
CSC 372 Mid-term Exam Solutions
Monday, March 19, 2018

Problem 1: (5 points) (one point each) (mean: 3.72, median: 4, 3 quartile: 4)rd

What is the type of each of the following values? If the expression is invalid, briefly state why.

Assume integers have the type Int. Remember that String is a type synonym for [Char]— the two can be
used interchangeably.

'a'
Char

("a", ['a'])

 ([Char], [Char])

snd (Reminder: snd produces the second element of a 2-tuple.)
(a, b) -> b

map snd
[(a, b)] -> [b]

fold . length (3 + 4)
Error! length wants a list (actually a Foldable).

Problem 2: (3 points) (mean: 1.7, median: 2, 3 quartile: 2)rd

This problem is like ftypes.hs on a3. Write functions f1, f2, and f3 having each of the following types.
There are no restrictions other than you may not use an explicit type declaration. (e.g. f1::...)

f1 :: (a,b) -> (b,a,b)
f1 (a,b) = (b,a,b)

f2 :: [a] -> [b] -> (b,a)
f2 [a] [b] = (b,a)

f3 :: (a -> b) -> a -> b -> b
f3 f a b = head [f a, b]

Problem 3: (7 points, as indicated) (mean: 4.93, median: 5.5, 3 quartile: 6.5)rd

This problem is like warmup.hs on the assignments—write the following Haskell Prelude functions.

Instances of poor style or needlessly using other Prelude or helper functions will result in deductions.

Be sure to use the wildcard pattern (underscore) when appropriate.

Page 1 of 8

There's no need to specify function types.

snd (Returns second element of a two-tuple) [1 point]
snd (_,b) = b

not [1 point]
not False = True
not _ = False

at list n (Like list!!n. Assume n is in-bounds.) [2 points]
at (h:_) 0 = h
at (_:t) n = at t (n-1)

map [2 points]
map _ [] = []
map f (h:t) = f h : map f t

flip (Reminder: flip take "abc" 2 == "ab") [1 point]
flip f x y = f y x

Problem 4: (12 points) (6 points each) (recursive—mean: 5.55, median: 6, 3 quartile: 6)rd

 (non-recursive—mean: 4.82, median: 6, 3 quartile: 6)rd

For this problem you are to write both recursive and non-recursive versions of a Haskell function
sumexcl nums exclude, having type [Int] -> Int -> Int, that returns the sum of the values in
nums, excluding all occurrences of the value exclude.

> sumexcl [1,10,2,3,10] 10
6

Recursive
sumexcl :: [Int] -> Int -> Int
sumexcl [] _ = 0
sumexcl (x:xs) e
 | x == e = sumexcl xs e
 | otherwise = x + sumexcl xs e

Non-recursive:
sumexcl :: [Int] -> Int -> Int
sumexcl list e = sum $ filter (e /=) list

Problem 5: (6 points) (mean: 5.40, median: 6, 3 quartile: 6)rd

Certain conditional code in Haskell can be written in three different ways:
• with if-else
• with guards
• with patterns

Imagine a function f that returns 'a' if called with 1 or 2 but if called with any other number, it returns 'b'.

For this problem you are to write three versions of f: one using if-else, one using guards, and one using
patterns.

Page 2 of 8

With if-else:
f x = if x == 1 || x == 2 then 'a' else 'b'

With guards:
f2 x
 | x == 1 || x == 2 = 'a'
 | otherwise = 'b'

With patterns:
f3 1 = 'a'
f3 2 = 'a'
f3 _ = 'b'

Problem 6: (6 points) (mean: 4.18, median: 5, 3 quartile: 5.5)rd

The Haskell function evenwords s returns a string containing only the even-length words in the
string s. Here is an incomplete solution for evenwords:

evenwords s = unwords (foldr ff [] (words s))

What's missing is the folding function ff. Your task for this problem is to write the function ff.

ff w acm
 | even $ length w = w : acm
 | otherwise = acm

Problem 7: (18 points) (7 and 11 points, respectively) (recursive—mean: 6.19, median: 6.5, 3 quartile: 7)rd

 (non-recursive—mean: 5.21, median: 5, 3 quartile: 10.5)rd

For this problem you are to write both recursive and non-recursive versions of a function
deo having type[Int] -> [Int], that doubles every other number in a list.

Recursive:
deo [] = []
deo [x] = [x]
deo (x1:x2:xs) = x1:(x2 * 2):deo xs

This is the non-recursive solution I initially wrote:

deo list = result
 where
 double = cycle [False,True]
 result = map f $ zip double list
 f (True,x) = x * 2
 f (_,x) = x

But Mr. McClean showed me the right way to do it:

deo_mc nums = zipWith (*) nums $ cycle [1,2]

Page 3 of 8

Problem 8: (5 points) (one point each unless otherwise indicated) (mean: 3.54, median: 3.5, 3 quartile: 4.5)rd

The following questions and problems are related to Haskell.

