
C SC 397a, Fundamentals of C++ Slide 1
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Introduction

Background on C++

C++ vs. C

C++ vs. Java

C SC 397a, Fundamentals of C++ Slide 2
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

What is C++?

In fifteen words or less:

A superset of C that supports type extensibility and object-oriented programming.

Bjarne Stroustrup, the creator of C++, says:

"C++ is a general purpose programming language designed to make programming more
enjoyable for the serious programmer."

"C++ is designed to:
Be a better C
Support data abstraction
Support object-oriented programming"

"As close to C as possible, but no closer."

C SC 397a, Fundamentals of C++ Slide 3
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

What is C++?, continued

C++ is designed to handle large, complex systems.

The primary tools in C++ for coping with complexity are strong compile-time type checking
and encapsulation of data inside objects.

C is a language that's close to the machine. C++ is designed to be close to the problem to be
solved, to allow a direct and concise solution.

With respect to C, C++ has relatively few new keywords, but has a great deal of new syntax.

A driving factor in the design of C++ is that you "pay" for only what you use.

C SC 397a, Fundamentals of C++ Slide 4
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Why choose C++?

C++ provides strong support for object-oriented programming.

Because C++ is roughly a superset of C, it builds on existing C language skills.

C++ fits well with existing C programming environments,
especially with respect to libraries.

A C++ program can be as fast and memory efficient as an equivalent program in C.

C++ is a proven language. It has been used successfully for many large applications.

C++ is well documented. Many good books on C++ have been published. There's a vast
amount of information on the web about C++.

C SC 397a, Fundamentals of C++ Slide 5
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The C++ time line

May 1979: Bjarne Stroustrup, a researcher at Bell Labs, took a number of ideas from
Simula-67 and produced a dialect of C called "C with Classes".

August 1983: First C++ implementation in use.

December 1983: Name ''C++'' coined by Rick Mascitti.

February 1985: First external release of C++ (version "e").

October 1985: Version 1.0 of C++ (cfront) released; 1st edition of Stroustrup's C++ book
published.

June 1989: Version 2.0 of cfront released.

1989: ANSI XJ316 formed to begin standardization.

1991: Version 3.0 of C++ released.

1995: Draft ANSI standard completed.

1998: ISO/IEC standard approved (14882:1998). Sometimes called C++98.

C SC 397a, Fundamentals of C++ Slide 6
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The C++ time line

 2003: Technical Corrigendum 14882:2003 issued.

2004: Microsoft introduces C++/CLI, replacing the Managed Extensions for C++.

200X: C++0x

C++ evolved informally and pragmatically. The design was driven to a large extent by user
feedback.

C SC 397a, Fundamentals of C++ Slide 7
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The Bad News about C++

C++ is a chameleon of a language. It tries to:

Be fast

Be memory-efficient

Be close to the machine

Be close to the problem to be solved

Support user-defined types

Support object-oriented programming

Support development of very large systems

It succeeds at all of these goals, but at the cost of complexity.

Some say that C++ has a fractal-like quality.

The C++ Standard Library has a very limited scope.

C SC 397a, Fundamentals of C++ Slide 8
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ vs. C

C++ is in essence a superset of C.

C++ uses C's:
Data types
Operators
Control structures
Preprocessor
And more...

Most C code will compile as C++.

Almost everything you know about C is directly applicable in C++.

The executable instructions generated for a body of C++ code are generally as fast and
memory-efficient as the same code in C.

Just like C, C++ source files are compiled into object files that are then linked to produce an
executable program.

The name C++ was chosen to signify the evolutionary nature of the changes from C. C++
was not called "D" because it is an extension of C and doesn't try to remedy problems in C.

C SC 397a, Fundamentals of C++ Slide 9
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ vs. Java

In 1990 Sun Microsystems formed a group called the Green project. The initial focus was to
create a software development environment for consumer electronics products.

C++ was the initial choice for a language for Green but frustration with C++ led to a new
language, Oak, designed by James Gosling.

Oak is now called Java.

Java borrows heavily from C++ in many ways. Among them:

Class definition syntax
Class/object relationship
Data types
Operators
Control structures
Compile-time type checking philosophy

C SC 397a, Fundamentals of C++ Slide 10
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ vs. Java, continued

Here are some things from Java that you'll probably miss in C++:

Garbage collection

Vast standard library

Easy to use 3 -party librariesrd

Language support for multi-threading

Reflection capabilities

Security model

.class files

Class loading

C SC 397a, Fundamentals of C++ Slide 11
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ vs. Java, continued

Here are some things about C++ that you may like better than Java:

Faster execution (as a rule)

Few compromises on encapsulation and type safety

A better design for classes and functions parameterized with types

Operator overloading for user-defined types

Multiple inheritance

Readily usable with C libraries

The IO Streams facility

A very interesting set of container classes

C SC 397a, Fundamentals of C++ Slide 12
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ vs. Java, continued

Everything you love (or hate) from C, including:

Closeness to the hardware

Global functions and variables

Preprocessor

No restrictions on file names and directory structure

C SC 397a, Fundamentals of C++ Slide 13
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Class and Object Basics in C++

Class definition

Working with objects

class vs. struct

this

Source file organization

C SC 397a, Fundamentals of C++ Slide 14
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A trivial class in Java and C++

public class Counter { // Java
 private int itsCount = 0;
 private String itsName;

 public Counter(String name) {
itsName = name;
}

 public void bump() { itsCount++; }

 public void print() {
 System.out.println(itsName +

"'s count is " + itsCount);
 }
}

#include <string> // C++
using namespace std;

class Counter {
 private:
 int itsCount;
 string itsName;
 public:
 Counter(string name) {
 itsCount = 0;
 itsName = name;

}

 void bump() { itsCount++; }

 void print() { // No iostreams, for now
 printf("%s's count is %d\n",

itsName.c_str(), itsCount);
 }
};

C SC 397a, Fundamentals of C++ Slide 15
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Class definition in C++, continued

Points to note:

itsCount and itsName are called data
members.

bump() and print() are called member
functions.

A public: or private: access specifier
applies to all following members up to the
next access specifier, if any.

There may be any number of public and private sections, and in any order. If no
specifiers, all members are private.

Unlike Java, there are no class-level modifiers, like public and abstract.

C++ places no requirements on source file names.

A class definition must end with a semicolon!

class Counter {
 private:
 int itsCount;
 string itsName;
 public:
 Counter(string name) { ... }
 void bump() { itsCount++; }
 void print() { ... }
};

C SC 397a, Fundamentals of C++ Slide 16
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Class definition in C++, continued

Just as in Java, a C++ class definition establishes the rules for creating and interacting with
instances of a class.

Public and private specifications have the same meaning as in Java:

Public members can be accessed by any code.

Private members can only be accessed by code in member functions of the same class.

Source code that violates the rules established by a class definition generates a compilation
error.

C SC 397a, Fundamentals of C++ Slide 17
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++

In Java, objects are commonly created with a new expression and always reside in the heap.
Variables of class type reside on the stack and hold references to objects. Variables of
primitive type, like int, reside on the stack.

// Java code

private void f() {

Counter c1 = new Counter("#1");
int i = 7;

Counter c2;
c2 = new Counter("two");

}

The variables c1, c2, and i reside on the stack. The two instances of Counter reside in the
heap.

C SC 397a, Fundamentals of C++ Slide 18
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++

In C++ an object can be created on the stack, in the heap, or in a global data area.

Consider the following C++ function:

void f()
{
 int i = 7;
 Counter c1("#1");
 ...
}

When f is called, two variables are created:

A variable named i of type int that is initialized with the value 7.

A variable named c1 of type Counter that is initialized with the value "#1".

Both i and c1 reside on the stack. After f returns, the memory provided for both i and c1 is
available for reuse, by virtue of the function’s stack frame being popped.

How close is the above syntax and behavior to C?

C SC 397a, Fundamentals of C++ Slide 19
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++, continued

For variables of class type, member functions are invoked using the "dot" operator:

Counter c1("#1");
Counter c2("two");

c1.print();
c1.bump();
c2.bump();
c2.bump();
c1.print();
c2.print();

Output:

#1's count is 0
#1's count is 1
two's count is 2

C SC 397a, Fundamentals of C++ Slide 20
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++, continued

For reference:

Counter c1("#1");
Counter c2("two");

Note that c1 and c2 are objects, not references to objects. Their address and size can be
computed:

printf("&c1 = %p, &c2 = %p, sizeof(c1) = %d\n",
 &c1, &c2, sizeof(c1));

Output: (Cygwin g++ on XP)

&c1 = 0x22ccc0, &c2 = 0x22cca0, sizeof(c1) = 8

C SC 397a, Fundamentals of C++ Slide 21
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++, continued

In some cases one must reference an object using a pointer to it rather than the name of the
object.

Imagine a routine that returns a pointer to a Counter:

Counter *findCounter(...);

Given that routine, one might write this:

Counter *cp = findCounter(...);
cp->bump();

Note the obvious similarity to C:

Given Counter c, we access members with “.”

Given Counter *cp, we access members with “->”

More technically, we use “.” with “L-values” and “->” with pointers, just like C.

C SC 397a, Fundamentals of C++ Slide 22
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++, continued

Here is a routine that prints each Counter referenced in a zero-terminated array of Counter
pointers:

void printAll(Counter *counters[])
{
 for (int i = 0; counters[i] != 0; i++) {
 Counter *cp = counters[i];
 cp->print();
 }
}

Usage:

Counter a('a'), b('b'), c('c');
Counter *cs[] = { &a, &b, &c, 0 };
printAll(cs);

C SC 397a, Fundamentals of C++ Slide 23
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with objects in C++, continued

Consider this routine:

Counter *makeLoadedCounter(string name, int count)
{
 Counter c(name);

 while (count--)
 c.bump();

 return &c;
}

and an invocation:

Counter *cp = makeLoadedCounter("loaded", 5);
cp->print();

Are there any problems with it?

C SC 397a, Fundamentals of C++ Slide 24
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Sidebar: class vs. struct

The C++ syntax for member function invocation is obviously an extension of the C syntax
for structure references:

struct Point {
 int x, y;
 };

int main()
{
 struct Point pt;
 struct Point *p;

 pt.x = 30;
 pt.y = 40;

 p = &pt;

 printf("x = %d, y = %d\n", p->x, p->y);
}

C SC 397a, Fundamentals of C++ Slide 25
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Sidebar: class vs. struct, continued

In fact, "class" is "syntactic sugar". The declaration

class X {
 ...declarations...
 };

is exactly equivalent to:

struct X {
 private:
 ...declarations...
 };

C SC 397a, Fundamentals of C++ Slide 26
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The special pointer variable this

Inside every member function C++ makes available a variable named 'this'. It contains the
address of the object whose member function is being invoked. It is comparable to Java's
'this'.

Here is a new version of bump() for Counter:

void bump()
{
 printf("Bumping Counter at %p\n", this);
 itsCount++;
}

Usage:

Counter c("c");

printf("c is at %p\n", &c);
c.bump();

Output:
c is at 22feb8
Bumping Counter at 22feb8

C SC 397a, Fundamentals of C++ Slide 27
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

this, continued

In member functions of a class X, the type of 'this' is "X *const". (The const specification
prevents modifications to the value of this.)

If desired, we can reference members using this:

void bump()
{
 printf("Bumping Counter at %p\n", this);
 this->itsCount++;
}

Usage of this in C++ programs is usually for the same reasons as in Java, such as an object
registering itself with an observer, or an object needing to identify itself in a data structure
containing like objects.

C SC 397a, Fundamentals of C++ Slide 28
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Counter in C

To better understand how C++ works, it is useful to consider how a Counter "class" might be
approached in C.

typedef struct {
 char itsName; // 'char' to keep things simple in C
 int itsCount;
 } Counter;

Counter_init(Counter *this, char name)
{
 this->itsCount = 0;
 this->itsName = name;
}

void Counter_bump(Counter *this)
{
 this->itsCount++;
}

void Counter_print(Counter *this)
{
 printf("%c's count is %d\n", this->itsName, this->itsCount);
}

Usage:

int main()
{
 Counter a;
 Counter_init(&a, 'a');

 Counter_bump(&a);
 Counter_print(&a);
}

C SC 397a, Fundamentals of C++ Slide 29
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization

Unlike Java, member function definitions do not need to appear in the class definition itself.
One alternative is to place them in a separate source file.

One possible distribution of code would produce this Counter.h:

#ifndef _Counter_h_
#define _Counter_h_ // Handle multiple inclusion
using namespace std; // Use standard namespace
#include <string> // Standard library string class header
class Counter
{
 private:
 int itsCount;
 string itsName;
 public:
 Counter(string name);
 void bump();
 int getCount();
 void print();
};
#endif

C SC 397a, Fundamentals of C++ Slide 30
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization, continued

Unlike Java but just like C, C++ has a notion of a translation unit. A translation unit is a
source file with #includes expanded and appropriate processing of directives like #ifdef.

A translation unit must include an appropriate declaration or definition of identifiers before
code references them. For example, Counter.h needs to be #included in a source file
before any members of Counter are referenced.

Java has no notion of "header files" (.h files). How does the Java compiler know what the
methods and fields of a class are?

C SC 397a, Fundamentals of C++ Slide 31
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization, continued

The other piece of Counter is Counter.cc: (or .cpp, .cxx, .C, etc.)

#include <cstdio>
#include "Counter.h"

Counter::Counter(string name)
{
 itsCount = 0;
 itsName = name;
}

void Counter::bump() { itsCount++; }

int Counter::getCount() { return itsCount; }

void Counter::print()
{
 printf("%s's count is %d\n", itsName.c_str(), itsCount);
}

C SC 397a, Fundamentals of C++ Slide 32
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization, continued

The scope resolution operator (::) is used to associate the functions with the Counter class.

Each function designated as a member of Counter must correspond to a declaration in
Counter.h, which is #included.

Member function definitions can be distributed across any number of source files. A missing
definition manifests itself as an unresolved symbol when linking.

Avoid a common mistake: Note that the return type precedes the fully-qualified member
function name:

int Counter::getCount() ...
void Counter::print()

Note that C++ does not require "Counter" to appear in the name of either of the files that
comprise this class.

C SC 397a, Fundamentals of C++ Slide 33
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization, continued

The third piece of the picture is code that makes use of Counter. Here's a test program,
ctest.cc:

#include "Counter.h"

int main()
{
 Counter c1("#1");
 Counter c2("two");

 c1.print();
 c1.bump();
 c2.bump();
 c2.bump();
 c1.print();
 c2.print();
}

C SC 397a, Fundamentals of C++ Slide 34
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Source file organization, continued

An executable is produced by compiling Counter.cc and ctest.cc, and linking them
together. Here's one way:

% g++ ctest.cc Counter.cc

Here's another way:

% g++ -c Counter.cc
% g++ -c ctest.cc
% g++ -o ctest ctest.o Counter.o

Try it!

The discussion of in-line functions will raise some additional issues with source organization.

C SC 397a, Fundamentals of C++ Slide 35
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Sidebar: Common compilation problems

Missing semicolon at end of class declaration:

class X {
 int itsValue;
 }

This might generate an error about "multiple types in one declaration", or "too many types",
"can't define type X here".

If the class declaration is the last thing in a header file, such problems turn up in the
including file or the next included file.

Omission of scope resolution operator:

double getArea() // Should be Rectangle::getArea()
{
 return itsWidth * itsHeight;
}

This might generate an error claiming that itsWidth and itsHeight are undeclared identifiers.

C SC 397a, Fundamentals of C++ Slide 36
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Common compilation problems, continued

Mismatching declaration of member function:

class X {
...
int print();
};

...
void X::print() ...

This might generate an error claiming that print is not a member of X.

Forgetting to specify a file with member function implementations:

$ g++ ctest.cc # should be g++ ctest.cc Counter.cc
cc1sXf6y.o:ctest.cc:(.text+0x220): undefined reference to `Counter::bump()'
cc1sXf6y.o:ctest.cc:(.text+0x241): undefined reference to `Counter::print()'
...
collect2: ld returned 1 exit status

C SC 397a, Fundamentals of C++ Slide 37
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Common compilation problems, continued

Use of C++ keywords as identifiers:

if (typename == 0)
...

This might generate "parse error before '==' token" or "type expected".

Missing parentheses in member function invocation:

area = r.getArea;

This might produce an error about "member function must be called or address taken" or
"argument of type 'int (Rectangle::)()' does not match 'int'.

C SC 397a, Fundamentals of C++ Slide 38
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C SC 397a, Fundamentals of C++ Slide 39
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on Classes and Objects

More on constructors and destructors

Construction and global objects

Interesting uses for destructors

Dynamic memory management

Static members

In-line functions

Default arguments

C SC 397a, Fundamentals of C++ Slide 40
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Constructors

Like Java, C++ constructors specify what data must be supplied to create a new instance of a
class and how to initialize that new instance.

Like Java, member functions having the same name as the class are considered to be
constructors.

In Java, the predominant use of constructors is to initialize objects created with new
expressions.

In C++, constructors are used in several contexts. One use of constructors is to support type
extensibility—the ability to define new types that are as easy to use as built-in types such as
int and float.

C SC 397a, Fundamentals of C++ Slide 41
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Constructors, continued

The compiler "knows" the definition "int i = 7;" indicates that:

(1) Memory to hold an integer should be set aside

(2) The memory should be initialized with the value 7

(3) The memory will be referred to as i

Consider this C++ definition:

Counter c("x");

The C++ compiler knows to set aside memory to hold a Counter that will be referred to as c,
but it doesn't know how to initialize c with the value "x".

The constructor(s) for a class extend the compiler's repertoire by describing, in terms of
C++ code, how to initialize a new instance of that class.

C SC 397a, Fundamentals of C++ Slide 42
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Constructors, continued

Recall the constructor for Counter:

Counter::Counter(string name)
{
 itsCount = 0;
 itsName = name;
}

Just as in Java, constructors can be overloaded. Here's a second constructor; it provides for
an initial count for a Counter:

Counter::Counter(string name, int count)
{

itsCount = count;
itsName = name;

}

With the second constructor in hand, the compiler is able to generate code for these
definitions:

Counter a("a",5), b("b",10), c("c");

C SC 397a, Fundamentals of C++ Slide 43
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Constructors, continued

At hand:

class Counter {
 public:

Counter(string name);
Counter(string name, int count);

};

Will the following definition compile?

Counter counters[10];

C SC 397a, Fundamentals of C++ Slide 44
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default constructors

In Java, a default constructor is one that is supplied by the compiler.

In C++, a default constructor is a constructor that requires no arguments.

Here is a C++ class whose instances can be created with or without an integer initializer:

class X {
 public:
 X(int); // Note: no parameter name – it's optional
 X(); // This is a default constructor
 };

If an initializing value is specified, X(int) is called:

X a(1);
X pair[2] = { 7, 11 };

If no initializing value is specified, X() is called:

X a;
X xlist[10];

C SC 397a, Fundamentals of C++ Slide 45
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default constructors, continued

For reference:

class X {
 public:
 X(int);
 X();
 };

Will the following line of code compile?

X pair[2] = { 7 };

C SC 397a, Fundamentals of C++ Slide 46
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Details on constructors

In C++ as in Java...

Conceptually, every class has a constructor.

Conceptually, a constructor is always called whenever an object comes into existence.
Always.

A constructor can do whatever it wants. It might initialize all, some or none of the data
members. It might call other functions.

Constructors may be private.

A very important difference from Java:

Scalar data members are not zeroed as part of object creation—the value of uninitialized
members is unpredictable. (Exception: memory for globals is zeroed.)

C SC 397a, Fundamentals of C++ Slide 47
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Details on constructors, continued

The compiler will generate a default constructor for a class iff no constructors have been
specified for the class. Generated default constructors are public.

It is important to note that the definition

X a = 10;

is valid, but is NOT equivalent to

X a(10); // "direct initialization"

The former causes a copy constructor to be invoked. Copy constructors are discussed later.

C SC 397a, Fundamentals of C++ Slide 48
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors

The counterpart of a constructor is a destructor.

The destructor for a class X is a member function named ~X.

The destructor of a class is automatically called when the lifetime of an instance is over.

One situation in which objects are destroyed is when a block is exited: objects with local
scope (automatic variables) are destroyed.

C SC 397a, Fundamentals of C++ Slide 49
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors, continued

Example:

void f()
{
 Point p1(3,4); // (A)

 ... computation ...

 if (...)
 return;

 Point p2(5,6); // (B)

... more computation ...

}

p1 is created when execution reaches (A). p2 is created when/if execution reaches (B).

p1, and p2 if created, are destroyed when the routine returns.

C SC 397a, Fundamentals of C++ Slide 50
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors, continued

The Java counterpart for a destructor is a finalizer, a method denoted by its name: finalize().
A finalizer is called when the memory of an object is about to be reclaimed by the garbage
collector.

Java finalizers are often of little practical use because there is no guarantee that a finalizer
will ever be called.

C SC 397a, Fundamentals of C++ Slide 51
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors, continued

"Instrumenting" constructors and destructors with output expressions can aid understanding:

class X {
public:

X(char tag);
~X();

private:
char itsTag;

};
X::X(char tag) { itsTag = tag; printf("X(%c)\n", itsTag); }

X::~X() { printf("~X(%c)\n", itsTag); }

main()
{

printf("...1...\n");
X a('a');
printf("...2...\n");
X b('b');
printf("...3...\n");

}

Output:

...1...
X(a)
...2...
X(b)
...3...
~X(b)
~X(a) (Note LIFO ordering...)

C SC 397a, Fundamentals of C++ Slide 52
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors, continued

The relationship between constructors and destructors is not symmetrical. A constructor
initializes an object but a destructor "salvages" still-useful resources when the object is
destroyed.

Here's a start at a very simple string class:

class String {
public:

String(char *s);
~String();

private:
char *itsPtr;

};

String::String(char *s)
{

itsPtr = (char*)malloc(strlen(s)+1); // "new" coming soon; use malloc for now!
strcpy(itsPtr, s);

}

Does String need a destructor? If so, what should it do?

Examples of use:

String s("abc");

String progname(argv[0]);

String base(strchr(argv[1], '=') + 1);

C SC 397a, Fundamentals of C++ Slide 53
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Destructors, continued

String needs a destructor, to free the allocated memory:

String::~String()
{

free(itsPtr);
}

What happens if we forget to include a destructor?

Could/should we zero itsPtr?

Could/should we do anything else in the destructor?

C SC 397a, Fundamentals of C++ Slide 54
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Temporary objects

It is possible, and often convenient, to use temporary objects.

Examples:

int day = Date("7/4/04").day_of_week(); // not in std. library...

int span = Range(x, y, 'a').span();

"Temporary objects are destroyed as the last step in evaluating the full expression that
(lexically) contains the point where they were created."—ISO C++ Standard

C SC 397a, Fundamentals of C++ Slide 55
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Construction and global objects

Constructors for global (file scope) objects in a file are guaranteed to be called before any
routine in the file. Destructors for global objects are called when main() returns or when
exit() is called.

Example:

X g1("g1"); // Global variables,
X g2("g2"); // just like C.
main()
{

printf("main entered\n");
X a("a");
{

X b("block 1");
{ X b("block 2"); }

}
X b("b");
printf("exiting main\n");

}

X g3("g3"); // A third global

Output, with instrumented
constructors and destructors:

X(g1)
X(g2)
X(g3)
main entered
X(a)
X(block 1)
X(block 2)
~X(block 2)
~X(block 1)
X(b)
exiting main
~X(b)
~X(a)
~X(g3)
~X(g2)
~X(g1)

C SC 397a, Fundamentals of C++ Slide 56
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Puzzle

Problem: Imagining a graphical application, speculate on the purpose of the object hg in this
sketch of code:

void compute(...)
{
 Hourglass hg;

 ...a long and involved computation, but no use of 'hg'...
}

C SC 397a, Fundamentals of C++ Slide 57
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management

In C, responsibility for providing explicit memory management is placed on the C library,
which provides the functions malloc, free, and others.

