immediately see this as a mapping problem. Also, my hope in requiring the solution to be

written out in full detail was to make people think in terms of low repetition but I suppose that once a solution is mind there's

a strong temptation to just go with it.

Page 3 of 7

Lots of solutions were recursive and repetitious, like this:

rotabc [] = []
rotabc (c:cs)
 | c == 'a' = 'b': rotabc cs
 | c == 'b' = 'c': rotabc cs
 | c == 'c' = 'a': rotabc cs
 | otherwise = c : rotabc cs

Problem 5: (20 points) (ten points each) Mean and median: 9.6, 10 for recursive; 8.3, 10 for non-recursive

For this problem you are to write two separate versions of a function named bigTuples (call it bt).

One version must not use any higher order functions (like assignment 1); the other version must not use any explicit

recursion (like assignment 2, minus warmup.hs).

bigTuples max tuples produces a list of the 2-tuples in tuples whose sum is larger than max, i.e., for a tuple

(a,b), a + b > max.

bigTuples _ [] = []
bigTuples n ((x,y):ts)
 | x+y > n = (x,y):rest
 | otherwise = rest
 where
 rest = bigTuples n ts

bigTuples n tuples = filter (\(x,y) -> (x+y) > n) tuples

Problem 6: (6 points) (5 for function, 1 for type) Mean and median: 4.9, 6

Write a function fml list that returns a 3-tuple with the first, middle and last elements of a list. Assume the list is non-

empty and has at least one element.

Restriction: You may not use the !! list indexing operator.

And, answer this question, too: What is the type of fml?

fml::[a] -> (a,a,a)
fml x = (head x, middle, last x)
 where
 middle = last (take ((length x `div` 2) + 1) x)

Some students made this a little harder than necessary by writing a recursive function to find the middle element of a list,

some with a counter and some with an init and tail combo to repeatedly take an element off both ends. I'll be honest and

say that when grading we didn't take too close a look for off-by-one errors on the counter-based functions, figuring they were

already self-penalizing by the amount of time they took.

Problem 7: (10 points) Mean and median: 6.9, 9.5

Consider a function separate s that returns a 2-tuple with the digits and non-digits in the string s separated, with the

initial order maintained.

> separate "July 4, 1776"

("41776","July , ")

> separate "Problem 7: (10 points)"

("710","Problem : (points)")

Page 4 of 7

Here is a partial implementation of separate, using foldr:

separate s = foldr f ([],[]) s

Your task on this problem is to write the folding function f. Remember that for foldr, the type of the folding function can

be described as elem -> acm -> elem acm. Use isDigit to test for a digit.

f elem (digs, non)
 | isDigit elem = (elem:digs, non)
 | otherwise = (digs, elem:non)

Here's a Thanks! and a Bug Bounty Point to Mr. Garcia for being the first to point out that I'd specified the wrong type for the

folding function, ending with elem instead of acm! What a whopper!!

Problem 8: (5 points) Mean and median: 2.6, 3.5

Implement map in terms of a fold.

Your solution must look like this: map f list = fold...

map f list = foldr (\e acm -> f e:acm) [] list

Problem 9: (2 points) Mean and median: 0.6, 0.5

Without using explicit recursion, write last in point-free style. Hint: Tough, and easy to get backwards! Don't worry about

handling empty lists.

Note: Wording changing at start of exam to "Write last in terms of a fold: last = fold..."

last = foldl1 (_ e -> e)

Without that last minute wording change the problem had a trivial solution, but worth a ½ point of extra credit:

last = head . reverse

Problem 10: (10 points) (one point each unless otherwise indicated) Mean and median: 8.0, 8

Answer the following questions. Keep your answers brief for questions 4-10—assume that the reader is a 372 classmate who

just needs a quick reminder.

(1) Who founded the University of Arizona Computer Science department and when? (2 points)

Ralph Griswold, in 1971.

If you see this question again it might be worth zero points if correct but -2 points if wrong! Feel free to

write this information on the back of your hand before future exams in 372.

(2) Name two programming languages created before 1990.

See intro slide 20, but the first two that come to mind for me are FORTRAN and COBOL.

(3) Name two programming languages created after 1989.

Lots on slide 20 but Java and Ruby are two I'd hope you know. Haskell was forming around this time, and

counted as correct for this question. Another way to solve this would be "create" two languages on the spot,

perhaps named after your goldfish. They'd be vaporware, but good enough!

(4) Name one language feature you would expect to find in a language that supports imperative programming.

Looping control structures, variables.

Page 5 of 7

(5) whm often says "In Haskell we never change anything; we only make new things." What's an example of that?

A function like reverse builds a new list from the elements of an existing list. Another: A function to

remove a value from a list builds a copy of the list, not including occurrence(s) of that value.

(6) Things like cons lists, recursion, curried functions, and pattern matching on data structures are commonly used in

functional programming but there's another capability that without which it's hard to do anything that resembles

functional programming. What's that capability?

The ability to treat functions as values.

(7) What is relatively unique among programming languages about the way that Haskell handles strings and lists?

Strings are simply lists of characters.

(8) What is a "partial application"?

A call to a multiple-argument function that's given fewer parameters than it needs.

(9) What is "syntactic sugar"?

A syntactic construct that makes a language more pleasant to use but that doesn't add a new capability.

(10) In general, what's something we can represent with a tuple that we can't represent with a list?

A heterogenous collection of values, like a string and an integer.

Note: I originally wrote this with nine questions, allowing two points for the first question. Then while "proofreading" I

noticed I was a question short, and added a question, for a total of 11 points instead of 10 points. Mr. Srivastava caught this

during the exam. Let's think of the extra point as possible extra credit—we'll count the exam as 100 points for purposes of

average.

Extra Credit Section (½ point each unless otherwise noted) Mean and median: 1.6, 1.5

(1) What is the type of foldr?

 I like to describe it as foldr :: (val -> acm -> acm) -> acm -> [val] -> acm

(2) What is the type of the composition operator?
(b -> c) -> (a -> b) -> a -> c

(3) What's meant by "lexicographic comparison"? (Hint: Don't just say "dictionary order.")

Pair-wise comparison of a sequence of values until a pair differs, with the difference deciding the ordering.

(4) Name a programming language created at the University of Arizona.

Intro slide 31 names a number of them but Icon is one I'd hope you know of. A presentation on Icon that Griswold

gave at N. C. State led me to come to graduate school here to work on Icon. (I got on their radar here, ultimately

getting a research assistantship, by being the first person to get Icon working on IBM mainframes.)

Lots of people cited SNOBOL. Griswold continued work on SNOBOL4 here at The University of Arizona but

SNOBOL through SNOBOL4 were created at Bell Labs. There was also SL5 (SNOBOL Language 5) but Griswold

ultimately was not happy with it. It was never released to the public although many papers about it were published

while it was being developed.

Mr. Garcia used the approach suggested on Problem 10(3) with "Grant++. I made it just now." That's good for an

Original Thought!

(5) Haskell functions like getLine and putStr return an action. What does an action represent?

An interaction with the outside world that happens when the action is evaluated.

Page 6 of 7

(6) What is the exact type of the list[head, tail]?

[head, tail] is an invalid list, since the types differ.

(7) If you only remember one thing about the Haskell segment of 372, what will it be? (Ok to be funny!)

If time permits I'll issue a revised version with some of the highlights of these but I'm short on time at the moment!

 (8) With Ruby in mind, cite an example of an imperative method and an example of an applicative method.

reverse! and reverse are the first two that came to mind for me.

(9) Write a Ruby method printN that prints the numbers from 1 to N on a single line, separated by commas. (1 point)

def printN n
 (1..n).to_a * ","
end

(10) Predict the median score on this test. (The median is the "middle" value in a range of values.)

I was wondering if The Wisdom of Crowds (see Wikipedia) would apply here but not so. These were the predictions.

100, 100, 88, 86, 84, 84, 83.2, 83, 83, 82, 81, 81, 81, 80, 79, 79, 78, 78,
76, 76, 75, 75, 75, 75, 74, 74, 72, 72, 72, 72, 71, 71, 70, 70, 70, 68, 65,
65, 60, 50, 50, 50

The mean of those predicted medians is 75.2. Any prediction at all earned the ½ point.

Here are the actual scores:

102, 102, 101.5, 100.5, 100.5, 100, 99, 97.5, 97, 95.5, 95.5, 95, 95, 94.5,
94, 93, 92.5, 92, 92, 91, 91, 91, 90.5, 90, 90, 90, 89, 88.5, 88, 87, 86,
83.5, 83, 82.5, 81, 80.5, 79.5, 79, 78.5, 78, 78, 78, 77.5, 76.5, 76.5, 76,
75, 74.5, 73.5, 69.5, 68, 66, 64.5, 59, 58, 52, 49, 45, 29.5

Simple statistics:

n = 59
mean = 82.7542
median = 87

For the record, here are the changes/updates accumulated during the exam and shown on the screens:

Exam done: 10:52

Prob 2: head, tail: assume not empty

Prob 6 (fml): Assume odd number of elements

Prob 7: foldr is elem -> acm -> acm (not elem!!)

Problem 9 change:
Write last in terms of a fold, just like problem 8, but for last

Problem 10 (8) (9) Ok to just cite an example.

New EC: Answer Problem 9 in a different way, just following the
instructions as written, which make it trivial! :(

Page 7 of 7

Solutions for

CSC 372 Ruby Mid-term Exam

April 11, 2014

Problem 1: (21 points) Mean and median: 17.6, 19

In this problem you are to write a Ruby program tail.rb that prints the last N lines of standard input,

just like the UNIX tail command. ...

The solution I wrote when timing myself was this:

if ARGV.length != 1 || (not ARGV[0] =~ /^-\d+$/)
 puts "Usage: tail -N"
 exit 1
end

n = -ARGV[0].to_i

lines = []
while line = STDIN.gets
 lines << line
end

if n > lines.size
 n = lines.size
end

(-n).upto(-1) { |i| puts lines[i] }

With some time to think and some good ideas from student solutions, I offer this simpler version:

if ARGV.length != 1 || (not ARGV[0] =~ /^-\d+$/)
 puts "Usage: tail -N"
 exit 1
end

n = -ARGV[0].to_i

lines = STDIN.readlines

n = lines.size if n > lines.size

puts lines[-n..-1]

Problem 2: (17 points) Mean and median: 13.5, 15.5

In this problem you are to write a method load_facts(file_name) that reads Prolog facts from

the specified file and returns a Ruby hash that holds a representation of the facts.

def load_facts(file_name)
 facts = Hash.new []

 f = File.open(file_name)

 while line = f.gets
 line.chomp!
 if line = ~ /^(\w+)\((.*)\)\.$/
 facts[$1] += [$2.split(",")]
 end
 end

 f.close
 facts
end

The combination of initializing the hash facts with Hash.new [] and using += allows avoiding a check

to see whether facts[$1] already exists. (Using << instead of += would break it. Try it and be the

first to explain why on Piazza!)

Because the input can be assumed to be valid, only processing lines that start with /\w/ suffices to ignore

empty and blank lines.

Common mistakes, shown as variations of the above, were these:

facts[$1] = $2.split(",") # Doesn't build an array of arrays

facts[$1] += [$2] # Doesn't split

Some students used various splits but here's the good one:

parts = "food(just,a,test,here)".split(/[,()]/)

The functor ends up in parts[0]; the terms are in parts[1..-1].

Let's combine that with a variation of parallel assignment that we didn't study but that is similar to the

mechanism for handling varying numbers of arguments:

>> head, *tail = "food(just,a,test,here)".split(/[,()]/)

>> head => "food"
>> tail => ["just", "a", "test", "here"]

Problem 3: (15 points) Mean and median: 9.3, 10.5

This problem is a partner to load_facts. You are to write a Ruby method print_preds that takes

the hash produced by load_facts (the previous problem) and prints a list of predicate indicators.

My draft solution is below but Dennis noticed a bug in it. Cover the portion of the page the follows the

code and play exam grader for a minute to see if you see it!

def print_preds h
 for k in h.keys.sort
 lens = h[k].collect {|a| a.size }
 for n in (lens.min)..(lens.max)
 puts "#{k}/#{n}"
 end
 end
 nil
end

The problem is that it assumes a contiguous range of "arities". For example, given x(a). and

x(a,b,c)., it'll output x/1, x/2 (oops!), and x/3. That was true with the sample data I provided but

not true in general.

If had recognized the potential of noncontiguous arities, I would have mentioned Array#uniq, which is

similar to UNIX's uniq command, discarding non-unique values:

>> [3,1,2,3,1,3].uniq => [3, 1, 2]

uniq enables this concise solution:

def print_preds h
 for k in h.keys.sort
 for n in lens = h[k].collect {|a| a.size }.uniq.sort
 puts "#{k}/#{n}"
 end
 end
 nil
end

Without uniq you need some other way to compute the set of arities. The first thing that comes to mind

based on what you've seen is using the | operator to form the union of two arrays:

>> [3,1]|[1]|[2] => [3, 1, 2]

The keys of a hash also constitute a set. A couple of students took that observation further and used the

whole predicate indicator, like "food/1", as the key! Here's a solution based on that idea:

def print_preds h
 indicators = {}
 h.each { |k, arrays|
 arrays.each { |e| indicators["#{k}/#{e.size}"] = 1 }
 }
 puts indicators.keys.sort
 nil
end

There's a slight bug with that because, for example, "t/10" collates before "t/2". With these facts,

t(x).
t(x,x).
t(x,x,x,x,x,x,x,x,x,x).

you'll this output:

t/1
t/10
t/2

Also, I never mentioned it in lecture but Ruby does have a Set class:

>> require 'set' => true

>> [3,1,3,4,2,1].to_set => #<Set: {3, 1, 4, 2}>

I apologize for the unintended difficulty due to my error when writing my own solution, but everybody was

in the same boat.

Problem 4: (5 points) Mean and median: 4.0, 4.5

Write a method multstring(spec, s) that behaves like this:

>> multstring("3,1,5", "x")
=> "xxx,x,xxxxx"

Solution:

def multstring(spec,s)
 spec.split(",").map {|e| s*e.to_i} * ","
end

Problem 5: (4 points) Mean and median: 2.4, 2.5

Write a method addrev such that after calling addrev, the unary minus operator applicatively

reverses a string.

def addrev
 eval("class String; def -@; self.reverse; end; end")
end

I didn't expect students to know it but that class declaration must be wrapped in an eval(...). The

error "class definition in method body" is produced by this version:

def addrev
 class String

def -@; self.reverse; end; end
end

Problem 6: (11 points) (One point each unless otherwise indicated) Mean and median: 7.2, 8.5

(a) Write a regular expression that is equivalent to /x+/ but that doesn't use the + operator.

/xx*/

(b) Write a regular expression that is equivlent to /ax|bx|cx/ but that doesn't use the | operator.

/[abc]x/

(c) Describe in English the strings matched by /a*b+c$/

Strings containing zero or more "a"s immediately followed by one or more "b"s

immediately followed by a "c" at the end of the string.

(d) (3 points) Write a regular expression that matches only strings that are binary constants like

these:

"0b0"
"0B11111"
"0b01010101"

The first two characters are a "0" and an upper- or lower-case "B". One or more "1"s or "0"s

follow.

Here are two non-matches: "00b1" (extra leading zero), "0b12" (trailing non-0/1).

/^0[bB][01]+$/

(e) (5 points) Write a regular expression that matches a string if and only if it is a comma-separated

sequence of integers greater than or equal to 10. Examples of matches:

"10, 11, 12"

"30,200,500"
"100"

One optional space may appear after each comma but that is the only place a space may appear.

Leading zeros are not permitted!

Here are three non-matches: "10, 020" (has a leading zero), "7,11" (7 is less than 10), "1x"

(has a trailing "x").

/^[1-9][0-9]+(, ?[1-9][0-9]+)*$/

Problem 7: (7 points) Mean and median: 4.7, 6

Write an iterator take_while(a) that calls its block with each element of the array a in turn. As long

as the block returns true, array elements are accumulated. When the block first returns a non-true value

or when the array elements are exhausted, an array of the accumulated elements is returned.

def take_while a
 r = []
 a.each { |e|
 if yield e
 r << e
 else
 return r
 end
 }
 return r
end

Problem 8: (12 points) Mean and median: 7.9, 8.5

(a) Who invented Ruby? (1 point)

"Matz" is the answer I was hoping for, but "some Japanese guy" was counted as correct,

too. Even "Some whack-a-doo! Monkey patching?!? really?" got a point!

(b) Consider a Ruby method last(x) that returns the last element of a string or array. Why would

last be awkward to write and use in Java? (2 points)

Quite a few students pointed out that you'd need to do length-1 to compute the position of

the last element but I was looking for something a little deeper.

I wish I'd stipulated "without overloading" but since I didn't, pointing out that you'd need

overloaded methods was counted as correct. However, char last(String s) is

easy enough but how about the array case? int last(int a[]) only covers ints, of

course. Can it be done with generics?

(c) What's the effect of adding "include Enumerable" to a class definition? (2 points)

Assuming that the class implements each, including Enumerable gives your class all the

methods in Enumerable, as you saw with XString.

(d) Cite one way in which Ruby's if-then-else is like Haskell's if-then-else and one way in

which it is different. (2 points)

In both Haskell and Ruby if-then-else is an expression, producing a value. Haskell

requires an else clause but Ruby does not.

(e) A Java newcomer to Ruby might think that private and attr_reader are keywords but they

aren't. What are they? (2 points)

Methods

(f) What's the essential difference between dynamic typing and static typing? (3 points)

Hint: If your answer contains /(interprete|compile)[rd]?/ there's a fair chance it'll be

wrong.

In my mind the essential difference is that with static typing you can detect a particular class

of type errors without executing the code but with dynamic typing you cannot.

A number of students had a successful answer that included

/(interprete|compile)[rd]?/ and that was fine but I suggested not using that

because I feared answers like "Dynamically typed languages must be interpreted and

statically typed languages must be compiled.", which is completely wrong!

Problem 9: (8 points) Mean and median: 4.8, 6

In this problem you are to create a subclass of Shape named Ring. An instance of Ring represents the

region between two concentric circles (the black area in the drawing to the right). Along with a label that

is passed to Shape's constructor, Ring's constructor takes the radii of the two circles but they may

specified be in either order. If the two circles have the same radius, the area of the ring is zero.

Your implementation of Ring should have five methods: a constructor, area, inner, outer, and

inspect. The methods area, inner, and outer return the area of the ring, the inner radius and the

outer radius, respectively. inspect displays the inner (smaller) radius followed by the outer radius.

class Ring < Shape
 def initialize(label, r1, r2)
 super(label)
 if r1 < r2
 r1, r2 = r1, r2
 end
 @outer, @inner = r1, r2
 end

 attr_reader :inner, :outer

 def area
 @outer**2*Math::PI - @inner**2*Math::PI
 end

 def to_s
 "Ring #{label} (#{@inner}-#{@outer})"
 end
end

Extra Credit Section (½ point each unless otherwise noted) Mean and median: 3.0, 3.25

(a) What does whm consider to be the all-time greatest Original Thought ever put forth by one of his

372 students?

Joe Astier, in my Fall 1996 class, likened a Prolog predicate to a motor: If you apply current to a

motor, it turns the rotor; if you turn the rotor, current is produced.

Technical note: My understanding is that it must be a DC motor with a magnet.

(b) Based on the Prolog we've covered, is Prolog statically typed or dynamically typed? (And why?)

Dynamically typed

(c) What thing in Ruby is closest to a Prolog atom?

Symbols

(d) Which is the oldest of Java, Haskell, and Ruby?

Haskell

(e) The term "mixin" came from a business that sold what to college students?

The business was Steve's Ice Cream but I imagine that Steve sold other stuff, too.

(f) Regular expressions are Type 4 languages in the Chomsky hierarchy of languages.

(g) Predict the median score on this exam. (The median is the "middle" value in a range of values.)

Here are the predictions: (mean = 74.4, mode = 75, median = 75)
50, 50, 60, 65, 65, 67, 67, 70, 70, 70, 70, 70, 72, 72, 72, 72.71,
74, 74, 75, 75, 75, 75, 75, 75, 78, 78, 79, 79, 80, 80, 81, 82,
82, 82, 83, 83, 84, 84, 84.726953281, 85, 85

Here are the actual scores:
104, 103, 100.5, 100.5, 99, 98.5, 96, 96, 94.5, 93, 91.5, 91.5,
90, 90, 89, 89, 88.5, 88, 88, 86, 86, 85.5, 84, 83.5, 82.5, 82,
81.5, 79, 79, 78.5, 78.5, 78.5, 78.5, 78, 78, 78, 77, 75, 73.5,
70.5, 69.5, 69.5, 69, 68, 66.5, 65.5, 64.5, 63, 62.5, 60.5, 57,
53, 48.5, 44, 38.5, 38, 31.5, 28.5, 15.5

Simple statistics:

N = 59
mean = 75.8729
median = 78.5

If I had more time I'd compile the interesting answers from the following but alas I don't have that time to

spare at the moment. If time permits, I'll issue an update.

One man's trash is another man's treasure so as you'd expect, what seemed stupidest to some, like monkey

patching, seemed best to others.

(h) If you only remember one thing about Ruby, what will it be? (Ok to be funny!)

(i) What's the stupidest thing in Ruby? Can't be the same as (h) or (j). (1 point)

(j) What's the best thing in Ruby? Can't be the same as (h) or (i). (1 point)

(k) Implement attr_reader. (1 point)

def attr_reader *attrs
 attrs.each { |attr|
 eval("def #{attr}; @#{attr}; end")
 }
end

The real attr_reader is a method of Module but the above works as-is.

Solutions for

CSC 372 Final Exam

Wednesday, May 14, 2014

Problem 1: (6 points)

Mean and median: 5.1, 6

Cite three things about programming languages you learned by watching your classmates' video projects. Each of the three

should be about a different language.