(1) In Haskell, as in many functional languages, the list type is a "cons list". Using the style shown in the slides,
draw a diagram of the list [10,20,30].

I'm lazy! See b on slide 140.

(2) What's wrong with the following statement regarding a Haskell function named f?
"The type of f is (Int, Char)."

If f is a function, there should be a -> in the type.

(3) What is the essential idea of lazy evaluation?

Expressions are not evaluated until their value is needed.

(4) In Haskell, what's the difference between a type and a type class?

A type is a set of values. A type class is a set of types.

(5) If a Haskell function requires three parameters but is called with only two parameters, what happens?

A partial application is produced.

Problem 9: (15 points) (mean: 12.23, median: 14.5, 3 quartile: 15)rd

Write a Ruby program that reads lines from standard input and upon end of file writes the longest line and its line
number to standard output. If there are ties for the longest line, the program writes out all the lines that tie. If
there is no input, the program produces no output.

longest = -1
num = 1
result = []

while line = gets do
 line.chomp!
 len = line.size
 if len > longest then
 result = [[num,line]]
 longest = len
 elsif len == longest then
 result << [num,line]
 end
 num += 1
end

for num, line in result do
 puts "#{num}: '#{line}'"
end

I have to admit there was some fantasy in the assignment 5 solutions. In the assignment 5 write-up I mentioned

Page 4 of 8

that I'd used longest.rb a number of times but over time enough students had become unduly frustrated with it
that I decided to make it a zero-pointer this semester. Nobody turned in a solution for it this semester, but
nonetheless I recycled the detailed story about student encounters from the Spring 2016 solutions since I felt it had
some good lessons. But since nobody turned in a solution for it, I felt ok about putting a simple version of it on the
exam.

Quite a few exam solutions stored the full input in an array, noting the length of the longest line in the process, and
then making a second pass over the array, printing lines of that length. Memory is really cheap these days but I
think there's still merit in algorithms that are conservative with memory.

Here's a slightly different version of the main loop, based on several solutions:

while line = gets do
 line.chomp!
 len = line.size
 if len > longest then
 result = []
 longest = len
 end
 if len == longest then
 result << [num,line]
 end
 num += 1
end

BEFORE READING FURTHER, see if you can find the bug in the loop above.

At first glance I thought that the code above was buggy but in fact it works just fine. It took me a second look to
realize that the first if sets longest to len, which makes the second if's condition be true. Which of the two
forms do you prefer?

Problem 10: (9 points) (mean: 6.8, median: 8, 3 quartile: 8.5)rd

Write a Ruby program whose command-line arguments are pairs of counts and strings. For each pair, the string
is replicated by the associated count and written to standard output. All strings are output on a single line with no
separation, but that line does end with a newline.

If run with no arguments or an odd number of arguments, the program prints a question mark on a line by itself.
Assume counts are always non-negative integers.

This was my first solution:

a = ARGV

if a.empty? || a.size.odd? then
 puts "?"
 exit
end

while !a.empty? do
 n, s = a[0,2]
 print s * n.to_i
 a.slice!(0,2) # Why not: drop!(2) would be nice here.
end

Page 5 of 8

puts

I generally avoid indexing when I can, but in the process of grading this problem I came to like better a loop that
uses indexing:

i = 0
while a[i]
 n, s = a[i,2]
 print s * n.to_i
 i += 2
end

However, Enumerable.each_slice lets us replace the loop with a one-liner:

a.each_slice(2) {|n,s| print s * n.to_i}

Problem 11: (5 points) (one point each unless otherwise indicated) (mean: 2.75, median: 3, 3 quartile: 3)rd

The following questions and problems are related to Ruby.

(1) In class it's been said that some Ruby methods are applicative and others are imperative. What's the
difference between the two?

Applicative methods never modify their receiver but imperative methods might in some cases.

(2) What is the value of the following Ruby expression? ""[0] || [""][0]

"" (empty string)

(3) What is a major way in which Ruby arrays differ from Java arrays? (OR, What is a major way in which Ruby
arrays differ from Java lists?)

Ruby arrays differ from Java arrays in many ways. Ruby arrays...
• Are heterogeneous
• Allow negative indexing
• Can be concatenated
• Can have elements inserted or deleted
• And more!

A fundamental difference between Ruby arrays and Java's List hierarchy is that Ruby arrays can be accessed
with symbolic syntax like a[n], a[start,len] and more.

(4) What is the value of the following Ruby expression? [1,2,3,3] <=> [1,2,3,5]
(a) -1
(b) 0
(c) 1
(d) 2

(5) With duck typing in mind, what are two things that must be true for x[y] to be a valid expression?

x must have a .[] method for which y is a valid argument.