C++ has language facilities for explicit memory management through the new and delete
operators.

The new operator has several forms. Here is one:

new type (initializing value(s))

Example:

Range *rp = new Range(1,10, 'a');

Three things happen:

(1) Sufficient memory to hold a Range is allocated in the heap.

(2) The constructor Range(int, int, char) is invoked. It initializes the data members.

(3) The memory address of the new Range is the result of the new expression. The
value is assigned to rp.

C SC 397a, Fundamentals of C++ Slide 58
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

If a class has a default constructor then only the class name (the type) needs to be specified:

X *p = new X;

It is possible to create an array of objects:

X *xs = new X[10];

The end result is that xs will hold the address of an array of ten initialized Xs.

C SC 397a, Fundamentals of C++ Slide 59
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

The type named in a new expression may be a scalar type. This expression allocates space
for an array of 100 characters:

char *str = new char[100];

If desired, space can be allocated for a single scalar value. An initializer can be specified,
too:

int *ip = new int;
double *dp = new double(12.34);

C SC 397a, Fundamentals of C++ Slide 60
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

In general terms, here are the three commonly used forms of the new operator:

new T
new T (initializers)
new T [number-of-elements]

In all cases the result type of a new expression is T*.

Will the following line compile?

X* p = new X*[10];

C SC 397a, Fundamentals of C++ Slide 61
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

The counterpart of new is delete. Here is one of the two commonly used forms of the
delete operator:

delete pointer-to-object

Example:

Counter *cp = new Counter("#1");

cp->bump();

cp->print();

delete cp;

If the object being deleted is of class type, the first action is to invoke its destructor. The
next step is to deallocate the memory, making it available for subsequent allocation.

If the object being deleted is a scalar, like delete *ip, where ip is int *, the memory is simply
deallocated.

C SC 397a, Fundamentals of C++ Slide 62
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

Here is the other common form of delete:

delete [] pointer-to-array of objects

This form should be used if the pointer references an array:

Counter *counters = new Counter[10];
char *p = new char[100];
...
delete [] counters;
delete [] p;

For an array of objects, such as counters above, the destructor is called for each of the
objects before the memory is released.

The behavior of mixing an array allocation with a non-array delete is not defined by the
standard. One common behavior is that if the array is of class type, only the first object in
the array has its destructor called.

Question: Why does delete have differing forms for the two cases?

[Note: skip to slide 83, for an omitted slide, on deleting arrays of pointers.]

C SC 397a, Fundamentals of C++ Slide 63
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

Problem: Write code that allocates an array of ten pointers to Counter and then populates
the array with the addresses of ten new Counters, using a default constructor for each.

Problem: Write code that destroys the above-created Counters and appropriately deallocates
memory.

C SC 397a, Fundamentals of C++ Slide 64
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Dynamic memory management, continued

new and delete may make use of malloc() and free() in the C library, but do not mix and
match them, calling free() with a value produced by new, for example.

It is permitted to call delete with the value zero:

delete 0; // No problem...

The new and delete operators can be overridden both globally and/or on a class by class
basis.

In some cases it is useful to direct new to place an object at a particular location. The
placement syntax accommodates that need, but is not discussed here.

Last but not least...

The absence of garbage collection in C++ raises the possibility of the same types of
memory management errors that can occur when working in C.

C SC 397a, Fundamentals of C++ Slide 65
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members

Just as Java, C++ provides a way to associate data and functions with a class itself rather than
each instance of a class.

Here is a C++ class that maintains a count of the number of instances that exist:

// File: X.h
class X {
 public:
 X() { theInstanceCount++; }
 ~X() { theInstanceCount--; }

 static int getInstances() { return theInstanceCount; }

 private:
 static int theInstanceCount;
 };

Just as in Java, "static" is used to indicate that a data member or member function is
associated with the class rather than an instance.

C SC 397a, Fundamentals of C++ Slide 66
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members, continued

The scope resolution operator is used to reference a static member of a class:

int n = X::getInstances();

The Java equivalent:

int n = X.getInstances();

C SC 397a, Fundamentals of C++ Slide 67
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members, continued

Example:

#include "X.h"

int main()
{

printf("[1]: %d Xs exist\n", X::getInstances());

{
X a, b, c;

X *xs = new X[5];

printf("[2]: %d Xs exist\n", X::getInstances());
}

printf("[3]: %d Xs exist\n", X::getInstances());

}

Output:

[1]: 0 Xs exist
[2]: 8 Xs exist
[3]: 5 Xs exist

C SC 397a, Fundamentals of C++ Slide 68
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members, continued

The preceding example hides a detail: Linking the program produces an error:
undefined reference to 'X::theInstanceCount'

A non-const static data member in C++ requires a definition for the data member that is
external to the class definition.

In this case the solution is a third source file: X.cc.

//----- X.h ----- (unchanged)
class X {
 public:

...as above...
 private:

static int theInstanceCount; // declares theInstanceCount
};

// ----- X.cc -----
#include "X.h"
int X::theInstanceCount = 0; // defines theInstanceCount

Note that the definition of theInstanceCount does not include "static".

C SC 397a, Fundamentals of C++ Slide 69
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members, continued

In Java there is no notion of global functions but an equivalent effect is provided by static
methods such as Math.sqrt().

Most C++ library functions with C equivalents are global functions. For example, <cmath>
has globals for cos(), floor(), sqrt(), etc. printf() is a global in <cstdio>

C SC 397a, Fundamentals of C++ Slide 70
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Static members, continued

Just as in Java, class libraries often use static members to group functions and related
constants. For example, imagine a Geometry class:

class Geometry { // Geometry.h
 public:

static double PI; // const would be better—coming soon!
static double GoldenRatio; // ditto
static double Slope(Point p1, Point p2);
static double SphericalVolume(double radius);
...

 private:
Geometry(); // Can't make a Geometry...
};

// --- Geometry.cc ---
double Geometry::PI = 3.141592653589793;
double Geometry::GoldenRatio = 1.618033988749895;

Usage:

area = Geometry::PI * radius * radius;
volume = Geometry::SphericalVolume(...);

C SC 397a, Fundamentals of C++ Slide 71
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions

For a given function it is possible to indicate that the function's code should be placed "in-
line" rather than be called as a separate routine.

Given this declaration in a header file,

inline int abs(int i)
{

if (i >= 0)
return i;

else
return -i;

}

a use such as

int a = abs(b);

will cause code to be generated that performs the calculation "in-line"—no function call takes
place. It's as if int a = (b >= 0) ? b : -b; had been written instead.

In-lining is preferred over a preprocessor macro because inline functions have full function
call semantics.

C SC 397a, Fundamentals of C++ Slide 72
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions, continued

Specifying a method body in a class definition implicitly indicates that the method is to be in-
lined.

// Rectangle.h
class Rectangle {
 public:
 Rectangle(double width, double height);
 ...
 double getArea() {
 return itsWidth * itsHeight;
 }
 private:
 double itsWidth, itsHeight;
 };

getArea is implicitly declared as inline because its method body appears in the class
definition.

C SC 397a, Fundamentals of C++ Slide 73
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions, continued

Given Rectangle r(3,4), the statement

int a = r.getArea();

results in code generated as if this had been written instead:

int a = r.itsWidth * r.itsHeight;

C SC 397a, Fundamentals of C++ Slide 74
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions, continued

The inline keyword can be applied to member functions defined outside the class declaration:

// Rectangle.h
class Rectangle {
 public:
 Rectangle(double width, double height);
 ...
 double getArea();
 private:
 double itsWidth, itsHeight;
 };

inline double Rectangle::getArea()
{
 return itsWidth * itsHeight;
}

The result is completely equivalent to placing the function body in the class definition. This
form is sometimes used to make a class definition easier to read.

C SC 397a, Fundamentals of C++ Slide 75
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions, continued

Questions:

What happens if "inline" on the getArea() definition is omitted?

What happens if "Rectangle::" is omitted?

What happens if the above definition of getArea() is placed in Rectangle.cc instead of
Rectangle.h?

C SC 397a, Fundamentals of C++ Slide 76
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

In-line functions, continued

The benefit of in-lining:

In-line methods provide access that is just as fast as directly referencing the members,
but without loss of encapsulation.

Some things to note about in-lining:

Can lead to "code bloat"

Creates additional dependency on header files

Can complicate debugging

A request to in-line a routine might not be honored

Rule of thumb:
Keep inline functions trivial (e.g., "getters" and "setters") until performance
requirements dictate a change.

C SC 397a, Fundamentals of C++ Slide 77
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments

Default arguments can provide a concise alternative to overloading.

Recall the example with two constructors for Counter:

class Counter
{
 Counter(string name) { itsName = name; itsCount = 0; }
 Counter(string name, int count) { itsName = name; itsCount = count; }
 ...
};

Here's an alternative that uses a default argument:

Counter(string name, int count = 0)
{
 itsCount = count;
 itsName = name;
}

C SC 397a, Fundamentals of C++ Slide 78
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments, continued

For reference:

Counter(string name, int count = 0)
{
 itsCount = count;
 itsName = name;
}

A declaration like this:

Counter c("loops");

is treated as if it were this:

Counter c("loops", 0);

C SC 397a, Fundamentals of C++ Slide 79
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments, continued

A further step is to supply a default for the name:

Counter(string name = "<unknown>", int count = 0)
{
 itsCount = count;
 itsName = name;
}

This single constructor allows a Counter to be created in three different ways:

Counter a, b("b"), c("c", 7);

Can it be said that Counter has a default constructor?

C SC 397a, Fundamentals of C++ Slide 80
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments, continued

Default arguments in C++ are often used in situations where Java constructors call "this(...)".
For comparison, here's how the same problem might be approached in Java:

class Counter {
 public Counter() { this ("<unknown>", 0); }
 public Counter(String name) { this (name, 0); }
 public Counter(String name, int count)

{ itsName = name; itsCount = count; }
 ...
 }

C++ has no equivalent to calling this(...) in Java.

C SC 397a, Fundamentals of C++ Slide 81
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments, continued

Default arguments are not limited to constructors—they can be used in any function.
Another example:

string TrimChars(string s, char what = ' ');

String s = "aaabbb ";
s = TrimChars(s); // now "aaabbb"
s = TrimChars(s, 'b'); // now "aaa"

C SC 397a, Fundamentals of C++ Slide 82
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Default arguments, continued

A default value specification for an argument can appear only once in a translation unit. The
usual practice is to specify default arguments in a header file:

// --- strutils.h ---
string TrimChars(string s, char what = ' ');

// --- strutils.cc ---
string TrimChars(string s, char what)
{

...processing...
}

The body of a function having default arguments often has no evidence of defaults being
present.

Although literal values are most commonly specified for defaults, an arbitrary expression can
be used. (Several rules apply, however.)

C SC 397a, Fundamentals of C++ Slide 83
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

[Tardy slide: 62.5] Deleting arrays of pointers

From the mailing list, Feb 2:

After class today a student posed a question that's not answered in the slides:
 When deleting an array of pointers, are destructors called for the pointed-to
objects?

For example, given this code,

X **xps = new X*[5];

...code of various sorts...

delete [] xps;

are destructors called for X's referenced by xps[0]...xps[4]?

 The answer is "no", but that suggests a couple of other questions:
(1) Would the alternative behavior, destroying pointed-to objects, be better or worse?

What would the implications be?

(2) What sort of experiment(s) could we do to confirm that my claim of "no" is
correct?

C SC 397a, Fundamentals of C++ Slide 84
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Miscellany

References

The friend specifier

The const qualifier

Copy constructors

The bool type

C SC 397a, Fundamentals of C++ Slide 85
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References

The declaration int x; creates an integer object with the name x.

C++ provides a way to create a reference to an object, which is an alternative name, or alias,
for the object.

Example:

int x = 1;

int& xref = x;

xref = 2;

printf("x = %d, xref = %d, &x = %p, &xref = %p\n",
 x, xref, &x, &xref);

Output:

x = 2, xref = 2, &x = 0x22cce4, &xref = 0x22cce4

C SC 397a, Fundamentals of C++ Slide 86
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

 References must always be initialized:

int& intref; // Invalid -- no initialization!

References cannot be changed. (And even if they could be changed, special syntax would be
needed—think about it!)

C SC 397a, Fundamentals of C++ Slide 87
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

A reference may name an object with no prior name:

Rectangle *rp;

rp = FindRectangle();

Rectangle& r = *rp;

double a = r.getArea();

C SC 397a, Fundamentals of C++ Slide 88
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

Consider a common C example: a routine to swap the value of two ints:

void swap(int *ap, int *bp)
{

int tmp = *ap;
*ap = *bp;
*bp = tmp;

}

Its usage:

int i = 5, j = 10;
swap(&i, &j); // sets i to 10, j to 5

int v[2] = { 3, 4 };

swap(&v[0], &v[1]);

C SC 397a, Fundamentals of C++ Slide 89
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

Using references, swap can be implemented like this:

void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

Its usage:

swap(i, j);

swap(v[0], v[1]);

C analog, for reference:

void swap(int *ap, int *bp)
{

int tmp = *ap;
*ap = *bp;
*bp = tmp;

}

int i = 5, j = 10;
swap(&i, &j);

int v[2] = { 3, 4 };
swap(&v[0], &v[1]);

C SC 397a, Fundamentals of C++ Slide 90
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

The most common use of references in C++ is to reference instances of classes:

double maxArea(Rectangle& a, Rectangle& b)
{

if (a.getArea() >= b.getArea())
return a.getArea();

else
return b.getArea();

}

Usage:

Rectangle a(3,4), b(5,6);

int max = maxArea(a, b);

Same routine, but with pointers:

int maxArea(Rectangle* ap, Rectangle* bp)
{

if (ap->getArea() >= bp->getArea())
return ap->getArea();

else
return bp->getArea();

}

Usage:

Rectangle a(3,4), b(5,6);
int max = maxArea(&a, &b);

C SC 397a, Fundamentals of C++ Slide 91
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

It is possible for a function to return a reference. Such a function can appear on the left hand
side of an assignment and/or be the operand of the & operator.

class X {
 public:
 X() { itsValue = 10; }
 int& value() { return itsValue; }
 private:
 int itsValue;
 };

int main()
{
 X x;

 printf("x.value() = %d\n", x.value());

 x.value() = 20;

 printf("x.value() = %d\n", x.value());
 printf("&x.value() = %p\n", &x.value());
}

Output:

x.value() = 10

x.value() = 20
&x.value() = 0x22cce4

C SC 397a, Fundamentals of C++ Slide 92
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

References, continued

Note that the potential of references means that you can't tell on sight whether a function call
might modify a scalar parameter.

Consider this code:

int n = f(i);

Does f() change i?

To a great extent, references are syntactic sugar; you'll find pointers under the hood.

Although references are used in a variety of ways in C++, the language feature that "sealed
the deal" to include references was operator overloading.

C SC 397a, Fundamentals of C++ Slide 93
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The friend specifier

C++ has the concept of friends of a class. A friend is a function that is not a member of the
class but is permitted access to the private members of the class. Example:

class X {
 public:

X(int val) { itsValue = val; itsAccCnt = 0; }

int getValue() { itsAccCnt++; return itsValue; }

 private:
int itsValue;
int itsAccCnt;

 friend void Xamine(X& theX); // Note: position wrt. public/private makes no difference!
};

void Xamine(X& theX)
{

printf("The X at %p has an access count of %d\n", &theX, theX.itsAccCnt);
}

Being a friend of X, the function Xamine() can do its job, but there's no general exposure of
the access count.

C SC 397a, Fundamentals of C++ Slide 94
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

friend, continued

A class can name other classes as friends. Specific member functions of classes may be
named as well.

class X {
friend class Y;
friend int Z::q(int);
...
};

The first friend declaration causes all member functions of Y to be friends of X. Thus,
private data members and private member functions of X can be accessed in any member
function of Y.

The second friend declaration makes one particular member function of class Z a friend, too.

C SC 397a, Fundamentals of C++ Slide 95
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

friend, continued

Some points about friendship in C++:

Friendship is granted, not taken.

A friend of a class should be thought of as part of the abstraction of that class.

"Without friends you expose too much". — Grady Booch

There is no equivalent to friend in Java.

C SC 397a, Fundamentals of C++ Slide 96
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The const qualifier

const is a declaration of invariability.

const can be applied to simple variables:

const int couple = 2; // integer constant

couple = 3; // compilation error: "assignment of read-only variable"

The Java counterpart for const is final:

final int couple = 2;

const can be applied to the object referenced by a pointer:

const char *p;
// p points to characters that are not to be modified

p = "abc"; // modifies p — OK
*p = '?'; // compilation error: "assignment of read-only location"

Another way to view the declaration const char *p: "I do not intend to use p to change a
char. Stop me if I try to!"

C SC 397a, Fundamentals of C++ Slide 97
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The const qualifier, continued

const can be applied to a pointer:

char buf[] = "Testing";
char *const q = &buf[2];

// q can't be changed; what q points to can

*q = 'x'; // changes the 's' to an 'x' — OK
q++; // compilation error
q = &buf[1]; // compilation error
q = q; // compilation error

const can be applied to both a pointer and what it references:

const char *const r = "abcd";
// constant pointer to constant characters

*r = 'x'; // compilation error
r++; // compilation error

Recall that in a member function for a class X, the variable this has the type "X *const", as if
this declaration were present: X *const this;

C SC 397a, Fundamentals of C++ Slide 98
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The const qualifier, continued

A const static scalar member may include an initialization. Example:

class Geometry {
 public:
 const static double PI = 3.141592653589793;
 const static double GoldenRatio = 1.618033988749895;
 static double Slope(Point p1, Point p2);
 static double SphericalVolume(double radius);
 //...
 private:
 Geometry();
 };

C SC 397a, Fundamentals of C++ Slide 99
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions

const can be applied to member functions. Imagine a class that represents a list of integers:

class IntList {
 public:
 IntList();
 void addValue(int value);
 int getLength() const;
 ...
 };

The const specification for the getLength() member function specifies that getLength will
change no data members.

Having no const specification, addValue() is free to change data members.

Note that inside a const method for class X, this is treated as

const X *const this;

Does Java have an equivalent to const member functions?

C SC 397a, Fundamentals of C++ Slide 100
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions, continued

const can be applied to reference parameters to indicate that the referenced object should not
be modified:

void f(const IntList& ilist)
{
 int len = ilist.getLength(); // OK — ilist is const but getLength() is const, too

 ilist.addValue(7); // compilation error — ilist is const but addValue isn't!
}

What benefit is provided by const member functions?

C SC 397a, Fundamentals of C++ Slide 101
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions, continued

Here's some code from a Java class:

//
// isDrainable determines whether water will fully drain from gs.
// NOTE: The GutterSystem is not modified!
//
boolean isDrainable(GutterSystem gs) { ...lots of code... }

Does isDrainable() above cause any changes in the state of a GutterSystem?

Here's the signature of an equivalent method in C++:

//
// isDrainable determines whether water will fully drain from gs.
//
bool isDrainable(const GutterSystem& gs);

Does isDrainable() above cause any changes in the state of a GutterSystem?

C SC 397a, Fundamentals of C++ Slide 102
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions, continued

The combination of const member functions and const reference parameters provides two
benefits:

The developer of a routine can be sure that the code is not inadvertently modifying a
parameter that should not be changed.

The user of a routine can be sure that it won't modify a reference parameter.

We can have our cake and eat it too: We get call-by-value semantics with the speed of
passing only a pointer, instead of an entire object.

C SC 397a, Fundamentals of C++ Slide 103
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions, continued

Problem: Appropriately apply const to this Rectangle class:

//
// Rectangle.h
//
class Rectangle {
 public:
 Rectangle(double width, double height);
 double getArea();
 double getPerimeter();
 double getWidth() { return itsHeight; }
 double getHeight() { return itsWidth; }
 void print();
 void resize(double width, double height);
 private:
 double itsWidth, itsHeight;
 };

C SC 397a, Fundamentals of C++ Slide 104
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

const and member functions, continued

//
// Rectangle.cc
//

double Rectangle::getArea()
{
 return itsWidth * itsHeight;
}

void Rectangle::resize(double width, double height)
{
 itsWidth = width;
 itsHeight = height;
}

...and more...

C SC 397a, Fundamentals of C++ Slide 105
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Logical vs. physical const-ness

Consider this simple class and a function that uses it:

class X {
 public:
 X(int val) { itsValue = val; }
 int getValue() const { return itsValue; }
 private:
 int itsValue;
 };

int f(const X& x)
{
 int v = x.getValue();
 ...
}

C SC 397a, Fundamentals of C++ Slide 106
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Logical vs. physical const-ness, continued

Consider X augmented to count calls to getValue(), on an object-by-object basis.

class X {
 public:
 X(int val) {

itsValue = val
itsAccCnt = 0;
}

 int getValue() const {
 itsAccCnt++;
 return itsValue;
 }

 private:
 int itsValue;
 int itsAccCnt;
 };

Any problems?

C SC 397a, Fundamentals of C++ Slide 107
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Logical vs. physical const-ness, continued

At hand:

int getValue() const {
 itsAccCnt++;
 return itsValue;
 }

The problem with getValue() is that it maintains logical constancy but not physical
constancy.

The mutable type specifier designates that a data member is allowed to be changed in a
const method.

C SC 397a, Fundamentals of C++ Slide 108
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Logical vs. physical const-ness, continued

Here's a solution for the getValue() problem:

class X {
 ...
 private:
 int itsValue;
 mutable int itsAccCnt;
 };

As a rule, mutable data members are used to hold data that has no direct external
manifestation but that aids with things such as performance monitoring and caching.

C SC 397a, Fundamentals of C++ Slide 109
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Copy constructors

In certain situations in C programs, a variable is initialized using an existing value of the
same type. One situation is a variable declared with an initializer:

int i = 3;
int j = i + 10;

Both i and j have no previous value and are initialized with an int value.

Another situation arises in passing arguments to functions:

int add(int a, int b)
{

return a + b;
}

Given a call such as add(i +2, j), the value of i + 2 is computed and used to initialize the
parameter a. The value of j is used to initialize b.

A class may define a copy constructor, which describes how to initialize a new instance of
the class with an existing instance of that class.

The copy constructor is another component of C++'s support for type extensibility.

C SC 397a, Fundamentals of C++ Slide 110
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Copy constructors, continued

Recall the data members of the simple rectangle class:

class Rectangle {
 ...
 private:

double itsWidth, itsHeight;
 };

Imagine a routine that returns the larger of the areas of two rectangles:

double largerArea(Rectangle a, Rectangle b);

It might be used like this:

Rectangle r1(7,8) , r2(5,12);
double largest = largestArea(r1, r2);

The type of the parameters, simply Rectangle, indicate the arguments are to be passed by
value. This is a case where a copy constructor is used: the parameters are initialized with
values of the same type.

C SC 397a, Fundamentals of C++ Slide 111
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Copy constructors, continued

Because Rectangle does not define a copy constructor the compiler automatically generates
one. Generated copy constructors use memberwise copy and are public.

Here's an approximation of the generated copy constructor:

Rectangle(const Rectangle& r)
{

itsWidth = r.itsWidth;
itsHeight = r.itsHeight;

}

The generated copy constructor works just fine. There's no reason to write one ourselves,
except perhaps for debugging output, maybe to see when it is called.

In what situations will a generated copy constructor be inadequate?

C SC 397a, Fundamentals of C++ Slide 112
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Copy constructors, continued

Does our trivial String class, below, require a copy constructor?

class String {
 public:
 String(char *s) {
 itsPtr = new char[strlen(s)+1];
 strcpy(itsPtr, s);
 }
 ~String() {*itsPtr = '#'; delete [] itsPtr; }
 void print() {

 printf("String at %p: %s\n", this, itsPtr);
 }
 private:
 char *itsPtr;
 };

In the code at right, is String's copy constructor ever
called?