I tallied the languages cited in the responses and came up with these numbers:

Java 34

PHP 19

Lua 17

Python 15

Ruby 12

Lisp 8

C# 7

MATLAB 5

Haskell 5

C++ 4

C 4

vimscript 3

R 3

Dart 3

JavaScript 2

The relatively high interest in Lisp reflected above reminds me that I should probably be whipped for not spending at least a

little time on Lisp in this course. I did do a sidebar slide on Lisp in the Haskell set (#127) but ended up skipping it due to

time. If you want to see a little bit of Lisp in the context of Emacs Lisp, see

http://www.cs.arizona.edu/~whm/352/elisp.sli.pdf.

Problem 2: (6 points)

Mean and median: 5.1, 5.5

Write the following simple Prolog predicates. There will be a half-point deduction for each occurrence of a singleton

variable or failing to take full advantage of unification.

Restriction: No library predicates may be used other than is/2.

last(?List,?Elem) specifies the relationship that Elem is the last element of List, which is assumed to be non-empty.

last([X],X).

last([_|T], X) :- last(T,X).

member(?Elem, ?List) specifies the relationship that Elem is a member of List.

member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

length(?List, ?Len) specifies the relationship that List is Len elements in length.

length([],0).
length([_|T],Len) :- length(T,N), Len is N+1.

Problem 3: (8 points)

Mean and median: 6.8, 7.5

Write a Prolog predicate insrel(+List, -WithRels) that instantiates WithRels to a copy of List with one of the

atoms <, >, and = inserted between each pair of values to reflect the relationship between those values. Assume all values

are numbers. Examples:

?- insrel([5,3,7,7,0],L).

L = [5, >, 3, <, 7, =, 7, >, 0] .

...

Solution:

insrel([],[]).
insrel([X],[X]).
insrel([X,Y|T], [X,Sym|R]) :- which(X,Y,Sym), insrel([Y|T], R).

which(X,Y,'<') :- X < Y.
which(X,X,'=').
which(X,Y,'>') :- X > Y.

Problem 4: (7 points)

Mean and median: 5.7, 7

Write a Prolog predicate alltails(+List, -T) that first instantiates T to the tail of List. If an alternative is

requested, it generates the tail of the tail of List, and so forth, thus generating "all the tails".

alltails([_|T],T).
alltails([_|T],R) :- alltails(T,R).

Problem 5: (10 points)

Mean and median: 8.2, 9

Write a Prolog predicate pinch(+List, -Pair) that instantiates Pair to a series of pair/2 structures. The first

pair structure has the first and last values of List. The second pair has the second and next-to-last values of List.

And so forth. Example:

?- pinch([a,b,c,d,e,f],P).

P = pair(a, f) ;

P = pair(b, e) ;

P = pair(c, d) ;

false.

Solution:

head([H|_],H).
pinch(L, pair(First,Last)) :- head(L,First), last(L,Last).
pinch([_|T], pair(F,L)) :- append(Rest,[_],T), pinch(Rest,pair(F,L)).

Problem 6: (5 points)

Mean and median: 4.2, 5

Write a Prolog predicate sumvals/0 that consolidates all v/1 facts into a single fact that contains the sum of the terms of

those facts. Assume all terms are numbers. There may be any number of v/1 facts.

sumvals :- findall(Val, v(Val), Vals), sumlist(Vals,Sum), retractall(v(_)),
assert(v(Sum)).

The first version of my solution had the following no-facts case but just as I was about to deduct points for a solution not

having it, I realized it wasn't needed!

sumvals :- \+v(_), assert(v(0)), !. % Not needed!

Problem 7: (12 points)

Mean and median: 9.2, 11.5

path(+Start, +End, +Moves, -Path) instantiates Path to a series of values from Moves that describe a path

from Start to End, two points on a Cartesian plane. All alternatives are produced if requested. Each move can be used

only once in a given path. Example:

?- path(p(0,0), p(3,4), [m(4,4),m(3,3),m(0,1),m(-1,0)], Moves).

Moves = [m(4, 4), m(-1, 0)] ;

Moves = [m(3, 3), m(0, 1)] ;

Moves = [m(0, 1), m(3, 3)] ;

Moves = [m(-1, 0), m(4, 4)] ;

false.

Solution:

path(p(X,Y),p(X,Y),_,[]).

path(p(X,Y), p(DX,DY), Moves, [m(MX,MY)|MoreMoves]) :-
 select(m(MX,MY), Moves, Remaining),
 NX is X + MX, NY is Y + MY,
 path(p(NX,NY), p(DX,DY), Remaining, MoreMoves).

Problem 8: (10 points)

Mean and median: 6.4, 7.5

Using the parsing method supported by Prolog's grammar rule notation write a predicate ptime(+Spec,-Mins) that

parses atoms that represent time durations, like '10m', '5h' and '10:20', and instantiates Mins to the number of

minutes represented by Spec.

ptime(Spec,Mins) :- atom_chars(Spec,Chars), spec(Mins,Chars,[]).

spec(Mins) --> int(Hours), ['h'], { Mins is Hours * 60 }.
spec(Mins) --> int(Mins), ['m'].
spec(Mins) --> int(H), [':'], int(M), {Mins is H * 60 + M}.

Problem 9: (7 points)

Mean and median: 5.7, 6

Write a Haskell function ckconn that takes a list similar to that used by a8's connect.pl and returns True or False,

depending on whether the exact sequence and orientation of cables represents a valid connection.

Example:

> ckconn 'm' [('f',10,'m'), ('f',7,'m')] 'f'

True

For the type, it was fine to have something like this:

ckconn :: Char -> [(Char,Int,Char)] -> Char -> Bool

but the type that Haskell infers is this:

ckconn :: Eq a => a -> [(a, t, a)] -> a -> Bool

Here's the executable code:

ckconn _ [] _ = False

ckconn from [(left,_,right)] to =
from /= left && to /= right

ckconn from ((left,_,right):t) to =
from /= left && ckconn right t to

Problem 10: (7 points)

Mean and median: 5.3, 6

Write a Haskell function connlen that takes a list of the same type as ckconn and prints either the length of the

configuration, like "25 feet" or "nope", if the configuration is not valid.

> connlen 'm' [('f',10,'m'), ('f',7,'m')] 'f'

17 feet

> connlen 'm' [('f',10,'m'), ('f',7,'m')] 'm'

nope

Solution:

connlen :: Char -> [(Char,Int,Char)] -> Char -> IO ()
connlen from cables to = putStr result
 where
 result =
 if ckconn from cables to then
 (show $ sum $ map (\(_,len,_) -> len) cables)

++ " feet\n"
 else
 "nope\n"

Problem 11: (14 points)

Mean and median: 11.9, 14

Write a Ruby program shuffile.rb that reads lines from standard input, shuffles them, and then writes them to

standard output.

shuffile requires one command line argument, -N, which specifies that lines are to be handled in blocks of N lines.

Assume that standard input consists of a multiple of N lines.

Here's a "plug and chug" solution:

if ARGV.size != 1 || (not ARGV[0] =~ /^-\d$/)
 puts "Oops!"
 exit 1
end

n = -ARGV[0].to_i

blocks = []
while true do
 block = []
 1.upto(n) {
 line = STDIN.gets
 if !line then
 blocks.shuffle.each { |block|
 block.each {|line| puts line }
 }
 exit
 end
 block << line
 }

 blocks << block
end

Those nested each blocks for output can be replaced with just this:

puts blocks.shuffle

Note that I "punt" on getting out of the 1.upto(n) block by printing and exiting in the middle of the block when end of file

is reached.

If you lean on the library a little more you can come up with this:

if ARGV.size != 1 || (not ARGV[0] =~ /^-\d$/)
 puts "Oops!"
 exit 1
end

n = -ARGV[0].to_i

blocks = []

lines = STDIN.readlines.each_slice(n) { |slice| blocks << slice }

puts blocks.shuffle

My son pointed out that PHP has array_chunk. That suggests a one-liner like this,

puts STDIN.readlines.chunks(n).shuffle

but I can't find anything like chunks in Ruby, which PHP programmers know as array_chunk. However, we can correct

that omission with this:

class Array
 def chunks(n)
 result = []
 self.each_slice(n) { |slice| result << slice }
 result
 end
end

I first encountered "shuffile" years ago as an Icon program. At the time I assumed that Ralph Griswold came up with that

clever name but maybe it was somebody else. There's a shuf Linux command, too. It has the useful behavior of being able

to shuffle command-line arguments as well but its -i and -n options make me wonder if the author knew of seq and head.

Problem 12: (8 points, one point each)

Mean and median: 5.7, 6

(a) Who founded UA's CS department, and in what year?

Ralph Griswold, in 1971. I hope the CS majors will always remember who got this program going.

Ralph once said that on his first day here, he arrived to find a number of students waiting in line outside his office,

for advising. Once in his office, he found that he had a desk but no chair.

Ralph said he took the position here with the specific condition that he would not have to serve as department head

but when no other suitable candidate was found, he took on that role.

A random memory about Ralph: A tradition started by his graduate students was showing up at his house on

Halloween night, and inviting themselves in for a chat. Those Halloween visits by students and former students

continued until his death, in 2006.

(b) Why are Prolog warnings about singleton variables worth paying attention to?

A singleton warning often indicates a misspelled variable name. In other cases it might indicate that a value is being

computed but never used, so why compute it.

(c) What's the fundamental difference between predicates like member/2 and append/3 in Prolog and their

superficial analogs in other languages?

Prolog's member predicate can be used to both test for membership in a list, generate all elements in a list and more.

(d) Draw the box for Prolog's four-port model and label the ports.

I'm lazy! See slide 55.

(e) "cons" lists are found in many languages that make use of recursion. What is it about cons lists that makes them

well-suited for recursive functions?

Many problems have a natural recursive formulation of operating on the first element of the list and combining that

with the result of the function on the rest of the list.

(f) Consider this claim: Prolog's grammar rule notation, like sentence --> article, noun, verb, is an

example of syntactic sugar. Present an argument that either supports that claim or refutes it.

Grammar rules are a great example of syntactic sugar. Any grammar rule can be brainlessly rewritten by adding

"In" and "Out" arguments to each non-terminal, replacing terminals with list unifications, and removing curly braces

around ordinary goals.

(g) Write a simple Haskell function and show an example of using a partial application of that function.

> let add x y = x + y
> map (add 5) [1,2,3]
[6,7,8]

(h) What's a very good reason that ckconn above uses tuples instead of lists to represent the cables?

Those Prolog lists are heterogeneous.

Extra Credit Section (½ point each unless otherwise noted)

Mean and median: 2.3, 2.5

(a) What movie inspired the "Original Thought" bonus?

Broadcast News

(b) whm came to graduate school here at UA specifically to join a research team developing a programming language.

What was the language?

Icon

(c) To what current CS faculty member does whm attribute the following quotation?

"When you come to a problem you can lean forward and type, or you can sit back and think."

Dr. Proebsting

(d) The Prolog 1000 is a compilation of applications written in Prolog and related languages. What's a little odd about

it?

There are less than 1000 applications on the list.

(e) Jean Ichbiah, Ada's designer, was said to have once predicted that in ten years only two programming languages

would remain in use. Ada was one of the languages. What was the other?

Lisp

(f) Cite a significant contribution to computer science made by Grady Booch.

He was one of the "Three Amigos"—along with James Rumbaugh and Ivar Jacobson—who created UML.

(g) What's a language that has/had an "arithmetic if", one form of which looks like this:
IF (I-J) 100, 110, 120

FORTRAN. Control branches to the statement labeled 100, 110, or 120 respectively, depending on whether the

result of I-J is negative, zero, or positive.

(h) In terms of creators, what do vim and Java have in common?

Bill Joy, later a founder of Sun Microsystems, wrote vi, which of course inspired vim. Joy was also involved with

Java early on.

Several students found success with something like "They were both created by programmers."

(i) Market research has determined that the course title Comparative Programming Languages is dry and unappealing.

Think up a new name for 372. It needn't be less dry but should be funny!

The responses are below, in random order. It seems like not everybody got the "It needn't be less dry but should be

funny!" part, but I suppose good humor is where you find it. I also posted the list on the board outside the 733

corridor. If you're in the building, go by and vote for your favorite.

Learn 3+ Languages in Too Short of Time

Brain Buster: The Class

So Much Recursion

Get Confused by Small Differences 101

372: Fiesta of Programming

Resume Booster

Why Ruby is So Much Better Than Haskell [Ed. note: That wasn't my intention!]

The Many Languages of Pancakes

Dr. Strangelanguage or: How I Learned to Stop Worrying and and Love Prolog

Super Comparative Programming Languages

Actually Learn Programming

372: The Wrath of Cons

More, Harder, and Funner Homework Than You Could Hope For

Study of Mind-Warping

Trying to Keep 3 Languages Separate in Your Head

Multiple Languages Just in One Semester

Exploration into the World of Machine Languages

Heads and Tails, Let's Rock!

Three Fun Ways to Scramble Your Brains

Multiple Language Ingestion

How to Talk To Computers

Introduction to Different Styles of Thinking About Programming General Purpose Computing Devices

An Introduction to Remaining Competitive In Your Field, Good Luck.

Bunch of Random Languages

No Language to Beat 'em All

Learn to Hate Pancakes in 3 Different Languages

372: Too Much Information You Won't Retain

Learn All the Languages!!! or Just 3 More

Completely Pleasant Languages

Hardcore 3 Programming Language Learning in 3 Months

Learn You a Haskell /[Haskell|Ruby|Prolog]/ for Great Good

Foreign Languages for Programmers

Superfast Computer Language Learning Time

A Class About Not Java

whm and the 3 bears

Haskell, Ruby, Prolog! (so they know the languages we're learning)

Any Way You Want It: 3 Languages for the Programmer on the Go

A Programmer's Nightmare

1001 Ways to Write Fast

Wow So Many Languages in One Course

Too Many Languages!

Not Java—the Class!

French 102 and Other Languages (so us B.S. students wouldn't have to take Foreign Language in place of a CS

elective!)

Pancake Hell

Programming in Latin

How Many Examples Can We Fit Into One Slideshow

Programming Languages: The Good, The Bad, and Haskell

Blow Your Mind With Unorthodox Programming Languages

Functional, Objective, Logical—A Plethora of Paradigms

Programming Languages, A Love Story

Learning How to Stroke Egos: New With Haskell!

Programming Paradigms Explored (not funny, but EC!)

(j) whm would like to recycle a8's buy.pl in a future semester but needs more dontmix facts with an element of

humor. What's another pair he could use?

My favorites of these were dontmix('Godzilla','NYC') and the classic but elegant dontmix(oil,water).

(k) How many students earned the "close reading" bonus on assignment 8?

Eleven.

Answers like "A few." were counted as correct, too.

Statistics

All scores:
100, 100, 99.5, 98.25, 98, 97.5, 97, 97, 96.75, 96.5, 96, 95, 94.5, 94.5, 93.5,
92.75, 91.75, 91, 91, 90.5, 90.5, 89.75, 89, 88, 87.5, 87, 86.75, 86.5, 84,
82.5, 82.5, 82.5, 81, 80.5, 80, 80, 77.5, 76.5, 76.25, 76, 75.5, 74.25, 72.5,
70, 65, 62, 61, 60, 59, 59, 58.25, 57.5, 54, 44.5, 41

N = 55
mean = 81.6136
median = 86.5

Solutions for

CSC 372 Mid-term Exam

Thursday, March 12, 2015

A note about grading mistakes

I wish I was perfect but I'm not. I do make mistakes when grading. I encourage you to double-check my work and let me

know if you find any mistakes or disagree with any of my grading decisions, including deduction amounts.

I do regrading on a problem by problem basis; a regrade request for a single problem does not trigger an audit of the full

exam.

There's no deadline for reporting grading mistakes aside from the filing deadline for final grades.

Unless there are exceptional circumstances I require regrading requests to be in person, not via email or IM.

Before asking me to revisit any problem involving code, first type in your code and see what it does.

I hate to have to mention it but note that all completed exams were scanned into a PDF, making it easy to catch post-grading

alteration/addition of answers. Don't be tempted to add a couple of characters to get a point or two back!

Problem 1: (15 points) mean = 10.18, median = 11.00

What is the type of the following values? If the expression is invalid, briefly state why.

Assume numbers have the type Int. Remember that the type of True is Bool.

'x'
 Char

("len", "", "")
 ([Char], [Char], [Char])

(:)
a -> [a] -> [a]

[(1,'a'),('b',2)]
Invalid. The two tuples have different types.

map length
[[a]] -> [Int]

(+1) . (0<)
The composition is not valid. (0<) produces a Bool but (+1) requires a number.

head
[a] -> a

(True, (False, "x"))
(Bool, (Bool, [Char]))

length . (\x -> [(x,x)]) . head . init . tail
 Hint: the composition is valid.

[a] -> Int

If you wrote ... -> ... -> ... -> ... -> ..., see slide 252.

Page 1

[1..] < [2..] (Remember: I want the type!)
Bool

Problem 2: (12 points) (two points each) mean = 9.92, median = 10.50

This problem is like warmup.hs—write the following Haskell Prelude functions.

Each instance of poor style or needlessly using other Prelude or helper functions will result in a deduction.

Remember this order of preference for handling cases: patterns, guards, if-else. Be sure to use the wildcard pattern

(underscore) when appropriate.

IGNORE empty list cases for head, tail, and maximum. There's no need to specify function types.

head

head (h:_) = h

tail

tail (_:t) = t

length

length []= 0
length (_:t) = 1 + length t

max (Hint: max 2 3 is 3)

max x y
 | x > y = x
 | otherwise = x

maximum (maximum [5,2,3] is 5. Ok to abbreviate as mm.)

mm [x] = x
mm (x1:x2:xs)
 | x1 > x2 = mm (x1:xs)
 | otherwise = mm (x2:xs)

Another way. The explicit type specification avoids a "monomorphism restriction" error.
mm::Ord a => [a] -> a
mm = foldr1 max

A third: mm [x] = x; mm (x:xs) = max x $ mm xs

filter (filter odd [1,2,3] is [1,3]. Ok to abbreviate as flt.)

filter _ [] = []
filter f (x:xs)
 | f x = x : filter f xs
 | otherwise = filter f xs

Problem 3: (14 points) (7 points each) recursive: mean = 6.05, median = 6.00; non-recursive: mean = 4.64, median = 6.50

For this problem you are to write both recursive and non-recursive versions of a function tupruns of type [(Int, a)]
-> [a] that behaves like this:

> tupruns [(3, 'a'), (2, 'b'), (4, 'c')]
"aaabbcccc"

Page 2

> tupruns [(1,'#'),(0,'$')]
"#"

> tupruns (zip [1..8] "abcdefgh")
"abbcccddddeeeeeffffffggggggghhhhhhhh"

Solutions:

tupruns [] = ""
tupruns ((n,c):ts) = replicate n c ++ tupruns ts

tupruns = concat . map (uncurry replicate)

A number of non-recursive solutions looked like this:

tupruns list = foldr (\(n,ch) acm -> r n ch ++ acm) "" list

It'd be in point-free style if only list weren't present on both sides.

A common mistake was mapping or folding with a non-function value, like this:

... concat . map (replicate x y) ...

Problem 4: (3 points) mean = 2.32, median = 3.00

Write a function flattups that "flattens" a list of 3-tuples into a list of the values in those tuples.

> :t flattups
f :: [(a, a, a)] -> [a]

> flattups [(10,20,30),(3,4,5),(1,2,3)]
[10,20,30,3,4,5,1,2,3]

Solution:
flattups = foldr (\(a,b,c) acm -> a:b:c:acm) []

A number of students had not wrong but long answers due to writing three helper functions to extract the first, middle, and

last element from three tuples.

Problem 5: (7 points) mean = 4.18, median = 5.50

The following function removes consecutive duplicates from a list:

dropConsecDups list = foldr ff [] list

Usage:

> dropConsecDups [3,3,1,5,7,5,5,7,7,7]
[3,1,5,7,5,7]

> dropConsecDups "a looooooooooooonnnnnnnnnng one!"
"a long one!"

For this problem you are to write a folding function ff that will work with dropConsecDups as shown above.

ff val [] = [val]
ff val all@(a:_)
 | val == a = all
 | otherwise = val:all

Page 3

Problem 6: (6 points) mean = 4.44, median = 5.50

Write a Haskell program that reads a file named on the command line and prints the mean (average) length of the lines in

the file.

avglen bytes = (show $ totalChars / numLines) ++ "\n"
 where
 lineLengths = map length $ lines bytes
 totalChars = fromIntegral $ sum lineLengths
 numLines = fromIntegral $ length lineLengths

The version above breaks the input into a list of lines. I wondered how much faster it would be to just count newlines by

filtering on them. The version below takes that approach.

avglen bytes = (show $ totalChars / numLines) ++ "\n"
 where
 numLines = fromIntegral $ length $ filter (=='\n') bytes
 totalChars = (fromIntegral $ length bytes) - numLines

I then tried simply counting newlines:

avglen bytes = (show $ totalChars / numLines) ++ "\n"
 where
 numLines = fromIntegral $ count '\n' bytes
 totalChars = (fromIntegral $ length bytes) - numLines
 count c s = foldr
 (\elem acm -> if elem == c then acm + 1 else acm) 0 s

The times for the three surprised me:

Use lines to break bytes into lines: 0.817s

length $ filter (=='\n') bytes: 0.644s

Count with foldr: 1.160s

These solutions handle the integer division properly but that was not required of student solutions.

Very few students remembered to append a newline to the output. Those who did got a ¼-point bonus.

I wish I'd mentioned in the write-up that the value bytes produced by readFile is a string like "xxx\ny\nzz\n" but

some assumed it was a list of lines. I also wish I'd reminded about the lines function in the Prelude; some students wrote

their own version, and that wasn't my intention.