As mentioned at the start of the exam, this question was out of bounds wrt. the material I said the exam would

Page 6 of 8

cover. To compensate for that, the score written on the front of your exam is your actual score plus one point.
If you went ahead and correctly answered this question, you got a point for that, too.

Problem 12: (9 points) (one point each unless otherwise indicated) (mean: 4.63, median: 5, 3 quartile: 6.5)rd

Briefly answer the following general questions.

(1) Who founded The University of Arizona's Computer Science department and when? (Hint: the ASCII code for
'D' is 68.)

One student wrote, "1791". Dr. Ralph Griswold was certainly a pioneer but he didn't found our department
until 1971.

For years I had trouble remembering whether it was 1971 or 1972 but when I learned the ASCII codes I
noticed that the code for 'G', like in Griswold, was 71, and I never had trouble with that again.

I hinted that 'D' was 68 to help those who might have remembered the connection to ASCII from intro slide 39
but didn't know the code for any uppercase letter.

(2) Circle the best answer:
Ralph Griswold said that if you're going to design a language it should be...
 (a) A language you want to use
 (b) A language that is easy to use
 (c) A language that many people will want to use
 (d) A language that professional developers will want to use

(3) In general, which is larger and why, the mental footprint required to be able to write code in a language or
the mental footprint required to be able to read code in a language?

As discussed in class, the reading footprint is bigger because while you can solve any problem using only a
small, Turing complete subset of a language, to read an arbitrary program, you might need to any or all parts
of the language.

(4) In class it was said that some language designers have an attitude of "Why?" and others have an attitude of
"Why not?" What's the difference in those two attitudes? Support your answer with a brief example.

I felt Mr. Chipman said it best:
"Why?—you need a good reason to add a feature.
"Why not?—you need a good reason to not add a feature.

We've seen lots of examples of how Matz seems to tend toward "Why not?" with Ruby.

(5) As it relates to this class, what's a dunsel?

The answer to this can be found in any of the assignment solutions that have been distributed.

(6) Specifications for programming languages generally focus on two areas, syntax and semantics. With respect
to programming languages what does "semantics" mean?

The meaning of a sequence of symbols.

(7) We've talked about three aspects of expressions: value, type, and side effect. For each of the three, write a

Page 7 of 8

sentence or two that describes the concept (i.e, value, type, or side effect), being sure to cite an example. (1
point each)

Extra Credit Section (½ point each unless otherwise noted) (mean: 0.67, median: 0.25, 3 quartile: 1)rd

(1) What's the value of the following Ruby expression? [1,2,3].each { puts 1 }
[1,2,3]

(2) In Ruby, what is the output produced by "abc".each { |s| puts s[0].size.class }?
It's an error. The String class doesn't have an each method, to my dismay.

(3) Write a Haskell function with the following type: (a,b,a) -> (b,a,b)

f (a,b,a) = (b,a,b) was a common answer but you'll need to wait for Prolog if you want to name a
parameter more than once in the argument list. Meanwhile, you can do this:
f (a,b,_) = (b,a,b)
f (_,b,a) = (b,a,b)

(4) What is the name of the Ruby operation performed by [1,2,3] * "x" ?
Intercalation

(5) Fill in the blanks below to produce a Haskell expression whose value is a function.
 take $ 5

(6) In ghci, what's something :info will show me that :type won't?
For one thing, :info + will show the precedence of that operator.

(7) What's wrong with the following statement? "Java is an interpreted language."
Slide 76: "Interpretation and compilation are attributes of an implementation of a language, not the
language itself!"

(8) Fill in the blanks: Cells in a cons list comprise a/an head and a/an tail .

(9) As a Ruby programmer, tell me what MRI is.
Matz Ruby Implementation

(10) Honor system: If you've created at least two Chrome (or Firefox, etc.) search engines, as described in
cs.arizona.edu/~whm/o1nav.pdf and suggested on on Ruby slide 9, what are their keywords? (i.e.,
What do you type in the address bar to invoke them?)

I was disappointed that only six students earned this easy half-point. I wonder if the class will fare any
better on the final exam.

Here are all scores, in descending order:
100.25, 98.75, 95, 92.25, 90.5, 90, 89.5, 88.75, 88, 85.75, 83.5, 83, 82.5,
82.5, 81.5, 80, 79.75, 79, 79, 79, 78.75, 78.25, 78, 77.25, 76, 75, 74.5, 73.5,
73, 71.75, 71.25, 70.5, 67.25, 64.75, 64.25, 63.5, 62, 60, 59.5, 58.5, 58.5, 57,
56, 55, 53.5, 52, 49.25, 49, 41.5, 39.5

To see your rank, put the lines above in a file x and do this: tr , \\n < x | cat -n

N = 50, mean = 72.7, median = 75.5, 3 quartile: 82.5rd

Page 8 of 8