Will the code run without error?

int main()
{
 String hello("Hello!");

 hello.print();

 f(hello);

 hello.print();

}

void f(String s)
{
 s.print();
}

C SC 397a, Fundamentals of C++ Slide 113
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A copy constructor for String

class String {
 public:
 String(char *s)
 {
 itsPtr = new char[strlen(s)+1];
 strcpy(itsPtr, s);
 }

 String(const String& s) { // copy constructor
 itsPtr = new char[strlen(s.itsPtr)+1];
 strcpy(itsPtr, s.itsPtr);
 }

 ~String() { *itsPtr = '#'; delete [] itsPtr; }
 void print() { printf("String at %p: %s\n", this, itsPtr); }
 private:
 char *itsPtr;
 };

Should the copy constructor first free the memory referenced by itsPtr?

There's one more important piece: An assignment operator for String. We'll see it later.

C SC 397a, Fundamentals of C++ Slide 114
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The bool type

The bool type in C++ is used to represent Boolean values.

There are two bool literals: true and false

In C, operators such as <, ==, &&, and ! yield an int result that is 0 or 1.

In C++ those same operators yield a bool result that is either true or false.

Any arithmetic (numeric) or pointer value can be implicitly converted to a bool value. A
zero numeric value or a null pointer is converted to false. All other values are converted to
true.

A bool value can be converted to an arithmetic type, producing either 0 or 1.

C SC 397a, Fundamentals of C++ Slide 115
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The bool type, continued

Problem: What is the value of j after the execution of this code?

int n = 10;

int m = 20;

bool a = n < m;

bool b = true;

int i = a < b;

bool c = 1.2 || false;

int j = !i + c;

C SC 397a, Fundamentals of C++ Slide 116
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The bool type, continued

The condition expressions for control structures (like if and while) and the operands of
logical operators like == and ! are implicitly converted to type bool, producing an end result
that is the same as C: A non-zero value indicates true and a zero indicates false.

Two examples:

//
// Print "Hello!" ten times
//
int i = 10;
while (i--) // Java: while (i-- != 0)
 puts("Hello!");

//
// Walk a linked list, printing the value in each node
//
for (node *p = first; p; p = p->next)
 printf("Value: %d\n", p->value);

The boolean and bool types in Java and C++, and their contexts of usage, are largely
identical, essentially differing only by the automatic conversions in C++, but that difference
has great effect.

C SC 397a, Fundamentals of C++ Slide 117
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Null pointer constants

When used in a context that requires a pointer, the literal value 0 is interpreted as a null
pointer constant, and yields a null pointer value.

For example,

char *p = 0;

initializes p with a null pointer value.

The representation of a null pointer value is implementation-specific. It is not guaranteed
that the bits of p are all zero!

It is guaranteed that a null pointer...

...compares equal to a null pointer

...compares equal to any null pointer constant

...compares not equal to the address of any valid object in memory

...yields false if converted to bool

C SC 397a, Fundamentals of C++ Slide 118
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Null pointer constants, continued

A common practice in C++ is to use 0 to represent a null pointer, but NULL is OK, too:

Node *next = 0; // Very common
Node *last = NULL; // Also common (but be consistent!)

g++ defines NULL as _ _null, a zero value but with pointer type, which causes a declaration
like this,

int i = NULL;

to generate a warning: initialization to non-pointer type `int' from NULL

A recent version of Visual Studio's C++ defined NULL to be 0.

There are some intricate issues involving null pointer constants. Google for nullptr to learn
more.

C SC 397a, Fundamentals of C++ Slide 119
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregations of Objects

Aggregation using pointers

Aggregation by value

Member initializers

Aggregation using references

Choosing representation of aggregation

C SC 397a, Fundamentals of C++ Slide 120
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregations of objects

In Java there is only one way to represent an aggregation of objects: an aggregate holds
references to the objects that comprise it. We might represent 2D points and lines like this:

class Point {
 public Point(int x, int y) {
 itsX = x; itsY = y;
 }
 private int itsX, itsY;
 }

class Line {
 public Line(Point A, Point B) {
 itsA = A; itsB = B;
 }
 private Point itsA, itsB;
 }

What's the "picture" on the stack and in the heap after execution of the above?

Aggregation is sometimes called the "has-a" relationship.

Usage:

Point origin = new Point(0,0);
Point p1 = new Point(3,4);

Line L1 = new Line(origin, p1);

Line L2 = new Line(new Point(7,11),
 new Point(5,10));

C SC 397a, Fundamentals of C++ Slide 121
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation using pointers

C++ provides three distinct ways to represent aggregation. One way is to use pointers:

class Point {
 public:
 Point(int x, int y) {
 itsX = x; itsY = y;
 }
 private: int itsX, itsY;
 };

class Line {
 public:
 Line(Point *p1, Point *p2) {
 itsP1 = p1; itsP2 = p2;
 }
 private:
 Point *itsP1, *itsP2;
 };

What's the picture after execution of the above? How does it compare to Java?

Does Line need a destructor? How about a copy constructor?

Usage:

Point origin(0,0);
Point p1(3,4);

Line L1(&origin, &p1);

Line *Lp = new Line(&origin, &p1);

C SC 397a, Fundamentals of C++ Slide 122
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation using pointers, continued

Recall the second Line created in Java:

Line L2 = new Line(new Point(7,11), new Point(5,10));

Is the following a suitable C++ analog?

Line L2(new Point(7,11), new Point(5,10));

Are there any problems with the following routine?

Line f()
{
 Point p1(1,1);
 Point p2(2,2);

 Line L(&p1, &p2);

 return L;
}

C SC 397a, Fundamentals of C++ Slide 123
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation by value

Another way to represent aggregation in C++ is to have objects physically contain other
objects. Sometimes this is called composition or composition by value, or containment by
value. A first attempt:

class Point {
public:

Point(int x, int y) {
itsX = x; itsY = y; }

private:
int itsX, itsY;

};

class Line {
public:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }
private:

Point itsP1, itsP2;
};

Memory layout is just like structs in C: Point physically contains two ints. Line physically
contains two Points. If sizeof(int) is 4, then sizeof(Point) is 8 and sizeof(Line) is 16.

Desired usage:

Point origin(0,0);
Point p1(3,4);

Line L1(origin, p1);
Line L2(Point(7,11), Point(5,10));

C SC 397a, Fundamentals of C++ Slide 124
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation by value, continued

At hand:

class Point {
public:

Point(double x, double y) { itsX = x; itsY = y; }
private:

double itsX, itsY;
};

class Line {
public:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }
private:

Point itsP1, itsP2;
};

Only one problem: It doesn't compile! Here's what g++ says:

In constructor `Line::Line(Point, Point)':
 error: no matching function for call to `Point::Point()'
 ...and more...

What's the problem?

C SC 397a, Fundamentals of C++ Slide 125
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation by value, continued

At hand:

class Line {
public:

Line(Point p1, Point p2) {
itsP1 = p1;
itsP2 = p2;
}

private:
Point itsP1, itsP2;

};

Here's the interpretation of Line's constructor as it stands:

Create two instances of Point, itsP1 and itsP2, with no initializing values.

Assign the members of p1 to itsP1. Ditto for p2. (Using "memberwise assignment".)

Should we make it work by creating a default constructor for Point?

C SC 397a, Fundamentals of C++ Slide 126
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation by value, continued

A rule: If an object contains other objects by value, the contained objects are constructed first
and in the order they appear as data members in the containing object. Then, the constructor
for the containing object is called. (A postorder tree traversal, in essence.)

class Milk { public: Milk() { puts("Milk"); } };
class Bread { public: Bread() { puts("Bread"); } };
class Yolk { public: Yolk() { puts("Yolk"); } };
class Egg {
 public: Egg() { puts("Egg"); }
 private: Yolk itsYolk;
 };
class CartonOfEggs {
 public: CartonOfEggs() { puts("CartonOfEggs"); }
 private: Egg itsEggs[6];
 };
class Groceries {
 public: Groceries() { puts("Groceries"); }
 private:

Milk itsMilk;
Bread itsBread[2];
CartonOfEggs itsEggs;
};

int main() { Groceries g; }

Output:

Milk
Bread
Bread
Yolk
Egg
Yolk
Egg
Yolk
Egg
Yolk
Egg
Yolk
Egg
Yolk
Egg
CartonOfEggs
Groceries

C SC 397a, Fundamentals of C++ Slide 127
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member initializers

The correct way to write the constructor for Line is to use member initializers.

Instead of this:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }

Use this:

Line(Point p1, Point p2) : itsP1(p1), itsP2(p2) { }

Member initializers provide a way to associate initializing values with members. In this case
the copy constructor for Point is used to initialize itsP1 and itsP2 using p1 and p2.

A rule:

If an instance of class X is a data member then either (1) the data member must have a
member initializer, or (2) X must have a default constructor.

The constructor for Line has an empty body but it could contain other code, too.

The need for member initializers rises from the strong distinction between initialization
and assignment in C++.

C SC 397a, Fundamentals of C++ Slide 128
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member initializers, continued

 Here is another constructor for Line:

Line(int x1, int y1, int x2, int y2)
 : itsP1(x1, y1), itsP2(x2, y2) { }

This declares that the members itsP1 and itsP2 should be initialized with the values x1, y1
and x2, y2, respectively.

Member initializers can used with scalar data members, too:

Point(int x, int y) : itsX(x), itsY(y) { }

The expressions used for member initialization may be of arbitrary complexity.

C SC 397a, Fundamentals of C++ Slide 129
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member initializers, continued

A member initializer is the only way to initialize a non-static const data member:

class X {
 public:
 X(int N) {

itsN = N; // Compilation error
q = new int[N]; // Ditto

}

 X(int N) : itsN(N), q(new int[N]) { } // OK

 private:
 const int itsN;
 int *const q;
 };

C SC 397a, Fundamentals of C++ Slide 130
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation using references

The third way to represent aggregation in C++ is to use references.

Example:

class CounterPair {
 public:
 CounterPair(Counter& c1, Counter& c2)
 : itsA(c1), itsB(c2) { }

 void bump() { itsA.bump(); itsB.bump(); }

 void print(const char *label)
 {
 printf("%s", label);
 itsA.print();
 itsB.print();
 }

 private:
 Counter& itsA;
 Counter& itsB;
 };

C SC 397a, Fundamentals of C++ Slide 131
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation using references

At hand:

class CounterPair {
 public:

CounterPair(Counter& c1, Counter& c2) : itsA(c1), itsB(c2) { }
...

 private:
Counter& itsA;
Counter& itsB;
};

Using references to represent aggregation implies that the objects exist for the full lifetime of
the aggregate, and that they don't vary (i.e., are not swapped in and out).

Note that member initializers are required for itsA and itsB.

Internally, a data member of reference type is represented with a pointer.

C SC 397a, Fundamentals of C++ Slide 132
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Aggregation using references, continued

Usage:

Counter a("a"), b("b");

CounterPair p1(a, b);

p1.bump();
p1.print("p1:\n");

Counter *cp = new Counter("c");

CounterPair p2(b, *cp);

p2.bump();
p2.print("p2:\n");

Output:

p1:
a's count is 1
b's count is 1
p2:
b's count is 2
c's count is 1

C SC 397a, Fundamentals of C++ Slide 133
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choosing representation of aggregation

In summary, C++ provides three ways to represent aggregation:

An object can physically contain other objects
(Aggregation by value)

An object can hold pointers to other objects
(Aggregation with pointers)

An object can hold C++ references to other objects
(Aggregation with references)

A single class might use all three.

C SC 397a, Fundamentals of C++ Slide 134
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choosing representation of aggregation, continued

Here are some factors that can guide selection of a representation:

Objects that have no existence beyond that of the aggregate suggest aggregation by
value.

Aggregation by value creates a header file dependency. For example, Line.h needs to
include Point.h if Line holds Point values (e.g. Point itsP1, itsP2;) (Why?)

 If aggregation is by pointer or reference, a forward declaration (e.g., class Point;) in
the header file suffices. (Why?)

Independent lifetimes suggests use of pointers or references.

A varying number of contained objects suggests use of pointers. (Why?)

An object present in more than one aggregation requires representation using a pointer
or a reference. (Why?)

C SC 397a, Fundamentals of C++ Slide 135
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A choice in aggregation

Problem: Comment on the merit of this implementation of Line:

class Line {
 public:
 Line(double x1, double y1,
 double x2, double y2)
 : itsP1(new Point(x1, y1)), itsP2(new Point(x2, y2)) { }

 ~Line() { delete itsP1; delete itsP2; }

 private:
 Point *itsP1, *itsP2;
 };

Ignore the lack of a constructor that takes two points.

C SC 397a, Fundamentals of C++ Slide 136
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C SC 397a, Fundamentals of C++ Slide 137
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type Extensibility and Operator Overloading

Overload resolution

Construction as conversion

explicit constructors

Operator overloading basics

Operators as member functions

Choice in overloading

Overloading assignment

A simple String class

Conversion operators

Review of constructors, destructors, and assignment

C SC 397a, Fundamentals of C++ Slide 138
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overload resolution

C++ allows both functions and operators to be overloaded. Here is a simple example of
function overloading:

int max(int a, int b)
{

return (a > b ? a : b);
}

double max(double a, double b)
{

return (a > b ? a : b);
}

Overload resolution is the process of determining which overloaded function best matches
the arguments in a call.

max(1, 2); // calls max(int, int)
max(3.4, 3.5); // calls max(double, double)

In both cases there is an exact match between the supplied arguments and a version of min.

Does Java allow overloading?

C SC 397a, Fundamentals of C++ Slide 139
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overload resolution, continued

At hand:

int max(int a, int b);

double max(double a, double b);

Here's a call that doesn't exactly match either function:

max('a', 'b');

C++ will apply conversions to match a call with a function. In this case the standard
conversion of integral promotion is applied to convert the two char values into two int
values, and then match the max(int, int) form.

C SC 397a, Fundamentals of C++ Slide 140
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overload resolution, continued

Here's a call that is said to be ambiguous; it will not compile:

max(3.4, 4);

One way to produce a match would be to convert 4 to a double. Another way to produce a
match would be to convert 3.4 to an int. C++ considers those two conversions to be of
equivalent merit and will not choose between them.

We can eliminate the ambiguity with either of two casts:

max(3.4, (double)4); // calls max(double, double)
max((int)3.4, 4); // calls max(int, int)

C SC 397a, Fundamentals of C++ Slide 141
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Construction as conversion

In addition to standard conversions, C++ will also apply one user-defined conversion to
match a call to a function. Construction is one example of a user-defined conversion.

Consider this class:

class X {
 public:
 X(double);
 };

In addition to telling the compiler what's required to make an X and how to do it, the class
defines this conversion:

If you have a double and need an X, use this constructor to make an X from the
double.

C SC 397a, Fundamentals of C++ Slide 142
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Construction as conversion, continued

For reference:

class X {
 public:
 X(double);
 };

Here's a function that requires an X as its argument:

void f(X value) { ... }

All of these calls are valid:

f(1); // Converts int to double, calls f(X(double))

f('a'); // Promotes char to int, converts int to double, calls f(X(double))

f(1.2); // Calls f(X(double))

X x1(2.0);
f(x1); // Exact match – no conversion

C SC 397a, Fundamentals of C++ Slide 143
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Construction as conversion, continued

At hand:

class X {
 public:
 X(double);
 };

void f(X x) { ... }

Let's add another class and also overload f:

class Y {
 public:
 Y(double);
 };

void f(Y y) { ... }

The call f(1) is now ambiguous. The compiler can't choose between these two:

Convert int to double, call f(X(double))

Convert int to double, call f(Y(double))

Is f(1.2) ambiguous?

C SC 397a, Fundamentals of C++ Slide 144
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

explicit constructors

In some cases, treating a constructor as a user-defined conversion creates headaches.

Adding the explicit specifier to a constructor indicates that only explicit calls of the
constructor are permitted. An explicit constructor is not considered to specify a user-defined
conversion. Example:

class X {
 public:
 X(double);
 };

class Y {
 public:
 explicit Y(double);
 };

void f(X x) { }
void f(Y y) { }
void g(Y y) { }

Calls to consider:

f(1); // Unambiguous
f('a'); // Ambiguous or OK?
f(1.2); // OK?

g(1.0); // OK?
g(Y(1.0)); // OK?

C SC 397a, Fundamentals of C++ Slide 145
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Limit: One user-defined conversion

C++ will not consider a series of conversions that requires more than one user-defined
conversion.

Two trivial classes and two functions:

class A {
 public:
 A(int);
 };

class B {
 public:
 B(A);
 };

void f(A) { }
void g(B) { }

The two classes define two user-defined conversions:
An A can be made from an int
A B can be made from an A

Which of following calls are
valid? Why or why not?

f(1);

f('a');

g(1);

g('a');

g(A(1));

g(A('a'));

g(A(2.3));

C SC 397a, Fundamentals of C++ Slide 146
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading

It is possible to overload operators so that they have meaning for user-defined types.
Operator overloading is another aspect of C++'s support for type extensibility.

A type to represent complex numbers:

Complex a(1,0), b(2,-3), p, q;

p = a + b;
q = (a + b) / (-p * 5);

A type to represent character strings:

String first = "John", last = "Smith";

String name = (first + " " + last) * 2; // produces "John SmithJohn Smith"

Types for times and durations:

Time firstArrival("12/31/2009 18:00");
Time lastDeparture("1/1/2010 04:27");

Duration partyLength = lastDeparture - firstArrival; // 10 hours, 27 minutes

C SC 397a, Fundamentals of C++ Slide 147
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Ground rules for operator overloading

By convention, operators have an expected interpretation but that is left to the discretion of
the programmer. A class designer homesick for Icon might do this:

int n = *segmentList; // produces the number of segments

Operator overloading in C++ is not as flexible as in some languages:

No new operators can be defined. For example, you can't define an operator /\ to
represent a logical conjunction, such as P /\ Q.

Operator/operand type combinations that already have a meaning can't be redefined.
For example, the meaning of i + j, where i and j are ints, can't be changed. ("C++ should
be extensible, but not mutable."—Stroustrup)

The precedence and "arity" of operators cannot be changed. Two examples:

^ can be overloaded to mean exponentiation but x*y^z would mean (x*y)^z, not
x*(y^z).

A unary | operator can't be defined.

C SC 397a, Fundamentals of C++ Slide 148
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading basics

Here is an ordinary function that "adds" two Rectangles by adding their widths and heights:

Rectangle add(Rectangle a, Rectangle b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

It might be used like this:

Rectangle x(3, 4);
Rectangle y(5,10);

Rectangle z = add(x, y);
z.print('z'); // Output: Rectangle 'z': 8 x 14

x = add(add(x,y), z);
x.print('x'); // Output: Rectangle 'x': 16 x 28

C SC 397a, Fundamentals of C++ Slide 149
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading basics, continued

Here is the same computation in the form of an overloaded operator:

Rectangle operator+(Rectangle a, Rectangle b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

This declares (to the compiler):

If two Rectangle-valued expressions are the operands of +, call this routine and for a
result, use the value it returns.

C SC 397a, Fundamentals of C++ Slide 150
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading basics, continued

For reference:

Rectangle operator+(Rectangle a, Rectangle b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

Rectangles can now be "added" using operator syntax:

Rectangle x(3,4);
Rectangle y(5,10);

Rectangle z = x + y;

x = x + y + z; // Uses memberwise assignment...

Note that providing an overloaded definition for + does not imply a definition for +=.

C SC 397a, Fundamentals of C++ Slide 151
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading basics, continued

Recall our definition of type extensibility:

The ability to define new types that are as easy to use as built-in types such as int and
float.

Consider this code:

Rectangle x(3,4);
Rectangle y(5,10);

Rectangle z = x + y;

x = x + y + z; // Uses memberwise assignment...

Are we able to work with Rectangles as easily as ints?

What would this code look like in Java? In C?

C SC 397a, Fundamentals of C++ Slide 152
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operator overloading basics, continued

For reference:

Rectangle operator+(Rectangle a, Rectangle b) ...

Passing a and b by value is inefficient. It is better to pass const references. There are no
changes aside from the parameter list:

Rectangle operator+(const Rectangle& a, const Rectangle& b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

Should we return a reference, too?

C SC 397a, Fundamentals of C++ Slide 153
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More Rectangle operators

// Compare two rectangles
//
bool operator==(const Rectangle& a, const Rectangle& b) {
 return a.getWidth() == b.getWidth()
 && a.getHeight() == b.getHeight();
}

//
// Scale a rectangle by a factor n:
//
Rectangle operator*(const Rectangle& a, double n) {
 return Rectangle(a.getWidth() * n, a.getHeight() * n);
}

//
// "Rotate" a rectangle 90 degrees
//
Rectangle operator-(const Rectangle& a) {
 return Rectangle(a.getHeight(), a.getWidth());
}

Usage:

Rectangle a(3,4), b(1,2);

Rectangle c = b * 3;
c.print('c');

Rectangle d = -c;
d.print('d');

if (-(Rectangle(2,3) * 3) ==
 d + Rectangle(3,3))
 printf("Works!\n");

Output:

Rectangle 'c': 3 x 6
Rectangle 'd': 6 x 3
Works!

C SC 397a, Fundamentals of C++ Slide 154
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operators as member functions

The preceding slides show overloaded operators implemented as non-member
functions—they are in no way part of the Rectangle class.

Given the preceding definition for operator+, if a and b are Rectangles, the expression a+b
is treated as this:

operator+(a,b)

Alternatively, operators may be defined as member functions. In such a case, a+b would be
treated as this:

a.operator+(b)

C SC 397a, Fundamentals of C++ Slide 155
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operators as member functions

At hand: If operator+ is a member function, then

a+b

is treated as:

a.operator+(b)

Here is operator+ defined as a member function of Rectangle:

class Rectangle {
 public:

Rectangle operator+(const Rectangle& rhs) const {
double new_w = itsWidth + rhs.itsWidth;
double new_h = itsHeight + rhs.itsHeight;

Rectangle newRect(new_w, new_h);
return newRect;
}

 ...
};

A member function for an N-ary operator has N-1 parameters.

C SC 397a, Fundamentals of C++ Slide 156
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operators as member functions

Rectangle addition as a non-member function:

Rectangle operator+(const Rectangle& a, const Rectangle& b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);
return newRect;

}

Rectangle addition as a member function:

Rectangle operator+(const Rectangle& rhs) const {
double new_w = itsWidth + rhs.itsWidth;
double new_h = itsHeight + rhs.itsHeight;

Rectangle newRect(new_w, new_h);
return newRect;
}

Why does the member function version use itsWidth and itsHeight instead of getWidth()
and getHeight()? Could the non-member function do the same?

C SC 397a, Fundamentals of C++ Slide 157
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operators as member functions, continued

Here are more Rectangle operators in the form of member functions:

class Rectangle {
 public:

...
Rectangle operator*(double rhs) const;

Rectangle operator-() const {
 return Rectangle(itsHeight, itsWidth);

}

bool operator==(const Rectangle& rhs) const {
 return itsWidth == rhs.itsWidth && itsHeight == rhs.itsHeight;

 }

bool operator!=(const Rectangle& rhs) const { return !(*this == rhs); } // idiom
};

Rectangle Rectangle::operator*(double rhs) const
{
 return Rectangle(itsWidth * rhs, itsHeight * rhs);
}

C SC 397a, Fundamentals of C++ Slide 158
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Operators as member functions, continued

For comparison, here are statements in infix form and their interpretation with operators
implemented as both non-member and member functions.

Rectangle x = a + b + c;

Rectangle x = operator+(operator+(a, b), c); // op+ as non-member function

Rectangle x = a.operator+(b).operator+(c); // op+ as member function

Rectangle e = -d * 3;

Rectangle e = operator*(operator-(d),3); // op* and op- as non-member functions

Rectangle e = d.operator-().operator*(3); // op* and op- as member function

Speculate: Why does C++ have two different ways to implement overloading? Why not just
require all overloaded operators to be either member functions or non-member functions?

