CSc 372, Spring 1996
Mid-term Examination Solution Key

Problem 1 (6 points):
State a definition for the term "programming language".

In the slides, a programming language is said to be "a notation for the description of
computation".

Name a language element or capability one would almost certainly find in a language that
supports imperative programming.

Ideal answers included "a looping construct" and "the ability to change values via
assignment".

Name a language element or capability one would almost certainly find in a language that
supports functional programming.

Ideal answers included "recursion", "functions", and "use of functions as values".

Problem 2 (4 points):

Write ML expressions having the following types:
int * string list
(L, ["x"])
int * (int * (int * int) list)
(L, (1, [(1,1)1))

Define ML functions named f and g having the following types. The functions need not

perform any meaningful computation. You may define additional functions to help produce
the desired types.

f: (int -> int) * int -> bool

fun g(l) =1
fun f(g, 1) = g(1) =1

g: int -> int -> int list

fun £ 1 2 = [1, 2]

CSc 372 Mid-term examination solution key; page 1 of 8

Problem 3 (6 points):

Consider the following ML function definitions:

fun h(x::xs) X = 2
fun f(a,b,g) = h(g@a™"x")::b)

For each of the following identifiers, what type would ML infer, given the above definitions
forhand f.

£? string * int list * (string -> int) -> bool
g? string -> int

h? int list -> bool

ar string

b? int list

X? int

Problem 4 (3 points):

The following ML function definition is an example of using an exception.

exception NotOne;
fun f(n) = 1if n <> 1 then (raise NotOne) else n

Rewrite £ to make better use of ML's pattern matching facilities.

exception NotOne;
fun (1) =1
| f(n) = raise NotOne

Problem 5 (3 points):
What is meant by the ML warning "non-exhaustive match"?

There is a type-compatible tuple that is not matched by any of the patterns defining a
function.

What is one possible implication of the warning?
A match exception may be encountered when the function is executed.

Write an ML function that would produce that warning.

fun £(1) =1

CSc 372 Mid-term examination solution key; page 2 of 8

Problem 6 (4 points):
Consider this fragment of a function definition:
fun f(x,y,z::2s) =

What values would be bound to %, v, z, and zs for this call, assuming that the body of the
function f is compatible with the given values?

(00101, (2, 031),0[4,5,611])
x? [[1]]

y? (2, [31])

z? (4, 5, 6]

zs? []

Specify a function body for f that for the above argument tuple would produce the value 21.
That is, instead of the "..." shown above, complete the function definition. (Hint: Don't make
this too hard!)

fun (x,y,z::xs) = 21

What is the type of £, given the function body you specified in the previous part of this
problem?

'a * 'b * 'c list -> int
Problem 7 (5 points):

Write a function named length of type int list -> int that calculates the length of a
list of integers. ...

fun length([]) = 0
| length((:int)::xs) = 1 + length(xs);

Many persons defined a length function with type 'a 1ist -> int. Others, in

trying to force the int 1ist type ended up with a function that summed the
elements in the list instead of counting them.

CSc 372 Mid-term examination solution key; page 3 of 8

Problem 8 (8 points):

Write an ML function avglen of type 'a list list -> real that computes the
average number of elements in a list of lists. For example, if a list L contained an empty list

and a list with five elements, avglen (L) would return 2.5. If the list is empty, raise the
exception EmptyList.

fun avglen (L) =

let
fun sum([]) = O
| sum(x::Xs) = X + sum(xs)
val lens = map length L
in

if length(L) = 0 then raise EmptyList
else real (sum(lens)) / real(length(L))

This problem was not intended to be difficult but in fact it had a relatively low

success rate. The key observation is that the essence of the problem is calculate the
average of a list of integers.

Problem 9 (8 points):

Write an ML function F L _eqgoftype ''a list -> bool thatreturns true if the first
element in a list is equal to the last element, and returns false otherwise. If called with an
empty list, F L eq should return false.

Problem 10 (4 points) (¥)

Write an ML function f (FL, VL) that takes a list of functions (FL) and a list of values (VL)
and produces a list of lists wherein the first list contains the results of applying each function
in FL to the first elment in VL, and so forth, such that the Nth list contains the results of
applying each function in FL to the Nth element in VL.

fun £(FL, []) = []
| f(FL, v::vs) =
let
fun apply each([], x) = []
| apply each(f::fs, x) = f(x)::apply each(fs, x)
in
apply each(FL, v)::f(FL, vs)

CSc 372 Mid-term examination solution key; page 4 of 8

end
Problem 11 (3 points)

Lists in Icon and ML share a common syntax for literal specification of lists—the expression
[1,2,3] specifies a simple list in both languages. But, ML places a constraint on lists that
Icon does not—many lists that are valid in Icon are not valid in ML.

What is the constraint that ML places on lists that Icon does not?

Lists in ML must be homogeneous—all elements must be of the same type. Elements
in an Icon list can be of differing types.