Problem 7: (7 points) mean = 6.38, median = 6.50

Write a Ruby version of the Haskell program in the previous problem. The Ruby version reads from standard input rather

than opening a file specified on the command line. ... Unlike the Haskell version this Ruby version must properly handle the

math to get a Float result, not a truncated value like 3/2 == 1.

sum = n = 0
while line = gets
 line.chomp!
 sum += line.size
 n += 1
end

printf("%.1f\n", sum / n.to_f)

Several students approached the problem by building an array with line lengths and then summing the lengths. That seems

like a Haskell solution written in Ruby!

Page 4

The only common mistake was to not chomp or otherwise account for the line terminator(s) that gets leaves in place.

Problem 8: (7 points) mean = 5.51, median = 6.00

Write a Ruby program nwords.rb that reads lines from standard input and writes the first N words on each line to

standard output. N is specified by a -N command line argument that is assumed to be present. If N is larger than the

number of words on a line, all the words on that line are output.

n = -ARGV[0].to_i

while line = STDIN.gets
 line.chomp!
 puts line.split[0,n] * " "
end

A common assumption was an analog to Haskell's concat to join an array of strings together into a string but concat
wouldn't put spaces between them. Something like array * sep (as shown above), or a loop was needed. Assuming

something like Haskell's unwords was reasonable, if explicitly stated.

A common implied assumption was that puts array[0,n] would output blank-separated words but it actually outputs

one array element per line.

A number of students assumed a single-digit N even though there is a -100 example.

Lots of students wrote mysterious code to process multiple arguments and/or error checking code. None of that resulted in

deductions but I imagine it ate up a lot of time. Avoid that on the final by taking advantage of what can be assumed.

Problem 9: (6 points) mean = 4.07, median = 5.00

Write Ruby method chunkstr(s, n) that returns an array of consecutive n-long substrings of the string s. Partial

substrings are not included. Assume n > 0. chunkstr does not change s! (Maybe use String#dup.)

>> chunkstr("abcdef",3)
=> ["abc", "def"]

Here was my first solution. I forgot the return on the first run but it worked on the second run.

def chunkstr(s,n)
 r = []
 s = s.dup
 while s.size >= n
 r << s[0,n]
 s[0,n] = ""
 end
 r
end

I then wrote a more numeric solution:

def chunkstr(s,n)
 r = []
 pos = 0
 while pos + n <= s.size
 r << s[pos,n]
 pos += n
 end
 r
end

Page 5

It took three runs to get right: (1) forgot pos += n, (2) used s[0,n], (3) used s.size + 1. I might have also forgotten

to return r on the first run if I'd started from scratch instead of hacking up my first solution.

Lots of student solutions did something like

a = []; apos = 0
...
a[apos] = str
apos += 1

but a << str or a.push(str) is simpler.

Problem 10: (6 points) (one point each unless otherwise indicated) mean = 2.70, median = 2.50

The following questions and problems are related to Haskell.

(1) Add parentheses to the following type to explicitly show the associativity of the -> operator.

(Int -> Int) -> Int -> Int

It seems that only TODO students know that the type operator -> is right associative.

(Int -> Int) -> (Int -> Int)

Expect to see a question like this on the final.

(2) Fully parenthesize the following expression.

f g a + x y z + f1 (a, b) c

Quite a few students got tripped up on this one but only two rules come into play: (1) two expressions side-by-side is

function call. (2) function call has higher precedence than any operator.

 ((f g) a) + ((x y) z) + ((f1 (a, b)) c)

Expect to see a question like this on the final!

(3) Rewrite the following expression to use as few parentheses as possible.

len ((map f) (head (lines bs)))

Solution: len $ map f $ head $ lines bs

(4) Describe in English the data structure matched by this pattern: [t:h]
A list containing a single non-empty list.

A number of students got tripped by a head named t and a tail named h but those names mean no more to Haskell

than do ping and pong!

(5) Consider the following definitions for a function that tests whether a list is empty. Each is shown with the types that

Haskell infers for them:

empty1 :: [t] -> Bool
empty1 [] = True
empty1 _ = False

empty2 :: Eq a => [a] -> Bool
empty2 x

Page 6

 | x == [] = True
 | otherwise = False

What's causing the type of the functions to differ? What's an example of a list that would work with empty1 but not

empty2? (Two points.)

The use of the == operator in empty2 produces the added requirement that the type a must be in the Eq type class.

empty1 [length] works but empty2 [length] produces a type error because function types aren't members

of the Eq type class.

I'd initially planned each of the two questions to be worth a point each but few students got the second question right.

I decided to score the first question as two points and the second question as a one-point bonus question.

An answer that was as little as "==" earned full credit on this problem.

Problem 11: (7 points) (one point each unless otherwise indicated) mean = 3.07, median = 3.00

The following questions and problems are related to Ruby.

(1) Write a Ruby iterator itr that behaves like this:

>> itr(3) {|x| puts x}
6

Solution:

def itr x
 yield x * 2
end

(2) In the Ruby code $x = N * 5, we know that $x is a global variable and N is a constant.

(3) Given h = {}, write an expression such that after it is evaluated, h["x"] is 10.

h["x"] = 10

(4) What's a big mistake in the following statement?

 "The if-else, while, and for statements are examples of Ruby control structures."

if-else, while, and for are expressions—they all produce a value!

(5) A method named show_match is used extensively on the regular expression slides. Briefly, what does it do?

See slide 192!

show_match is in my .irbrc. To get a copy of my .irbrc, do the following cp, assuming you're in your a4
directory:

$ cp a4/.irbrc ~

After copying it, browse it with less ~/.irbrc and see if you learn anything new.

(6) What are the minimum and maximum lengths of strings that can be matched by the following regular expression?

(Be careful!)

[Aa]..[Zz]0x9?

Page 7

Six or seven characters are matched: 'A' or 'a', then any two characters, then 'Z' or 'z', '0', 'x', and maybe a '9'.

(7) Write a Ruby method that exemplifies duck typing. There's no need for any explanation!

I like the double example on slide 126 but most any method that invokes a method on an argument or applies an

operator to an argument provides an example of duck typing.

Problem 12: (10 points) (one point each unless otherwise indicated) mean = 6.48, median = 7.00

Answer the following general questions. Keep your answers brief—assume that the reader is a 372 classmate who just needs

a quick reminder.

(1) Who founded the University of Arizona Computer Science department and when?

Ralph Griswold, in 1971. There was no partial credit on this one—you had get the year right, too. Here are two

ways to remember 1971: (1) The decimal value for ASCII 'G' is 71. (2) There are 7+1 letters in "Griswold". Note

that it's Griswold, not Griswald. (Remember the 'O's in SNOBOL.)

Good news: you'll have one more chance to get this right!

(2) Name a language that was created before Ruby. Name a language that was created after Ruby.

Popular pre-Ruby examples were FORTRAN, COBOL, C, and Icon. Common post-Ruby examples were Java and

Swift. Python was a common wrong answer for a language that came after Ruby.

Two students created a language on the spot.

(3) whm believes the acronym LHtLaL appears nowhere on the web except in his slides. What does it stand for?

Learn(ing) How to Learn a Language

(4) What are two aspects of a "paradigm", as described in Kuhn's The Structure of Scientific Revolutions? Here are two

wrong answers: functional and object-oriented.

See Haskell slide 3 and following.

(5) Perhaps the most fundamental characteristic of a functional programming language is that it permits higher-order

functions to be written. What's the language feature that's required in order to write a higher-order function?

The ability to pass a function to a function as a parameter.

(6) What's an important difference between an imperative method and an applicative method? (Hint: it doesn't concern

the method name!)

An imperative method changes state in an object. An applicative method produces a new object.

(7) whm often says "In Haskell we never change anything; we only make new things." What's an example of that?

To reverse a list we'd make a new list.

(8) In general, every expression in a programming language has three aspects. What are those three? Hint: one of

them starts with a "v". (1.5 points)

Type, value, side-effects

Page 8

(9) Briefly define the term "programming language". (1.5 points)

Here are some of the answers I especially liked:

"A language that is used to communicate with a computer."—J. Naranjo

"A group of syntactic and semantic rules to tell a computer how to process input."—R. Storck

"A grammar and vocabulary for providing instruction in math and logic."—B. Whitely

"A collection of syntax and words which can be read by the machine."—J. Wolfe

"A compilation of syntax and semantics that supports a variety of computations."—A. Zarbock

Extra Credit Section (½ point each unless otherwise noted) mean = 2.03, median = 2.00

(1) Predict the median score on this test. (The median is the "middle" value in a range of values.)

All predictions:
90, 88, 86, 85, 84, 84, 84, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82,
82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 78, 78,
78, 77, 77, 76, 76, 76, 76, 75, 75, 75, 74, 72, 72, 70, 70, 67, 65, 64

n = 58
mean = 79.22
median = 80

(2) Add a dunsel to the following function definition

f x = take 3 x ++ drop 3 x

Two common ones were ++ [] and ++ take 0 x

(3) Why was \ chosen for use in Haskell's lamba abstraction syntax?

It resembles .

(4) To whom does whm attribute the following quote?

"When you hit a problem you can lean forward and type or sit back and think."

Dr. Proebsting

(5) What's the basic idea of whm's so-called "O(1) navigation"?

Being able to hit a page with a short, fixed set of keystrokes.

(6) What is the exact type of the list[head, tail]?

The expressions is invalid—head and tail have different types.

(7) What's interesting about the ASCII code sequence from 60 through 62?

They form the "spaceship" operator: <=>

Page 9

(8) What Ralph say when a young and eager graduate student put forth a list of potential new features for Icon?

Roughly quoting, "Add all the features you want but for every feature you want to add, first find one to remove."

(9) If you only remember one thing about the Haskell segment of 372, what will it be? (Ok to be funny!)

"The compiler is always right but it will never tell you why."—B. Streeter

"Jeremiah going over my head in six words."—S. Stephens

"Haskell is really spelled 'Haskhell'."—J. Scarim

"Higher-order functions are the bees knees."—C. Macdonald

"Pancakes"—A. Rane

"Typing errors, typing errors everywhere."—J. Naranjo

"Watch the types!!!"—J. Knott

"Pancakes are evil!"—K. Enami

"It's a (fun)ctional language"—S. Desai

(10) What is Matz' full name?

Yukihiro Matsumoto

(11) Write a good extra credit question and answer it.

Lots of good ones but I'm out of time to cite them here! :(

Statistics and an adjustment

Here are all scores, in order:

103.75, 101.25, 97.25, 97.25, 95.75, 94.00, 92.25, 92.00, 91.00, 90.50, 89.75,
88.75, 88.25, 88.25, 88.25, 87.00, 86.25, 83.00, 82.75, 82.50, 82.25, 81.75,
80.75, 80.50, 79.75, 78.25, 78.25, 78.25, 78.00, 77.75, 76.75, 76.25, 76.00,
75.25, 75.00, 74.50, 74.00, 73.50, 72.00, 71.25, 70.25, 69.50, 67.75, 67.25,
66.75, 66.75, 65.75, 65.50, 65.00, 64.50, 63.75, 63.75, 63.00, 61.00, 60.00,
59.75, 58.75, 57.75, 57.75, 57.50, 56.75, 56.25, 54.75, 54.00, 53.50, 53.25,
50.75, 50.50, 40.50, 40.25, 39.00, 36.25, 35.75

n = 73
mean = 71.9623
median = 74

The scores ran a little lower than I would have liked. After taking all factors into consideration I've decided to add six

points to all scores. The score you'll see on D2L will be six points higher than the score written on the cover page of your

exam.

Page 10

CSC 372 Final Exam Solutions

Tuesday, March 12, 2015

Quiz 18, May 12, 2015

2 questions; 4 points

1. For one point each, cite three things you learned from Dr. Proebsting's presentation in 372 on Tuesday, May 5, the

last day of class.

Here are some of my jots...

Story of Richard Hamming's three questions for new hires at Bell Labs.

"I think programming languages are the key to productivity."

"Perl is the only popular language I hold in lower esteem than C."

Recommended book The Innovator's Dilemma.

Academics are batting zero for popular languages. [But I'd say Haskell is a still-rising counter-example.]

Thinks Visual Basic was most influential language of the 1990s.

Statistics gathered by Microsoft's Watson tool (not to be confused with IBM's Watson!) show that about 50% of

crashes are caused by 1% of the bugs.

His mention of "flight data recorders" for programs reminded me that Adobe had something like that in the works

for its ActionScript/Flash Player stack. I've got a distinct memory of seeing a demo of it but a quick Google just

now didn't turn up anything that looked familiar.

He said that Go is the fastest growing language right now. It was also interesting to hear about a single code

formatting standard being enforced by the Go formatter. There are benefits to freedom from choice, and I sure

like a one-for-all-formatter better than Python's enforcement of indentation rules.

And last but not least there was that incredible story about the birth of Erlang.

2. On a scale of 1 to 5, with 1 being least important and 5 being most important, how would Dr. Proebsting rate the

importance of language choice for a programming project?

I believe he'd give it a 5, but I counted a 4 or 5 as correct.

Page 1 of 13

Problem 1: (6 points) mean = 5.12, median = 6.00

Cite three things about programming languages you learned by watching your classmates' video projects. Each of the three

should be about a different language.

I tallied the languages cited in the responses and came up with the numbers below. I believe Mr. Nelson's video is destined to

become a cult classic, so I gave it its own category, and didn't count it toward Ruby. I especially loved how he fit ten minutes

of video into seven minutes by simply speeding it up, taking a lesson from Alvin and the Chipmunks.

Swift 27

Python 26

Ruby 17

Go 14

The Hardest Unsolved

Problem in Computer

Science

12

Java 10

Haskell 8

PHP 8

Lisp 6

C++ 6

C 5

JavaScript 4

Erlang 4

Icon 3

Lisp 3

Perl 3

io 2

MATLAB 2

C# 2

Mathematica 2

F# 1

Lots of people commented about the ability to have emojis in Swift but just like Swift, Java allows programs to be written in

Unicode. You can thus use emojis in Java, too; the question is whether your IDE or editor displays the full Unicode character

set properly.

Page 2 of 13

Problem 2: (3 points) mean = 1.09, median = 1.00

(1) (Two points) Imagine that a Haskell function f has the type Char -> Bool -> Char. Explain the meaning of

that type in a way that demonstrates you have significant knowledge of Haskell.

Hint: here's an answer that's worth zero points: "f takes two arguments, a Char and a Bool, and returns a Char."

Calling f with a Char produces a function that can called with a Bool to produce a final result, of type Char. f is

most likely defined in curried form.

(2) (One point) Fully parenthesize the following Haskell expression.

((((f 1) 2) g) + (x x)) + (((f g) f) 1)

Problem 3: (6 points) mean = 2.48, median = 2.00

Write a Haskell function longpos :: [String] -> Int that returns the one-based position of the longest string in a

list of strings. Assume the list has at least one string. Don't worry about ties.

longpos strings = snd $ head $ reverse $ sort $ zip (map length strings) [1..]

Problem 4: (9 points) mean = 6.82, median = 8.00

Write a Ruby program that reads integers, fractions, and mixed numbers, one per line from standard input, and prints their

sum when end of file is reached.

sum = 0
while (print "Number? "; line = gets)
 line.chomp!

 if line =~ /^\d+$/
 sum += $&.to_f
 elsif line =~ /^((\d+))?(\d+)\/(\d+)$/ then
 sum += $2.to_i + $3.to_f/$4.to_f
 else
 puts "Ignored: #{line}"
 end
end
puts "\nTotal: #{sum}"

Problem 5: (9 points) mean = 7.24, median = 8.50

In this problem you are to write a Ruby version of buy.pl from assignment 9. The Ruby version reads a file named

buy.data for information about items and discounts.

items = {}

f = File.open("buy.data")

while line = f.gets
 type,item,f3,f4 = line.chomp.split("|")
 if type == "item"
 items[item] = [f3, f4.to_f]
 else
 items[item][1] *= 1 - f3.to_f*0.01
 end
end
f.close

Page 3 of 13

total = 0
for item in ARGV
 if !items[item]
 puts "Price check for #{item}!\n"
 exit(1)
 else
 cost = items[item][1]
 printf("%s...%.2f\n", items[item][0], cost)
 total += cost
 end
end

printf("Total: $%.2f\n", total)

I was appalled by the number of students who used this structure, which turns an O(n) computation into an O(n2)

computation:

for item in ARGV
 read buy.data, looking for item

Problem 6: (6 points) mean = 4.72, median = 6.00

Implement assignment 9's outin as a Ruby iterator. Assume its argument is always a non-empty array.

module Outin # as a mixin...
 def outin
 a = self.dup
 while a.size > 0
 yield a[0]
 a = a[1..-1].reverse
 end
 nil
 end
end

Some students imagined that an iterator can be be called recursively but that doesn't work. However, I let those pass.

Problem 7: (5 points) mean = 2.87, median = 3.00

Ruby defines a meaning for String * Fixnum but the operation is not commutative—Fixnum * String produces an

error:

>> 4 * "abc"
TypeError: String can't be coerced into Fixnum

For this problem you are to create a file named symmul.rb such that after symmul.rb is loaded, Fixnum * String
works.

class Fixnum
 def *(rhs)
 if rhs.class == String
 rhs * self
 else
 self * rhs
 end
 end
end

Page 4 of 13

Problem 8: (10 points) mean = 8.16, median = 9.00

Write the following simple Prolog predicates. There will be a half-point deduction for each occurrence of a singleton

variable or failing to take full advantage of unification.

Restriction: No library predicates may be used other than is/2. (But note exception for init!)

(a) f(?X) expresses the relationship that X is 3 or 4.

f(3).
f(4).

(b) head2(?L, ?Heads) expresses the relationship that Heads is a list that consists of two copies of the head of L.

head2([H|_],[H,H]).

(c) Write the library predicate member/2.

member(H,[H|_]).
member(X,[_|T]) :- member(X,T).

(d) sum(+L, -Sum) instantiates Sum to be the sum of the elements in L, which are assumed to all be numbers.

sum([],0).
sum([H|T],Sum) :- sum(T,Sum0), Sum is H + Sum0.

(e) init(?L, ?Init) is an analog to Haskell's init: the list Init is all but the last element of L. init fails if

L is empty. Restriction EXCEPTION: Your solution for init may use append.

init(L,Init) :- append(Init,[_],L).

Problem 9: (4 points) mean = 2.91, median = 3.00

Write a Prolog predicate zip(+L1, +L2, ?Pair) that produces a series of pair/2 structures:

?- zip([1,2,3,4],[a,b,c],R).
R = pair(1, a) ;
R = pair(2, b) ;
R = pair(3, c) ;
false.

zip([H1|_],[H2|_], pair(H1,H2)).
zip([_|T1],[_|T2], R) :- zip(T1,T2,R).

Page 5 of 13

Problem 10: (6 points) mean = 4.15, median = 5.00

Write a Prolog predicate swapends(?L1,?L2) that expresses the relationship that L1 is a copy of L2 with the first and

last elements swapped. swapends is only meaningful for lists with two or more elements.

?- swapends([a,b,c,d],L).
L = [d, b, c, a] ;
false.

?- swapends([1,2,3],L).
L = [3, 2, 1] ;
false.

?- numlist(1,7,Nums), swapends(Nums,R).
Nums = [1, 2, 3, 4, 5, 6, 7],
R = [7, 2, 3, 4, 5, 6, 1] ;
false.

swapends([First|T],[Last|Rest]) :-
append(Middle,[Last],T), append(Middle,[First],Rest).

I was very impressed with the elegance and symmetry of answers by Mr. Britton,

swapends([H|T],[R|F]) :- reverse(T,[R|RS]), reverse([H|RS],F).

and Mr. S. Stephens:

swapends([X|T],[Y|S]) :- reverse(T,[Y|R]), reverse(S,[X|R]).

In case you're wondering, yes, I had to type those in to convince myself they worked.

Mr. Wolfe had an elegant recursive solution: (minus an overlooked unification)

swaphelp([X],[Y],Y,X).
swaphelp([X|XS],[Y|YS],In,Out) :- X = Y, swaphelp(XS,YS,In,Out).
swapends([X|XS],[Y|YS]) :- swaphelp(XS,YS,X,Y).

Problem 11: (6 points) mean = 2.98, median = 4.00

On assignment 9 you wrote outin(+L, -R), which worked like this:

?- outin([1,2,3,4,5],R).
R = 1 ;
R = 5 ;
R = 2 ;
R = 4 ;
R = 3 ;
false.

On this problem you are write inout(+L, -R), which generates elements in the opposite order from outin.

IMPORTANT: You may use outin in your solution! This problem is intended to be easy; don't make it hard!

inout(L,R) :-
 findall(Val, outin(L,Val), Vals), reverse(Vals,RVals), member(R,RVals).

A common short but wrong answer was to simply reverse the list and call outin on the reversed list.

Page 6 of 13

Problem 12: (12 points) mean = 6.06, median = 7.00

In this problem you are to write a Prolog predicate cross/3 that finds a way to cross over a series of pits using wooden

planks as bridges. ...

cross(Planks,Distance,Solution) :-
layplanks(Planks, 0, Distance, Solution).

layplanks(_,Current,Distance,[]) :- Current >= Distance.

layplanks(Planks, Current, Distance, [Plank|MorePlanks]) :-
 select(Plank, Planks, LeftOver),
 NewEnd is Current + Plank,
 \+overpit(NewEnd),
 layplanks(LeftOver,NewEnd,Distance,MorePlanks).

overpit(N) :- pit(Start,Width), End is Start + Width, N >= Start, N =< End.

A common mistake was to have code that looked like this,

..., pit(Start,Width), End is Start, NewEnd < Start, NewEnd >= End, ...

where I've got \+overpit(NewEnd)above. With code like that you're asking, "Is there is any pit that the joint is not

over?"

Problem 13: (7 points) (one point each unless otherwise indicated) mean = 5.09, median = 5.00

The following questions and problems are related to Prolog.