C SC 397a, Fundamentals of C++ Slide 159
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choice in overloading

A trivial wrapper class for ints:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; }
 private:
 int value;
 };

Addition is overloaded via a non-member function:

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

These statements compile:

Num a(5);
Num b(7);

Num c = a + b;
Num d = c + 2;
Num e = 5 + d;

The first addition is matched directly by
operator+.

Why do the second and third additions
work?

C SC 397a, Fundamentals of C++ Slide 160
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choice in overloading, continued

Let's add subtraction via a member function:

class Num {
 public:
 Num(int i) : value(i) { }

 int getValue() const { return value; }

 Num operator-(const Num& rhs) const {
 return Num(getValue() - rhs.getValue());
 }

 private:
 int value;
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

It almost works:

Num a(5);
Num b(7);

Num c = a + b;
Num d = c + 2;
Num e = 5 + d;
Num f = a - b;
Num g = f - 2;
Num h = 5 - g;

// Error: no match for 'operator-' in '5 - g'

What's the problem?

C SC 397a, Fundamentals of C++ Slide 161
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choice in overloading, continued

At hand:

Num operator+(const Num& lhs, const Num& rhs);

Num Num::operator-(const Num& rhs) const;

Usage:

Num e = 5 + d; // OK
Num h = 5 - g; // Error

Addition works because the conversion Num(int) can be applied to 5 and then the call
matches operator+(Num, Num).

C++ simply does not consider treating 5-g as Num(5).operator-(g).

As a rule of thumb, overload binary operators with free-standing functions to avoid
asymmetries.

Question: Operators that are member functions can access private data. How can that same
access be provided to operators that are free-standing functions?

C SC 397a, Fundamentals of C++ Slide 162
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Choice in overloading, continued

The friend specifier can be used to allow a free-standing function operator+ to access
private data:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; } // Just for fun...
 friend Num operator+(const Num&, const Num&);
 private:
 int value;
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.value + rhs.value);
}

C SC 397a, Fundamentals of C++ Slide 163
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment

By default, if one instance of a class is assigned to another, memberwise assignment is
performed.

For example, the result of the assignment r2 = r1 in:

Rectangle r1(3,4), r2(1,2);
r2 = r1;

is as if these two statements had been executed:

r2.itsWidth = r1.itsWidth;
r2.itsHeight = r1.itsHeight;

C SC 397a, Fundamentals of C++ Slide 164
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment, continued

If an object contains others objects, memberwise assignment is recursively applied. For
example, if L1 and L2 are Lines and Lines contain Points, then L2 = L1 causes

L2.itsP1 = L1.itsP1;

which in turn causes

L2.itsP1.itsX = L1.itsP1.itsX;
L2.itsP1.itsY = L1.itsP1.itsY;

Resuming at the level of L2 = L1,

L2.itsP2 = L1.itsP2;

in turn causes

L2.itsP2.itsX = L2.itsP2.itsX;
L2.itsP2.itsY = L2.itsP2.itsY;

C SC 397a, Fundamentals of C++ Slide 165
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment, continued

Memberwise assignment happens to be satisfactory for Rectangle, but we can provide an
overloaded assignment operator:

void Rectangle::operator=(const Rectangle& rhs)
{

itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;

}

C++ requires assignment to be implemented as a member function; it cannot be
implemented as a non-member function.

C SC 397a, Fundamentals of C++ Slide 166
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment, continued

The current state of Rectangle:

class Rectangle {
 public:

...
void operator=(const Rectangle& rhs) {

itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;
}

...
};

Unfortunately, if r1, r2, and r3 are Rectangles, our current implementation doesn't allow
this:

r1 = r2 = r3;

(With functional syntax:)

r1.operator= (r2.operator= (r3)) ;

What's the problem?

C SC 397a, Fundamentals of C++ Slide 167
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment, continued

At hand: The statement

r1 = r2 = r3;

does not compile

Solution:

Rectangle& operator=(const Rectangle& rhs)
{

itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;

return *this;
}

The above routine is essentially what's generated if no assignment operator is specified in the
definition of Rectangle.

C SC 397a, Fundamentals of C++ Slide 168
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Overloading assignment, continued

Suppose we decide that assigning a double value to a Rectangle is meaningful, and that it
means the width and height of the Rectangle should be set to the given value.

Usage:

Rectangle r(3,4);

r = 10;
r.print('r');

Output:

Rectangle 'r': 10 x 10

Implementation:

Rectangle& Rectangle::operator=(double side)
{

itsWidth = itsHeight = side;

return *this;
}

C SC 397a, Fundamentals of C++ Slide 169
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A simple string class

It is rare to a find a program that doesn't make some use of character strings.

C has no string data type but it has a very strong convention: Strings are represented by a
null-terminated array of characters.

String handling in C is tedious and error prone, and can lead to shortcuts such as assuming
the result of a concatenation will not overrun a fixed length buffer.

Many languages have a built-in string data type that allows strings to be manipulated in a
very natural fashion.

Java has a built-in string type but it is no gem: It is immutable and the only operator available
is concatenation.

The C++ language itself has no string data type, but the standard library includes a string
class. It is mutable, and supports a reasonable set of operators.

string is built using the type extensibility mechanisms of C++.

Let's build on the simple String class introduced earlier in the slides as an exercise in type
extensibility.

C SC 397a, Fundamentals of C++ Slide 170
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String

Recall that our String has one data member, a pointer to a null-terminated array of characters
in allocated memory (a C-style string):

class String {
 private:
 char *itsPtr;
 };

What constructors are needed to support the following definitions?

String s1("This is s1")

String s2;

String s3('x');

String names[10] = {"0", '1', "two", '3'};

C SC 397a, Fundamentals of C++ Slide 171
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String, continued

Here are the constructors and a "dump" method, too:

class String {
 public:
 String(const char *s) {
 itsPtr = new char[strlen(s) + 1];
 strcpy(itsPtr, s);
 }

 String() { itsPtr = new char[1]; itsPtr[0] = '\0'; }

String(char c) { itsPtr = new char[2]; itsPtr[0] = c; itsPtr[1] = '\0'; }

 void dump(const char *label) { printf("%s: '%s' (at %p)\n", label, itsPtr, itsPtr); }

 private:
 char *itsPtr;
 };

For the default constructor, how about saving an allocation with itsPtr = NULL or maybe
itsPtr = ""?

C SC 397a, Fundamentals of C++ Slide 172
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String, continued

Recall that our String needs a destructor and a copy constructor:

String::~String()
{

memset(itsPtr, '~', strlen(itsPtr)); // "scribble" before freeing, to help show
// used-after-freed errors.

delete [] itsPtr;
}

String::String(const String& s)
{

itsPtr = new char[strlen(s.itsPtr)+1];
strcpy(itsPtr, s.itsPtr);

}

Does String need an assignment operator?

C SC 397a, Fundamentals of C++ Slide 173
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String, continued

Memberwise assignment would result in two Strings referencing the same allocated memory.
An assignment operator must be written.

Recall that s1 = s2 is equivalent to s1.operator=(s2).

A first cut:

String& String::operator=(const String& rhs)
{

delete [] itsPtr;

itsPtr = new char[strlen(rhs.itsPtr) + 1];
strcpy(itsPtr, rhs.itsPtr);

return *this;
}

C SC 397a, Fundamentals of C++ Slide 174
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String, continued

#define SHOW(s) s.dump(#s) // Handy macro...

String s1("Testing"); SHOW(s1); // s1: 'Testing' (at 0x670370)

String s2; SHOW(s2); // s2: '' (at 0x670380)

s2 = s1;
SHOW(s1); // s1: 'Testing' (at 0x670370)
SHOW(s2); // s2: 'Testing' (at 0x670380)

s1 = 'x';
SHOW(s1); // s1: 'x' (at 0x670370)

String a[10] = {s1, s2};

SHOW(a[0]); // a[0]: 'x' (at 0x6703a0)
SHOW(a[1]); // a[1]: 'Testing' (at 0x6703b0)

SHOW(s2); // s2: 'Testing' (at 0x670380)
s2 = s2; SHOW(s2); // s2: 'O?¶aO?¶a?' (at 0x670380)

Any surprises?

C SC 397a, Fundamentals of C++ Slide 175
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String, continued

At hand—self assignment:

String s("abc");
s = s;

Solution:

String& String::operator=(const String& rhs)
{

if (this != &rhs) { // know myself
delete [] itsPtr;

itsPtr = new char[strlen(rhs.itsPtr)+1];
strcpy(itsPtr, rhs.itsPtr);
}

return *this;
}

Thus, self-assignment is a "no-op".

But, is self-assignment a practical concern? It's easy to avoid, right?

C SC 397a, Fundamentals of C++ Slide 176
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A detail on initialization

A String can be initialized like this:

String s = "testing";

It seems reasonable for that to be equivalent to this,

String s("testing");

but it is not guaranteed.

The first form may generate two constructor calls, equivalent to this:

String TEMPORARY("testing");
String s(TEMPORARY);

The form String s("testing"), with parentheses, is called direct initialization.

C SC 397a, Fundamentals of C++ Slide 177
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A detail on initialization, continued

Note that if String(const char*) is made explicit,

explicit String(const char *s) { ... }

then String s = "abc"; won't compile but String s("abc"); will.

Scalars may be initialized using the direct initialization form, too:

int i(7); // equivalent to int i = 7;

char c('x'); // equivalent to char c = 'x';

int i = int(); // equivalent to i = 0; (what does 'int i();' mean?)

C SC 397a, Fundamentals of C++ Slide 178
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String: concatenation

Consider overloading '+' to allow concatenation of two strings:

String a = "xyz";
String b = "pdq";
String c = a + b; // c is "xyzpdq"

String c = a.operator+(b); // equivalent, as a member function

Problem: Sketch out the implementation.

C SC 397a, Fundamentals of C++ Slide 179
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String: concatenation, continued

Implementation as a member function:

class String {
 public:

...
String operator+(const String& rhs);

 ...
};

String String::operator+(const String& rhs)
{

int len = strlen(itsPtr) + strlen(rhs.itsPtr);

char *p = new char[len + 1];
strcpy(p, itsPtr);
strcat(p, rhs.itsPtr);

String r(p); // Invokes String(const char *)
delete [] p;
return r;

}

What are two weaknesses in this implementation?

C SC 397a, Fundamentals of C++ Slide 180
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String: subscripting

Consider overloading '[]' to provide array-like access to individual characters:

String s("aeiou");

char c = s[0]; // c is 'a'

s[2] = 'I'; // changes s to "aeIou"

Another example of usage—print the index, address, and value of each character in a String:

String s = "smudge";
s.dump("s");

for (int i = 0; i < s.getLength(); i++) {
char *p = &s[i];
printf("s[%d] at %p is '%c'\n",

 i, p, *p);
}

Output:

s: 'smudge' (at a041cf0)
s[0] at a041cf0 is 's'
s[1] at a041cf1 is 'm'
s[2] at a041cf2 is 'u'
s[3] at a041cf3 is 'd'
s[4] at a041cf4 is 'g'
s[5] at a041cf5 is 'e'

C SC 397a, Fundamentals of C++ Slide 181
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

String: subscripting, continued

 Implementation:

char& String::operator[](int pos)
{

assert(pos >= 0 && pos < strlen(itsPtr));

return itsPtr[pos];
}

Note that because a reference is returned it is possible to change contained characters and/or
obtain their address. (But is that a good idea?)

Should we add meaning for negative subscripts?

The assert macro terminates execution if the subscript is out of range. A better choice
would be to throw an exception. (Coming later!)

This simple String class provides value semantics, worry-free concatenation and
subscripting, but also provides C-like semantics with the ability to get the address of an
individual character.

C SC 397a, Fundamentals of C++ Slide 182
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Conversion operators

A conversion operator is a specialized member function that defines how an object can create
an instance of another type that is a representation of itself.

For example, here is a conversion operator for Rectangle:

class Rectangle {
 public:

...
operator double() { return getArea(); }

 private:
...
};

This declares (to the compiler):

If you have a Rectangle and need a double, call this function and use the value it
returns.

Note the general form:

operator type-name() { ... }

C SC 397a, Fundamentals of C++ Slide 183
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Conversion operators, continued

Example:

Rectangle r(3,4);
double a = r; // assigns 12.0 to a

double b = Rectangle(5,6) / 3; // assigns 10.0 to b

Conversion operators are another type of user-defined conversion.

A class may have any number of conversion operators.

C SC 397a, Fundamentals of C++ Slide 184
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Conversion operators, continued

Another example:

class String {
 public:

...
operator const char *() const {

return itsPtr;
}

operator char *() const {
char *p = new char[strlen(itsPtr) + 1];
strcpy(p, itsPtr);
return p;
}

};

Why do we have two forms?

It is easy to get carried away with conversion operators—use them with caution.

Usage:

String s("testing");

const char *p1 = s; // refs same data as in s

char *p2 = s; // refs allocated data,
*p2 = 'x'; // must be freed
...
delete [] p2;

C SC 397a, Fundamentals of C++ Slide 185
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Review—ctors, dtors, and assignment

Whenever an instance of a class is created, an appropriate constructor is called. The task of a
constructor is to appropriately initialize a block of memory that is to represent an object.

The implementor of a class defines what constructors do; the compiler determines when
constructors are called; the run-time system determines where objects reside in memory.

Distinguished types of constructors:

Default constructor: A constructor that requires no parameters. Used to initialize an
object if no initializing values are supplied.

Examples:

X x1, x2;

X *xp = new X;

X xs[10];

class Y { X itsX; };

If a class has no constructors, a public default constructor is supplied.

C SC 397a, Fundamentals of C++ Slide 186
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Review—ctors, dtors, and assignment, continued

Copy constructor:
A constructor of the form X(X&) or X(const X&).

Used to initialize a new instance of a class given an existing instance.

A copy constructor using memberwise copy is generated if no copy constructor is
specified.

Examples:

X x3 = x2;

X x4(x3);

X *xp = new X(x3);

void f(X a, X b);

f(x3, *xp);

C SC 397a, Fundamentals of C++ Slide 187
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Review—ctors, dtors, and assignment, continued

Ordinary constructor:

Neither a default or copy constructor.

Selected based on types of initializing values.

Examples:

X x5(1);

X x6("abc", 'a', 10);

C SC 397a, Fundamentals of C++ Slide 188
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Review—ctors, dtors, and assignment, continued

Destructors:
A destructor is responsible for salvaging any reusable resources immediately before an
object ceases to exist.

Local variables of class type are destroyed when they go out of scope. Objects
occupying memory allocated from the heap are destroyed immediately before that
memory is freed due to a call to delete.

Conceptually, every class has a destructor. If a destructor is not defined by the
implementor of a class, one is generated that essentially does nothing.

A class never has more than one destructor.

Assignment:
The assignment operator is used to change the contents of an existing object based on a
given value.

If a class X has no assignment operator defined that accepts an object of type X, an
assignment operator using memberwise assignment is generated.

Do not confuse initialization with assignment. Assignment is used to change the
contents of an already existing object.

C SC 397a, Fundamentals of C++ Slide 189
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Review—ctors, dtors, and assignment, continued

Consider the following class definition and function declarations:

class X {
 public:

X(int);

X(const X&);

X& operator=(const X& rhs);
 };

void f(X val);

void g(X& val);

void h(X* valp);

What operations would be invoked for each
of the following statements?

X x1(1);

X x2 = x1;

X *xp; xp = new X(x1);

x2 = *xp;

f(x2);

f(*new X(x2));

g(x2);

h(xp);

C SC 397a, Fundamentals of C++ Slide 190
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C SC 397a, Fundamentals of C++ Slide 191
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

IO Streams

Basics of stream I/O

Inserters for user-defined types

Extractors for user-defined types

C SC 397a, Fundamentals of C++ Slide 192
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

IO Streams

There are some big problems with I/O via printf (et al.) in the C library:

Not typesafe—prone to mismatch errors
Not extensible—there's no support for user-defined types

As in C, the C++ language itself has no I/O facilities, but the "IO Streams" library is provided
as an alternative to C-style I/O.

The IO Streams library overloads the operators << and >> to have additional meaning in
C++.

But, the entire C "stdio" library is available as well.

The terms "IO Streams", "I/O Streams", "Stream I/O", and just "Streams" all mean the same
thing.

C SC 397a, Fundamentals of C++ Slide 193
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

IO Streams, continued

A sample program:

#include <iostream>
using namespace std; // required, or use std::cout, std::endl, etc.
int main()
{
 cout << "Hello, World!" << endl;

 for (int i = 1; i <= 3; ++i)
 cout << "i = " << i << endl;

 cout << "Length and width? " << flush;

 int length, width;
 cin >> length >> width;

 cout << "The area is " << length * width << endl;
}

The <iostream> header declares cin and cout as an istream and an ostream, respectively.
Initially, cin is associated with standard input and cout is associated with standard output.

Using << is called insertion. Using >> is called extraction.

Interaction:

Hello, World!
i = 1
i = 2
i = 3
Length and width? 8 13
The area is 104

C SC 397a, Fundamentals of C++ Slide 194
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Manipulators

Manipulators are used to cause various changes in the state of a stream.

Print x, y, and z on three separate lines:

cout << x << endl << y << endl << z << endl;

Prompt for name and don't print a newline:

cout << "Name? " << flush;

Print every tenth value from 0 to 100 in decimal and hexadecimal:

#include <iostream>
#include <iomanip> // required for setw
using namespace std;
int main()
{
 for (int i = 0; i < 100; i += 10)
 cout << dec << setw(3) << i << " "
 << hex << setw(2) << i << endl;
}

Output:

 0 0
 10 a
 20 14
 30 1e
 ...

C SC 397a, Fundamentals of C++ Slide 195
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

IO manipulators, continued

Note that with streams, numeric formatting is far clumsier,

for (int i = 0; i < 100; i += 10)
 cout << dec << setw(3) << i << " "
 << hex << setw(2) << i << endl;

than with printf:

for (int i = 0; i < 100; i += 10)
 printf("%3d %2x\n", i, i);

C SC 397a, Fundamentals of C++ Slide 196
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Evaluation of insertion expressions

Consider:

int i = 10; double x = 1.5; Point p(3,4);

cout << "i = " << i << ", x = " << x << ", p = " << p << endl;

Output:

i = 10, x = 1.5, p = (3,4)

Evaluation:

cout << "i = "
Call: ostream& op<<(ostream&, char*)
Side effect: output of "i = "
Return: A reference to cout (just a pointer, internally)

cout << i
Call: ostream& op<<(ostream&, int)
Side effect: output of "10";
Return: A reference to cout

C SC 397a, Fundamentals of C++ Slide 197
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Evaluation of insertion expressions

For reference:

int i = 10; double x = 1.5; Point p(3,4);

cout << "i = " << i << ", x = " << x << ", p = " << p << endl;

Output:
i = 10, x = 1.5, p = (3,4)

cout << ", x = "

cout << x
Call: ostream& op<<(ostream&, double)
Side effect: output of "1.5"

cout << ", p = "

cout << p
Call: ostream& op<<(ostream&, const Point&)

cout << endl
Calls: ostream& op<< (ostream&, ostream& (f)(ostream&));
Side effect: output of newline; flushes buffer

C SC 397a, Fundamentals of C++ Slide 198
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters for user-defined types

Imagining Line::getSlope(), consider this example:

Point a(1,1), b(4,2);
Line ln(a,b);

cout << "The slope of the line from " << a << " to " << b
 << " is " << ln.getSlope() << "." << endl;

Output:

The slope of the line from (1,1) to (2,4) is 3.

An overloaded definition of << for Point is required:

ostream& operator<< (ostream& o, const Point& p)
{

o << "(" << p.getX() << "," << p.getY() << ")";
return o;

}

C SC 397a, Fundamentals of C++ Slide 199
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters for user-defined types, continued

An inserter for Line that uses the inserter for Point:

ostream& operator<<(ostream& o, const Line& line)
{
 o << "[" << line.getP1() << ", " << line.getP2() << "]";
 return o;
}

Now we can write:

Point a(1,1), b(4,2);
Line L(a,b);

cout << "L = " << L << endl;
cout << Line(Point(0,0), Point(100,50)) << endl;

Output:

L = [(1,1), (4,2)]
[(0,0), (100,50)]

What's the Java counterpart for user-defined stream inserters?

C SC 397a, Fundamentals of C++ Slide 200
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters for user-defined types, continued

The nearest analog in Java for user-defined stream inserters is to override Object.toString():

class Point {
 ...
 public String toString() {
 return "(" + getX() + "," + getY() + ")";
 }
 }

class Line {
 ...
 public String toString() {
 return "[" + getP1() + ", " + getP2() + "]";
 }
 }

Usage:

Point a = new Point(1,1), b = new Point(4,2);
Line L = new Line(a,b);

System.out.println("L = " + L);
System.out.println(new Line(new Point(0,0), new Point(100,50)));

Output:

L = [(1.0,1.0), (4.0,2.0)]
[(0.0,0.0), (100.0,50.0)]

C SC 397a, Fundamentals of C++ Slide 201
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters for user-defined types, continued

Imagine an inserter for our String class:

String a = "purple";
String b = "parsnips";

cout << "a = " << a << ", b = " << b << endl;
cout << "a + b = " << a + " " + b << endl;

Output:

a = purple, b = parsnips
a + b = purple parsnips

Problem: Write it!

C SC 397a, Fundamentals of C++ Slide 202
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Sidebar: A handy macro

This preprocessor macro works with inserters to conveniently produce labeled output.

#define ShowVal(x) #x " = " << (x) << "; "

Usage:

int i = 7; double x = 3.4;
Point p(5,10);

cout << ShowVal(i) << ShowVal(x) << ShowVal(p) << endl;

Output:

i = 7; x = 3.4; p = (5,10);

In contrast:

cout << "i = " << i << "; x = " << x << "; p = " << p << ";" << endl;

Note that the macro relies on the unary # preprocessor operator and the fact that adjacent
string literals are concatenated.

C SC 397a, Fundamentals of C++ Slide 203
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Extractors for user-defined types

Providing an extractor for Point allows this:

Point p1, p2; // assumes default constructor

cin >> p1 >> p2;

A simple extractor that considers a Point to be two numbers separated by whitespace:

istream& operator>>(istream& i, Point& p)
{
 double x, y;

 i >> x >> y;

 p = Point(x,y);

 return i;
}

C SC 397a, Fundamentals of C++ Slide 204
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Extractors for user-defined types, continued

A loop to read and write Points:

while (true) {
cout << "Point? " << flush;
Point p;
cin >> p;
if (!cin)
 break;
cout << "p = " << p << endl;
}

Question: What's going on with if (!cin) ... ?

Writing an extractor that handles input such as "(2.3 , 4.5)" is more involved.

Interaction:

Point? 3 4
p = (3,4)
Point? 1.2 3.4
p = (1.2,3.4)
Point? 10

(carriage return)
20
p = (10,20)

C SC 397a, Fundamentals of C++ Slide 205
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance

Basics of inheritance in C++

Virtual member functions

Abstract classes and methods

Virtual destructors

Base class initialization

Inserters and inheritance

The protected access specifier

C SC 397a, Fundamentals of C++ Slide 206
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics

In general, inheritance in C++ is very similar to Java.

In Java, inheritance is indicated with the keyword extends:

class Clock { }

class AlarmClock extends Clock { }

In C++, inheritance is indicated by following the class name with a colon and a superclass
specification:

class Clock { };

class AlarmClock : public Clock { };

Unlike Java, C++ supports three forms of inheritance: public, private, and protected.
Public inheritance in C++ is essentially equivalent to inheritance in Java.

C++ programmers commonly use the term "base class" as a synonym for "superclass", and
"derived class" as a synonym for "subclass".