Give an example of a list that is valid in Icon, but not valid in ML.
[1, 1.0]
Problem 12 (2 points) (*)

Define ML functions named f and g having the following types. The functions need not
perform any meaningful computation. You may define additional functions to help produce
the desired types.

f: (string -> int) list -> int
fun f(g::gs) = g("x") + 1;

g: string -> int -> real -> bool list

fun g "" 1 2.0 = [true]
Another way:
fun g s ir=[s="x", 1i=1, r=1.0];

Problem 13 (4 points)

Icon's reverse (s) built-in function produces a reversed copy of a string s. Write an Icon
procedure Reverse (s) to do the same thing. Of course, Reverse may not use reverse.

procedure Reverse(s)

r e— nn
every r := l!s || r
return r
end
Another way:

procedure Reverse(s)
r :: mww

CSc 372 Mid-term examination solution key; page 5 of 8

every i := 1 to *s do
r :=s[i] || ¢
return r
end

I had intended Reverse to be a trivial problem to serve as a warm-up for the Icon portion of
the exam, but only a handful of persons produced a solution that would actually work.

A number of persons produced solutions that used list manipulation functions such as push
and pull to manipulate strings, but in fact those functions don't work on strings. Despite
that, such solutions typically received full credit.

Problem 14 (8 points)

Write an Icon procedure Point (s) that takes a string representation of a point in 2D
cartesian space such as " (10, 20) " and if the string is well-formed, returns the X and Y
coordinates as integers in a list. If the string is not well-formed, Point (s) fails.

procedure Point (s)

s ? {
:"(" &
x := tab(many(&digits)) &
:"’" &

y := tab(many (&digits)) &
=")" & pos(0) &
return [integer (x),integer (y)]

end

A number of persons tried to solve this with split, butif split was used you
needed to use the three-argument form and examine each piece produced. Most of the

split-based solutions would accept strings suchas", ,2,,,3,,"or" ())2()3 ()",
Or WOrse.

Problem 15 (8 points)

Write an Icon program that reads standard input and produces a histogram of line lengths
encountered.

procedure main ()

hist := table("")

while line := read() do
hist[*1line] |[]:= "*"

every pair := !sort(hist) do

write(pair([1], "\t", pair[2])

end

CSc 372 Mid-term examination solution key; page 6 of 8

Problem 16 (9 points):
Imagine a file with a format such as this:

02.sting
0l.just te
10. this out

Write a program that reads such a file on standard input, assembles the lines in order based
on the sequence numbers, and writes to standard output a sequence of fixed length lines. The
full set of sequence numbers may be non-consecutive, as shown above, but there will be no

duplicated sequence numbers.

procedure main (args)

len := args[1l] | 10
lines := []
while line := read() do

put (lines, line)

lines := sort(lines)

out := ""

every line := !lines do {
out |]:= (line ? (tab(upto('.')+1l) & tab(0)))
}

out ? {

while write (move (len))
write(tab(0))
}

end

Problem 17 (3 points):

Write an Icon procedure cons (x, y) that approximates the ML operation x: : v as closely
as possible. If the approximation is poor, explain the difficulty.

procedure cons(x,Vy)
return [x] ||| vy

end
It was also satisfactory to use a solution such as this:
procedure cons (x,V)

return push (y, x)
end

CSc 372 Mid-term examination solution key; page 7 of 8

if it was noted that the approximation was poor because list v is changed as a side-effect.

Problem 18 (3 points) (*):

Write a procedure size (x) that has the same result as *x for values of x that are a
string, 1ist, or table. You may not use the * operator in your solution.

procedure size (x)
count := 0
every !x & count +:=1
return count

end

Problem 19 (6 points) (*):

Write an Icon program to read standard input and print out the largest integer found in the
input. ...

procedure main ()

while line := read() do {
line ? while tab (upto(&digits)) do {
val := tab(many(&digits))
if /maxval | (val > maxval) then
maxval := val

}
}

write (\maxval|"No integers")
end

Several persons approached this problem with split, but it is necessary to split on
~&digits rather than whitespace to achieve a correct solution.

Problem 20 (3 points) (*):

Icon has language elements to support imperative programming, but could Icon adequately
support functional programming? Present an argument in support of your answer.

An argument can be made either way and therefore, answering either "yes" or "no"
earned a point. A reasonable argument of any sort earned two more points.

I would argue that most of the functional solutions we studied could be implemented
in Icon with a minimum of difficulty, aside from Icon lacking an equivalent to ML's
pattern matching facility. (It is said that Icon supports pattern matching via string
scanning, but that is a completely different facility that shares the same name.)

CSc 372 Mid-term examination solution key; page 8 of 8

On the other hand, Icon has nothing like anonymous functions, composition, or
currying and therefore Icon's handling of functions as values, a cornerstone of
functional programming, falls short.

CSc 372 Mid-term examination solution key; page 9 of 8

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