(1) Haskell strings are actually just lists of characters. Similarly, Prolog lists are actually instances of a more basic

element of Prolog. What's that element?

Structures, but lots of people said "atoms".

(2) What's an appropriate situation in which to use the "cut-fail" combination?

When a predicate detects a condition that guarantees the predicate should fail. Or, "My final answer is no!"

(3) Consider the following goal written by a novice Prolog programmer: append(A,B,A). What's a likely problem

with that goal?

append(A,B,A) can only be true if B is an empty list. Perhaps the programmer thinks that append works like

A = A + B.

(4) Consider this claim: Aside from what is/2 provides, Prolog has nothing that corresponds to the concept of an

expression like that found in Java, Haskell, and Ruby. Present an argument either in favor or against this claim. (2

points)

The hallmark of an expression is that it produces a value but predicates can only succeed or fail. Any values

produced by a predicate must be via instantiation.

In retrospect I decided this wasn't a very good question. Any non-trivial answer for it was counted as correct.

(5) What's the most important fundamental difference between a Prolog predicate like member/2 and a

function/method of the same name in Haskell, Ruby, or Java? (2 points)

member can both test for membership and generate values.

Page 7 of 13

Problem 14: (5 points) (one point each unless otherwise indicated) mean = 5.95, median = 6.00

The following is a Sather program, from http://rosettacode.org/wiki/Sum_of_squares#Sather

class MAIN is

 sqsum(s, e:FLT):FLT is
 return s + e*e;
 end;

 sum_of_squares(v :ARRAY{FLT}):FLT is
 return (#ARRAY{FLT}(|0.0|).append(v)).reduce(bind(sqsum(_,_)));
 end;

 main is
 v :ARRAY{FLT} := |3.0, 1.0, 4.0, 1.0, 5.0, 9.0|;
 #OUT + sum_of_squares(v) + "\n";
 end;

end;

Based on the code above, tell me five things about Sather. Excellent or additional observations may earn up to three points

of extra credit.

Here's what I see:

The big one: Sather appears to be statically typed.

Types follow the entity whose type is being declared.

|val1, val2, ..., valN| appears to be array initializer syntax but there's also #ARRAY{FLT}(|0.0|);

the distinction between the two is not clear. #ARRAY is apparently the same kind of thing that #OUT is.

reduce(bind(sqsum(_,_))) implies that reduce is a higher-order function, but bind is apparently needed to

create an intermediate value that refers to sqsum.

Last value in method does not implicitly become return value; explicit return statement is used instead.

One form of initialization is :=.

#OUT is a special value that produces output when a value is concatenated with it.

String literals are enclosed in double quotes and have backslash escapes.

Semicolons are required to terminate statements.

class may imply that Sather is object-oriented. I believe that only Mr. Bernth mentioned that .append implies

object-orientation, too.

A number of students said that the free-standing s in sqsum(s, e:FLT) implied that types need not be specified,

but in fact the type simply follows the identifier(s). (Note that in the Java declaration int x, y; the type int
applies to both x and y.)

A handful of students said that : was cons, but I see no grounds for that whatsoever.

Page 8 of 13

Problem 15: (6 points) mean = 5.46, median = 6.00

Answer the following general questions.

(1) What is the fundamental characteristic of a statically typed language? (1 point)

The type of every expression can be determined at compile time.

(2) A language designer must decide whether an operation is to have a symbolic form, like +, ==, and x[y] or an

alphabetic form like length, insert, and charAt. What are some factors that must be considered when

deciding between an symbolic or alphabetic form for an operation? (2 points)

Symbolic forms allow more concise expression and that's good for common operations like concatenation and

indexing.

Sometimes using a symbol avoids a naming problem. For example, Icon's unary * operator, which returns the

length of a string or a list, the number of key/value pairs in a table, the numbers of characters in a character set, and

more. Instead of deciding between length, size, count, cardinality (true story), etc., *x provides a

helpful indefiniteness.

Designers must also consider whether there's a common underlying idea that makes a symbolic form appropriate,

like using + for both addition and concatenation, although the latter is not commutative.

(3) Imagine that for some reason all your knowledge and memories of two of the three languages we covered this

semester must be erased! Which of the three languages do you wish to retain your memories of, and why? (3 points)

I tallied the answers. Here are the numbers:

 Haskell: 16

 Ruby: 24

 Prolog: 28

The rationales for retention were myriad. Among them were which language was most interesting, which language

would likely be most useful and/or marketable, which language had the most concepts useful in other settings, which

language was least likely to be independently learned, and which language "I don't ever want to learn again."

Extra Credit Section (½ point each unless otherwise noted) mean = 2.85, median = 3.00

(1) What programming language had a typo in the first example of the first book published about the language?

The first example in the The Java Programming Language by Ken Arnold and James Gosling had

"Sytem.out.println(...)" in the first example.

(2) The first machine named lectura was a VAX-11/785. Who picked the name "lectura"?

The first round of CS host names were font names. Dr. Peter Downey found "Lectura", and it seemed perfect for an

instructional machine. Some others were Bocklin, Megaron, Caslon, and Bembo.

(3) What would be a better name for the Prolog 1000, and why?

Maybe the Prolog 500—the list appears to have about 502 entries.

Page 9 of 13

(4) What does DWIM mean?

"Do what I mean." Runner-up, by P. Martin: "Drunken whales injure millions."

(5) What is the official name of Gould Simpon 942? (Ok to be funny!)

"Programming Languages Lab" is on the plaque beside the door, and Mr. Hickey knew that, but here are other titles:

The Lion's Den

The Den of Crushed Freshmen

Ephiphany H.Q.

Home [two entries!—whm]

The Thunderdome

A long staircase away.

the Lab

CS Dungeon

The "Please Help me" Lab

"When you're desperate"

The Help me room

Late-night Debugging Center

Big Poppa's House

The Hurt Locker

Last minute disaster

Panic Bunker

The Romper Room

Where the Problems Are Solved

This is where you go to finish your program.

Buckle your Seat Belts Room

Help Center for Sick 372 Students

The Meat Grinder

A room where people inside cry 9 times a semester.

Help Center

think tank

The Simpsons

whm's coder clubhouse

The Cool Kids Club

Broken Elevators

Windowless Dungeon of Office Hours [submitted by a fellow correctional officer]

Office hours central

my second home

Mitchell's Lab (?) [that does have a nice ring!]

The Last Minute Help Room

"The assignment is due tonight?!"

The computer lab that eats all of your time away.

The "Help Me" group

The penthouse

my apartment

Gould Simpson 942 (spelling counts) [ouch!]

Names for the building, apparently:

My girlfriend calls it the "Nerd Palace".

Palace of Science

Page 10 of 13

(6) Ralph Griswold is known for designing languages like SNOBOL4 and Icon but he's also known for his work related to

the mathematical aspects of weaving. What's a one word connection between those two areas?

My word is "strings", and Mr. Nelson came up with that, too.

J. Naranjo and T. Romero said "threading".

E. Harris, C. Jensen, C. Johnson, R. Macdonald, B. Streeter, and C. Troy all came up with "patterns", and that's surely

true!

K. Enami pointed out that both SNOBOL4 and "weaving" have an "n" in them.

K. Hudspeth was creative with "weavematical". (Zero Google hits just now.)

(7) In what year did Ralph Griswold found The U of A's Department of Computer Science?

1971

(8) On Ralph's first day here he arrived to find a number of students waiting outside his office for advising. When he

entered his office he found a common piece of office furniture was absent. What was it?

Ralph had a desk, but no chair! However, any answer was counted as correct. Twenty-two said "desk", twenty-six said

"chair(s)", and one said "coffee maker".

Here's one last story about Ralph. As dial-up modems started becoming popular the phone company started worrying

about modem users monopolizing circuits. There was a Tucson TV news story about this in the early 70s in which a

phone company representative talked about the problems that heavy modem users could create. As a case in point they

cited a customer in town whose modem had been continuously connected for over a month! Ralph told me that story

and added, "That customer was me."

(9) There are many measures of success. What do you think must be true in order for a programming language to be

considered a success?

The first answer I read was by Mr. Dimka: "One person considers it their favorite language." Interestingly, that's an

answer I had in mind, too. I believe I mentioned in class that I discovered the language RATSNO (Rational SNOBOL)

among the Icon stuff. Dave Hanson developed it as an experiment in software adaptability, to see how hard it would be

to retarget the RATFOR preprocessor (about 1500 lines), which had a design principle of "RATFOR does not know

any FORTRAN". Hanson completed the conversion in about 8 hours.

I loved RATSNO and used it for several projects as an undergraduate at N.C. State, including a Pascal compiler. I've

never gone looking for other users (I should!), but as I far as I know, I was the only regular user of RATSNO. But for

me, RATSNO was a success. http://www.cs.arizona.edu/classes/cs372/spring15/csc412project.pdf is an example of

some RATSNO code. It solves language equations using Arden's Lemma. You'll see that thirty-five years ago I wrote

more comments than I do now.

Here are other answers that caught my eye:

"A successful language displaces a previous language."—S. Stephens

"It can solve a problem."—J. Weiser

"If a lot of people are using it without complaining."—N. Gelo

"People use it."—J. Tom

"Mother's approval."—M. Curry

"Helped solve one problem better than any other language."

Page 11 of 13

(10) Under what circumstances should a programming language be considered dead?

I've pondered this question a fair amount over the years. During the Icon segment of 372 in Fall 1996, Larry Johnson

said, "I'm just worried we're studying some dead language just because it was invented at the U of A.".

As a practical matter I think it takes a lot to kill a programming language. One of my first thoughts was that if a

language is written in assembler and no machines with that architecture still exist, that language is surely dead.

However, one could write an emulator for that architecture and revive the language. Even if all implementations were

lost but specifications or programs remained, again the language could be revived.

I think I may have mentioned that there was never a implementation of the Alphard language but several papers were

published about it. (Ralph thought that was "nuts!")

Here are some of the many answers I enjoyed:

"No one considers it their favorite."—A. Dimka

"No one can write a program in it without Googling."—J. Wolfe

"When there are no new programs being written in it."—C. Johnson

"When you can't Google it."—M. Justice

"When the tools to run the programming language no longer exist."—J. Wynne

"When it has no more followers."—E. Saetren

"They don't die; they just go to sleep for a very long time."—B. Hammond

"When it has C in the name."

Statistics and an adjustment

While grading I ultimately came to not like problems/questions 2(1), 13(1), and 15(2). Five points were added to all scores to

compensate for those questions. The scores written on your exams do not reflect that five-point adjustment.

Here are all scores, with that five-point adjustment applied:
107.00, 106.50, 106.50, 106.00, 105.25, 102.50, 100.50, 97.00, 96.50, 96.00,
93.00, 91.00, 90.50, 90.00, 89.50, 89.50, 89.50, 88.00, 87.50, 87.00, 87.00,
86.50, 86.50, 86.00, 84.50, 83.50, 83.00, 83.00, 83.00, 82.50, 82.00, 81.00,
80.50, 79.50, 78.00, 78.00, 76.50, 76.50, 76.00, 75.50, 74.50, 74.00, 73.50,
73.50, 72.00, 72.00, 69.50, 68.00, 66.00, 64.50, 64.50, 63.00, 62.50, 62.00,
62.00, 61.50, 61.50, 61.50, 60.50, 60.50, 57.75, 56.50, 54.50, 51.00, 37.50

n = 65
mean = 78.9615
median = 80.5

All overall final averages for the course are shown below, with grade lines drawn in. You can find your final letter grade in

372 by looking at your "Overall average" on D2L and seeing where you fall in the list below.

Drawing grade lines is always tough. For those just short of a letter grade I double-checked his/her exam for any additional

possible points.

------ A's below
104.70
104.26
104.24
103.50
102.92
101.96
101.53
101.23
100.15
100.00
96.83
96.75

Page 12 of 13

96.67
96.39
96.38
96.04
95.87
95.51
94.54
93.85
93.57
92.92
92.87
92.65
91.44
90.58
89.99
89.88
------ A's above; B's below
88.89
87.97
87.22
86.15
86.02
85.16
84.15
82.41
82.25
82.11
82.05
80.33
79.57
----- B's above; C's below
77.74
77.70
77.69
76.94
74.58
72.35
70.85
70.59
69.98
69.87
69.20
69.09
68.49
----- C's above; D's below
66.95
65.54
64.69
64.32
63.61
60.06
----- D's above; E's below
53.28
52.83
31.09
30.67

Page 13 of 13

CSC 372 Mid-term Exam

Thursday, March 10, 2016

Solutions

Problem 1: (8 points) (mean = 5.6, median = 5.5)

What is the type of each of the following values? If the expression is invalid, briefly state why.

"abc"
[Char]

('4', 52, [5,2])

(Char, Int, [Int])

last
[a] -> a

[[True]]
[[Bool]]

filter even
[Int] -> [Int]

map head
[[a]] -> [a]

[head, head . tail]
[[a] -> a]

(++"x")
[Char] -> [Char]

Problem 2: (10 points) (two points each) (mean = 8.3, median = 8.5)

snd (Returns second element of a two-tuple)
snd (_,x) = x

head (Ignore empty-list case)
head (h:_) = h

last (Ignore empty-list case)
last [x] = x
last (_:t) = last t

map
map _ [] = []
map f (h:t) = f h : map f t

zipWith (Reminder: zipWith (+) [1,2,3] [10,20,30] is [11,22,33])
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith _ _ _ = []

Note the ordering of the clauses: The first clause handles the case that both lists have at least one element.

If that's not true, we're done, and that's handled by the second clause.

Page 1 of 8

Problem 3: (16 points) (8 points each) (recursive: mean = 6.2, median = 7; non-recursive: mean = 5.0, median = 6)

For this problem you are to write both recursive and non-recursive versions of a function numlist, with type [[Char]]
-> IO (), that outputs a numbered list of the strings in a list:

> numlist ["just", "testing", "this"]
1. just
2. testing
3. this

> numlist []
[no items]

Solutions:

numlist [] = putStr "[no items]\n"
numlist items = putStr $ unlines $ helper 1 items
 where
 helper _ [] = []
 helper n (item:items) =

(show n ++ ". " ++ item) : helper (n+1) items

numlist [] = putStr "[no items]\n"
numlist items = putStr $ unlines $ zipWith f [1..] items
 where
 f num s = show num ++ ". " ++ s

Problem 4: (4 points) (mean = 3.3, median = 4)

Consider the following interaction with ghci:

> map count [10,20,30]
[1,2,3]

> map count [7,8,9,10]
[1,2,3,4]

For this problem you are to either (1) write a function count that behaves as shown above or (2) explain why it is

impossible to write such a function.

It's impossible. Functions always produce the same output for a given input but in the first case, count 10
produces 1 and in the second case, count 10 produces 4.

Problem 5: (8 points) (mean = 5.7, median = 7)

The following function, revtups, takes a list of two-tuples and produces a new list with the tuples' elements swapped and

the order of the tuples reversed:

revtups list = foldl ff [] list

Usage:

> revtups [(1,'a'),(2,'b'),(3,'c')]
[('c',3),('b',2),('a',1)]

> revtups [("one",[1]), ("two",[2])]
[([2],"two"),([1],"one")]

Page 2 of 8

For this problem you are to:

1. State the type of revtups (1 point)

2. Write a folding function ff that will work with revtups as shown above.

1. revtups :: [(a,b)] -> [(b,a)]
2. ff acm (a,b) = (b,a):acm

Problem 6: (12 points) (mean = 8.2, median = 10)

Write a Haskell function co chars string, with type [Char] -> [Char] -> Int, that counts how many times the

characters in chars occur in string.

Usage:

> co "aeiou" "just a test"
3

> co ['0'..'9'] "12:15pm"
4
...

My first solution was this:

co chars str = sum $ map (f str) chars
 where
 f str c = length $ filter (\e -> e == c) str

Of the non-recursive solutions I saw, I felt that Ms. McCabe's was the best:

co chars string = length $ filter (\x -> x `elem` chars) string

Several students wrote a non-recursive solution that was something like this:

co chars (c:cs)
 | c `elem` chars = 1 + co chars cs
 | otherwise = co chars cs
co _ _ = 0

Problem 7: (22 points) (mean = 14.4, median = 18)

Write a Ruby program adjcols.rb that makes specified adjustments to columns of numeric values in a CSV (comma-

separated values) file.

Adjustments are specified as command-line arguments. Here's a sample invocation:

ruby adjcols.rb 2:+10 3:=7 5:-1 < x.csv

Adjustments have the form COLUMN-NUMBER:CHANGE. Examples:

 2:+10 means to add 10 to all values in column 2 (column numbers are 1-based and positive)

 3:=7 means to change all values in column 3 to 7
 5:-1 means to subtract 1 from all values in column 5

This is my solution:

puts STDIN.gets

while line = STDIN.gets

Page 3 of 8

 parts = line.split ","

 for adj in ARGV
 col, delta = adj.split ":"
 col = col.to_i - 1
 if delta[0] == "="
 newval = delta[1..-1].to_i
 else
 newval = parts[col].to_i + delta.to_i
 end
 parts[col] = newval.to_s
 end

 puts parts * ","

end

I'd hoped that it would be quickly observed that lines could processed one at a time, but a number of students read all

the lines into an array and then iterated over the elements of that array. An attribute that I've found to be common

among many long and/or wrong solutions on assignments and exams is this: creation of unnecessary data structures.

It takes code to build those unnecessary structures and then code to get data out of those structures. For this problem

it also turns a program that could process a file of unlimited size to one that's limited by available memory.

A minor thing that made me groan during grading was the use of a flag to indicate whether the input line at hand

was the first line. It seems far simpler to just read and write that first line.

Problem 8: (5 points) (one point each unless otherwise indicated) (mean = 2.9, median = 3)

The following questions and problems are related to Haskell.

(1) Add parentheses to the following type to explicitly show the associativity of the -> operator.

[Int] -> (Int -> Bool) -> [Bool]

[Int] -> ((Int -> Bool) -> [Bool])

(2) Fully parenthesize the following expression to show the order of operations.

f 2 g 3 + x f g [a b c * 1]

(((f 2) g) 3) + (((x f) g) [(((a b) c) * 1)])

(3) Rewrite the following function binding to use point-free style:

f1 x = f (g x)

f1 = f . g

(4) Briefly, how does Haskell's pattern matching contribute to the readability of Haskell code?

Patterns let us bind names to various elements of data structures, so that instead of writing code that digs

into data structures, like
f x = g (head x) ++ h (tail x)

we can write
f (h:t) = g h ++ h t

(5) Once upon a time I had this line of code in a file:

f x y = x*3 + y

Page 4 of 8

I wanted to produce an error on that line, so I typed some junk into the line:

asdsf sdfs 3 3 3 f x y = x*3 + y

But, that goofy code loaded without error! Why? (Hint: Be sure your answer is more than something like "It's still

valid code.")

The junk I typed turned the two-argument function f into a seven-argument function named asdsf. Three

of the arguments are literal pattern matches for the number 3.

Problem 9: (5 points) (one point each unless otherwise indicated) (mean = 2.3, median = 2)

The following questions and problems are related to Ruby.

(1) Aside from the fact that strings are mutable in Ruby and are immutable in Java, what's an important difference

between the string-handling facilities in Ruby and Java?

Ruby lets us specify portions of strings with s[n], s[start,length], and s[Range]. Additionally,

those expressions can be targets of an assignment. Many other answers are valid, too.

(2) Imagine that a Ruby class has methods named mudge and mudge!. What does that imply?

mudge has both an applicative and an imperative form. mudge, the applicative form returns a result but

doesn't modify its receiver. mudge!, the imperative form modifies its receiver.

(3) What's a fundamental semantic (i.e., non-syntactic) difference between if-else in Ruby and if-else in Java?

if-else is a statement in Java but in Ruby it's an expression. In Ruby I can say something like val =
if a > b then c end.

(4) Aside from syntax, what's a fundamental difference between :load x.hs in ghci and

load "x.rb" in irb?

:load is implemented by the REPL that ghci provides; it's not Haskell code. Ruby's load is a method;

load "x.rb" is a Ruby expression that has a side effect of loading the code in x.rb.

(5) What's the value of each of the two following Ruby expressions?

"abc"[5] && false
nil

0 || 1
0

I was surprised by the number of students that missed this one.

Problem 10: (10 points) (one point each unless otherwise indicated) (mean = 6.1, median = 7)

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when?

Ralph Griswold, in 1971.

(2) What are two aspects of a "paradigm", as described in Kuhn's The Structure of Scientific Revolutions? Here are two

wrong answers: "functional" and "object-oriented". (Two points!)

See Haskell slide 4.

Page 5 of 8

(3) What's a fundamental characteristic of a language that uses static typing?

Type errors can be detected without running any code or knowing what specific input values are.

(4) What's a fundamental characteristic of a language that uses dynamic typing?

In the general case, type errors can't be detected until code is run.

(5) Show an example of syntactic sugar in any language you know.

In Haskell, "abc" is syntatic sugar for ['a', 'b', 'c'].

(6) Aside from the intrinsic elements of a language, like its design and performance, what are two factors that can

influence the popularity of a language?

See intro slide 34.

(7) whm often says "In Haskell we never change anything; we only make new things." What's an example of that?

If the first element of a list of integers was to be changed to zero, we'd do that by making a new list whose

head is zero and whose tail is the of the list at hand.

(8) When a new graduate research assistant wanted to add a bunch of new features to Icon, what did the project's wise

leader say?

Ralph said I could all the features I wanted but for every feature I wanted to add, I first had to find a feature

to remove.

(9) What's one way in which having a REPL available makes it easier to learn a programming language?

It makes it easy to experiment with things.

Extra Credit Section (½ point each unless otherwise noted) (mean = 1.9, median = 2)

(1) whm believes the abbreviation LHtLaL appears nowhere on the web except in his slides. What does it stand for?