C SC 397a, Fundamentals of C++ Slide 207
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

A fundamental language design choice in Java is that every class is a direct or indirect
subclass of Object. If a Java class doesn't name a superclass, Object is assumed. For
example, the class declaration

class Clock { }

is equivalent to

class Clock extends Object { }

The result of having Object as a direct or indirect superclass of every class is of course that
an instance of any class can be treated as an Object.

This allows great generality when coding: A variable of type Object can refer to an instance
of any class; an array of type Object[] can hold instances of any combination of classes;
methods such as toString() can be invoked on any object, etc.

 Actually, due to multiple inheritance in C++, it is a forest of directed graphs.1

C SC 397a, Fundamentals of C++ Slide 208
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

The language design choice made in C++ is the opposite of Java: there is no common base
class.

In the early days of C++ some class libraries borrowed ideas from Smalltalk and used a
common base class such as Object. Classes such as String, List, and Date were derived
from Object. Working with those libraries was somewhat similar to working with Java today.

The C++ Standard Library does not introduce a common base class. By far the most common
situation is that a C++ system is composed of a forest of class trees rather than a single class1

tree as in Java.

Having a common base class provides many advantages. Why was that route was not taken
in C++?

C SC 397a, Fundamentals of C++ Slide 209
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

Public inheritance in C++ has the same essential property as inheritance in Java: A derived
class inherits the member functions and data members of the base class. Example:

class Clock {
 public:
 Clock();
 void setTime(Time);
 Time getTime();
 private:
 Time itsTime;
 };

class AlarmClock: public Clock {
 public:
 AlarmClock();
 void setAlarmTime(Time);
 void setAlarm(bool);
 private:
 Time itsAlarmTime;
 bool isAlarmSet;
 };

Instances of AlarmClock have three data members: itsTime, itsAlarmTime, and
isAlarmSet.

Along with setAlarmTime() and setAlarm(), an AlarmClock can respond to setTime() and
getTime().

As in Java, derived class member functions do not have access to private members of a base
class.

C SC 397a, Fundamentals of C++ Slide 210
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

We can create instances of derived classes and work with them just like any other class in
C++:

AlarmClock ac;

ac.setTime(Time("now") + Duration("3m"));
ac.setAlarmTime(Time("6:00am"));
ac.setAlarm(true);

AlarmClock *acp = new AlarmClock;
acp->setAlarmTime(Time("now") + Duration("5h"));

AlarmClock alarm_battery[5];

Note that Time and Date are imagined for this example; they are not in the standard library.

C SC 397a, Fundamentals of C++ Slide 211
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

A rule that's at the heart of inheritance in C++:

If B and D are classes and B is the base class of D, we may reference instances of D
using a pointer of type B*.

Example:

Clock *cp = new AlarmClock; // Clock is B; AlarmClock is D

cp->setTime(Time("8:00am"));

Because the type of cp is Clock*,

cp->setAlarm(true); // Compilation error

won't compile, even though the referenced object really is an AlarmClock.

If we cast cp, the call compiles and is valid:

((AlarmClock*)cp)->setAlarm(true);

C SC 397a, Fundamentals of C++ Slide 212
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

Keeping in mind that a variable of class type in Java is essentially a pointer, here's the Java
version:

Clock c = new AlarmClock(); // Java

c.setTime(new Time("8:00am"));

c.setAlarm(true); // Compilation error

((AlarmClock)c).setAlarm(true);

If c is not really an AlarmClock, a ClassCastException is thrown.

What do you suppose happens in the following C++ code if cp doesn't reference an
AlarmClock?

((AlarmClock*)cp)->setAlarm(true); // C++

C SC 397a, Fundamentals of C++ Slide 213
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

Reminder:

If B and D are classes and B is the base class of D, we may reference instances of D
using a pointer of type B*.

A similar rule applies to references:

If B and D are classes and B is the base class of D, a B& may refer to an instance of D.

Example:

AlarmClock ac;

Clock& c = ac;
c.setTime(Time("8:00am"));

Just as with pointers, we can't call an AlarmClock method using c unless we cast:

c.setAlarm(true); // Compilation error
((AlarmClock&)c).setAlarm(true); // OK

C SC 397a, Fundamentals of C++ Slide 214
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

Because an instance of AlarmClock occupies more memory than an instance of Clock, it is
almost always a Bad Idea to assign an instance of AlarmClock to an instance of Clock, even
though the language allows it:

Clock c;
AlarmClock ac;

c = ac; // It does compile...

This is called slicing or shearing, because the AlarmClock portion is lost.

In this case, c is a valid Clock but that's not true in general. For example, a pointer in the
base class portion may refer to a data member in the derived class portion.

C SC 397a, Fundamentals of C++ Slide 215
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

If we slice and then cast back to the derived class, the best we can hope for is a program fault
sooner, rather than later:

Clock c;
AlarmClock ac;

c = ac;
((AlarmClock*)&c)->setAlarm(true); // Maybe clobbers something.

// With luck, it blows up now.

C SC 397a, Fundamentals of C++ Slide 216
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

In short, if we want to treat an instance of a derived class as an instance of a base class, we
must refer to the instance using a pointer or a reference.

Consider an array that is to hold an arbitrary mixture of a varying number of Clocks and
AlarmClocks. Additionally, the array may need to also hold Clock-derived classes that are
currently not imagined. The array won't necessarily be fully populated.

The only choice is an array of Clock pointers:

Clock *clocks[MAXCLOCKS];

C SC 397a, Fundamentals of C++ Slide 217
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance basics, continued

Here's a routine that sets a number of clocks to (about) the same time:

void setClocks(Clock *clocks[], const Time& t)
{
 for (int i = 0; clocks[i] != 0; i++) // Assumes 0-terminated
 clocks[i]->setTime(t);
}

Usage:

Clock* clocks[MAXCLOCKS];
clocks[0] = new Clock;
clocks[1] = new AlarmClock;
clocks[2] = new Clock;
clocks[3] = 0;

setClocks(clocks, Time("12:00"));

Problem: Explain why Clock clocks[N], AlarmClock clocks[N], and Clock& clocks[N] are
all unsuitable choices for the case at hand.

C SC 397a, Fundamentals of C++ Slide 218
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions

Consider a Java class hierarchy to represent geometric shapes:

class Shape {
 public double getArea() { return 0; } // Should be abstract...
 }

class Rectangle extends Shape {
 public Rectangle(double w, double h) { itsW = w; itsH = h; }
 public double getArea() { return itsW * itsH; }
 public double itsW, itsH;
}

C SC 397a, Fundamentals of C++ Slide 219
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

An attempted analog in C++:

class Shape {
 public:
 double getArea() { return 0; }
 };

class Rectangle: public Shape {
 public:
 Rectangle(double w, double h) : itsW(w), itsH(h) { }
 double getArea() { return itsW * itsH; }
 private: double itsW, itsH;
};

Test code: (it reports area = 0!)

Shape *sp = new Rectangle(3,4);
cout << "area = " << sp->getArea() << endl;

What's wrong?

C SC 397a, Fundamentals of C++ Slide 220
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

By default, C++ does not use virtual dispatch (also called dynamic binding) for member
functions.

In contrast, Java uses virtual dispatch unless a method is declared to be final. Consider this
Java code:

Shape s = new Rectangle(3,4); // Java
double a = s.getArea();

The idea of virtual dispatch is that the exact routine that will be called by s.getArea() is not
known until execution. All that is assumed at compile time is that s will reference an
instance of Shape or a subclass of Shape.

When the code is executed, the object referred by s is examined to determine which
getArea() should be called. In the case above it is Rectangle.getArea().

Why does C++ not use virtual dispatch by default?

C SC 397a, Fundamentals of C++ Slide 221
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

At hand: Why does C++ not use virtual dispatch by default?

If virtual dispatch is used by default, then every instance of every class (that has any
methods) must contain enough information to support run-time lookup of methods, and that
lookup would be done on every call.

The overhead to support virtual dispatch is actually very small—typically one more word of
memory per object and one pointer dereference per call, but imposing that default overhead
would conflict with the C++ philosophy of not imposing overhead for features you don't use.

C SC 397a, Fundamentals of C++ Slide 222
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

The solution is simple: add the virtual specifier to Shape::getArea():

class Shape {
 public:
 virtual double getArea() { return 0; }
 };
class Rectangle: public Shape {
 ...no changes...
};

The virtual specifier indicates that virtual dispatch is to be used for calls to that member
function.

If a class has any virtual functions then every instance will have the extra data, typically only
a pointer to a virtual table (or vtbl), required to dynamically bind the call.

Only calls to virtual functions will incur run-time overhead.

C SC 397a, Fundamentals of C++ Slide 223
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

Summary:

Unless a method is final, Java uses virtual dispatch, deferring until execution the
decision of which routine to invoke.

If a C++ member function is virtual, virtual dispatch is used.

If a member function is not virtual, the routine to call is determined at compile time,
based on the class type of the expression referencing the method. (static binding)

C SC 397a, Fundamentals of C++ Slide 224
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual member functions, continued

A boiled-down example of C++ using static binding by default (the third point on the
previous slide):

class B {
 public: void f() { cout << "B::f()" << endl; }
 };

class D: public B {
 public: void f() { cout << "D::f()" << endl; }
 };

Usage:

D d;

B *bp = &d;
bp->f(); // Output: B::f(), because bp is B*

D* dp = &d;
dp->f(); // Output: D::f(), because dp is D*

C SC 397a, Fundamentals of C++ Slide 225
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Abstract classes and methods

Logically, the getArea() method of Shape should be abstract—we never intend to create a
Shape. Instead we create instances of derived classes such as Rectangle and Circle.

In Java, the abstract keyword expresses those two points:

abstract class Shape {
 abstract public double getArea();
 }

There is no abstract keyword in C++. Instead, do this:

class Shape {
 public:
 virtual double getArea() = 0;
 };

The '= 0' indicates that getArea() is a pure virtual method—C++ lingo for an abstract
method. Note that '= 0' has nothing to do with the return type. It is simply the syntactic
mechanism used in C++.

C++ has no class-level designation for being abstract. A C++ class is considered abstract iff
it defines at least one pure virtual method, or if it inherits one that has not been overridden.

C SC 397a, Fundamentals of C++ Slide 226
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on Shape et al.

Here is a more complete version of the shape hierarchy:

class Shape {
 public:

Shape() { }
virtual double getArea() const = 0;
virtual double getPerimeter() const = 0;
virtual double getBoundingBoxArea() const = 0;

 };

class Rectangle: public Shape {
 public:

Rectangle(double w, double h) : itsW(w), itsH(h) { }

double getArea() const { return itsW * itsH; }

double getPerimeter() const { return 2 * (itsW + itsH); }

double getBoundingBoxArea() const { return getArea(); }
 private:

double itsW, itsH; // width and height
};

C SC 397a, Fundamentals of C++ Slide 227
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on Shape et al.

class Circle: public Shape {
 public:

Circle(double radius) : itsR(radius) { }

double getArea() const {
return Geometry::PI * itsR * itsR;
}

double getPerimeter() const {
return Geometry::PI * (itsR * 2);
}

double getBoundingBoxArea() const {
return Rectangle(itsR*2, itsR*2).getArea();
}

 private:
double itsR;
};

C SC 397a, Fundamentals of C++ Slide 228
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Constructors and destructors

When an instance of a derived class is constructed, the base class part is built first and then
the derived class. The order is reversed for destruction.

A simple inheritance hierarchy:

class Base { };

class Derived: public Base { };

class MoreDerived: public Derived { };

Assuming the presence of instrumented constructors and destructors, here's what we'd see:

Code: { Base b; puts("---"); }
Output: Base(), ---, ~Base()

Code: { Derived d; puts("---"); }
Output: Base(), Derived(), ---, ~Derived(), ~Base()

Code: { MoreDerived m; puts("---"); }
Output: Base(), Derived(), MoreDerived(), ---, ~MoreDerived(), ~Derived(), ~Base()

C SC 397a, Fundamentals of C++ Slide 229
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

An ugly detail: virtual destructors

Consider the following code:

Base *b;

b = new Derived;
cout << "deleting..." << endl;
delete b;

The output, assuming instrumented constructors and destructors:

Base()
Derived()
deleting...
~Base()

The destructor for Derived is not called!

C SC 397a, Fundamentals of C++ Slide 230
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual destructors, continued

The solution:

class Base {
public:

Base() { }
virtual ~Base() { }

};

By default, destructors are not virtual. By making ~Base() virtual, when an object
referenced by a Base* is destroyed, virtual dispatch is used to call the destructor.

Why not make destructors implicitly virtual?

C SC 397a, Fundamentals of C++ Slide 231
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Base class initialization

Consider a modification to Shape that associates a one-character tag with each shape:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 virtual double getArea() = 0;
 virtual double getPerimeter() = 0;
 virtual double getBoundingBoxArea() = 0;
 char getTag() { return itsTag; }
 private:
 char itsTag;
 };

Problem: How can the tag be communicated to the base class constructor via a constructor
call such as the following?

Rectangle r(3,4,'r');

What would we do in Java?

C SC 397a, Fundamentals of C++ Slide 232
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Base class initialization, continued

In C++ a member initializer is used to pass values to a base class constructor:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 private:
 char itsTag;
 };

class Rectangle: public Shape {
 public:
 Rectangle(double w, double h, char tag)

: Shape(tag), itsW(w), itsH(h) { }
...

 private:
 double itsW, itsH; // width and height
};

C SC 397a, Fundamentals of C++ Slide 233
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters and inheritance

 Consider this inserter for Rectangle,

ostream& operator<<(ostream&, const Rectangle&);

which works fine with this,

Rectangle r(3,4, 'r');

cout << "r = " << r << endl;

but not with this:

Shape& s = r;

cout << "s = " << s << endl;

Shape *sp = &r;
cout << "*sp = " << *sp << endl;

Compilation errors:
ShapeIOErr.cpp:11: error: no match for 'operator<<' in '

 std::operator<<(std::basic_ostream<char, _Traits>&, const

char*) [with

 _Traits = std::char_traits<char>]((&std::cout), "s = ") << s'

/usr/include/c++/3.3.1/bits/ostream.tcc:63: error: candidates

are:

[...about 100 more lines of output...]

ShapeIOErr.cpp:14: error: no match for 'operator<<' in '

 std::operator<<(std::basic_ostream<char, _Traits>&, const

char*) [with

 _Traits = std::char_traits<char>]((&std::cout), "*sp = ") <<

*sp'

/usr/include/c++/3.3.1/bits/ostream.tcc:63: error: candidates

are:

[...about 100 more lines of output...]

C SC 397a, Fundamentals of C++ Slide 234
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters and inheritance, continued

The problem is that virtual dispatch does not come into play with overloaded operators.

This code,

Shape& s = r;

cout << "s = " << s << endl;

Shape *sp = &r;
cout << "*sp = " << *sp << endl;

needs a Shape inserter!

C SC 397a, Fundamentals of C++ Slide 235
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inserters and inheritance, continued

Solution: Provide a pure virtual method print(ostream&) in Shape and override it in derived
classes. Call print(...) in an inserter for Shape.

class Shape {
 public:
 ...
 virtual void print(ostream&) const = 0;
 };

void Rectangle::print(ostream& o) const {
 o << "Rectangle(" << getTag() << "), "
 << itsW << "x" << itsH << ", area = " << getArea();
 }

void Circle::print(ostream& o) const {
 o << "Circle(" << getTag() << "), r = " << itsR << ", area = " << getArea();
 }

ostream& operator<<(ostream& o, const Shape& s) {
 s.print(o); return o;
}

What will the inserters for Rectangle and Circle look like?

C SC 397a, Fundamentals of C++ Slide 236
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Complete source for Shape hierarchy

#include <iostream>

using namespace std;

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 virtual double getArea() const = 0;
 virtual double getPerimeter() const = 0;
 virtual double getBoundingBoxArea() const = 0;
 char getTag() const { return itsTag; }
 virtual void print(ostream&) const = 0;
 private:
 char itsTag;
 };

ostream& operator<<(ostream& o, const Shape& s)
{
 s.print(o);
 return o;
}

C SC 397a, Fundamentals of C++ Slide 237
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Complete source for Shape hierarchy, continued

class Rectangle: public Shape {
 public:
 Rectangle(double w, double h, char tag)
 : Shape(tag), itsW(w), itsH(h) { }

 double getArea() const { return itsW * itsH; }

 double getPerimeter() const {
 return 2 * (itsW + itsH);
 }

 double getBoundingBoxArea() const {
 return getArea();
 }

 void print(ostream& o) const {
 o << "Rectangle(" << getTag() << "), "
 << itsW << "x" << itsH << ", area = " << getArea();
 }
 private:
 double itsW, itsH;
};

C SC 397a, Fundamentals of C++ Slide 238
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Complete source for Shape hierarchy, continued

class Circle: public Shape {
 public:
 Circle(double radius, char tag) : Shape(tag), itsR(radius) { }

 double getArea() const {
 return Geometry::PI * itsR * itsR;
 }

 double getPerimeter() const {
 return Geometry::PI * (itsR * 2);
 }

 double getBoundingBoxArea() const {
 return Rectangle(itsR*2, itsR*2, 't').getArea();
 }

 void print(ostream& o) const {
 o << "Circle(" << getTag() << "), r = " << itsR << ", area = " << getArea();
 }
 private:
 double itsR;
 };

C SC 397a, Fundamentals of C++ Slide 239
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with Shapes

//
// Calculate the sum of the areas of a list of Shapes.
//
double SumOfAreas(Shape *shapes[])
{
 double area = 0.0;

 for (int i = 0; shapes[i] != 0; i++) {
 Shape *sp = shapes[i];
 area += sp->getArea();
 }

 return area;
}

C SC 397a, Fundamentals of C++ Slide 240
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with Shapes

//
// Find the shape with the largest area in a list of Shapes.
//
Shape* Biggest(Shape *shapes[])
{
 Shape *bigp = shapes[0];

 for (int i = 0; shapes[i] != 0; i++) {

 Shape *sp = shapes[i];

 if (sp->getArea() > bigp->getArea())
 bigp = shapes[i];
 }

 return bigp;
}

Note that we don't need to modify, or even recompile SumOfAreas and Biggest to handle
future subclasses of Shape. (Just like Java.)

C SC 397a, Fundamentals of C++ Slide 241
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Working with Shapes, continued

int main()
{
 Rectangle a(1,1,'a'), b(3,4,'b'), c(5,10,'c');
 Circle d(1,'d'), e(2,'e'), f(3,'f');

 Shape *shapes[] =
{ &a, &b, &c, &d, &e, &f, 0};

 cout << "Shapes:" << endl;

 for (Shape **sp = shapes; *sp; sp++) {
 cout << **sp << endl;
 }
 cout << endl;

 cout << "Total area: "
<< SumOfAreas(shapes) << endl;

 Shape *bp = Biggest(shapes);
 cout << "Biggest shape: " << *bp << endl;
}

Output:

Shapes:
Rectangle(a), 1x1, area = 1
Rectangle(b), 3x4, area = 12
Rectangle(c), 5x10, area = 50
Circle(d), r = 1, area = 3.14159
Circle(e), r = 2, area = 12.5664
Circle(f), r = 3, area = 28.2743

Total area: 106.982
Biggest shape: Rectangle(c), 5x10,
area = 50

C SC 397a, Fundamentals of C++ Slide 242
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The protected access specifier

C++ has a protected access specifier that has the same meaning as in Java: only member
functions of derived classes may access protected members.

Recall the "tag" in Shape:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 char getTag() { return itsTag; }
 private:
 char itsTag;
 };

As is, getTag() can be called from anywhere. itsTag can only be accessed in Shape and not
in Rectangle or Circle.

C SC 397a, Fundamentals of C++ Slide 243
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The protected access specifier, continued

If we desire to expose getTag() only to derived classes, we make it protected:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 protected:
 char getTag() const { return itsTag; }
 private:
 char itsTag;
 };

Alternatively, we can dispense with getTag() and simply allow derived classes to directly
access itsTag:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 protected:
 char itsTag;
 };

C SC 397a, Fundamentals of C++ Slide 244
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Invocation of base class methods

The invocation of a virtual method is always resolved to the method in the most-derived
class. However, it is sometimes useful for a derived class method to invoke its overridden
counterpart in a base class.

class Window {
 public:
 virtual void Draw() {
 cout << "Window::Draw()" << endl;
 }
 };
class ScrollingWindow: public Window {
 public:
 virtual void Draw() {
 Window::Draw();
 cout << "ScrollingWindow::Draw()" << endl;
 }
 };
int main()
{
 Window *w = new ScrollingWindow();
 w->Draw();
}

Output:

Window::Draw()
ScrollingWindow::Draw()

C SC 397a, Fundamentals of C++ Slide 245
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Templates

Function templates

A template class: List

Nested class templates

A template class: Table

Inheritance and template classes

C SC 397a, Fundamentals of C++ Slide 246
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function templates

Templates provide a means to parameterize a class or function with a type.

An example of a function template:

template <typename T>
T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}

The function min can be called for any type T for which T < T is valid. (i.e. operator<(T, T)
is defined.)

C SC 397a, Fundamentals of C++ Slide 247
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function templates, continued

Usage:

int i = 5, j = 10;
int minint = min(i, j);

String s1("just"), s2("testing");
String minstr = min(s1, s2);

Point p1(3,4), p2(5,10);
Point minpt = min(p1, p2);

template <typename T> simply indicates that the entity that follows is a templated function
(or class) and that in it, T refers to a template parameter.

Does Java have a facility similar to this?

For reference:

template <typename T>
T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}

C SC 397a, Fundamentals of C++ Slide 248
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Template instantiation

Code such as

int minint = min(5, 10);

causes template instantiation—generation of code for the
function with the appropriate type(s) plugged in.

The above call to min() would produce this instantiation:

int min(int a, int b)
{

if (a < b) return a; else return b;
}

We'll see the instantiation in an executable file:

$ nm a.out | c++filt | grep min
00000000004005f6 W int min<int>(int, int)

For reference:

template <typename T>
T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}

C SC 397a, Fundamentals of C++ Slide 249
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A list class using templates

Entire classes may be parameterized on a type. This is often seen with container classes,
whose primary purpose is to hold values and provide access to them.

The code below uses a template class called List to accumulate a sequence of integers and
then print them out:

List<int> ilist;
int i;

while (cin >> i)
 ilist.add(i);

cout << ilist.length() << " elements in list: ";

for (i = 0; i < ilist.length(); i++)
 cout << ilist[i] << " ";

cout << endl;

Note that List<int> is a type name, just like Point and Rectangle.

What would be necessary to handle Points instead of ints?

Interaction:

$ a.out
 5 7 7
6 4 3 1
^D
7 elements in list: 5 7 7 6 4 3 1

C SC 397a, Fundamentals of C++ Slide 250
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A list class, continued

Here's an example with a list of Strings. Note the use of copy constructors, assignment, and
inserters with the List<String> instances.

#include <iostream>
#include "List.h"
#include "String.h"

using namespace std;

List<String> reverse(
 const List<String>& L)
{
 List<String> result;

 for (int i = L.length() - 1; i >= 0; i--)
 result.add(L[i]);

 return result;
} //...continued next column...

int main()
{
 List<String> L1;

 L1.add("one");
 L1.add("two");
 L1.add("three");

 cout << L1 << endl; // [one,two,three]

 List<String> L2(reverse(L1));

 L1 = L2;
 cout << L1 << endl; // [three,two,one]
}

Could reverse() be a templated function instead of being wired for List<String>?

C SC 397a, Fundamentals of C++ Slide 251
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A list class, continued

Here's a list that holds pointers to Counters:

#include "List.h"
#include "Counter.h"

int main()
{
 List<Counter*> counters;

 Counter *cp = new Counter("c1");
 for (int i = 1; i <= 10; i++)
 counters.add(cp);

 for (int i = 0; i <= counters.length(); i++)
 counters[i]->bump();

 cp->print(); // Output: c1's count is 10
}

C SC 397a, Fundamentals of C++ Slide 252
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A list class, continued

Implementation of List:

template <typename T> class List {
 public:
 List();
 void add(const T&);
 T operator[](int) const;
 int length() const {
 return itsLength;
 }
 int capacity() const {
 return CAPACITY;
 }
 private:
 static const int CAPACITY = 100;
 T itsValues[CAPACITY];
 int itsLength;
 };

template <typename T> List<T>::List() : itsLength(0) { }

template <typename T> void List<T>::
 add(const T& newValue)
{
 if (itsLength >= CAPACITY)
 return;

 itsValues[itsLength++] = newValue;
}

template <typename T> T List<T>::
 operator[](int index) const
{
 return itsValues[index];
}

What requirements does List place on the type it holds?

Does List need an assignment operator and/or copy constructor?

C SC 397a, Fundamentals of C++ Slide 253
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A list class, continued

An inserter for List<T>:

template<typename T> ostream&
operator<<(ostream& o, const List<T>& list)

{
o << "[";

const char *sep = "";
for (int i = 0; i < list.length(); i++) {

o << sep << list[i];
 sep = ",";

 }

o << "]";
return o;

}

C SC 397a, Fundamentals of C++ Slide 254
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A more flexible version of List

A class can be templated on the value of a scalar type. In this version of List, the template
instantiation can specify an optional capacity for the list, which defaults to 20.

template <typename T, int CAPACITY = 20> class List {
 public:

List();
void add(const T&);
T operator[](int) const;
int length() const { return itsLength; }
int capacity() const { return CAPACITY; }

 private:
T itsValues[CAPACITY];
int itsLength;
};

template <typename T, int CAPACITY> List<T, CAPACITY>::List() : itsLength(0) { }

C SC 397a, Fundamentals of C++ Slide 255
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A more flexible version of List, continued

template <typename T, int CAPACITY>
void List<T, CAPACITY>::add(const T& newValue)
{

if (itsLength >= CAPACITY)
return;

itsValues[itsLength++] = newValue;
}

template <typename T, int CAPACITY> T List<T, CAPACITY>::
operator[](int index) const

{
return itsValues[index];

}

Usage:

List<int> L1; // capacity defaults to 20
List<int, 1000> L2; // capacity is 1000

C SC 397a, Fundamentals of C++ Slide 256
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Nested templates

Just as int is a type, so is List<int> and therefore a list of List<int>s can be created:

List<int> odds;
for (int i = 1; i <= 10; i += 2)

odds.add(i);

List<int> evens;
for (int i = 2; i <= 10; i += 2)

evens.add(i);

cout << "odds: " << odds << endl;
cout << "evens: " << evens << endl;

List<List<int> > both; // Workaround for lexical bug in C++: Add a space in >>
both.add(odds);
both.add(evens);

cout << "both: " << both << endl; Output:

odds: [1,3,5,7,9]
evens: [2,4,6,8,10]
both: [[1,3,5,7,9],[2,4,6,8,10]]

C SC 397a, Fundamentals of C++ Slide 257
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Nested templates, continued

Consider this code:

#include <iostream>
#include "List.h"

using namespace std;

int main()
{
 List< List< List<char> > > x;

 cout << x[0].length() << endl;

}

What template instantiations would be produced? (That is, what functions need to be created
to execute this code?)

What would sizeof(x) produce?

C SC 397a, Fundamentals of C++ Slide 258
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Nested templates, continued

At hand:

int main()
{
 List< List< List<char> > > x;

 cout << x[0].length() << endl;
}

Template instantiations:

$ g++ slide257a.cc
$ nm a.out | c++filt | grep List
0000000000400920 W List<List<List<char, 20>, 20>, 20>::List()
0000000000400a2c W List<List<char, 20>, 20>::List()
0000000000400a7c W List<char, 20>::List()
0000000000400972 W List<List<List<char, 20>, 20>, 20>::operator[](int) const
0000000000400a18 W List<List<char, 20>, 20>::length() const

sizeof(List<char>) is 24
sizeof(List<List<char> >) is 484
sizeof(List<List<List<char> > >) is 9684

C SC 397a, Fundamentals of C++ Slide 259
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

A template class: Table

Consider a class Table that is similar to List, but can be indexed by keys of any type, not just
integers.

To construct a Table, the type of the keys and the type of the value must be specified. This
declares a Table indexed by Strings and holding ints:

Table<String, int> group_sizes;

We now add key/value pairs to the table and print it:

group_sizes.add("duo", 2); // Uses String(const char *) constructor
group_sizes.add("trio", 3);
group_sizes.add("quartet", 4);
group_sizes.add("dozen", 12);

cout << group_sizes << endl;

Output:

[(duo->2),(trio->3),(quartet->4),(dozen->12)]

C SC 397a, Fundamentals of C++ Slide 260
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Table, continued

An individual value can be accessed via an overloaded indexing operator:

int trio = group_sizes["trio"];
int doz = group_sizes["dozen"];

cout << ShowVal(trio) << ShowVal(doz) << endl;

Output:

trio = 3; doz = 12;

C SC 397a, Fundamentals of C++ Slide 261
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Table, continued

Here's a table containing Strings, indexed by points, and with a default value:

Table<Point, String> point_names("<unknown>");

point_names.add(Point(0,0), "lower left");
point_names.add(Point(0,100), "upper left");
point_names.add(Point(100,100), "upper right");
point_names.add(Point(100,0), "lower right");

Point which;

while (cout << "Point? " << flush && cin >> which) {
 String name = point_names[which];
 cout << "That point is named " << name << endl;
 }

Describe the data structure represented by x in this
declaration:

Table<String, List<Table<String, List<String> > > > x;

Interaction:

Point? 0 0
That point is named lower left
Point? 100 100
That point is named upper right
Point? 5 10
That point is named <unknown>

C SC 397a, Fundamentals of C++ Slide 262
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Implementation of Table

template <typename K, typename V> class Table {
 public:
 Table();
 Table(V defval);
 void add(K, V);
 V operator[](K) const;
 int size() const { return itsSize; }

 private:
 static const int CAPACITY = 100;
 struct Entry {
 K itsKey;
 V itsValue;
 } itsEntries[CAPACITY];
 int itsSize;
 V itsDefaultValue;

 template<typename K1, typename V1> // Note: This is a workaround...
friend ostream& operator<<(ostream&, const Table<K1,V1>&);

 };

What requirements does Table
place on keys? On values?

C SC 397a, Fundamentals of C++ Slide 263
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Implementation of Table, continued

template <typename K, typename V> Table<K,V>::Table() : itsSize(0) { }

template <typename K, typename V> Table<K,V>::Table(V defval)
 : itsSize(0), itsDefaultValue(defval) { }

template <typename K, typename V> void Table<K,V>::add(K key, V value)
{
 if (itsSize >= CAPACITY)
 return;

 for (int i = 0; i < itsSize; i++)
 if (itsEntries[i].itsKey == key) {
 itsEntries[i].itsValue = value;
 return;
 }

 itsEntries[itsSize].itsKey = key;
 itsEntries[itsSize].itsValue = value;
 itsSize++;
}

What requirements does Table
place on keys? On values?

C SC 397a, Fundamentals of C++ Slide 264
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Implementation of Table, continued

template <typename K, typename V> V Table<K,V>::operator[](K key) const
{
 for (int i = 0; i < itsSize; i++)
 if (itsEntries[i].itsKey == key)
 return itsEntries[i].itsValue;

 return itsDefaultValue;
}

template<class K, class V> ostream& operator<<(ostream& o, const Table<K,V>& table)
{
 o << "[";
 const char *sep = "";
 for (int i = 0; i < table.size(); i++) {
 o << sep << "(" << table.itsEntries[i].itsKey << "->"

 << table.itsEntries[i].itsValue << ")";
 sep = ",";
 }
 o << "]";
 return o;
}

What requirements does Table
place on keys? On values?

C SC 397a, Fundamentals of C++ Slide 265
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Templates and inheritance

A templated class can be derived from another templated class. Consider OrderedList, a
subclass of List that maintains elements in order from smallest to largest:

#include "List.h"

template <typename T> class OrderedList: public List<T> {
 public:
 OrderedList() { }
 virtual void add(T);

 using List<T>::itsLength; // See gcc.gnu.org/onlinedocs/gcc/Name-lookup.html
 using List<T>::itsValues;
 using List<T>::capacity;
 };

C SC 397a, Fundamentals of C++ Slide 266
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Templates and inheritance, continued

template <typename T> void OrderedList<T>::add(T newValue)
{
 if (itsLength >= capacity())
 return;

 int i;
 for (i = 0; i < itsLength; i++) {
 if (newValue < this->itsValues[i]) {
 //
 // newValue should go in itsValues[i]. Make space
 // there by pushing the other values back one.
 for (int j = itsLength-1; j >= i; j--) {
 itsValues[j+1] = itsValues[j];
 }
 break;
 }
 }

 itsValues[i] = newValue;
 itsLength++;
}

Note: The code assumes itsValues and itsLength are protected, not private.

C SC 397a, Fundamentals of C++ Slide 267
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Templates and inheritance, continued

Usage of OrderedList:

OrderedList<char> letters;

for (const char *p = "tim korb"; *p; p++)
 letters.add(*p);

cout << letters << endl;

Output:

[,b,i,k,m,o,r,t]

OrderedList can be used anywhere List can be used.

C SC 397a, Fundamentals of C++ Slide 268
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C SC 397a, Fundamentals of C++ Slide 269
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The C++ Standard Library

The string class

The Standard Template Library (STL)

The vector class

Iterators with vector

Algorithms

Function objects

Algorithms with plain pointers

More on iterators and algorithms

Constant iterators

Iterator adapters

The map class

The set class

C SC 397a, Fundamentals of C++ Slide 270
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The string class

The C++ Standard Library provides a string class to represent character strings of arbitrary
length. NULs are not accommodated.

string provides several constructors and many operators, including assignment, comparison,
concatenation, and indexing. There are a variety of member functions for searching,
extracting s.

Strings have value semantics—assigning one string to another doesn't result in a shared
value.

Unlike Java, strings are mutable—the characters in a string can be changed.

Usage:

#include <string>

using namespace std;

...

C SC 397a, Fundamentals of C++ Slide 271
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The string class, continued

A few of many sources of reference material for string:

http://cppreference.com/wiki/string/start

http://cplusplus.com/reference/string/string/

http://dinkumware.com/manuals/default.aspx

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/index.html

The following slides show a handful of the many operations provided by string.

C SC 397a, Fundamentals of C++ Slide 272
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Example: parse_path

Consider a function parse_path that breaks a file name such as /home/whm/jtc/survey.cc
into three components: directories, basename, and extension:

void parse_path(const string& fullpath, string& dirs, string& base, string& ext)

Some test code:

string line;
while (cout << "Path? " << flush, getline(cin, line)) { // Note use of comma operator
 string dirs, base, ext;
 parse_path(line, dirs, base, ext);
 cout << sq(dirs) << sq(base) << sq(ext) << endl;
 }

Interaction:

Path? /home/whm/jtc/surveys.cc
dirs = '/home/whm/jtc'
base = 'surveys'
ext = 'cc'

It handles cases like /etc/passwd, a/b/c, and x.y, too.

C SC 397a, Fundamentals of C++ Slide 273
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

parse_path

void parse_path(const string& fullpath, string& dirs, string& base, string& ext)

{

 // Isolate directories

 //

 string::size_type lastslash = fullpath.rfind('/');

 if (lastslash != string::npos) // string::npos, a static const, indicates "not found"

 dirs = fullpath.substr(0, lastslash);

 else

 dirs = "";

 string fname = fullpath.substr(lastslash+1); // 2nd arg defaults to string::npos

 // Isolate base and extension

 //

 string::size_type dotpos = fname.rfind('.');

 if (dotpos != string::npos) {

 base = fname.substr(0,dotpos);

 ext = fname.substr(dotpos+1);

 }

 else {

 base = fname;

 ext = "";

 }

}

Note that values are "returned" via reference arguments.

C SC 397a, Fundamentals of C++ Slide 274
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

string vs. C-strings

A non-explicit string constructor takes a const char *, enabling a pointer to a C-style string
to be used anywhere a string is required.

Instead of a char * or const char * conversion operator string has this member function:

const char *c_str() const; (slightly simplified)

Example:

string snooze(20, 'z'); // Twenty occurrences of 'z'

const char *p = snooze.c_str();

printf("%s length: %zd\n", p, strlen(p)); // %zd for size_t

Output:

zzzzzzzzzzzzzzzzzzzz length: 20

The pointer returned by c_str() references memory managed by the string; do not deallocate
it! The contents are only valid while the string exists.

C SC 397a, Fundamentals of C++ Slide 275
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Example: changing a filename extension

This program changes the extension of a file using the rename(2) system call. For example,

% chext Hello.c cc

would be equivalent to "mv Hello.c Hello.cc".

#include <cstdio> (for rename(...))
#include <string>
#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
 string file(argv[1]);
 string new_ext(argv[2]);

 string dirs, base, ext;
 parse_path(file, dirs, base, ext);

 string new_name = base + "." + new_ext;
 rename(file.c_str(), new_name.c_str()); // No error handling...
}

C SC 397a, Fundamentals of C++ Slide 276
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

ostringstream

ostringstream is a ostream subclass that "outputs" to a string. Example:

#include <iostream>
#include <sstream> // Needed for ostringstream
using namespace std;

int main()
{
 ostringstream lets, nums;
 for (int i = 0; i < 10; i++) {
 nums << 1+i << " ";
 lets << (char)('a' + i) << " ";
 }

 string result = lets.str() + nums.str();
 cout << result << endl;
}

Output:

a b c d e f g h i j 1 2 3 4 5 6 7 8 9 10

Will our List<T> inserter work with an ostringstream?

C SC 397a, Fundamentals of C++ Slide 277
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

ostringstream, continued

Here is a function template that produces a string representation of any type T that has an
inserter:

template<class T>
string toString(T x)
{
 ostringstream oss;

 oss << x;
 return oss.str();
}

Usage:

int i = 73;
double a = 123.456;
Point p(3,4);

string s1 = toString(i); // "73"
string s2 = toString(a); // "123.456"
string s3 = toString(p); // "(3,4)"

How does this function template compare to Java's Object.toString()?

C SC 397a, Fundamentals of C++ Slide 278
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

string really is...

In fact, there is no class named string. string is a typedef for a template specialization:

typedef basic_string<char> string;

There is also a typedef for wstring, for strings of "wide" characters (e.g., 16-bits):

typedef basic_string<wchar_t> wstring;

C SC 397a, Fundamentals of C++ Slide 279
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The Standard Template Library

Much of the C++ Standard Library is the Standard Template Library, or STL. It is a
collection of containers, iterators, algorithms, and function objects. It makes extensive use
of templates.

There are a handful of containers; here are most of them:

 vector Generalized array. Similar to Java's Vector and ArrayList.

 deque Double ended queue.

 list Doubly linked list. Similar to LinkedList.

 set A sorted collection of unique values. Similar to TreeSet.

 multiset A sorted collection of not necessarily unique values; also called a "bag".

 map An associative array that maintains keys in sorted order. Similar to
TreeMap.

 stack A stack.

C SC 397a, Fundamentals of C++ Slide 280
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The Standard Template Library, continued

Java's container classes make extensive use of inheritance to produce polymorphic behavior.
In contrast, the STL relies mainly on templates to achieve the same ends. The style of
programming induced by the STL is often called "generic" programming.

The material here is only an introduction to the STL.

C SC 397a, Fundamentals of C++ Slide 281
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The vector class

A vector can contain elements of any type T that supports copy and assignment operations.

vector is designed to provide random access to elements in constant time (O(1)), just like an
array. Additionally, elements can be added to the end of a vector in amortized constant time.

A rule of thumb is to use vector to hold a sequence of values unless there is good reason to
use a deque or list instead.

vector is defined in the <vector> header.

C SC 397a, Fundamentals of C++ Slide 282
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The vector class, continued

The following code fills a vector with "words" read from standard input and prints the count
when done.

vector<string> words;

string word;
while (cin >> word) // whitespace delimited string, by default
 words.push_back(word);

cout << "Read " << words.size() << " words" << endl;

C SC 397a, Fundamentals of C++ Slide 283
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The vector class, continued

This routine produces a vector filled with powers of two:

vector<int> powers_of_two(int n)
{
 vector<int> vals;
 for (int i = 0; i < n; i++)
 vals.push_back(1 << i);

 return vals;
}

Usage:

vector<int> pows = powers_of_two(10);

Contents: (2 to 2)0 9

1 2 4 8 16 32 64 128 256 512

Note that the function creates a vector<int> and returns it as a value.

C SC 397a, Fundamentals of C++ Slide 284
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The vector class, continued

Vectors have value semantics—assigning one to another doesn't produce a shared copy, and
comparison is based on contained values.

Example:

vector<int> v1 = powers_of_two(10);
vector<int> v2(5, 3); // Five 3's

cout << SV(v1 == v2) << endl; // false

v2 = v1;

cout << "--- After v2 = v1 ---" << endl;

cout << SV(v1 == v2) << endl; // true

v1.pop_back();

cout << "--- After v1.pop_back() ---" << endl;

cout << SV(v1 == v2) << endl; // false

Note: no iostream inserter or extractor is defined for vector.

Output: (assuming cout << boolalpha)

v1 == v2 = false;

--- After v2 = v1 ---

v1 == v2 = true;

--- After v1.pop_back() ---

v1 == v2 = false;

C SC 397a, Fundamentals of C++ Slide 285
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

vector, continued

A vector can be accessed like an array:

vector<int> pows = powers_of_two(10);

int i = pows[5];

pows[7] = i + 10;
pows[pows[3]] = pows[3] * pows[9];

Note that operator[] returns T& and therefore can be assigned to.

The at() method is a range-checked equivalent of operator[]:

pows = powers_of_two(10);

int i = pows.at(5);

pows.at(7) = i + 10;
pows.at(pows.at(3)) = pows.at(3) * pows.at(9);

C SC 397a, Fundamentals of C++ Slide 286
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

vector, continued

An out of bounds access with both forms:

vector<int> pows = powers_of_two(10);

try {
 cout << pows[500] << endl;
 cout << pows.at(500) << endl;
 }
catch (exception& e) { cout << e.what() << endl; }

Output:

168043312
vector [] access out of range

C SC 397a, Fundamentals of C++ Slide 287
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterators with vector

Iterators can be used to navigate in STL containers. An iterator to be used with a
vector<int> is declared like this:

vector<int>::iterator itr; // nested class

One of several vector methods that produce an iterator is begin():

vector<int> v = powers_of_two(10);

itr = v.begin();

An iterator produced by a vector can be used much like a pointer:

cout << *itr << endl; // prints 1 (pows[0])

++itr;

cout << *itr << endl; // prints 2 (pows[1])

itr += 7;

cout << *itr << endl; // prints 256 (pows[8])

C SC 397a, Fundamentals of C++ Slide 288
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterators with vector, continued

Previously...

vector<int> v = powers_of_two(10);

itr = v.begin();
++itr;
itr += 7;

Continuing...

itr -=3;
cout << *itr << endl; // prints 32 (pows[5])

cout << (itr - v.begin()) << endl; // prints 5

*itr = 20;
cout << *itr << endl; // prints 20

Note that *itr is really itr.operator*().

C SC 397a, Fundamentals of C++ Slide 289
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterators with vector, continued

A loop that prints the contents of a vector<int>:

vector<int> v = powers_of_two(10);

for (vector<int>::iterator i = v.begin(); i != v.end(); ++i)
 cout << *i << " ";

Output:

1 2 4 8 16 32 64 128 256 512

Important: v.end() is "one past" the last element. Dereferencing v.end() is considered to be
an error.

C SC 397a, Fundamentals of C++ Slide 290
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterators with vector, continued

For reference:

vector<int> v = powers_of_two(10);

for (vector<int>::iterator i = v.begin(); i != v.end(); ++i)
 cout << *i << " ";

We can (awkwardly) work backwards with begin() and end():

for (vector<int>::iterator i = v.end()-1; i >= v.begin(); --i)
 cout << *i << " ";

Output:

512 256 128 64 32 16 8 4 2 1

C SC 397a, Fundamentals of C++ Slide 291
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterators with vector, continued

The better way to navigate from the rear to the front of a vector is to use rbegin() and
rend(). They produce reverse iterators:

for (vector<int>::reverse_iterator i = v.rbegin(); i != v.rend(); ++i)
 cout << *i << " ";

Output:

512 256 128 64 32 16 8 4 2 1

Note that incrementing a reverse iterator moves backwards.

Speculate: What does v.begin() == v.rend()-1 produce?

C SC 397a, Fundamentals of C++ Slide 292
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iteration over const containers

If a container is const, we must a use const_iterator with it. Example:

template<typename T> ostream& operator<<(ostream& o, const vector<T>& v)
{
 o << '[';

 const char *sep = "";
 for (typename vector<T>::const_iterator itr = v.begin(); itr != v.end(); itr++) {
 o << sep << *itr;
 sep = ", ";
 }

 o << ']';
 return o;
}

Because we're defining a function template, we must use "typename" in the declaration of
itr. That's required to cause "vector<T>::const_iterator" to be recognized as naming a type.

C SC 397a, Fundamentals of C++ Slide 293
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Algorithms

The STL includes a number of algorithms that are written in terms of iterators. Some are
simple and others are sophisticated. STL algorithms are implemented as function templates.

One algorithm is reverse. It is a simply a function that takes two arguments: iterators
naming the beginning and (one past) the end of a range of elements in a container. The order
of the elements in the range are reversed; the reversal is in-place.

The header <algorithm> is required.

Example:

vector<int> v = powers_of_two(10);

reverse(v.begin(), v.end());

cout << "reversed: " << v << endl;

Output:

reversed: [512, 256, 128, 64, 32, 16, 8, 4, 2, 1]

C SC 397a, Fundamentals of C++ Slide 294
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Algorithms, continued

A string is a container. Consider this:

string s("Bjarne Stroustrup");

reverse(s.begin(), s.end());

cout << s << endl;

Output:

purtsuortS enrajB

C SC 397a, Fundamentals of C++ Slide 295
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Algorithms, continued

Another algorithm is random_shuffle:

random_shuffle(v.begin(), v.end());
cout << "shuffled: " << v << endl;

string s("Bjarne Stroustrup");

random_shuffle(s.begin()+1, s.end()-3);
cout << "shuffled: " << s << endl;

Output:

shuffled: [256, 512, 32, 8, 4, 16, 1, 2, 128, 64]

shuffled: Ba rusrjSttenorup

Note that the algorithms have no knowledge of the containers. An algorithm is written
exclusively in terms of iterators.

If the implementor of a new container implements iterators with certain capabilities the
container should work with any algorithm written in terms of iterators with those capabilities.

C SC 397a, Fundamentals of C++ Slide 296
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Algorithms, continued

This program reads lines from standard input and prints them in reverse order on standard
output:

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main() {
 vector<string> lines;
 string line;

 while (getline(cin, line))
 lines.push_back(line);

 reverse(lines.begin(), lines.end());

 for (vector<string>::iterator i = lines.begin(); i < lines.end(); i++)
 cout << *i << endl;
}

Is reverse() really needed above?
Speculate: How much slower (or faster) would a Java analog with ArrayList<String> be?

C SC 397a, Fundamentals of C++ Slide 297
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects

It is possible to overload operator(). Example:

template <typename T>
class Negate {
 public:
 T operator()(T x) { return -x; }
 };

Usage:

Negate<int> mk_negative;

int a = mk_negative(3); // In function call form: a = mk_negative.operator()(3);

cout << a << endl; // prints -3

cout << Negate<int>()(10) << endl;

An instance of a class like Negate is called a function object or a functional.