Learning How to Learn a Language

(2) To whom does whm attribute the following quote?

"When you hit a problem you can lean forward and type or sit back and think."

Dr. Proebsting

(3) Consider this Haskell function: add x y = x + y. What is the exact type of add?
Num a => a -> a -> a

(4) Double tricky: What is the exact type of the Haskell list[foldl, foldr]?

My first thought was that it would be a type error because the functions don't have the same type but when I saw

that it worked, I realized that the types of the two can be unified:
[(b -> b -> b) -> b -> [b] -> b]

(5) The Haskell expression[FROM..TO]produces an empty list if FROM > TO. Write a non-recursive function range
from to that's a little smarter: range 1 5 returns [1,2,3,4,5], and range 5 1 returns [5,4,3,2,1].

range from to
 | from <= to = [from..to]
 | otherwise = reverse [to..from]

(6) Suppose the second example for problem 4 (page 5) had been this:

> map count [6,7,8,9]
[1,2,3,4]

Briefly, how would that have changed your answer for that question?

It would now be possible to implement count.

Note: This question was ill-conceived—virtually any answer could be argued as being correct but it was only

Page 6 of 8

marked as correct if you said that count could now be implemented. Consider a half-point of the 8-point

adjustment as being compensation for any injustice on this question.

(7) If you only remember one thing about the Haskell segment of 372, what will it be? (Ok to be funny!)

Presented anonymously and in random order, here's what was said:

Haskell has no debugger, and thus sucks.

functional programming can be very useful

That recursion is occasionally ok

maps & folds are useful!

Partial application

The power of cons.

I need to watch my types...

unhelpful error messages :(

It was (fun)ctional!

recursion is easier with patterns

Anonymous functions are beautiful.

The Friday Night Club isn't as fun as it sounds

Don't over think it!

I'm not good at it.

Patterns.

pancakes on the stack

Haskell functions seem to be redundant to death (having to write the function name again for every possibility of

input)

I can't eat pancakes any more

putting the fun in FUNctional programming

So much recursion

mapping

You never change anything. Only make new things.

Haskell is short for HaskHell

higher order functions

expected [Char], was instead [[Char]]

A whole lot of time spent to find a solution with very little code

Iteration is for the weak!

Recursion isn't complete hell

Pancake

Crying tears of blood when forgetting to add a base case in recursion problems

Type error everywhere

functions are values

higher order function

Matt Gautreau was right. Don't tell him I said that.

Patterns over guards over if-else.

Pancakes Toyota

There's probably a Prelude function to do something for you if you look hard enough

f this f that f it

variable state, why don't you change!

maps are crazy useful

Recursion is now my best friend haha

Know your recursion!

anonymous functions

recursion!

(8) What is "duck typing"?

A style of programming/mindset for typing where we're only concerned about the operations provided by objects

rather than their types.

Page 7 of 8

(9) With Ruby in mind, define the term "iterator".

An iterator is a method that can invoke a block.

(10) Name a language other than Icon that was created at The University of Arizona.

See intro slide 38.

Statistics

Here are all scores:
98.5, 95.5, 94.5, 94, 94, 93, 92.5, 91, 91, 90, 89.5, 89.5, 88, 87.5, 87.5,
84.5, 84, 82.5, 81.5, 81, 81, 79.5, 79.5, 78, 77.5, 76, 75, 74.5, 73.5, 73,
71.5, 71.5, 69.5, 68.5, 68, 67.5, 63, 61.5, 61, 60.5, 60, 59, 58.5, 58.5, 58.5,
53.5, 53.5, 53, 53, 49.5, 48.5, 48, 47.5, 46, 40.5, 37, 34.5, 22.5, 18.5

n = 59
mean = 69.8
median = 73

Here's a histogram of all scores. The five-point wide bins cover the interval [X-2.5,X+2.5), where X is the label for a

bin.
+--+
| |
| * * |
| * * * |
| * * * * * |
| * * * * * * |
| * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * * |
| * * * * * * * * * * * * * * * * |
| 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 |
| |
+--+

The mean and median were lower than I expected, so eight points were added to all scores before loading them on D2L.

Page 8 of 8

CSC 372 Final Exam

Monday, May 9, 2016

Solutions
Problem 1: (6 points) (mean: 5.6, median: 6)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of

the three should be about a different language and have a bit of depth, as described in the Piazza post that

announced this problem.

When grading I tallied the video topics that were cited and came up with the counts below, with a cut-off of five.

In some cases I lumped together all topics for a language into a single count.

Magic Methods in Python 20

Ruby's method_missing 17

PHP 17

JavaScript 10

Character sets in Icon 9

R 9

Swift 9

Lambdas in Java 8 8

Threads in Ruby 8

Functors in Haskell 7

Arrays in Go 6

Randomness in Haskell 6

List comprehensions in Python 6

Hotswapping in Java 5

Videos excelled in different dimensions but if I had to pick an overall winner, it would be K. Taylor's APL - The

Implications of Unicode.

Here are some others that I felt were particularly outstanding for one reason or another. Authors are not cited

because I promised the potential of anonymity.

Closures in JavaScript

Introduction to Common Lisp: S-Expressions and list/quote/eval

Haskell Monads in 8 Minutes

Control Structures in bash

Page 1 of 11

https://www.youtube.com/watch?v=k3mk2RNbPrU
https://www.youtube.com/watch?v=k3mk2RNbPrU
https://drive.google.com/file/d/0B9XBW5hoM6L7LU9MYkdzUFdDVmc/view?usp=sharing
https://www.dropbox.com/s/347dugmgy19e44p/lispproj.mp4?dl=0
https://youtu.be/gEoruozy3mk
https://drive.google.com/a/email.arizona.edu/file/d/0BzMPFggEI2ADeTNGR1pNUG1SdVE/view?usp=sharing

Magic Methods in Python

Introduction to Monoids

An Exploration of Channels in Go

A Little on Functors

"Globals" in MUMPS

Python Asterisk(*) usage

Why Nobody Uses Go Arrays

Problem 2: (1 point) (mean: 0.3, median: 0)

Write a Haskell function doflip pancakes flip that performs an fsort-style flip.

doflip pancakes n = reverse (take n pancakes) ++ (drop n pancakes)

I intended this one to be a dead-simple list-manipulation problem that leveraged a concept from fsort but only

about a third of you attempted it. The rest perhaps instinctively recoiled as soon as they saw "pancakes".

Problem 3: (3 points) (mean: 2.3, median: 3)

Write a recursive Haskell function totlen list that returns the total length of the strings in list.

totlen [] = 0
totlen (h:t) = length h + totlen t

Problem 4: (4 points) (mean: 2.7 median: 4)

Write a Haskell function xout string that replaces every letter (a-z) in string with an "x" of the same case.

Non-letters are unchanged.

xout = map f
 where
 f c
 | isLower c = 'x'
 | isUpper c = 'X'
 | otherwise = c

Problem 5: (2 points) (mean: 1, median: 0.75)

Write a folding function f such that the foldr call below behaves as shown, returning a list of the odd numbers

in its last argument.

> foldr f [] [5,2,9,4,4,3,1]
[5,9,3,1]

f elem acm
 | odd elem = elem:acm
 | otherwise = acm

Page 2 of 11

https://youtu.be/MSsADyOP1x4
https://youtu.be/lmN_I-TsId0
https://youtu.be/p9kS5luialE
https://www.youtube.com/watch?v=tDH5c5mRL2E
https://youtu.be/CtWndoy--Zc
https://youtu.be/kU1w0yba7VY
https://youtu.be/TsHMDXsBz4w

Problem 6: (5 points) (mean: 4.6, median: 5)

Write a Ruby iterator sbl(a, max) ("strings by length") that first yields each one-character string in the array

a. It then yields each two-character string in a. The process continues up through strings of length max. Strings

are yielded in the order they appear in a. sbl always returns nil.

def sbl(a,max)
 for i in 1..max
 for s in a
 if s.size == i
 yield s
 end
 end
 end
 nil
end

Problem 7: (4 points) (mean: 2.9, median: 3)

Write a Ruby method pages_re that returns a regular expression that matches a string iff the string consists of

one or more comma-separated page specifications. A page specification is one of these three:

• A number, such as "12".

• Two numbers separated by a dash, such as "1-3".

• A number followed by a dash, such as "2500-".

def pages_re
 num = /\d+|\d+-\d*/
 /^#{num}(,#{num})*$/
end

Problem 8: (11 points) (mean: 8.8, median: 10)

Write a Ruby program mostfreq.rb that reads lines on standard input and writes out each line followed by an

annotation that shows which non-space character appears most frequently on the line, and how many times it

appears.

def main
 while line = gets
 line.chomp!
 puts "#{line.ljust(30)}#{count line}"
 end
end

def count s
 counts = Hash.new(0)

 s.each_char {|c| counts[c] += 1 if c != " "}
 first = counts.sort_by_value[-1]

 if first
 " ('#{first[0]}': #{first[1]})"
 else
 ""

Page 3 of 11

 end
end

main

Problem 9: (8 points) (mean: 5.6, median: 6.5)

In this problem you are to implement a Ruby class named Seq that represents a sequence of values with a

maximum length.

class Seq
 def initialize n
 @n = n
 @vals = []
 end

 def << rhs
 @vals << rhs
 if @vals.size > @n
 @vals.shift
 end
 self
 end

 def inspect
 "|" + @vals * "-" + "|"
 end
end

Problem 10: (6 points) (mean: 4.1, median: 5)

Write the following simple Prolog predicates. There will be a half-point deduction for each occurrence of a

singleton variable or failing to take full advantage of unification.

(a) fl_same(?L) expresses the relationship that the first and last elements of L are identical. It should

able to handle all possible combinations of instantiated and uninstantiated variables. fl_same fails if

the list is empty. Examples:

fl_same(L) :- L = [H|_], last(L,H).

(b) revgen(+L,-X) generates the elements of the list L in reverse order.

revgen(L,X) :- reverse(L,RL), member(X,RL).

(c) Write the library predicate member/2. Examples:

member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

Problem 11: (6 points) (mean: 3.2, median: 3)

abl(+Atoms,+Max,-A) first instantiates A to each one-character atom in Atoms, then each two-character

atom in Atoms, etc. abl continues for atoms of lengths up through Max, if any are that long.

abl(Atoms,Max,A) :- between(1,Max,N), member(A,Atoms),

Page 4 of 11

atom_chars(A,Chars), length(Chars,N).

Problem 12: (8 points) (mean: 4.1, median: 5)

Write a Prolog predicate findrun(+L,+N,+X,-Pos) that looks for N-long runs of X in L, instantiating Pos

to the zero-based starting position of each run. Assume N is greater than zero.

findrun(L,N,X,Pos) :-
 repl(X,N,Mid), append(Pre,Rest,L), append(Mid,_,Rest),
length(Pre,Pos).

Problem 13: (7 points) (mean: 5.1, median: 5.5)

Write a predicate expand(+List,-Expanded) that takes a list of (1) atoms and (2) structures of the form

Atom*N and produces an "expanded" list. Assume the N terms are >= 0.

expand([],[]).
expand([Atom*N|T],R)

:- repl(Atom,N,Rep), expand(T,More), append(Rep,More,R), !.
expand([H|T],[H|R]) :- expand(T,R).

Problem 14: (11 points) (mean: 6.6, median: 8)

Write a Prolog predicate reach(+Destination, +Jumps, +Fences, -Solution) that finds a

sequence of "jumps" on a Cartesian plane from (0,0) to the Destination (a pos/2 structure), being sure

that no jump lands on a fence.

reach(Dest, Jumps, Fences, Solution) :-
reach0(Dest, Jumps, Fences, pos(0,0), Solution).

reach0(pos(X,Y),_,_,pos(X,Y),[]).

reach0(Dest, Jumps, Fences, pos(CX,CY), [Jump|MoreJumps]) :-
 select(Jump,Jumps,Remaining),

Jump = jump(X,Y),
NX is CX+X, NY is CY+Y,
\+on_fence(pos(NX, NY), Fences),
reach0(Dest, Remaining, Fences, pos(NX,NY), MoreJumps).

on_fence(pos(X,Y),Fences) :-
 (member(fence(x,X),Fences);member(fence(y,Y),Fences)).

Problem 15: (4 points) (one point each) (mean: 2.5, median: 2.5)

The following questions and problems are related to Prolog.

(1) When writing documentation for Prolog predicates, arguments are often prefixed with the symbols +, -,

and ?, such as p(+X,?Y,-Z). What does each of those three symbols mean?

plus: should be instantiated

minus: will be instantiated

question mark: either instantiated or uninstantiated

(2) Write a sentence that expresses the relationship between the terms "fact", "clause", and "rule".

Page 5 of 11

Facts and rules are clauses.

(3) Consider the following goal written by a novice Prolog programmer:

X is X + length(List)

What are two misunderstandings evidenced by that goal?

(1) Seems to be treating is as assignment, not unification. X is X + anything won't succeed unless

anything is zero.

(2) Seems to be thinking of length not as a predicate but an arithmetic function that is/2 knows about.

(4) What's the most important fundamental difference between a Prolog predicate like append/3 and a

function/method of the same name in Haskell, Ruby, or Java?

Prolog's append/3 can be used to perform many operations, like taking a list apart.

Problem 16: (7 points) (mean: 6.2, median: 7)

Below is a transcript of interaction with Standard ML of New Jersey, a functional programming language.

Annotate the transcript with seven significant observations about Standard ML. Excellent or additional

observations may earn up to a total of three points of extra credit.

$ sml
Standard ML of New Jersey v110.69 [built: Mon Jun 8 23:24:21 2009]

A few students said, "sml starts a REPL". That was a little thin, but good enough!

- 5 + ~7;
val it = ~2 : int

Tilde is the unary negation operator.

Some said that tilde indicates an approximate value, and although 5 plus around 7 wouldn't be

around 2, we took it, on grounds of creativity.

int is SML's name for an integer type.

The name it is bound to the last value produced.

Semicolons are required after an expression.

- (1, 2.0, "three");
val it = (1,2.0,"three") : int * real * string

There are tuples.

Tuples can be heterogenous.

real and string are names for types.

The type of tuples is shown as TYPE1 * TYPE2 * ... * TYPEN.

Page 6 of 11

An ML programmer would read that type as "int cross real cross string", by the way.

- explode "test";
val it = [#"t",#"e",#"s",#"t"] : char list

string and char are distinct types. (Worth two points.)

char literals are #"c".

List types are shown with the suffix list, in contrast to Haskell's [TYPE] notation.

Juxtaposition is function call.

- implode it;
val it = "test" : string

implode and explode are inverses.

- map (fn(n) => n * 3) [3, 1, 5, 9]; {- See above re map -}
val it = [9,3,15,27] : int list

Anonymous functions are supported.

Higher-order functions are supported.

{- ... -} is a comment

[...] is a list literal

- it::[];
val it = [(1,2.0,"three")] : (int * real * string) list

:: is a "cons" operation.

- fun f1 a b = [a,b];
val f1 = fn : 'a -> 'a -> 'a list

fun is used to declare a function.

An equals sign separates the "parameters" (which could be patterns, just like Haskell) from

the expression that specifies the value.

Functions are curried.

Type variables are denoted with an apostrophe. (An ML programmer would read 'a as

"alpha" and 'b as "beta". You might have occasionally heard me inadvertently use "alpha"

and "beta" when reading a type variable in Haskell.)

- fun f2 a b = [a = b];
val f2 = fn : ''a -> ''a -> bool list

The boolean type is named bool.

= is an equality operator.

If memory serves, only 2-3 students observed that the type variables for f2 are preceded with

two apostrophes instead of only one. I believe only student went further and correctly

guessed that the double apostrophes rose from the comparison. That observation was surely

Page 7 of 11

worth two points.

Background: Standard ML doesn't have the notion of type classes like Eq, but it does

distinguish types whose values can be compared for equality, and ''a would be recogized as

an equality type.

- 3 + 4.5;
stdIn:1.1-1.6 Error: operator and operand don't agree [literal]
 operator domain: int * int
 operand: int * real

"Mixed-mode" arithmetic is not allowed.

- (hd [1,2,3], tl [1,2,3]);
val it = (1,[2,3]) : int * int list

hd and tl are "head" and "tail"

I last taught Standard ML in 372 in Fall 2006. My slides are here:

http://cs.arizona.edu/classes/cs372/fall06/sml.sli.pdf You'll see that a lot of ML examples translate well into

Haskell examples...

Problem 17: (7 points) (one point each unless otherwise indicated) (mean: 3.1, median: 3.5)

Answer the following general questions.

(1) What's something significant related to programming languages that you remember from the JarWars

video we viewed and discussed during the second-to-last class?

Tiger was the code name for Java 5, which introduced generics.

(2) Ralph Griswold said, "If you're going to invent a language, be sure to invent a language that you want to

use."

(3) What is the fundamental characteristic of a dynamically typed language?

In general, the type of an expression can't be known without executing the code.

(4) How does Icon avoid the "to versus through" problem that plagues string indexing in many languages and

libraries?

String positions are considered to be between characters.

(5) What's something significant about Icon you recall from the Icon by Observation exercise during the last

class? (Hint: Don't cite your answer for the previous question!)

*x produces the number of elements in x.

(6) With programming languages in general, what's the fundamental difference between a statement and an

expression?

Expressions produce a value; statements don't. Typically the only reason to execute a statement is to produce

a side-effect.

Page 8 of 11

http://www.cs.arizona.edu/classes/cs372/fall06/sml.sli.pdf

(7) Which of the three languages we covered this semester are you most glad we covered, and why?

Haskell 22

Prolog 20

Ruby 9

Extra Credit Section (½ point each unless otherwise noted) (mean: x, median: y)

(1) In as few words as possible, what is "The Cathedral and the Bazaar"? (Mentioned in a7 solutions.)

Book

(2) In what month of the year 1891 were classes first held at The University of Arizona?

October. See also

http://www.arizona.edu/topics/about-university/about-university-arizona/ua-history-and-traditions

(3) With Prolog in mind, why is "camelcase variable" an oxymoron?

Something like maxValue would be an atom!

(4) The technology known as Leda was mentioned on Piazza. What is Leda?

A multi-paradigm programming language created by Tim Budd.

(5) Draw an appropriate avatar for any one of the three languages we covered.

My favorite was Mr. Ferra's "Haskell-Guy", but I'm inclined to call him Lambda Man.

(6) Name a language that was once studied in depth in 372 but isn't any more.

C++, Icon, Standard ML, Lisp, Emacs Lisp are five I know of.

(7) Who do you think whm will vote for in November's presidential election?

There was a lot of variety here, including "nobody", "not Trump", Ralph Griswold, Mickey Mouse (an always

popular write-in, election after election), and "self".

Popular guesses were these:

Bernie 9

Hillary 12

Trump 6

Early on I liked Fiorina, Cruz, Rubio, and Trump; I later came to like Kasich. But Trump's getting my vote in

November!

(8) Why did whm's solution for pipes.pl have the following line? do(p) :- do(pipes).

So the pipes could be shown with just p..

(9) (1 point) mostfreq.rb says to assume that Hash has a sort_by_value method. Write Ruby code that

makes that be true.

class Hash
 def sort_by_value
 self.sort {|a,b| a[1] <=> b[1]}

Page 9 of 11

http://www.arizona.edu/topics/about-university/about-university-arizona/ua-history-and-traditions

 end
end

(10) What did Knuth say about premature optimization?

It's the root of all evil.

(11) (1 point) Using only append and length, and no recursion, write a Prolog predicate longer(A,B), which

is true iff list A is longer than list B.

longer(A,B) :- length(A,N), length(X,N), append(B,[_|_],X).
% by Patrick

(12) (1 point) In SNOBOL4, how do you indicate where control should go if a statement fails?
... :F(LABEL)

(13) whm hates writing up Piazza posts with suggested readings! They usually don't align well with his slides and

he wonders if anybody actually does any of the readings. Over the course of the full semester, how many hours

do you estimate you spent doing the suggested readings? (This is just data collection, no right/wrong.)

N = 43
mean = 3.670
median = 1.000

(14) Write a joke about programming languages.

A number of students expressed their true feelings about various languages with these one-word offerings:

C, Java, JavaScript, Perl, and Prolog.

I believe these are original and worth repeating:

"Prolog was invented by aliens, it's more logical than life."

"I just made a new programming language called FUN (Fantastically Underachieving Newbie!)"

"It won't right on the first run, or the second, or the third, but it might eventually."

 "Prolog should be called Prolonger than Haskell."

"What did Ruby say to her boyfriend Prolog on Valentine's Day? You better HAS something good for me or

I'll KELL you!"

"Why are Java programmers wealthy? Inheritance. [crickets]"

"Knock, knock.

Who's there?

Haskell.

Go away."

"My love for Prolog is TRUE."

Page 10 of 11

(15) Finish this sentence: "If I only remember one thing about 372 it will be ...".

Here are a few:

"To start early."

"the FRIDAY NIGHT CLUB"

"That logic programming is virtually impossible."

"Pancakes" [several of these]

"The day you almost lost your voice during the first week of lecture." [almost?]

"Ruby is a cool language and to stay away from Prolog."

"If you are looking for a job, everyone should know [you are looking for a job]."

"append in Prolog is amazing"

"Programming problems are better when they have pancakes/food in them."

"p a n c a k e s"

"The horror of pancakes."

"Prolog programmers think Haskell is a cute toy."

"How much I love quizzes."

"1000+ slides"

"Haskell sucks"

"Ralph Griswold founded the CS department in 1971."