C SC 397a, Fundamentals of C++ Slide 298
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

Here's a function inspired by the "map" function commonly found in functional programming
languages:

template<typename Function, typename T>
vector<T> map_vector(Function f, vector<T> v)
{
 vector<T> result;

 for (typename vector<T>::iterator itr = v.begin(); itr != v.end(); itr++)
 result.push_back(f(*itr));

 return result;
}

What does it do?

C SC 397a, Fundamentals of C++ Slide 299
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

template<typename Function, typename T>
vector<T> map_vector(Function f, vector<T> v)
{
 vector<T> result;

 for (typename vector<T>::iterator itr = v.begin(); itr != v.end(); itr++)
 result.push_back(f(*itr));

 return result;
}

Usage: (assuming we've written an inserter for vector<T>)

vector<int> values;
for (int i = 1; i <= 5; i++)
 values.push_back(i*i);

cout << map_vector(Negate<int>(), values) << endl; // Output: [-1, -4, -9, -16, -25]

Given vector<String> lines, where String is the one from assignment 7, what would
map_vector(Negate<String>(), lines) do?

C SC 397a, Fundamentals of C++ Slide 300
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

Here's another class whose instances are function objects:

class IsEven {
 public:
 bool operator()(int i) { return i % 2 == 0; }
 };

Usage:

vector<int> vals = rand_ints(7, 10); // 7 random ints in [0,10)
cout << "Values: " << vals << endl;
cout << "Even? " << map_vector(IsEven(), vals) << endl;

Output:

Values: [0, 3, 3, 2, 9, 0, 8]
Even? [1, 0, 0, 1, 0, 1, 1]

Will the following work?
 bool is_even(int i) { return i % 2 == 0; }

 cout << "Even? " << map_vector(is_even, vals) << endl;

C SC 397a, Fundamentals of C++ Slide 301
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

Many STL algorithms are written to employ function objects or have an alternate form that
uses a function object. One of them:

int count(InputIterator first, InputIterator last, T value)

int count_if(InputIterator first, InputIterator last, Predicate pred)

A function object like IsEven(), which has a boolean result, is called a predicate.

Example:

vector<int> vals = rand_ints(10, 5); // vals: 3 2 1 1 4 1 1 3 0 3

int n = count_if(vals.begin(), vals.end(), IsEven()); // n = 3

C SC 397a, Fundamentals of C++ Slide 302
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

The STL sort algorithm has two forms:

void sort(RandomAccessIterator first, RandomAccessIterator last);

void sort(RandomAccessIterator first, RandomAccessIterator last, Pr pred);

The first form uses the < operator. The second form uses a predicate.

One of the function objects defined in the <functional> header is a predicate named greater.
Here is a simplified version of it:

template <typename T>
class greater {
 public:
 bool operator()(T x, T y) { return x > y; }
 };

C SC 397a, Fundamentals of C++ Slide 303
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Function objects, continued

Note the difference between the result when using the first form of sort, and the second,
which uses an instance of greater<int>):

vector<int> vals = rand_ints(10, 5);
cout << setw(25) << "Values " << vals << endl;

sort(vals.begin(), vals.end());
cout << setw(25) << "Sorted with operator< " << vals << endl;

sort(vals.begin(), vals.end(), greater<int>());
cout << setw(25) << "Sorted with greater<int> " << vals << endl;

Output:

 Values [2, 1, 1, 4, 1, 1, 3, 0, 3, 3]
 Sorted with operator< [0, 1, 1, 1, 1, 2, 3, 3, 3, 4]
Sorted with greater<int> [4, 3, 3, 3, 2, 1, 1, 1, 1, 0]

What's the analog for this in Java?

C SC 397a, Fundamentals of C++ Slide 304
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Algorithms with plain pointers

Another type of container that's compatible with the STL algorithms is T a[n]—a plain old
array.

Example:

char buffer[] = "Does it really work??";
int n = strlen(buffer);

cout << buffer << endl; // Output: Does it really work??

reverse(buffer, &buffer[n]); // buffer is &buffer[0]

cout << buffer << endl; // Output: ??krow yllaer ti seoD

random_shuffle(&buffer[2], &buffer[n-2]);

cout << buffer << endl; // Output: ??lte eikowasylrroD

fill_n(buffer, 5, 'z'); // start at &buffer[0] and fill with 5 z's

cout << buffer << endl; // Output: zzzzz eikowasylrroD

C SC 397a, Fundamentals of C++ Slide 305
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms

There are five categories of STL iterators: input, output, forward, bidirectional, and random
access.

There is no class hierarchy for iterators. Instead, iterators are categorized by what they can
do. For example, an output iterator must support the following operations:

*itr = value
++itr
itr++
copy constructor

As mentioned earlier, the STL algorithms are written in terms of iterators. The fill_n
algorithm (simply a function) looks like this:

fill_n(OutputIterator first, Size n, const T& value)

fill_n starts at the position indicated by first, an output iterator, and stores a copy of value in
each of the next n positions.

Are the four operations listed above sufficient to implement fill_n?

C SC 397a, Fundamentals of C++ Slide 306
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

At hand:

fill_n(OutputIterator first, Size n, const T& value)

Usage:

vector<int> nums(10); // nums: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

fill_n(nums.begin() + 2, 3, 99);

cout << nums << endl; // Output: [0, 0, 99, 99, 99, 0, 0, 0, 0, 0]

A slightly simplified version of the libg++ code for fill_n:

template<typename OutputIterator, typename Tp>
OutputIterator fill_n(OutputIterator first, int n, const Tp& value)
{
 for (; n > 0; --n, ++first)
 *first = value;
 return first;
}

Remember that overloaded operators are at the heart of all this.

C SC 397a, Fundamentals of C++ Slide 307
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

Here are the operations that are required for an iterator to be considered an input iterator:

*itr (fetch value)
itr->member (access member)
++itr
itr++
itr1 == itr2
itr1 != itr2
copy constructor

The count algorithm looks like this:

int count(InputIterator first, InputIterator last, const T& value)

Example:

vector<int> vals = rand_ints(10, 3); // Not in standard library...

print(vals, "Random values: ");
int n = count(vals.begin(), vals.end(), 0);
cout << "Found " << n << " instances" << endl;

What output iterator operations does count need to make use of?

C SC 397a, Fundamentals of C++ Slide 308
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

The call to count is worth another look:

vector<int> vals = rand_ints(10, 3);

print(vals, "Random values: ");
int n = count(vals.begin(), vals.end(), 0);

The values produced by vals.begin() and vals.end() define a range of elements.

The specification of count says that it operates on this range:

[vals.begin(), vals.end())

The notation is borrowed from mathematics: the range [0.0, 1.0) includes 0.0 but stops an
infinitesimal amount short of 1.0.

As applied to a container, the range includes the element referenced by vals.begin(), but
stops just short of vals.end().

C SC 397a, Fundamentals of C++ Slide 309
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

Here's an approximation of count:

int count(InputIterator first, InputIterator last, const T& value)
{
 int n = 0;
 for (; first != last; ++first)
 if (*first == value)
 ++n;
 return n;
}

Remember that overloaded operators are at the heart of all this.

C SC 397a, Fundamentals of C++ Slide 310
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

The capabilities required of forward iterators are roughly a union of input and output
iterators:

*itr
itr->member
++itr
itr++
itr1 == itr2
itr1 != itr2
default constructor
copy constructor
assignment operator

Bidirectional iterators are simply forward iterators that also support
--itr and itr--.

Random access iterators have all the capabilities of bidirectional iterators and also provide
pointer-like operations including subscripting, subtraction, comparison, and
addition/subtraction of integers.

C SC 397a, Fundamentals of C++ Slide 311
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

Note the iterator types required for these algorithms:

ForwardIterator min_element(ForwardIterator first, ForwardIterator last)

void random_shuffle(RandomAccessIterator first, RandomAccessIterator last)

void reverse(BidirectionalIterator first, BidirectionalIterator last)

Could we implement an equivalent to random_shuffle with input iterators? Would it be as
fast as one that assumes random access iterators?

C SC 397a, Fundamentals of C++ Slide 312
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

More on iterators and algorithms, continued

Not all containers produce random access iterators. For example, list produces bidirectional
iterators. An iterator produced by a list can't be used with an algorithm that counts on a
random access iterator.

For example, this program won't compile:

int main()
{
 list<int> L;
 random_shuffle(L.begin(), L.end());
}

The error produced by g++ is triggered by the absence of an overloaded operator:

stl_algo.h:1643: error: no match for 'operator+' in '__first + 1'
stl_algo.h:1644: error: no match for 'operator-' in '__i - __first'

C SC 397a, Fundamentals of C++ Slide 313
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterator adapters

One thing that can be done with the copy algorithm,

OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result)

is this:

vector<int> nums(10, 0), fives(3, 5);

cout << "nums before: " << nums << endl;

copy(fives.begin(), fives.end(), &nums[4]);

cout << "nums after: " << nums << endl;

Output:

nums before: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
nums after: [0, 0, 0, 0, 5, 5, 5, 0, 0, 0]

C SC 397a, Fundamentals of C++ Slide 314
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterator adaptors, continued

Here's a copy call that doesn't do what's expected:

vector<int> nums(10, 0), fives(3, 5);

copy(fives.begin(), fives.end(), nums.end()); // A Bad Thing

cout << "nums after(2): " << nums << endl;

Output:

nums after(2): [0, 0, 0, 0, 5, 5, 5, 0, 0, 0]
*** glibc detected *** a.out: free(): invalid next size (fast): 0x0000000002473250 ***

What's wrong with the call?

C SC 397a, Fundamentals of C++ Slide 315
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterator adapters, continued

A solution is provided with an insert iterator, which is one type of iterator adapter.

Instead of this,

copy(fives.begin(), fives.end(), nums.end()); // A Bad Thing

do this:

copy(fives.begin(), fives.end(), back_inserter(nums));

Result: (with all prints)

nums before: 0 0 0 0 0 0 0 0 0 0
nums after: 0 0 0 0 5 5 5 0 0 0
nums after(2): 0 0 0 0 5 5 5 0 0 0 5 5 5

Here is back_inserter:

template<typename C> back_insert_iterator<C> back_inserter(C& container) {
 return back_insert_iterator<C>(container);
 }

C SC 397a, Fundamentals of C++ Slide 316
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterator adapters, continued

Another type of iterator adapter is a stream iterator. Here's an iterator that turns assignments
into output:

ostream_iterator<int> prt = ostream_iterator<int>(cout, ",\n");
*prt = 3;
*prt = 4;
*prt = 5;

Output: (exact)

3,
4,
5,

C SC 397a, Fundamentals of C++ Slide 317
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Iterator adaptors, continued

Another example:

vector<int> pows = powers_of_two(10);

copy(pows.begin(), pows.end(),
ostream_iterator<int>(cout, " "));

Output:

1 2 4 8 16 32 64 128 256 512

A reverse iterator, such as produced by rbegin() and rend(), is another example of an
iterator adapter.

C SC 397a, Fundamentals of C++ Slide 318
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The map class

A map is an associative array that holds key/value pairs.

Any type K that supports copy, assignment, and comparison can be a key. Any type V that
supports copy and assignment can be a value. Keys in a map are unique.

C SC 397a, Fundamentals of C++ Slide 319
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The map class

Here is a simple word-occurrence counter:

int main()
{
 map<string, int> counts;

 string word;
 while (cin >> word)
 counts[word] += 1;

 map<string, int>::iterator i;

 for (i = counts.begin(); i != counts.end(); ++i) {
 cout << left << setw(15) << i->first
 << right << setw(5) << i->second << endl;
 }

}

The map iterator supports a member reference to access the first (key) and second (value)
elements of the key/value pair. (Yes, operator-> is overloaded!)

Manipulators are used to produce aligned output.

C SC 397a, Fundamentals of C++ Slide 320
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The map class, continued

An input file:

to be or not to be is
not going to be the
question

Execution:

be 3
going 1
is 1
not 2
or 1
question 1
the 1
to 3

C SC 397a, Fundamentals of C++ Slide 321
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The set class

A set is a sorted collection of unique values. A set can contain values of any type T that
supports copy, assignment, and comparison.

This program reads file names on standard input, perhaps piped from ls or find, and prints a
list of unique file extensions:

int main()
{
 set<string> exts;

 string line;
 while (getline(cin, line)) {
 string dirs, base, ext;
 parse_path(line, dirs, base, ext);
 exts.insert(ext);
 }

 cout << exts.size() << " unique extensions:" << endl;
 for (set<string>::iterator i = exts.begin(); i != exts.end(); i++)
 cout << *i << endl;
}

C SC 397a, Fundamentals of C++ Slide 322
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The set class, continued

Usage:

% ls | uniqexts
6 unique extensions:
cc
class
htm
icn
java
pdf

C SC 397a, Fundamentals of C++ Slide 323
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple Inheritance

Basics

Multiple inheritance and Java

Ambiguity in multiple inheritance

Virtual base classes

C SC 397a, Fundamentals of C++ Slide 324
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance basics

If a class has an is-a relationship with more than one class, the use of multiple inheritance
may be appropriate.

Recall Clock:

class Clock {
 public:
 Clock();
 void setTime(Time);
 Time getTime();
 private: Time itsTime;
 };

Consider a new class, Radio:

class Radio {
 public:
 Radio();
 void setFrequency(double);
 void setVolume(double);
 private: double itsFrequency, itsVolume;
 };

ClockRadio is derived from both Clock and Radio:

class ClockRadio: public Clock, public Radio {
public:

void setWakeup(const Station&, const Time&);
};

This is an example of multiple inheritance.

C SC 397a, Fundamentals of C++ Slide 325
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance basics, continued

Multiple inheritance creates classes whose instances inherit the combined interface, structure, and
behavior of two or more classes.

Instances of ClockRadio combine the structure and behavior of a Clock and a Radio:

 ClockRadio cr;
 cr.setTime("10:10"); // Clock::setTime
 cr.setVolume(5); // Radio::setVolume
 cr.setFrequency(1000); // Radio::setFrequency

ClockRadio instances have three data members: itsTime, itsFrequency, and itsVolume.

The potential presence of multiple inheritance implies that instead of inheritance relationships
defining a tree of classes, they define a directed acyclic graph (DAG) instead.

There is no limit to the size and complexity of class structures built with multiple inheritance.

C SC 397a, Fundamentals of C++ Slide 326
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance basics, continued

A key benefit of multiple inheritance is that an instance of a class with several base classes can be
treated as an instance of any of those base classes.

A ClockRadio is-a Clock and it also is-a Radio. A ClockRadio may therefore be used anywhere
either a Clock or a Radio is required.

Imagine a function to tune in a radio station currently playing a particular song:

findSong(const Song& song, Radio& radio)

findSong can be used with either a Radio or a ClockRadio:

Song s("Bulletproof", "La Roux");

Radio r;
findSong(s, r);

ClockRadio cr;
findSong(s, cr);

C SC 397a, Fundamentals of C++ Slide 327
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance basics, continued

ClockRadio pointers can be held in arrays of Clock pointers or Radio pointers:

Clock c1, c2;
ClockRadio cr1, cr2;
Radio r1, r2;

Clock* clocks[] = { &c1, &c2, &cr1, &cr2 };
Radio* radios[] = { &r1, &cr1, &r2, &cr2 };

An interesting consequence of multiple inheritance is that casting a pointer may cause the value of
the pointer to change!

ClockRadio cr1;

ClockRadio *crp = &cr1;
Clock *cp = (Clock*)crp;
Radio *rp = (Radio*)crp;

cout << SV(crp) << SV(cp) << SV(rp) << endl;

Note that cp and rp differ, and that the Clock portion is first; the Radio portion is second.
crp = 0x22cc40; cp = 0x22cc40; rp = 0x22cc50;

C SC 397a, Fundamentals of C++ Slide 328
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance and Java

Early versions of C++ did not support multiple inheritance. The merit of supporting multiple
inheritance was hotly debated. Many persons believe the additional complexity is not worth the
benefit.

Java does not support multiple inheritance. It is interesting to consider how ClockRadio might be
approached in Java.

One approach is to define a ClockRadio class that contains a Clock and a Radio. The combined
set of methods is implemented by appropriately delegating calls to the Clock or the Radio:

class ClockRadio { // Java ...
 private Clock itsClock = new Clock();
 private Radio itsRadio = new Radio();

 public void setTime(Time t) { itsClock.setTime(t); }
 public Time getTime() { return itsClock.getTime(); }
 public void setVolume(double f) { itsRadio.setVolume(f); }
 public void setFrequency(double f) { itsRadio.setFrequency(f); }
 public void setWakeup(Station station, Date time) { ... }
 }

What are the disadvantages of this approach?

C SC 397a, Fundamentals of C++ Slide 329
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance and Java, continued

It may be the case that we really don't need to work with a ClockRadio as a Radio, but it would be
very convenient to work with it as a Clock. If so, we might inherit from Clock and contain a
Radio:

class ClockRadio extends Clock { // Java ...
 private Radio itsRadio = new Radio();

 public void setVolume(double f) { itsRadio.setVolume(f); }
 public void setFrequency(double f) { itsRadio.setFrequency(f); }
 public void setWakeup(Station station, Date time) { ... }
 }

C SC 397a, Fundamentals of C++ Slide 330
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance and Java, continued

We can match the behavior of the C++ ClockRadio by using a combination of interfaces and
implementation classes:

interface Clock { // Java ...

 void setTime(Time t);

 Time getTime();

 };

class ClockImpl implements Clock {

 public ClockImpl() { }

 public void setTime(Time t) { itsTime = t; }

 public Time getTime() { return itsTime; }

 private Time itsTime;

 };

interface Radio {

 void setFrequency(double f);

 void setVolume(double v);

 };

class RadioImpl implements Radio {

 public RadioImpl() { }

 public void setFrequency(double f) { itsFrequency = f; }

 public void setVolume(double v) { itsVolume = v; }

 private double itsFrequency, itsVolume;

 };

C SC 397a, Fundamentals of C++ Slide 331
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance and Java, continued

The grand finale:

class ClockRadio implements Clock, Radio { // Java ...
 private ClockImpl itsClock = new ClockImpl();
 private RadioImpl itsRadio = new RadioImpl();

 public void setTime(Time t) { itsClock.setTime(t); }
 public Time getTime() { return itsClock.getTime(); }

 public void setFrequency(double f) { itsRadio.setFrequency(f); }
 public void setVolume(double f) { itsRadio.setVolume(f); }

 public void setWakeup(Station station, Date time) { ... }
 }

This matches the behavior of ClockRadio in C++: It combines the behavior of both Clock and
Radio, and an instance of ClockRadio can be used anywhere a Clock or Radio is required.

C SC 397a, Fundamentals of C++ Slide 332
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Java vs. C++

interface Clock {
 void setTime(Time t);
 Time getTime();
 };

class ClockImpl implements Clock {
 public ClockImpl() { }
 public void setTime(Time t) { itsTime = t; }
 public Time getTime() { return itsTime; }
 private Time itsTime;
 };

interface Radio {
 void setFrequency(double f);
 void setVolume(double v);
 };

class RadioImpl implements Radio {
 public RadioImpl() { }
 public void setFrequency(double f) { itsFrequency = f; }
 public void setVolume(double v) { itsVolume = v; }
 private double itsFrequency, itsVolume;
 };

class ClockRadio implements Clock, Radio {
 private ClockImpl itsClock = new ClockImpl();
 private RadioImpl itsRadio = new RadioImpl();

 public void setTime(Time t) { itsClock.setTime(t); }
 public Time getTime() { return itsClock.getTime(); }

 public void setFrequency(double f) { itsRadio.setFrequency(f); }
 public void setVolume(double f) { itsRadio.setVolume(f); }
 public void setWakeup(Station station, Date time) { ... }
}

class ClockRadio: public Clock, public Radio {
 public:

void setWakeup(const Station&,
 const Time&);
};

C SC 397a, Fundamentals of C++ Slide 333
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Ambiguity in multiple inheritance

Multiple inheritance is very expressive but it comes with a cost: there are a number of
potential conflicts and ambiguities that can arise. C++ has mechanisms to resolve those
problems, but they are elaborate.

A simple example of ambiguity is an identically named member function in two base classes:

class Clock {
public:

...
void off();

};

class Radio {
public:

...
void off();

};

We can create a ClockRadio, but a call to ClockRadio::off() is said to be ambiguous:

ClockRadio cr; // OK
cr.off(); // Ambiguous: Clock::off() or Radio::off()?

C SC 397a, Fundamentals of C++ Slide 334
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Ambiguity in multiple inheritance, continued

This ambiguity can be resolved by writing ClockRadio::off().

If the desired behavior of cr.off() is to turn off the Radio but not the Clock, then we'd do
this:

class ClockRadio: public Clock, public Radio {
public:

...
void off() {

Radio::off();
}

};

C SC 397a, Fundamentals of C++ Slide 335
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual base classes

Consider a skeletal set of classes for a windowing system:

class Window {
 public:
 Window(...) { itsWHnd = createWindow(...); }
 void setFgColor(...);
 protected:
 WinHandle itsWHnd;
 };

class GraphicalWindow: public Window { // full graphics
 public:
 GraphicalWindow(...);
 void drawRect(...);
 void drawCurve(...);
 };

class TextWindow: public Window { // like an ASCII terminal
 public:
 TextWindow(...);
 void writeLine(...);
 void gotoRowCol(...);
 };

C SC 397a, Fundamentals of C++ Slide 336
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual base classes, continued

Usage:

GraphicalWindow gw; // opens a window
gw.drawRect(...); // draws a rectangle

TextWindow tw; // opens another window
tw.writeLine(...); // outputs a string as if dumb terminal

C SC 397a, Fundamentals of C++ Slide 337
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual base classes, continued

During development we'd like to see debugging output in the window along with the
graphics. Multiple inheritance seems to offer a simple solution:

class DebugWindow: public GraphicalWindow,
 public TextWindow {

...
};

Usage:

DebugWindow dw;

dw.drawRect(...);
dw.writeLine(...);

Will it work?

C SC 397a, Fundamentals of C++ Slide 338
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual base classes, continued

Here is a representation of the current structure:

The problem is that both GraphicalWindow and TextWindow are Windows. The
constructor for Window calls createWindow(). Constructing the GraphicalWindow
portion of DebugWindow causes one window to be created. A second window results from
constructing the TextWindow portion of DebugWindow.

We'd see graphical drawing in one window and terminal-like output in the other, instead of
seeing both in one window.

C SC 397a, Fundamentals of C++ Slide 339
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Virtual base classes, continued

The problem can be solved using a virtual base class:

class GraphicalWindow: public virtual Window { ... };
class TextWindow: public virtual Window { ... };

class DebugWindow: // Unchanged
public TextWindow, public GraphicalWindow { ... }

The result is that a DebugWindow contains one instance of Window, not two:

Stroustrup describes the effect of a virtual base specification like this: "Every virtual base of
a derived class is represented by the same (shared) object."

C SC 397a, Fundamentals of C++ Slide 340
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Multiple inheritance: Worth the weight?

It is a fact that multiple inheritance is part of C++. It won't be going away.

The basic idea of multiple inheritance—allowing more than one base class—is very simple
and powerful. However, liberal use of multiple inheritance can easily produce a class
structure that is very difficult to understand.

It is not a bad idea for projects to adopt guidelines about how much use may be made of
multiple inheritance. For example, a very conservative rule is to use multiple inheritance to
provide only the functionality of Java interfaces.

C SC 397a, Fundamentals of C++ Slide 341
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exceptions

Basics

Objects as exceptions

Stack unwinding

Exception specifications

Inheritance and exception handling

The auto_ptr class

C SC 397a, Fundamentals of C++ Slide 342
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception handling basics

In general, the C++ exception handling mechanism is very similar to Java.

In Java an exception is thrown with a throw statement:

throw new IllegalArgumentException("positive value required");

Java requires the value thrown be assignable to Throwable.