Statistics

All scores, in order:
104.00, 95.50, 95.00, 92.00, 92.00, 92.00, 91.50, 90.50, 88.50, 88.50,
87.50, 87.50, 87.50, 86.50, 86.00, 86.00, 85.00, 83.00, 81.50, 81.00, 80.50,
80.50, 79.50, 79.00, 79.00, 77.50, 77.00, 76.50, 75.00, 74.50, 74.00, 72.00,
71.50, 71.00, 70.50, 70.00, 69.50, 69.00, 68.50, 68.50, 67.50, 62.50, 62.50,
62.50, 61.00, 58.00, 58.00, 58.00, 57.50, 57.25, 57.00, 56.50, 55.50, 54.00,
50.50, 39.00, 39.00, 31.00

N = 58
mean = 73.306
median = 74.75

Page 11 of 11

CSC 372 Mid-term Exam Solutions

Monday, March 19, 2018

Problem 1: (5 points) (one point each) (mean: 3.72, median: 4, 3 quartile: 4)rd

What is the type of each of the following values? If the expression is invalid, briefly state why.

Assume integers have the type Int. Remember that String is a type synonym for [Char]— the two can be

used interchangeably.

'a'
Char

("a", ['a'])

 ([Char], [Char])

snd (Reminder: snd produces the second element of a 2-tuple.)
(a, b) -> b

map snd
[(a, b)] -> [b]

fold . length (3 + 4)

Error! length wants a list (actually a Foldable).

Problem 2: (3 points) (mean: 1.7, median: 2, 3 quartile: 2)rd

This problem is like ftypes.hs on a3. Write functions f1, f2, and f3 having each of the following types.

There are no restrictions other than you may not use an explicit type declaration. (e.g. f1::...)

f1 :: (a,b) -> (b,a,b)
f1 (a,b) = (b,a,b)

f2 :: [a] -> [b] -> (b,a)
f2 [a] [b] = (b,a)

f3 :: (a -> b) -> a -> b -> b
f3 f a b = head [f a, b]

Problem 3: (7 points, as indicated) (mean: 4.93, median: 5.5, 3 quartile: 6.5)rd

This problem is like warmup.hs on the assignments—write the following Haskell Prelude functions.

Instances of poor style or needlessly using other Prelude or helper functions will result in deductions.

Be sure to use the wildcard pattern (underscore) when appropriate.

Page 1 of 8

There's no need to specify function types.

snd (Returns second element of a two-tuple) [1 point]
snd (_,b) = b

not [1 point]
not False = True
not _ = False

at list n (Like list!!n. Assume n is in-bounds.) [2 points]
at (h:_) 0 = h
at (_:t) n = at t (n-1)

map [2 points]
map _ [] = []
map f (h:t) = f h : map f t

flip (Reminder: flip take "abc" 2 == "ab") [1 point]
flip f x y = f y x

Problem 4: (12 points) (6 points each) (recursive—mean: 5.55, median: 6, 3 quartile: 6)rd

 (non-recursive—mean: 4.82, median: 6, 3 quartile: 6)rd

For this problem you are to write both recursive and non-recursive versions of a Haskell function

sumexcl nums exclude, having type [Int] -> Int -> Int, that returns the sum of the values in

nums, excluding all occurrences of the value exclude.

> sumexcl [1,10,2,3,10] 10
6

Recursive
sumexcl :: [Int] -> Int -> Int
sumexcl [] _ = 0
sumexcl (x:xs) e
 | x == e = sumexcl xs e
 | otherwise = x + sumexcl xs e

Non-recursive:
sumexcl :: [Int] -> Int -> Int
sumexcl list e = sum $ filter (e /=) list

Problem 5: (6 points) (mean: 5.40, median: 6, 3 quartile: 6)rd

Certain conditional code in Haskell can be written in three different ways:

• with if-else

• with guards

• with patterns

Imagine a function f that returns 'a' if called with 1 or 2 but if called with any other number, it returns 'b'.

For this problem you are to write three versions of f: one using if-else, one using guards, and one using

patterns.

Page 2 of 8

With if-else:
f x = if x == 1 || x == 2 then 'a' else 'b'

With guards:
f2 x
 | x == 1 || x == 2 = 'a'
 | otherwise = 'b'

With patterns:
f3 1 = 'a'
f3 2 = 'a'
f3 _ = 'b'

Problem 6: (6 points) (mean: 4.18, median: 5, 3 quartile: 5.5)rd

The Haskell function evenwords s returns a string containing only the even-length words in the

string s. Here is an incomplete solution for evenwords:

evenwords s = unwords (foldr ff [] (words s))

What's missing is the folding function ff. Your task for this problem is to write the function ff.

ff w acm
 | even $ length w = w : acm
 | otherwise = acm

Problem 7: (18 points) (7 and 11 points, respectively) (recursive—mean: 6.19, median: 6.5, 3 quartile: 7)rd

 (non-recursive—mean: 5.21, median: 5, 3 quartile: 10.5)rd

For this problem you are to write both recursive and non-recursive versions of a function

deo having type[Int] -> [Int], that doubles every other number in a list.

Recursive:
deo [] = []
deo [x] = [x]
deo (x1:x2:xs) = x1:(x2 * 2):deo xs

This is the non-recursive solution I initially wrote:

deo list = result
 where
 double = cycle [False,True]
 result = map f $ zip double list
 f (True,x) = x * 2
 f (_,x) = x

But Mr. McClean showed me the right way to do it:

deo_mc nums = zipWith (*) nums $ cycle [1,2]

Page 3 of 8

Problem 8: (5 points) (one point each unless otherwise indicated) (mean: 3.54, median: 3.5, 3 quartile: 4.5)rd

The following questions and problems are related to Haskell.

(1) In Haskell, as in many functional languages, the list type is a "cons list". Using the style shown in the slides,

draw a diagram of the list [10,20,30].

I'm lazy! See b on slide 140.

(2) What's wrong with the following statement regarding a Haskell function named f?

"The type of f is (Int, Char)."

If f is a function, there should be a -> in the type.

(3) What is the essential idea of lazy evaluation?

Expressions are not evaluated until their value is needed.

(4) In Haskell, what's the difference between a type and a type class?

A type is a set of values. A type class is a set of types.

(5) If a Haskell function requires three parameters but is called with only two parameters, what happens?

A partial application is produced.

Problem 9: (15 points) (mean: 12.23, median: 14.5, 3 quartile: 15)rd

Write a Ruby program that reads lines from standard input and upon end of file writes the longest line and its line

number to standard output. If there are ties for the longest line, the program writes out all the lines that tie. If

there is no input, the program produces no output.

longest = -1
num = 1
result = []

while line = gets do
 line.chomp!
 len = line.size
 if len > longest then
 result = [[num,line]]
 longest = len
 elsif len == longest then
 result << [num,line]
 end
 num += 1
end

for num, line in result do
 puts "#{num}: '#{line}'"
end

I have to admit there was some fantasy in the assignment 5 solutions. In the assignment 5 write-up I mentioned

Page 4 of 8

that I'd used longest.rb a number of times but over time enough students had become unduly frustrated with it

that I decided to make it a zero-pointer this semester. Nobody turned in a solution for it this semester, but

nonetheless I recycled the detailed story about student encounters from the Spring 2016 solutions since I felt it had

some good lessons. But since nobody turned in a solution for it, I felt ok about putting a simple version of it on the

exam.

Quite a few exam solutions stored the full input in an array, noting the length of the longest line in the process, and

then making a second pass over the array, printing lines of that length. Memory is really cheap these days but I

think there's still merit in algorithms that are conservative with memory.

Here's a slightly different version of the main loop, based on several solutions:

while line = gets do
 line.chomp!
 len = line.size
 if len > longest then
 result = []
 longest = len
 end
 if len == longest then
 result << [num,line]
 end
 num += 1
end

BEFORE READING FURTHER, see if you can find the bug in the loop above.

At first glance I thought that the code above was buggy but in fact it works just fine. It took me a second look to

realize that the first if sets longest to len, which makes the second if's condition be true. Which of the two

forms do you prefer?

Problem 10: (9 points) (mean: 6.8, median: 8, 3 quartile: 8.5)rd

Write a Ruby program whose command-line arguments are pairs of counts and strings. For each pair, the string

is replicated by the associated count and written to standard output. All strings are output on a single line with no

separation, but that line does end with a newline.

If run with no arguments or an odd number of arguments, the program prints a question mark on a line by itself.

Assume counts are always non-negative integers.

This was my first solution:

a = ARGV

if a.empty? || a.size.odd? then
 puts "?"
 exit
end

while !a.empty? do
 n, s = a[0,2]
 print s * n.to_i
 a.slice!(0,2) # Why not: drop!(2) would be nice here.
end

Page 5 of 8

puts

I generally avoid indexing when I can, but in the process of grading this problem I came to like better a loop that

uses indexing:

i = 0
while a[i]
 n, s = a[i,2]
 print s * n.to_i
 i += 2
end

However, Enumerable.each_slice lets us replace the loop with a one-liner:

a.each_slice(2) {|n,s| print s * n.to_i}

Problem 11: (5 points) (one point each unless otherwise indicated) (mean: 2.75, median: 3, 3 quartile: 3)rd

The following questions and problems are related to Ruby.

(1) In class it's been said that some Ruby methods are applicative and others are imperative. What's the

difference between the two?

Applicative methods never modify their receiver but imperative methods might in some cases.

(2) What is the value of the following Ruby expression? ""[0] || [""][0]

"" (empty string)

(3) What is a major way in which Ruby arrays differ from Java arrays? (OR, What is a major way in which Ruby

arrays differ from Java lists?)

Ruby arrays differ from Java arrays in many ways. Ruby arrays...

• Are heterogeneous

• Allow negative indexing

• Can be concatenated

• Can have elements inserted or deleted

• And more!

A fundamental difference between Ruby arrays and Java's List hierarchy is that Ruby arrays can be accessed

with symbolic syntax like a[n], a[start,len] and more.

(4) What is the value of the following Ruby expression? [1,2,3,3] <=> [1,2,3,5]

(a) -1

(b) 0

(c) 1

(d) 2

(5) With duck typing in mind, what are two things that must be true for x[y] to be a valid expression?

x must have a .[] method for which y is a valid argument.

As mentioned at the start of the exam, this question was out of bounds wrt. the material I said the exam would

Page 6 of 8

cover. To compensate for that, the score written on the front of your exam is your actual score plus one point.

If you went ahead and correctly answered this question, you got a point for that, too.

Problem 12: (9 points) (one point each unless otherwise indicated) (mean: 4.63, median: 5, 3 quartile: 6.5)rd

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when? (Hint: the ASCII code for

'D' is 68.)

One student wrote, "1791". Dr. Ralph Griswold was certainly a pioneer but he didn't found our department

until 1971.

For years I had trouble remembering whether it was 1971 or 1972 but when I learned the ASCII codes I

noticed that the code for 'G', like in Griswold, was 71, and I never had trouble with that again.

I hinted that 'D' was 68 to help those who might have remembered the connection to ASCII from intro slide 39

but didn't know the code for any uppercase letter.

(2) Circle the best answer:

Ralph Griswold said that if you're going to design a language it should be...

 (a) A language you want to use

 (b) A language that is easy to use

 (c) A language that many people will want to use

 (d) A language that professional developers will want to use

(3) In general, which is larger and why, the mental footprint required to be able to write code in a language or

the mental footprint required to be able to read code in a language?

As discussed in class, the reading footprint is bigger because while you can solve any problem using only a

small, Turing complete subset of a language, to read an arbitrary program, you might need to any or all parts

of the language.

(4) In class it was said that some language designers have an attitude of "Why?" and others have an attitude of

"Why not?" What's the difference in those two attitudes? Support your answer with a brief example.

I felt Mr. Chipman said it best:

"Why?—you need a good reason to add a feature.

"Why not?—you need a good reason to not add a feature.

We've seen lots of examples of how Matz seems to tend toward "Why not?" with Ruby.

(5) As it relates to this class, what's a dunsel?

The answer to this can be found in any of the assignment solutions that have been distributed.

(6) Specifications for programming languages generally focus on two areas, syntax and semantics. With respect

to programming languages what does "semantics" mean?

The meaning of a sequence of symbols.

(7) We've talked about three aspects of expressions: value, type, and side effect. For each of the three, write a

Page 7 of 8

sentence or two that describes the concept (i.e, value, type, or side effect), being sure to cite an example. (1

point each)

Extra Credit Section (½ point each unless otherwise noted) (mean: 0.67, median: 0.25, 3 quartile: 1)rd

(1) What's the value of the following Ruby expression? [1,2,3].each { puts 1 }
[1,2,3]

(2) In Ruby, what is the output produced by "abc".each { |s| puts s[0].size.class }?

It's an error. The String class doesn't have an each method, to my dismay.

(3) Write a Haskell function with the following type: (a,b,a) -> (b,a,b)

f (a,b,a) = (b,a,b) was a common answer but you'll need to wait for Prolog if you want to name a

parameter more than once in the argument list. Meanwhile, you can do this:
f (a,b,_) = (b,a,b)
f (_,b,a) = (b,a,b)

(4) What is the name of the Ruby operation performed by [1,2,3] * "x" ?

Intercalation

(5) Fill in the blanks below to produce a Haskell expression whose value is a function.

 take $ 5

(6) In ghci, what's something :info will show me that :type won't?

For one thing, :info + will show the precedence of that operator.

(7) What's wrong with the following statement? "Java is an interpreted language."

Slide 76: "Interpretation and compilation are attributes of an implementation of a language, not the

language itself!"

(8) Fill in the blanks: Cells in a cons list comprise a/an head and a/an tail .

(9) As a Ruby programmer, tell me what MRI is.

Matz Ruby Implementation

(10) Honor system: If you've created at least two Chrome (or Firefox, etc.) search engines, as described in

cs.arizona.edu/~whm/o1nav.pdf and suggested on on Ruby slide 9, what are their keywords? (i.e.,

What do you type in the address bar to invoke them?)

I was disappointed that only six students earned this easy half-point. I wonder if the class will fare any

better on the final exam.

Here are all scores, in descending order:
100.25, 98.75, 95, 92.25, 90.5, 90, 89.5, 88.75, 88, 85.75, 83.5, 83, 82.5,
82.5, 81.5, 80, 79.75, 79, 79, 79, 78.75, 78.25, 78, 77.25, 76, 75, 74.5, 73.5,
73, 71.75, 71.25, 70.5, 67.25, 64.75, 64.25, 63.5, 62, 60, 59.5, 58.5, 58.5, 57,
56, 55, 53.5, 52, 49.25, 49, 41.5, 39.5

To see your rank, put the lines above in a file x and do this: tr , \\n < x | cat -n

N = 50, mean = 72.7, median = 75.5, 3 quartile: 82.5rd

Page 8 of 8

CSC 372 Final Exam Solutions

Tuesday, May 8, 2018

Problem 1: (6 points) (mean: 5.58, median: 6)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of

the three should be about a different language and have a bit of depth, as described in the Piazza post that

announced this problem.

When grading I tallied the video topics that were cited and came up with the counts below, with a cut-off of three.

There were multiple videos on some topics; a combined total is shown for those.

Python Magic Methods (combined) 15

PHP Arrays (combined) 11

Optionals in Swift 11

Tables in Lua 10

Java Lambdas and Streams (combined) 10

Bash Arrays (combined) 10

For-else clause in Python 9

Ownership in Rust 7

String Scanning in Icon 6

LINQ (Language Integrated Query) in C# 6

Functors in Haskell 5

Lambdas + Macros in Clojure 4

C++ Classes and Objects 3

INLINE X86 in C: A New Hope 3

Ruby Threads (combined) 3

There were four videos that I felt were particularly outstanding for one reason or another. Authors are not cited

because I promised the potential of anonymity. In alphabetical order, here are those four videos:

Constraint Logic Programming Over Finite Domains

Feature and Usage of java.util.stream

Optionals in Swift

Ownership in Rust

Page 1 of 12

https://www.youtube.com/watch?v=N5NSBSkWzco
https://youtu.be/w2ixVQjbGGw
http://u.arizona.edu/~wenkangzhou/V.mp4
http://u.arizona.edu/~wenkangzhou/V.mp4
https://youtu.be/k0fIXBenegI

Problem 2: (6 points) (mean: 4.62, median: 6)

Given the following Haskell function definition,

f xs ys = foldr (++) [] (map m (zip xs ys))
 where
 m (a,b) = [a,b]

What does the following expression produce?

f ['h','e','l','l','o'] "hello"

 a) "hellohello"

 b) ["hh","ee","ll","oo"]

 c) [('h','h'),('e','e'),('l','l'),('o','o')]

 d) "hheelllloo"

 e) A type error of some sort.

Michael wrote this question for the mid-term. I ended up without a good place for it then but I found it perfect for

the final, both due to its use of higher-order functions and a well-designed set of distractors.

Problem 3: (4 points) (mean: 3.53, median: 4)

Write a Haskell function again list, of type Eq t => [t] -> Bool, that returns True if and only if the

first element of list appears again elsewhere in the list.

again returns False if list has less than two elements.

This problem can be solved in many ways but here's a solution facilitated by the higher-order function

any, of type Foldable t => (a -> Bool) -> t a -> Bool:

again (x:xs) = any (==x) xs
again _ = False

Problem 4: (3 points) (mean: 2.68, median: 3)

Write a Ruby iterator inorder(x,y,z) that yields the values x, y, and z in ascending order. Assume that x,

y, and z can be sorted with Ruby's Enumerable#sort method. inorder always returns nil.

def inorder(x,y,z)
 [x,y,z].sort.each { |x| yield x }
 nil
end

Page 2 of 12

Problem 5: (6 points) (mean: 4.85, median: 5.75)

This Ruby problem is similar to btw.pl from assignment 9. Write a Ruby iterator btw(a,sep) that yields

copies of the array a with sep inserted between each element of a in turn. btw(a,sep) returns a.

My first solution was this,

def btw(a,sep)
 for i in 1...(a.size)
 yield a[0...i] + [sep] + a[i..-1]
 end
 a
end

but it took me a little time to convince myself that the subscripts were right. Both Mr. Duvall and Mr. Wan used

Array's take and drop instead, and I found that far easier to reason about. Here's an example of that approach:

def btw(a,sep)
 for n in 1...(a.size)
 yield a.take(n) + [sep] + a.drop(n)
 end
 a
end

A simpler solution that might well run as fast as the above two is to repeatedly make a copy of the array a, and

insert the separator at the appropriate position for each yield:

def btw(a,sep)
 for i in 1...(a.size)
 a2 = a.dup
 a2.insert(i, sep)
 yield a2
 end
 a
end

A common error was to end up with multiple copies of sep in the yielded array.

Problem 6: (5 points) (mean: 4.24, median: 5)

This problem is similar to re.rb on assignment 7. Write a method zip_re that returns a regular expression

that matches the city/state/zip line of postal addresses, like these:

Tucson, AZ 85750
Beverly Hills, CA 90210
Walkertown, NC 27051

Solution:
 def zip_re
 /^(?<city>[A-Z][A-Za-z]*[a-z]), +(?<state>[A-Z]{2}) +(?<zip>\d{5})$/
 end

Page 3 of 12

Problem 7: (9 points) (mean: 7.80, median: 8.5)

For this problem you are to write a Ruby program that implements a very simple simple line-oriented calculator.

It supports three commands/operations:

variable=integer

Assigns the integer value to the specified variable.

var1=var2+var3

 Assigns the sum of var2 and var3 to var1.

/vars

 Print all variables and their values. Simplification: Variables can be printed in any order.

A number of students used regular expressions and/or split to parse the commands but I'd written the problem

with the intention of simple string indexing being sufficient, like this:

vars = {}
while line = (print "calc> "; gets)
 line.chomp!
 if line == "/vars"
 for var,val in vars
 print("#{var}: #{val}\n")
 end
 elsif line =~ /\+/
 vars[line[0]] = vars[line[2]] + vars[line[4]]
 elsif
 vars[line[0]] = line[2..-1].to_i
 end
end

Problem 8: (5 points) (mean: 4.8, median: 5)

In this problem you are to implement a Ruby class named Rope that represents a length of rope that can be cut into

two pieces.

class Rope
 def initialize(len)
 @pieces = [len]
 end

 def cut(len)
 if @pieces.size == 1 and len < @pieces[0]
 @pieces = [@pieces[0] - len, len]
 true
 else
 false
 end
 end

 attr_reader :pieces
end

Most students used two or three instance variables, but as you can see above, one is all you need.

Page 4 of 12

Problem 9: (3 points) (mean: 2.40, median: 3)

Write a Prolog predicate ints_atoms(+L,-E) that first instantiates E to each integer in L, and then instantiates

E to each atom in L.

ints_atoms(L,E) :- member(E,L), integer(E).
ints_atoms(L,E) :- member(E,L), atom(E).

Problem 10: (5 points) (mean: 3.39, median: 4.5)

Write a predicate middle(+List, -M) that instantiates M to the middle element of the list L. middle fails if

the list has an even number of elements.

RESTRICTIONS:

 • Just like on append.pl on assignment 9, the only predicates you can use are length and append.

 • middle cannot be recursive.

middle(L,M) :-
 append(First,Rest,L), append([M],Last,Rest),
 length(First,Len), length(Last,Len).

Problem 11: (7 points) (mean: 5.44, median: 6.5)

For this problem you are to write a Prolog predicate sumneq(+L, -Sum). The first argument, L, is a list of

vp/2 structures where both terms are integers. sumneq looks for vp structures with unequal terms, like

vp(3,4) and vp(-10,2), but not vp(3,3). For each vp structure with unequal terms, sumneq computes the

product of those two integer terms and then instantiates Sum to the sum of all those products.

sumneq(L,Sum) :-
 findall(Sum, (member(vp(X,Y),L), X\==Y, Sum is X*Y), Sums),
 sumlist(Sums,Sum).

Problem 12: (7 points) (mean: 5.32, median: 6.5)

Write a predicate updown(+Ints, -Atom) that instantiates Atom to a series of atoms in turn, based on the

integers in Ints. Example:

?- updown([3,1,5], A).
A = 'up three' ;
A = 'down three' ;
A = 'up one' ;
A = 'down one' ;
A = 'up five' ;
A = 'down five'.

My solution:

updown(Nums, A) :-
 member(Num, Nums), member(UD, ['up ','down ']),
 n(Word,Num), atom_concat(UD,Word,A).

Page 5 of 12

Problem 13: (10 points) (mean: 6.24, median: 8)

Write a Prolog predicate seating(+Host, +Guests, -Seating) that determines the seating for a dinner

party to be attended by some number of conservatives and liberals.

seating(Host, Guests, [Host|Seating]) :-
seatingH(Host,Guests,Seating),
append(_,[Last],Seating), ok(Host,Last),!.

seatingH(_,[],[]).
seatingH(Seated, People, [Person|Seating]) :-
 select(Person, People, Remaining),

ok(Seated,Person),
seatingH(Person, Remaining, Seating).

ok(lib(_,_),lib(_,_)).
ok(con(_,_),con(_,_)).
ok(con(_,D1),lib(_,D2)) :- D1 + D2 =< 4.
ok(lib(_,D1),con(_,D2)) :- D1 + D2 =< 4.

ok/2 can be reduced to three clauses by using a cut in a way we barely discussed, to prevent later clauses

from being tried if we simply unify with the head in either of the first two clauses:

ok(con(_,D1),lib(_,D2)) :- !, D1 + D2 =< 4.
ok(lib(_,D1),con(_,D2)) :- !, D1 + D2 =< 4.
ok(_,_).

The predicate =../2, mentioned in the extra credit section, can be used to produce a less repetitious

ok/2 that is perhaps also less readable:

ok(P1,P2) :-
P1 =.. [T1,_,D1], P2 =.. [T2,_,D2], T1 \== T2, !, D1 + D2 =< 4.

ok(_,_).

Problem 14: (10 points) (one point each unless otherwise indicated) (mean: 7.71, median: 8)

The following questions and problems are related to Prolog.

(1) Write a sentence that expresses the relationship between the terms "fact", "clause", and "rule".

Both facts and rules are clauses.

(2) Prolog goals were modeled using the "Four port model". What are the four ports?

call, exit, redo, fail

(3) If a predicate with three clauses is being evaluated and the first clause fails, what does Prolog do?

It tries the second clause.

(4) What's the most important fundamental difference between a Prolog predicate like length/2 and a

function/method of the same name in Haskell, Ruby, or Java?

In Haskell, Ruby, Java, and other conventional languages, length simply returns the length of a

list. In Prolog, length(?List,?Len)can (1) produce the length of List, (2) produce a list of

Len uninstantiated variables, (3) see if the length of List is Len, (4) produce all List/Len

pairs.

Page 6 of 12

(5) What did you find hardest to understand about Prolog?

(6) In your mind, what's the most interesting thing about Prolog?

A wide variety of answers earned points on these two questions.

(7) What does the predicate trace/0 do?

Turns on tracing.

(8) Write a Prolog clause that would generate a singleton warning.
f(X).

(9) (Two points) What does the findall predicate do?

Evaluates a query and for each result produced adds an instance of a template to a list that is

ultimately produced as the result of findall.

Problem 15: (2 points) (mean: 1.21, median: 1)

The following questions about SNOBOL4 are one point each. You may answer as many as you want but the

maximum score on this problem is 2 points.

(1) Write a SNOBOL4 program that copies standard input to standard output, just like the cat command.

(For a point of extra credit, implement tac instead, copying lines in reverse order—last line first, first

line last. Hint: remember that char(10) produces a newline character.)

$ cat cat.sno
loop output = input :s(loop)
end

$ cat tac.sno
loop result = input char(10) result :s(loop)
 output = result
end

Note: The tac.sno above is acceptable but in fact it produces an extra newline at end of the output. We

can avoid that by using rtab (tab to from-right position) to match all but the last character and assign it to

output.

loop result = input char(10) result :s(loop)
 result rtab(1) . output
end

(2) Write a SNOBOL4 expression that concatenates the strings held in the three variables x, y, and z.
x y z

(3) In the following SNOBOL4 statement, which would start in column 1, what does the ". x" mean?

 loop line span(&digits) . x :f(p)

Assign the spanned digits to the variable x.

(4) In the SNOBOL4 statement above, what does :f(p) mean?

If the pattern match fails, go the statement whose label is p.

(5) Tell me something else of significance about SNOBOL4.

Page 7 of 12

Lots of answers sufficed here, but a common one was that Ralph Griswold played a central role in

the creation of the SNOBOL family.

One student wrote, "This is the language that Mr. Mitchell coded in during his prime."

Problem 16: (2 points) (mean: 1.33, median: 2)

The following questions about Icon are one point each. You may answer as many as you want but the maximum

score on this problem is 2 points.

(1) Briefly describe Icon.

Ruby meets Prolog

(2) What is the output of the following Icon expression? write(2 > 3, 2+3, !"abc")

The expression 2 > 3 fails. That failure propagates and causes the write to fail, in turn causing

no output whatsoever to be produced.

(3) What was a fundamental design goal of Icon's string scanning mechanism?

Be able to interleave string matching operations with regular computation—compute a little, match

a little, ...

(4) What's something that Prolog and Icon have in common?

Backtracking

(5) Tell me something else of significance about Icon.

Just like in the SNOBOL4 section, a common answer was that Ralph Griswold played a central

role in the creation of Icon.

Problem 17: (10 points) (one point each unless otherwise indicated) (mean: 6.9, median: 7)

Answer the following general questions.

(1) This is a "matching" problem. Draw a line connecting each of the following language facilities on the left

with the best characterization of primitives vs. idioms/techniques for that language on the right.

Here are the correspondences:

Icon's string scanning: Few primitives but many idioms/techniques

 Regular expressions in Ruby: Many primitives but few idioms/techniques

 SNOBOL4 patterns: Few primitives and few techniques

(2) What is a fundamental characteristic of a statically typed language?

The type of every expression can be determined by analyzing the code.

(3) What is the essence of the duck typing mindset?

Writing code that is concerned only with whether a value supports the operations that are used, not

the type of the value.

(4) With programming languages in general, what's the fundamental difference between a statement and an

expression?

Expressions produce values; statements don't.

Page 8 of 12

(5) What is the basic idea of type inferencing?

Mr. Chambers wrote the following, which I considered to be an Original Thought:

"You act like this type, so you must be it."

(6) In any language you know, write an expression that has both a value and a side-effect. Cite the language, too.

In C and Java, x=1 and x++ are two examples. In Python, x=1 is statement, not an expression.

(7) What is a fundamental benefit provided by a REPL?

I failed to note who wrote it, but I loved this answer: "Fun"

(8) Tell me something about the concept of paradigms that is unrelated to programming paradigms in particular.

A paradigm has a vocabulary.

(9) (Two points) Which of the three main languages we covered this semester are you most glad we covered, and

why?

Some students answered with multiple languages; I divided such "votes" accordingly. The counts:

Haskell: 11.33

Ruby: 11.33

Prolog: 24.17

Extra Credit Section (½ point each unless otherwise noted) (mean: 3.59, median: 4)

(1) The slides had some quotes from prior 372 students. What's something you remember about one of them?

Eleven students cited Astier's Analogy—Prolog predicates are like D/C motors. Others cited Swartz re

append , Nguyen re expressions vs. statements, and Sleiman re findall.

(2) What does the Prolog predicate =..(?Struct, ?List) do?

It expresses an equivalence between lists and structures:

?- con(david,3) =.. L.
L = [con, david, 3].

(3) What is the Chomsky hierarchy a hierarchy of?

Languages

(4) What's an example of a list that Prolog can sort but that Ruby and Python 3 can't?
[1, "two"]

(5) (One point) Present a brief argument either in favor of keeping Prolog as a 372 language or replacing it.

The count was 27 to 2 in favor of keeping Prolog.

(6) Pick a nickname for one of the five languages we studied and explain why it's appropriate.

Mr. Morgan wrote,

"Truth or Dare: Prolog. Either check and see if it is true or I dare you to try and make it so."

That looks like an Original Thought to me!

Here are the others: (apologies if I overlooked any!)

"Haskiller"

"Haskill, it will kill your fear of recursion."

"Truly Functional Fun = Haskell"

"Pro-long for Prolog because most of the clauses in Prolog are really long."

"Haskell -> Lazy Language"

Page 9 of 12

"Prolog = Lil Logic. The Lil makes it cool, and Logic because Prolog is a fact based language."

"Haskell -> Nightmare. Enough said."

"Hask(hell) because it is hell to learn"

"Ruby = Diamond. More pretty."

"Prolog = APE. I chose this nickname because I feel we use append in the all the programs. :)"

"Mathskell, relation to math functions"

"It might be Ruby but it's a diamond in the rough..."

"Husky for Haskell 'coz both are fun."

"SNOBOL4 = Out-dated regEx's, typically new languages provide great libraires and regExs in place of

SNOBOL4 features."

"Stupid - Haskell, name fits."

"Prolog: "Just the facts, ma'am." Entirely logic based."

"Haskell - recursion hell"

"Prolog - One liners—mostly gigantic single line expression"

"Friendly: Ruby = so many options; friendly to old and new programmers"

"Ruby: Typing Ducks"

"Ruby - Shape Shifter—it looks familiar but it's not as easy as it looks"

"Haskell -> Hasl-ALL, everything is a hassle"

(7) Put the five languages we studied in order by their age, oldest first.

SNOBOL4, Prolog, Icon, Haskell, Ruby. When grading, any order for the five was accepted.

(8) What's a piece of wisdom from Ralph Griswold that whm passed along to you?

Eight students cited some form of "If you're going to design a language, design a language you want to use."

Six students remembered that Ralph said I could add some number of features to Icon if I could find a

corresponding number of features to remove.

Others:

"Humans start counting at 1."

"Simplicity is important."

"Less is more in a language."

(9) What is a non-control, non-alphanumeric character and its ASCII code?

Results on this question were disappointing. Do man ascii on lectura.

If you ever take time to memorize the ASCII character set, wait a year or two, and then let me know whether

you thought the effort was worthwhile.

(10) Where in Gould-Simpson could leftover 372 handouts be found?

On the shelves at the 8 floor freight elevator.th

(11) The TAs were required to learn all of your names. What are the TAs' names? (First and last!)

Alex Koltz and Michael Ordaz

(12) Late in the semester the class was invited to a sporting outing. What was the sport?

Bowling. Other answers: soccer, riding, "drinking and talking".

(13) Finish this sentence: "If I only remember one thing about 372 it will be ...". (apologies if I overlooked any!)

"Haskell is not the language for me!"

"Haskell"

"To always appreciate a REPL."

Page 10 of 12

"Prolog"

"Spending 20+ hours on an assignment and feeling very proud/accomplished despite wanting to pull my hair

out."

"the night club on every fridays"

"The University of Arizona was well-known by creating programming languages like Icon."

"The reason I no longer eat pancakes."

"Pancakes"

"Haskell's a pain / take all time"

"long office hours"

"Pancakes"

"Prepare for Prolog"

"Always have office hour in 914 until midnight."

"How great it was."

"How it feels to turn in this final."

"That some languages can handle tasks much more concisely than mainstream languages."

"Haskell gave me scars."

"Pancakes"

"Prolog is hard."

"Being surprised on day 1 when whm knew my name."

"Pancakes"

"Mr. Mitchell"

"That Java and Python and the other imperatives are computing but computing is not imperative. I.e., there

are other ways to think about computation than imperatively."

"The huge assignment 9"

"Bowling is a sport."

"Putting the fun in functional programming."

"The size of the spec as I awake from my nightmare."

"Mr. Mitchell's handouts"

"Haskell will kick your butt and laugh at you while you cry."

"How much whm cares for the success of his students."

"STAY AWAY FROM HASKELL"

"The importance of choosing the right language for a task."

"What it's like to be a good teacher."

"How much time I spent on open frames in bowl.rb."

"whm worked on Icon."

"That I am not a fan of Prolog."

"whm"

"Haskell is hard."

"Maybe I should stick to Java."

(14) (Zero points) whm booked his best of time of the semester ascending the steps to the eighth floor before Sunday's

practice session! What was his time? (a) 25 seconds (b) 50 seconds (c) 1:40 (d) 3:20 (e) 6:40

Overall statistics

For the record, the exam started with a twelve minute walk-through that ended at 3:42pm. The exam ran until 5:40pm,

a total of 118 minutes.

All final exam scores, in order:
104.50, 102.00, 100.00, 98.25, 98.00, 96.75, 96.75, 96.50, 95.00, 94.00,
93.50, 92.25, 91.50, 91.00, 90.75, 90.50, 90.00, 87.25, 86.50, 86.00, 85.50,
85.00, 85.00, 83.50, 83.00, 83.00, 82.50, 81.25, 80.75, 79.75, 79.25, 78.50,

Page 11 of 12

76.25, 76.00, 74.75, 72.25, 71.25, 69.00, 68.25, 66.00, 65.00, 62.00, 51.00,
46.50, 45.00, 44.25

N = 46
mean = 81.6
median = 84.25

Page 12 of 12

CSC 372 Midterm Exam Solutions
Wednesday, November 2, 2022

Problem 1: (5 points) (one point each) (mean: 3.4, median: 3.5, 3rd quartile: 4)

What is the type of each of the following Haskell expressions? If the expression is invalid, briefly state
why.

[1..3]
[Int]

('x',['x'])

(Char, [Char])

length
[a] -> Int

tail "head"
[Char] (or String)

map isDigit
[Char] -> [Bool]

Problem 2: (6 points) (mean: 4.5, median: 5.3, 3rd quartile: 5.5)

This problem is like ftypes.hs on a3. Write functions f1, f2, and f3 having each of the following
types. There are no restrictions other than you may not use explicit type declarations. (e.g. f1::...)

f1 :: [a] -> Int
f1 [a] = length [a]

f2 :: a -> b -> c -> [b]
f2 a b c = [b]

f3 :: [(a, b)] -> ([b], [c])
f3 [(a,b)] = ([b],[])

Problem 3: (4 points, as indicated) (mean: 2.75, median: 3, 3rd quartile: 4)

This problem is like warmup.hs on the assignments—write the following Haskell Prelude functions.

tail [1 point] (Assume the list is never empty.)

tail (_:t) = t

Page 1 of 11

last [1 point] (Assume the list is never empty.)

last [x] = x
last (_:t) = mylast t

zip [2 points] (Remember that the length of the shorter list is the length of the result.)

zip (a:as) (b:bs) = (a,b) : zip as bs
zip _ _ = []

Problem 4: (18 points) (8 points each + 2 points for types)
(recursive—mean: 6.1, median: 8, 3rd quartile: 8)

 (non-recursive—mean: 6.2, median: 8, 3rd quartile: 8)
(types—mean: 1.8, median: 2, 3rd quartile: 2)

For this problem you are to write both recursive and non-recursive versions of a Haskell function
mkintlists that takes a list of strings of digits and returns a list of Ints with corresponding values.

> mkintlists ["315","91", "", "713"]
[[3,1,5],[9,1],[],[7,1,3]]

In the recursive version ONLY, use error "even!" to produce an error if an even digit is encounted:

> mkintlists ["31","12"]
*** Exception: even! (Non-recursive version would produce [[3,1],[1,2]]).

BEFORE writing your two versions of mkintlists, what is the type of...
 mkintlist? [[Char]] -> [[Int]]
digitToInt? Char -> Int

Recursive:

mkintlists [] = []
mkintlists (s:ss) = doStr s : mkintlists ss

doStr [] = []
doStr (d:ds)
 | even val = error "even!"
 | otherwise = val : doStr ds
 where
 val = digitToInt d

Non-recursive:
mkintlists strings = map (map digitToInt) strings

Page 2 of 11

Problem 5: (15 points) (mean: 10.1, median: 14, 3rd quartile: 15)

Without writing any recursive code, write a Haskell function vcnp :: String -> Int that
counts the number of vowels in a string that are not immediately preceded by a vowel. Vowels may be in
upper or lower case. Examples:

> vcnp "ate"
2

> vcnp "Oopsie!"
2

> vcnp "a-e-i-o-u-A-E-I-O-U"
10

Solution:

isv c = toLower c `elem` "aeiou"

f (last,count) c
 | isv last = (c, count)
 | isv c = (c, count+1)
 | otherwise = (c, count)

vcnp s = snd $ foldl f ('x',0) s

I was dismayedby the number of students who wrote out ['a','e','i','o','u'] instead of
"aeiou". And, at least one student, wrote that out twice.

Problem 6: (17 points) (mean: 10.7, median: 15.5, 3rd quartile: 16.5)

Write a Haskell function coords rows cols with type Int -> Int -> IO () that PRINTS row
and column coordinates for a grid with the given number of rows and columns. Example:

> coords 3 4
(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

Solution:

-- my first version of mkrc:
-- mkrc row col = concat ["(",show row,",",show col,")"]
mkrc row col = show (row, col)

mkrow cols row = unwords $ map (mkrc row) [0..cols-1]

coords rows cols =
putStr $ unlines $ map (mkrow cols) [0..rows-1]

Page 3 of 11

Problem 7: (5 points) (one point each unless otherwise indicated) (mean: 2.9, median: 3, 3rd quartile: 4)
The following questions and problems are related to Haskell.

(1) The Haskell expression below has more parentheses than are needed! Mark ALL the parentheses
that can be removed without changing the value of the expression.

Before: (take 3) (show x) ++ (replicate 5) (chr 66)
After: take 3 (show x) ++ replicate 5 (chr 66)

(2) Given the type of a function, how can we quickly tell if the function is polymorphic?

A function is polymorphic if any parameter has a type variable.

(3) Add parentheses to the type below to fully show the right-associativity of the -> type operator.

Before: Int -> [Int] -> (Char -> Bool -> Bool) -> String
After: Int -> ([Int] -> ((Char -> (Bool -> Bool)) -> String))

(4) Briefly explain how the following map works, paying particular attention to the function being
mapped. (That function is the result of (uncurry $ flip replicate).)

> map (uncurry $ flip replicate) [('a',3),('b',2)]
["aaa","bb"]

flip replicate creates a version of replicate with the parameters swapped:

> flip replicate
<function>

> :type it
it :: a -> Int -> [a]

Then, uncurrying the result function produces a function that can be applied to an (a, Int)
tuple:

> uncurry it
<function>
> :type it
it :: (a, Int) -> [a]

> it ('a',3)
"aaa"

It was sufficient to say something like, "flip swaps the order of replicate's arguments and then
uncurrying it lets it be mapped onto the tuples."

This question was mentioned as a possible midterm question in the a5 solution write-up for
rtext.hs.

Page 4 of 11

(5) Consider the Haskell expression below. Does it have any partial applications? If so, briefly
describe what constitutes each of the partial applications.

map (take 5)

First, take 5 produces a partial application. Then map is applied to that function, producing a
second partial applications.

Most students identified take 5 as a partial application but only a few recognized that there is
also a partial application of map.

Problem 8: (7 points) (mean: 5.1, median: 6.5, 3rd quartile: 7)

Using our DIY cons lists, write a Prolog predicate eqalen/2 that succeeds iff its two arguments are lists
that consist entirely of atoms and the length of all atoms in corresponding positions are equal. Examples:

?- eqalen(a:test:now:empty, i:went:too:empty).
true. (Atoms in both lists have lengths of 1, 4, and 3, respectively.)

?- eqalen(a:test:now:empty, i:went:too:far:empty).
false. (Four atoms in second list.)

RESTRICTION: The symbol = may NOT APPEAR in your solution! (This rules out == and \==,
too, for example.)

Solution:

eqalen(empty, empty).
eqalen(A1:T1,A2:T2) :-

atom(A1), atom_length(A1,L),
atom(A2), atom_length(A2,L),
eqalen(T1,T2).

Page 5 of 11

Problem 9: (12 points) (mean: 6.4, median: 7.5, 3rd quartile: 10)

Write a Prolog predicate lines(+Pairs, +Separator) with this behavior:

?- lines(three-x:five-ok:four-oops:empty,'.').
x.x.x
ok.ok.ok.ok.ok
oops.oops.oops.oops
true.

?- lines(four-four:five-[]:empty,<>).
four<>four<>four<>four
[]<>[]<>[]<>[]<>[]
true.

?- lines.
Usage: lines(+Pairs,+Sep)
true.

Solution:

lines(Pairs,Sep) :-
member_cl(English-Atom,Pairs), n(English,N),
print(N,Atom,Sep), fail.

lines(_,_).

lines :- writeln('Usage: lines(+Pairs,+Sep)').

print(N,Atom,Sep) :-
between(2,M,_),
format('~w~w', [Atom, Sep]), fail.

print(_,Atom,_) :- writeln(Atom).

Page 6 of 11

Problem 10: (5 points) (one point each unless otherwise indicated) (mean: 2.7, median: 3, 3rd quartile: 4)

The following questions and problems are related to Prolog.

(1) x(3,4) is an example of a Prolog structure. Without using any parentheses, commas, or square
brackets, write another example of a Prolog structure.

3+4

(2) Prolog anatomy question: What are the three parts of a Prolog rule? (½ point)

head, neck, and body

(3) What are three distinct ways in which length/2 can be used? (1½ points)

Get the length of a list.
See if a list has a specific length.
Make a list with a specific number of uninstantiated variables.

(4) What is the output of the following query?

 ?- between(1,3,A), writeln(A), A > 5,
between(5,7,B), writeln(B), B < 10,
writeln('Done!').

The output is:
1
2
3

It was also fine to include the result, "false.", but that's not part of the output.

(5) How do the following two goals differ in meaning?

A+B == 5
Compares the structure 3+5 to the number 5; always fails.

A+B =:= 5
Evaluates A+B as an arithmetic expression and tests whether the result
is equal to 5.

Page 7 of 11

Problem 11: (6 points) (one point each unless otherwise indicated) (mean: 3, median: 3, 3rd quartile: 4)

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when?