C++ also uses a throw statement, but a value of any type can be thrown. These are all valid:

throw 1;

throw "x";

throw Rectangle(3,4);

throw std::range_error("index out of bounds"); // From <stdexcept>

C SC 397a, Fundamentals of C++ Slide 343
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception handling basics, continued

C++ has a try statement that is almost identical to Java. Example:

try {
 g();
 }

catch (int i) { cout << "Caught int = " << i << endl; }

catch (double) { cout << "Caught a double" << endl; }

catch (...) { cout << "Caught something" << endl; }

If an int is thrown by g(), the first catch clause is selected. The value thrown is assigned to i,
and it is printed.

If a double is thrown, the second clause is selected. As is the case with parameter lists, an
identifier need not be specified if the value doesn't need to be referenced.

The third catch has an ellipsis (...) for the exception declaration. It is literally three periods.
It catches any value. No identifier can be specified in conjunction with it. If used, it must be
the last catch clause.

C SC 397a, Fundamentals of C++ Slide 344
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception handling basics, continued

Just as in Java, a C++ exception will propagate upwards from an arbitrarily deep sequence of
calls until it is caught or it propagates out of main. By default, if an exception propagates
out of main (i.e., it was never caught), execution is terminated.

C++ has no counterpart for Java's finally clause.

C SC 397a, Fundamentals of C++ Slide 345
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Objects as exceptions

Although C++ allows values of any type to be thrown the common practice is to throw an
instance of a class that specifically represents an exception.

Let's have our List throw an exception when an out-of-bounds subscript is specified:

template <typename T> T List<T>::operator[](int index) const
{
 if (index >= 0 && index < length())
 return itsValues[index];

 ostringstream message;
 message << "index " << index << " out of bounds for List with length of " << length();
 throw range_error(message.str());
}

If an exception thrown but not caught, execution is terminated:

$ a.out
terminate called after throwing an instance of 'std::range_error'
 what(): index 100 out of bounds for List with length of 0
Aborted

C SC 397a, Fundamentals of C++ Slide 346
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Objects as exceptions, continued

Here's how we could catch a range_error:

try {
 List<int> L;
 cout << L[100] << endl;
} catch (range_error& e) {
 cout << "caught exception: " << e.what() << endl;
}

C SC 397a, Fundamentals of C++ Slide 347
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Inheritance and exception handling

Just as in Java, a catch clause can discriminate between base and derived classes:

class OSError {
 public:

OSError(int code);
int getCode();
...
};

class NetworkError: public OSError {
 public:

NetworkError(int code, Interface);
Interface getInterface();
...
};

try {
 ...some code...
}
catch (NetworkError& ne) {
 cout << "Network error; code is "
 << ne.getCode() << ", on interface "
 << ne.getInterface() << endl;
 }

catch (OSError& oserr) {
 cout << "General OS error; code: "
 << oserr.getCode() << endl;
 }

Note that if the OSError catch is first, the NetworkError catch is effectively unreachable.

C SC 397a, Fundamentals of C++ Slide 348
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

C++ Standard Exceptions

The C++ Standard library defines a small inheritance hierarchy of exceptions: (inheritance is
shown via indentation)

exception
logic_error

domain_error
invalid_argument
length_error
out_of_range

runtime_error
overflow_error
range_error
underflow_error

bad_alloc
bad_cast
bad_exception
bad_typeid

ios_base::failure

The exception classes are defined in the <exception> and <stdexcept> headers.

C SC 397a, Fundamentals of C++ Slide 349
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Stack unwinding

Stack unwinding is a key element of the exception handling mechanism in C++. It is an
orderly deactivation of scopes (like function calls) until a suitable exception handler is found.

int main()
{
 try { f(); }
 catch (...) { cout << "caught it!" << endl; }
}
void f()
{
 X x1(1);
 g();
}
void g()
{
 X x2(2);

 throw logic_error("oops"); // from <stdexcept>
}

Why is stack unwinding important?

With instrumented constructors
and destructors, here's the output:

X(1)
X(2)
~X(2)
~X(1)
caught it!

C SC 397a, Fundamentals of C++ Slide 350
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Stack unwinding, continued

Unwinding ensures that each object that was constructed on the stack is destroyed in the
process of handling the exception.

How does stack unwinding compare to setjmp/longjmp in C?

Is stack unwinding important in Java?

C SC 397a, Fundamentals of C++ Slide 351
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception specifications

Java has a notion of checked and unchecked exceptions. If a method invokes a method that
throws a checked exception the invoking method must either enclose the call in a try or
specify the exception in a throws clause.

For example, a method creating a FileReader must do this:

public void f(String fname) { // Java...
 try {
 FileReader r = new FileReader(fname);
 ...
 }
 catch (FileNotFoundException e) { ... }
 }

or this:

public void f(String fname) throws FileNotFoundException {
 FileReader r = new FileReader(fname);
 ...
 }

C SC 397a, Fundamentals of C++ Slide 352
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception specifications, continued

C++ provides exception specifications which, if present, "limit" the exceptions that can be
thrown by a routine.

For example, here is a routine f with an exception specification that indicates that only
exceptions of type X (and subclasses of X) are expected to be thrown:

void f() throw (X)
{
}

Unlike Java, it is not guaranteed to be a compile time error to have code that throws an
unexpected exception. g++ compiles the following code without complaint:

void f() throw(X)
{
 throw Y();
}

If f is called, however, the throw Y(); violates the specification and the global function
unexpected() is called, which terminates execution, by default.

If no exception specification is present, any value can be thrown as an exception.

C SC 397a, Fundamentals of C++ Slide 353
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Exception specifications, continued

An exception specification may name any number of types:

Window::Window() throw (NoDisplay, ServerFault, NoAccess)
{
 ...
}

An empty list indicates that no exceptions may be thrown:

void g() throw()
{
 throw X();
}

As with the earlier example, the violation might not be caught until execution.

C SC 397a, Fundamentals of C++ Slide 354
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

"Exception safe" code

Consider this routine:

void f()
{
 X *xp = new X;
 Y y;

 xp->g();
 ...
 delete xp;
}

It creates an instance of X and an instance of Y, does some processing, and then destroys the
X explicitly. The Y is destroyed implicitly when f() returns and the lifetime of y ends.

If an exception is thrown during X::g(), y will be destroyed when the stack is unwound, but
"delete xp" will not be done.

It can be said that the code above is not "exception safe".

C SC 397a, Fundamentals of C++ Slide 355
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

"Exception safe" code, continued

How about wrapping the processing in a try block?

void f()
{
 X *xp;
 try {
 xp = new X;
 Y y;

 xp->g();
...

 } catch (...) {
 delete xp;
 throw; // rethrows current exception
 }

 delete xp;
}

C SC 397a, Fundamentals of C++ Slide 356
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

auto_ptr

What's really needed is way to indicate that if a pointer goes out scope, the object it
references, if any, is deleted. That's the idea of auto_ptr.

Example:

void f()
{
 auto_ptr<X> xp(new X);
 Y y;

 xp->g();
}

auto_ptr is a template class. xp is an auto_ptr<X> that holds the address of the X created in
the heap. xp resides on the stack just like y.

Because xp is on the stack, ~auto_ptr<X>() is called when xp goes out of scope, either due
to f() returning or an exception being thrown.

The auto_ptr destructor simply deletes the pointer it holds.

Note that both the original f() and the auto_ptr version make the same call: xp->g()

C SC 397a, Fundamentals of C++ Slide 357
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

auto_ptr, continued

At hand:

auto_ptr<X> xp(new X);

xp->g();

An auto_ptr is a "smart pointer". It overloads 'operator->' (a unary postfix operator) so that
an expression like xp-> produces the stored value, of type X*. That value in turn is used to
invoke X::g().

Think of xp->g() as being this:

(xp.operator->()) -> g()

C SC 397a, Fundamentals of C++ Slide 358
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

auto_ptr, continued

A key property of auto_ptr is that, when used as intended, an object is always "owned" by
exactly one auto_ptr. (Why?)

The auto_ptr copy constructor enforces the one owner rule: initializing an auto_ptr<X>
with an auto_ptr<X> transfers ownership from the old one to the new one.

For example, the end result of this code,

auto_ptr<X> xp1(new X);
auto_ptr<X> xp2(xp1);

is that xp2 owns the object created by new X and xp1 can no longer be used—it now holds
the null pointer.

C SC 397a, Fundamentals of C++ Slide 359
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

auto_ptr, continued

Example of copy construction transferring ownership between auto_ptr instances:

X* p = new X;
auto_ptr<X> xp1(p);

cout << SV(p) << SV(xp1.operator->()) << endl << endl;

auto_ptr<X> xp2(xp1);

cout << SV(p) << SV(xp1.operator->()) << endl;
cout << SV(p) << SV(xp2.operator->()) << endl;

Output:

p = 0xa0417e8; xp1.operator->() = 0xa0417e8;

p = 0xa0417e8; xp1.operator->() = 0;
p = 0xa0417e8; xp2.operator->() = 0xa0417e8;

C SC 397a, Fundamentals of C++ Slide 360
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

auto_ptr, continued

Assignment also enforces the one owner rule:

auto_ptr<X> xp1(new X);
auto_ptr<X> xp2(new X);

xp2 = xp1;

When done, xp2 can be used to reference the X and xp1 holds a null pointer. Additionally,
the X originally referenced by xp2 was destroyed.

There is much more to auto_ptr (and the general topic of exception-safe code) than is
discussed here.

C SC 397a, Fundamentals of C++ Slide 361
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Run-Time Type Information

The type_info class

The dynamic_cast operator

Other casting operators

C SC 397a, Fundamentals of C++ Slide 362
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Run-time type information (RTTI)

In Java a wealth of information about class types is available during execution via
Object.getClass(), the reflection mechanism, and constructs such as instanceof.

Type information about C++ objects is available at run-time but it is far more limited than
Java. Additionally, some aspects are implementation dependent.

C SC 397a, Fundamentals of C++ Slide 363
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

RTTI, continued

A simple class hierarchy:

class Cycle { virtual void f() { } }; // 'virtual' probably required...
class Unicycle: public Cycle { };
class Bicycle: public Cycle { };
class TandemBicycle: public Bicycle { };

A simple usage of RTTI:

void DescribeCycle(Cycle *cp)
{

cout << "It is a '" << typeid(*cp).name() << "'" << endl;
}

Usage: (with g++ 4.4.1)

Unicycle u;
TandemBicycle tb;

DescribeCycle(&u); // It is a '8Unicycle'
DescribeCycle(&tb); // It is a '13TandemBicycle'

C SC 397a, Fundamentals of C++ Slide 364
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The type_info class

The typeid function returns a reference to a constant type_info object.

The definition of the type_info class is implementation-dependent but must support
comparisons of type_info instances and be able to produce the name of a type.

An implementation's type_info is defined in the <typeinfo> header. Here is a representative
type_info:

class type_info {
 public:

virtual ~type_info();
int operator==(const type_info&) const;
int operator!=(const type_info&) const;
int before(const type_info&) const;
const char *name() const;

 private:
type_info(const type_info&);
type_info& operator=(const type_info&);

 ...data members not shown...
};

C SC 397a, Fundamentals of C++ Slide 365
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The type_info class, continued

typeid can be applied to non-class types, too:

cout << typeid(char).name() << endl; // Output: c

A few more:

typeid(3.4).name() d
typeid(long).name() l
typeid(long long).name() x
typeid(10U).name() j
typeid(const char*).name() PKc
typeid(fp).name() FPicsifdE (with int *fp(char, short, int, float, double);)
typeid('c' + 4.0).name() d

C SC 397a, Fundamentals of C++ Slide 366
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The type_info class, continued

This routine determines if two Cycles have the same structure by getting a type_info for
each and comparing them:

bool Isomorphic(Cycle& c1, Cycle& c2)
{
 const type_info& t1 = typeid(c1);
 const type_info& t2 = typeid(c2);

 return t1 == t2;
}

Given:

Bicycle b, b2;
Unicycle u;

The expression...

Isomorphic(b, b2) // produces true
Isomorphic(b, u) // produces false
Isomorphic(b, (Bicycle&)u)) // produces false

C SC 397a, Fundamentals of C++ Slide 367
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The dynamic_cast operator

For reference: (Java code)

class Cycle { }
class Unicycle extends Cycle { }
class Bicycle extends Cycle { }

Cycle c = new Cycle();
Cycle u = new Unicycle();
Cycle b = new Bicycle();

Java's instanceof operator is used to test whether a value is "assignment compatible" with a
named type. Examples:

b instanceof Cycle is true
u instanceof Bicycle is false
u instanceof Unicycle is true

The C++ counterpart for instanceof is dynamic_cast<T>.

C SC 397a, Fundamentals of C++ Slide 368
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

The dynamic_cast operator, continued

The dynamic_cast operator tries to convert a pointer of type Base* to a pointer of type
Derived*, producing zero if the pointer does not reference an instance of a class derived from
Base.

A function that uses dynamic_cast to count Bicycles in an array of Cycles:

int CountBikes(Cycle *cycles[])
{

int nbikes = 0;
for (int i = 0; cycles[i] != 0; i++) {

Bicycle *bp = dynamic_cast<Bicycle*>(cycles[i]);
if (bp != 0)

nbikes++;
}

return nbikes;
}

dynamic_cast is said to provide a typesafe downcast.

As a rule of thumb, use of dynamic_cast may indicate that C++ facilities are not being fully
utilized.

C SC 397a, Fundamentals of C++ Slide 369
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Other casting operators

There are three other casting operators that are similar in appearance to dynamic_cast.
They are reinterpret_cast, const_cast, and static_cast.

reinterpret_cast<T>(e) allows any conversion allowed by (T)e. Example:

long v = 100;
char *p = reinterpret_cast<char *>(v);

const_cast<T>(e) removes the const-ness of the expression e. Example:

const *char p = String("xyz");
char *p2 = const_cast<char*>(p);

static_cast<T>(e) is intended as a replacement for (T)e where e is of type S and T can be
converted to S implicitly. Example:

Cycle *cp = get_a_Bicycle();
Bicycle *bp = static_cast<Bicycle*>(cp);

Note that static_cast does not perform a run-time check of the type as dynamic_cast does.

C SC 397a, Fundamentals of C++ Slide 370
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Odds and Ends

Namespaces

Member pointers

Type-safe linkage

Reducing header inclusion

Recommended reading on C++

C SC 397a, Fundamentals of C++ Slide 371
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces

Imagine an architectural design application. The developers choose to using a GUI library
from company A and some room modeling software from company B.

The GUI library has a key abstraction called Window that represents a window on the screen:

class Window { ... };

The room modeling software, a non-graphical set of classes that makes extensive use of
computational geometry, has classes that represent entities found in buildings:

class Room { ... };
class Door { ... };
class Window { ... };

One day somebody does this:

#include "A.h" // Headers for GUI library
#include "B.h" // Headers for room modeling library
...
 Window w;

C SC 397a, Fundamentals of C++ Slide 372
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces, continued

Both companies have certainly made a reasonable choice when naming their Window class.
We could perhaps persuade one to supply a version that uses a different name, like a
A_Window or attempt some magic with the preprocessor, but neither option is a good one.

The C++ namespace facility provides a solution for this problem. C++ namespaces provide
an additional level of encapsulation and qualification for identifiers. They are somewhat like
packages in Java.

// A.h
namespace A {
 class Window { };
 }

// B.h
namespace B {
 class Room { };
 class Door { };
 class Window { };
 }

#include "A.h"
#include "B.h"
int main()
{
 A::Window root;

 B::Window kitchen_sink;
 B::Room kitchen(kitchen_sink);
}

C SC 397a, Fundamentals of C++ Slide 373
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces, continued

Here is some code that will not compile:

#include "A.h"
int f()
{
 Window w; // Error: Window is undefined
}

A using directive tells the compiler to search the cited namespace in order to resolve names
that would otherwise be unresolved.

#include "A.h"

using namespace A;

int f()
{
 Window root;
}

A translation unit may contain any number of using directives, and they may appear
anywhere in the file.

C SC 397a, Fundamentals of C++ Slide 374
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces, continued

All the names in a namespace don't need to be in a single definition. Namespaces accumulate
names and when an identifier is encountered in a translation unit, the then-current
accumulation is used.

For example, the following series of namespace definitions is completely equivalent to the
all-in-one definition of B used earlier.

// Room.h
namespace B {
 class Room { };
 }

// Door.h
namespace B {
 class Door { };
 }

// Window. h
namespace B {
 class Window { };
 }

C SC 397a, Fundamentals of C++ Slide 375
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces, continued

In some cases a using directive pulls in names that aren't needed and that cause other
conflicts. A using declaration is useful in that case.

Example:

using namespace A; // A using directive

void f()
{
 using B::Room; // A using declaration
 using B::Door;

 Window w; // Window::A
 Door d; // B::Door
 Room r; // B::Room
}

Door front_door; // Error: Not found
...

C SC 397a, Fundamentals of C++ Slide 376
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Namespaces, continued

As a whole, the C++ namespace facility is rich, powerful, and complex, but it's not clear that
all developers need a deep understanding of it. Having just one developer with broad
knowledge of namespaces may be sufficient for a project.

Four of the namespace topics not covered here are namespace aliases, nested namespaces,
unnamed namespaces, and Koenig lookup.

C SC 397a, Fundamentals of C++ Slide 377
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member pointers

C++ has the notion of a member pointer that can be used in conjunction with a class instance
to reference a data member or member function.

int X::*PIMX;
char *X::*PCPMX;

PIMX = &X::i;
X anX;

anX.*PIMX = 1; // sets anX.i to 1

PIMX = &X::j;
anX.*PIMX = 2; // sets anX.j to 2

X *xp = &anX;
PCPMX = &X::p1;
xp->*PCPMX = "testing";

The type of PIMX is "pointer to int data member of X". The type of PCPMX is "pointer to
char * data member of X".

A class instance is not needed to assign a value to a member pointer.

struct X {
int i, j;
char *p1, *p2;
};

C SC 397a, Fundamentals of C++ Slide 378
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member pointers, continued

Recall the print() and reset() methods from CounterGroup:

void CounterGroup::print(char *s)
{
 printf("%s", s);
 for (int i = 0; i < itsNumCounters; i++)

 itsCounters[i]->print();
}

void CounterGroup::reset()
{
 for (int i = 0; i < itsNumCounters; i++)

 itsCounters[i]->reset();
}

C SC 397a, Fundamentals of C++ Slide 379
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Member pointers, continued

A better solution using a member pointer to reference a member function of Counter:

void CounterGroup::doAll(void (Counter::*f)()) // Parameter f can reference any member
{ // function of Counter that takes no arguments
 for (int i = 0; i < itsNumCounters; i++) // and returns void.

 (itsCounters[i]->*f)();
}

void CounterGroup::print(char *s)
{
 printf("%s", s);
 doAll(&Counter::print);
}

void CounterGroup::reset()
{
 doAll(&Counter::reset);
}

C SC 397a, Fundamentals of C++ Slide 380
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type-safe linkage

In addition to compile-time checking of type consistency via header file declarations, C++
provides type-safe linkage. Type-safe linkage ensures a match between the declared and
defined signatures of a function.

Example:

a.cc:

int f(char *, int);

main()
{

f("a test", 10);
}

b.cc:

int f(int, char *)
{

...
}

Compiling and then linking these files together will produce an error citing that the function
int f(char*, int) is undefined.

C SC 397a, Fundamentals of C++ Slide 381
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type-safe linkage, continued

The scheme used to provide type-safe linkage using current linker technology is called "name
mangling".

The idea of name mangling is simple: transform the name of a function F into a new name,
F', that encodes the types of the arguments.

Examples, with g++:

int FCN() encodes as _Z3FCNv

int FCN(int, int, char) encodes as _Z3FCNiic

int FCN(String, int*) encodes as _Z3FCN6StringPi

double Circle::getArea() encodes as _ZN6Circle7getAreaEv

String::String(const char *) encodes as _ZN6StringC1EPKc

The c++filt utility can be used to "de-mangle" names:
$ g++ x.cc
$ nm x.o | c++filt

C SC 397a, Fundamentals of C++ Slide 382
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type-safe linkage, continued

C functions can be called directly from C++ code, but an extern declaration is required to
avoid name mangling:

extern "C" {
 void some_C_function(int);
 void another_one(char *, int);
 };

void g()
{
 some_C_function(1);
 another_one("x", 1);
}

C SC 397a, Fundamentals of C++ Slide 383
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type-safe linkage, continued

Wrapping a C++ routine with extern "C" { ... } allows it to be called from C. Example:

// rectlib.cc
extern "C" {
double get_area_of_Rectangle(double w, double h)
{
 Rectangle r(w,h);

 return r.getArea();
}
};

C SC 397a, Fundamentals of C++ Slide 384
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Type-safe linkage, continued

A main program in C:

// rtest.c
#include <stdlib.h>
#include <stdio.h>

extern double get_area_of_Rectangle(double w, double h);

int main(int argc, char **argv)
{
 double w = atof(argv[1]);
 double h = atof(argv[2]);

 double a = get_area_of_Rectangle(w, h);

 printf("Area of %g x %g rectangle is %g\n", w, h, a);
}

Build it:

g++ -c rectlib.cc
gcc rtest.c rectlib.o

C SC 397a, Fundamentals of C++ Slide 385
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Reducing header inclusion

Compiling a typical C++ source file requires the inclusion of thousands of lines of headers.
Unnecessary inclusion of header files, especially in other header files, can greatly increase
compilation time.

The declaration of a class B only needs to see the declaration of a class A if B contains A by
value or if it references a member of A.

This class declaration does not need a full declaration of A in order to be compiled:

class A;
class B {

public:
B(A a);
A f();
void g(A*);
void h(A&);

private:
A* ptrToA;
A& refToA;

};

C SC 397a, Fundamentals of C++ Slide 386
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Reducing header inclusion, continued

Any of these additions to B require a full definition of A:

class B {
...
friend int A::x();
int z() { return ptrToA->x(); }
A itsA;
};

If your compiler supports precompiled headers, take time to learn how they work.

C SC 397a, Fundamentals of C++ Slide 387
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

If we had another month or so...

• The Boost C++ libraries

• Qt, a cross-platform framework for GUI development in C++

• C++/CLI, Microsoft's extensions for managed C++

• Dig around in the C++ source code for Google Chrome

• Test Driven Development in C++

• The upcoming C++0x standard

C SC 397a, Fundamentals of C++ Slide 388
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Recommended Reading on C++

International Standard ISO/IEC 14882, Programming Languages—C++
 Working draft:
 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3090.pdf
 The 2003 version:
 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS/ISO/IEC%2014882-2003

C++ Primer, 4th ed., by Stan Lippman, Josee Lajoie and Barbara E. Moo.

The C++ Programming Language, Special Edition, by Bjarne Stroustrup.

The Design and Evolution of C++, by Bjarne Stroustrup.

The Annotated C++ Reference Manual, 2nd ed., by Bjarne Stroustrup and Margaret A. Ellis.
Also known as the "ARM".

C++ in a Nutshell, by Ray Lischner.

Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd ed., by Scott
Meyers.

More Effective C++: 35 New Ways to Improve Your Programs and Designs, by Scott
Meyers.

C SC 397a, Fundamentals of C++ Slide 389
Copyright 1993-2010 by W. H. Mitchell (whm@cs.arizona.edu)

Recommended Reading on C++, continued

Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library, by
Scott Meyers.

 Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions, by Herb
Sutter.

More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and
Solutions, by Herb Sutter.

Accelerated C++: Practical Programming by Example, by Andrew Koenig

Ruminations on C++: A Decade of Programming Insight and Experience, by Andrew Koenig

The C++ Standard Library, A Tutorial and Reference, by Nicolai M. Josuttis.

The following book is not a general-purpose recommendation but is interesting if you want to
see C++ templates taken quite a bit farther:

Modern C++ Design: Generic Programming and Design Patterns Applied, by Andrei
Alexandrescu.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389