Ralph Griswold, in 1971

(2) What is the value and side effect of the following Python expression?

 print("testing")

The value is None. The side effect is that "testing" is printed on standard output.

(3) What's the one feature/property that a language must have in order to do anything that even
remotely resembles functional programming?

Functions must be first-class values. In general, it must be possible to use a function value
in all the contexts where values of others types can be used—be held in variables and data
structures , be passed as parameters and returned as results, etc.

(4) Which one of the following language elements is most essential for imperative programming AND
why? (2 points)

(a) some sort of looping construct like a while or a for
(b) an assignment operation
(c) some sort of "print" statement
(d) procedures

Much of imperative programming is basically orchestration of changes to the value of
variables but without an assignment operation, the value of a variable can't be changed.

(5) Early in the semester we talked about three aspects of expressions that are often important to
understand and reason about. What are those three aspects?

Value, type, and side effect

Page 8 of 11

Extra Credit Section (½ point each unless otherwise noted) (mean: 0.8, median: 0.5, 3rd quartile: 1.5)

(1) Collectively, the body of facts and rules that implement a Prolog predicate is known as the
 procedure for the predicate.

Note: "clauses" (plural) was also counted as correct.

(2) Sadly, I never got around to answering this Haskell puzzle posed on 284:
Make the list [take, tail, init] valid by adding two characters.

Answer it now!

My thought was [take 5, tail, init] but Mr. Fielding came up with
[(take, tail, init)]. Mr. Meyer, Ms. Rahman, and Mr. Waugaman came up with
["take, tail, init"]

(3) What's a fundamental difference between using >>> type(x) in the Python shell and using
> :type x in ghci?

type is a Python function—we can use it in a Python program—but :type is a ghci command,
and not an element of Haskell itself. Similarly, help is a Python function but :help is a ghci
command. This distinction—whether something is part of a language or part of a tool—is
important to understand!

(4) Write our beloved map function in Python. (1 point)

Here are two versions; the second uses a list comprehension.

def map(f,L):
 result = []
 for e in L:
 result.append(f(e))
 return result

def map(f,L):
 return [f(e) for e in L]

(5) Several places in the Haskell slides mention "H10". Example: "Lambda abstraction (H10)". What is
H10?

The Haskell 2010 Report. (Slide 37)

Lots of students said that "H10" referred to a version of Haskell but only Ms. Saran correctly
identified it as my shorthand for a document.

Page 9 of 11

(6) What would be a big simplification in the following Haskell code?
 g list = foldl1 (\acm elem -> f acm elem) list

The anonymous function does nothing but pass its two arguments to f, so we could just call f
directly, and that's the big simplification:

g list = foldl1 f list

A minor improvement is that we could also turn g into a partial application:
g = foldl1 f

(7) Write a non-imperative version of C's strcpy(...) function. (If you haven't had 352 nor are
taking it now, plead ignorance for a half-point!)

Nobody recognized that this is simply impossible. At the heart of strcpy is copying characters
from one location in memory to another, and without assignment—essential for imperative
programming—that's impossible

(8) Once whm decided he should teach Racket instead of Ruby, he held onto Racket like a monkey
holding onto a piece of fruit ! [See also youtube.com/watch?v=9jBgo7UipqY.]

(9) Write a good extra credit question related to the course material and answer it. (1 point)

There were several good ones but relatively few students responded to this question.

Page 10 of 11

Statistics

Here are all fifty scores, in descending order:

98.50, 97.00, 95.50, 95.50, 92.50, 91.50, 91.50, 89.00, 89.00,
88.00, 85.00, 84.00, 83.50, 79.00, 78.00, 78.00, 76.00, 75.50,
75.00, 74.00, 74.00, 74.00, 73.50, 72.50, 71.50, 70.00, 68.50,
67.50, 66.50, 66.00, 65.50, 65.00, 60.00, 60.00, 59.50, 58.00,
53.00, 53.00, 52.50, 52.50, 52.00, 48.50, 43.00, 41.00, 39.00,
31.50, 24.50, 21.00, 20.00, 3.00

Mean: 66.45
Median: 70.75
3rd Quartile: 82.38

Here's a table with per-problem statistics. Median/possible shows per-problem median scores divided
by possible points, expressed as a percentage.

Adjustment

I'm thinking the exam was perhaps a half-problem too-long, and some of the short answer questions
perhaps took a little longer to answer than I'd anticipated. Taking all things into account, I've decided to
add seven points to all scores.

With that adjustment applied, here's a histogram of scores:

Page 11 of 11

CSC 372, Fall 2022
Final Exam Solutions

Thursday, December 15, 2022

Problem 1: (6 points) (mean: 5.38, median: 6, 3rd quartile: 6)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of the three
should be about a different language and have a bit of depth, as described in the Piazza post that announced this problem.

All the videos this semester were good and some were great. Videos are great in different ways. It'd be pretty hard for me to
pick a best video but I will pick an All-Star team, and in alphabetic order by title, here it is:

== in JavaScript
https://www.youtube.com/watch?v=8m3DWtoumNs

Coding your own Music w/ Sonic Pi
https://youtu.be/DRmJVM9iY3E

Bash Arrays
https://drive.google.com/file/d/1kp9K3JHY5Z5SarV-Bi3KPSPP55v15w1n

Goroutines and Channels: Concurrency in Go
https://youtu.be/ZwY3kRMlenw

How I Typed "Toy Story 3" Without Any Characters in JavaScript: Automatic Type Conversion By Chase K
https://youtu.be/zjC7jfyrOZc

Make a Class Really Easy to Use in Python with Magic Methods by Amber Converse
https://drive.google.com/file/d/1jVgayWJ69iEP8_i1OlYBKobKojIOHrhb/view

A number of students made their YouTube videos "Unlisted" but I encourage all to list them—they might accumulate an
interesting number of views over time. For example, Ryan Melzer's Spring 2016 video, Haskell Monads in 8 Minutes, has
accumulated 53k views! You can see Ryan's video here: https://www.youtube.com/watch?v=gEoruozy3mk

Page 1 of 10

Problem 2: (10 points) (mean: 8.9, median: 10, 3rd quartile: 10)

The following program is in Tcl and was adapted from rosettacode.org/wiki/Ordered_words#Tcl. Read through
the code and then for one point each, briefly answer the questions that follow below the code.

 1 # Return a list of the ordered words (of maximal length) in a list
 2 proc chooseOrderedWords list {
 3 set maxlen 0
 4 set orderedOfMaxlen {}
 5 foreach word $list {
 6 # Condition to determine whether a word is ordered;
 7 # are its characters in sorted order?
 8 if {$word eq [join [lsort [split $word ""]] ""]} {
 9 set wordlen [string length $word]
 10 if {$wordlen > $maxlen} {
 11 set maxlen $wordlen
 12 set orderedOfMaxlen {}
 13 }
 14 if {$wordlen == $maxlen} {
 15 lappend orderedOfMaxlen $word
 16 }
 17 }
 18 }
 19 return $orderedOfMaxlen
 20 }
 21 # Get the dictionary and print the ordered words from it
 22 set t [http::geturl "http://cs.arizona.edu/classes/cs372/fall22/web2"]
 23
 24 set result [chooseOrderedWords [http::data $t]]
 25
 26 puts "Longest ordered words:"
 27 for {set i 0} {$i < [llength $result]} {incr i} {
 28 puts [lindex $result $i]
 29 }

(1) What does the syntax for procedure definitions seem to be?
proc NAME PARAMS { ... }

(2) How does one apparently create and initialize a variable?
set VAR VALUE

(3) What appears to be the rule about when a variable name needs a sigil?
When we want the value of the variable.

(4) What purpose do square brackets ([and]) seem to serve?
They indicate a procedure call, and enclose both the procedure's name and its arguments, a bit like Lisp S-
expressions.

(5) At line 8, eq is used to test equality but at line 14, == is used to test for equality. Why are two different operators
used?

Looks like perhaps eq is numeric equality and == is string equality.

(6) What does the {} in line 4 apparently represent?
An empty list.

(7) Roughly translate line 5 (foreach...) into Ruby code that uses an iterator.
for word in list do

Page 2 of 10

(8) Roughly translate line 28 (puts [lindex $result $i]) into Ruby.
puts result[i]

For one point each, make up to four more significant observations about the code, but maximum score for the problem is 10.

Here are a few more observations:
• Tcl seems to be dynamically typed.
• The for-loop at 27 seems to have init/condition/advance elements just like Java, C, and others.
• "http::..." seems to reference elements in an http package/module.
• The return at line 19 implies that Tcl doesn't have "last value return" like Ruby.
• Indexing seems to be zero-based.
• incr VAR apparently increments the value of VAR.
• # is comment to end of line.

I wish I'd thought to include a question that asked whether you'd seen Tcl before, but I didn't!

You'll see on its Wikipedia page that Tcl, pronounced "tickle", was created in 1988 and its latest release was less than a month
ago. I see about ten Tcl books on learning.oreilly.com at the moment.

https://wiki.tcl-lang.org/page/Applications+in+Tcl+and+Tcl%2FTk lists a number of large applications written in Tcl. At a
Usenix conference years ago I remember a speaker mentioning a 250,000 line Tcl application that was integral to the operation
of an oil rig in the Gulf of Mexico.

If you've done any graphics in Python with tkinter, take a look at https://docs.python.org/3/library/tk.html. It says, "The
tkinter package is a thin object-oriented layer on top of Tcl/Tk."

Problem 3: (11 points) (mean: 6.95, median: 7, 3rd quartile: 10.125)

Write a Haskell function avgvows of type [String] -> Double that returns the average (mean) number of vowels per
word in a body of text, ignoring one-letter words. Assume all letters are lower-case. Examples:

> avgvows ["what a", "treat"]
1.5

> avgvows ["ouch oops", "my bad"]
1.25

> avgvows ["my my"]
0.0

My solution:

avgvows lns = fromIntegral total_vowels / fromIntegral (length keepers)
 where
 all_words = words $ unwords lns
 keepers = filter (\w -> length w > 1) all_words
 vowel_counts = map (filter (\c -> c `elem` "aeiou")) keepers
 total_vowels = sum $ map length vowel_counts

Page 3 of 10

Problem 4: (8 points) (mean: 5.43, median: 6, 3rd quartile: 7.625)

Write a Prolog predicate all_atoms(+L) that succeeds iff the list L is not empty and all its values are atoms. Examples:

?- all_atoms([just,a,test]).
true.

?- all_atoms([just,1,test]).
false.

?- all_atoms([]).
false.

This problem is a good example of the hazard of looking for a problem with a solution in hand! I was looking for a findall
problem and, sure enough, the problem can be solved like this:

all_atoms(L) :-
findall(A, (member(A,L),atom(A)), Atoms), length(Atoms,N),
length(L,N), N > 0.

However, if you approach the problem without a hammer that's looking for a nail, you'll see a simple recursive solution:

all_atoms([X]) :- atom(X).
all_atoms([H|T]) :- atom(H), all_atoms(T).

Problem 5: (20 points) (mean: 14.3, median: 17, 3rd quartile: 18)

This is the Prolog problem like connect and pit-crossing that you were told to expect.

Write a Prolog predicate makepath/1 that takes a list of "layers" and prints a sequencing of ALL of them that has a
continuous path of asterisks from top to bottom. Here's an example of a path through five layers:

?- makepath(['---*-','--*--','----*','--*--', '---*-']).
---*-
--*--
--*--
---*-
----*
true.

?- makepath(['*--','--*','--*']).
No sequencing for those 3 layers
true.

My solution:

findseq([],_,[]).
findseq(Layers,N,[Layer|Seq]) :-
 select(Layer, Layers, Remaining),

atom_chars(Layer, Chars),
nth0(Pos, Chars, '*'),
fit(N,Pos),
findseq(Remaining, Pos, Seq).

fit(N, _) :- N < 0.
fit(N, Pos) :- abs(N-Pos) =< 1.

Page 4 of 10

makepath(Layers) :-
 findseq(Layers, -1, Seq), print_layers(Seq), !.
makepath(Layers) :-

length(Layers,N),
format('No sequencing for those ~a layers~n', N).

print_layers(Layers) :- member(Layer, Layers), writeln(Layer), fail.
print_layers(_).

Problem 6: (15 points) (mean: 13.34, median: 15, 3rd quartile: 15)

Write a Ruby program hmt.rb that, based on command-line arguments, prints the "head", "tail" and/or "middle" of its input
lines, possibly multiple times. This problem was inspired by the head and tail UNIX commands.

The command
$ ruby hmt.rb ht 5 < x.txt

specifies that the "head" (h) and "tail" (t) of the input are to be printed. This causes the first five lines and then the last five
lines of x.txt to be printed; a total of ten lines.

The command
$ ruby hmt.rb tth 20 < x.txt

causes the last twenty lines of x.txt to be printed twice, followed by the first twenty lines; a total of sixty lines.

If the number of lines to print is not specified, it defaults to three.

My solution:

if ARGV.size == 2
 n = ARGV[1].to_i
else
 n = 3
end

lines = STDIN.readlines

ARGV[0].each_char do
 |c|
 if c == "h"
 puts lines[0...n]
 elsif c == "t"
 puts lines[-n..-1]
 elsif c == "m"
 start = lines.size/2 - n/2
 puts lines[start,n]
 end
end

Page 5 of 10

Problem 7: (9 points) (mean: 7.04, median: 8, 3rd quartile: 9)

Write a Ruby method lc_occurs(s,n) that returns a string of the lower-case letters that occur n or more times in the string
s. Characters in the result are in alphabetical order.

Examples:

>> lc_occurs("just a test", 1)
=> "aejstu"

>> lc_occurs("just a test", 3)
=> "t"

>> lc_occurs("",0)
=> "abcdefghijklmnopqrstuvwxyz"

RESTRICTION: You may not use 'for' or 'while' statements in your solution.

My solution:

def lc_occurs(s, n)
 counts = Hash.new 0
 s.each_char {|c| counts[c] += 1 }
 result = ""
 ('a'..'z').each {|c| result += c if counts[c] >= n}
 return result
end

Problem 8: (12 points) (mean: 10.43, median: 11, 3rd quartile: 12)

In this problem you are to implement a Ruby class named IntRange that represents a non-empty range of integers.

>> r = IntRange.new(3, 7)

>> r.inspect
=> "3 4 5 6 7 (5 values)"

>> r.size
=> 5

>> r.bounds
=> [3, 7]

>> r[1]
=> 3

>> r[5]
=> 7

>> [r[0], r[6]]
=> [nil, nil]

Earn a point of extra-credit by not having
return appear in your code!

class IntRange
 def initialize first, last
 @first = first
 @last = last
 end

 def size
 @last - @first + 1
 end

 def inspect
 "#{(@first..@last).to_a * " "} (#{size}
values)"
 end

 def bounds
 [@first,@last]
 end

 def [](i)
 if i > 0 && i <= size
 @first + (i - 1)
 else
 nil
 end
 end
end

Page 6 of 10

Problem 9: (5 points) (one point each unless otherwise indicated) (mean: 3.22, median: 3.5, 3rd quartile: 4)

The following questions and problems are related to Ruby.

(1) What are two examples of sigils in Ruby and what does each indicate?
$ global variable
@ instance variable
@@ variable

Several students cited the ! and ? method suffixes but I don't believe I ever described those as sigils, nor did I find
anything on the net that suggests they, too, should be considered sigils.

(2) A novice programmer might simply understand that the following loop terminates when end of file is reached on
standard input. What's a more thorough explanation of what happens when end of file is reached on standard input?

while line = STDIN.gets
 puts line
end

At end of file, STDIN.gets returns nil. nil gets assigned to line and the value produced by the assignment
operator is the value assigned, nil in this case. That causes the while to reduce to while nil, and because nil
is regarded as "falsey", the while terminates.

(3) For any Ruby Integer n, I'd like n.big? to return a "truthy" value if n is greater than 1000 and a "falsey" value if
not. Write Ruby code to fulfill my wish.

class Integer
 def big?
 self > 1000
 end
end

A lot of students got this half-right but both class Integer and self > 1000 were required for full credit.

(4) What is the essence of the duck typing mindset?

A few students simply used James Whitcomb Riley's quote from Ruby slide 134. That made me wish I'd prohibited the
word "duck" in the answer, but having failed to do that, I counted those recitations as correct.

I'd say that Mr. Ricci's answer was perhaps the most concise:
"I don't care if you have the right type. Can you do this method?"

(5) If you only remember one thing about Ruby, what will it be?

I was hoping for some interesting things here but the most common answer by far was something about the end
keyword—needing it, frequently forgetting it, etc.

Page 7 of 10

Problem 10: (2 points) (mean: 0.89, median: 0, 3rd quartile: 2)

Write a SNOBOL4 program twice.sno that prompts for the user for a number and then prints twice that number, like this:

$ snobol4 twice.sno
Number?
7
Twice 7 is 14

For a point of extra credit, make it loop until the user hits ^D (end-of-file) to terminate it.

loop output = "Number?"
 n = input :f(end)
 output = "Twice " n " is " (n * 2) :s(loop)
end

Problem 11: (2 points) (mean: 0.84, median: 1, 3rd quartile: 1.5)

The following questions about Icon are worth one point each. You may answer as many as you want but the maximum score
on this problem is 2 points.

(1) Write two distinctly different Icon expressions that fail to produce a value.

2 < 3
"x"[2]

(2) Write an expression that produces the length of s, where s is an Icon string.

*s

(3) Write an expression that produces the sum of the first and last elements of L, where L is a list of strings that represent
integers. If L is ["7", "45", "8"] the sum would be 15. Assume that L has at least one element.

L[1] + L[-1]

(4) What is a major aspect of Icon that Ralph Griswold was disappointed with?

 String scanning

(5) Regarding language design, what was Ralph Griswold's opinion about whether a language should be easy to
implement?

Icon slide 5 mentions that there was generally a "disregard for implementation problems and efficiency".

Page 8 of 10

Extra Credit Section (½ point each unless otherwise noted) (mean: 1.99, median: 2, 3rd quartile: 2.5)

(1) With respect to programming languages, the term "mixin" was said to have been borrowed from the product line of a
Somerville, Massachusetts business. What was the primary product of that business?

I assume that ice cream was the primary product of Steve's Ice Cream in Somerville. When grading I got a smile from
these guesses: cement, blenders, and cocktails.

(2) What's the language in the SNOBOL family that was developed between SNOBOL4 and Icon and that "had everything".

Lots of students said SNOBOL5 but it was SL5, short for SNOBOL Language 5.

(3) Brooks Law says that "Adding manpower to a late software project makes it later ."

(4) To the best of whm's knowledge, what was the size of the RATSNO (Rational SNOBOL4) user community at its peak?

My search for other RATSNO users continues but to the best of my knowledge, I was the only regular user of
RATSNO. I used it for several undergraduate projects including a compiler for a subset of Pascal, an information
retrieval system, and an extra-credit project involving Arden's Lemma/Rule. I couldn't even get my partner on the
Arden's project to use RATSNO; he did his portion in plain old SNOBOL4!

Here is Dr. David R. Hanson's RATSNO paper: https://drhanson.s3.amazonaws.com/storage/documents/ratsno.pdf.
Dr. Hanson was CS department head here for a time. When the question of "What's the best class you ever had?"
comes up, my answer is Hanson's CSC 453—we wrote a C compiler, a linker, and a debugger. They were simplified
in various ways, but they were also very "real".

(5) Write the Prolog predicate member/2 in terms of nth0/3.

member(E,L) :- nth0(_,L,E).

(6) Write a SNOBOL4 pattern that would match decimal fractions like 123.45, 0.789, and 1000.1.

decfrac = span(&digits) "." span(&digits)

(7) Among Haskell, Icon, Java, Prolog, Python, Ruby, and SNOBOL4, which are the three oldest languages?

SNOBOL4, Prolog, and Icon

(8) What's relatively unique about when Ruby was created?

I don't know of any other language that has an exact date cited for its "birth" but Matz wrote, "Well, Ruby was born on
February 24, 1993."

(9) Is Java a compiled language or an interpreted language? Briefly justify your answer. (1 point)

See Ruby slide 132. I say that compilation or interpretation is an attribute of an implementation of a language, not the
language itself. For any language, one can write a compiler or an interpreter; a great number of language
implementations use a mix of compilation and interpretation techniques.

(10) Write a good extra credit question related to the course material and answer it. (1 point)
Many answers were very creative but I'll say that I like Ms. Ying's best:

Q: Who would win in a fight: Haskell, Prolog, or Ruby?
A: Haskell be on the defense and guard itself.

Prolog would logic its way out of the fight.
Ruby could win in multiple ways.

The non-lazy side of me aspires to add a few more notable answers here. Check back to see if that ever happens.

Page 9 of 10

Statistics

Here are all 48 scores, in descending order:

103.50, 100.50, 100.00, 99.50, 97.50, 97.00, 97.00, 94.00, 92.50, 92.00, 90.50,
89.50, 89.50, 87.00, 86.00, 86.00, 85.50, 85.00, 85.00, 84.00, 82.50, 81.50,
81.50, 80.50, 80.50, 80.00, 80.00, 79.50, 79.50, 78.50, 78.00, 76.50, 76.00,
75.00, 73.50, 73.50, 70.50, 70.00, 69.00, 69.00, 64.50, 62.50, 60.00, 57.00,
54.50, 51.50, 43.00, 8.00

Mean: 78.70
Median: 80.50
3rd Quartile: 89.5

Here's a table with per-problem statistics. Median/possible shows per-problem median scores divided by possible points,
expressed as a percentage.

Here's a histogram of scores:

Page 10 of 10

	all-sols
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 1
	Page 2
	Page 3
	Page 4
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 1
	Page 2
	Page 3
	Page 4
	Page 1
	Page 2
	Page 3
	Page 4
	Page 1
	Page 2
	Page 3
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	exam1sol
	exam2sol

