
C Sc 328, Fundamentals of C++ Slide 1
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Introduction

Background on C++

C++ vs. C

C++ vs. Java

C Sc 328, Fundamentals of C++ Slide 2
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

What is C++?

In fifteen words or less:

A superset of C that supports type extensibility and object-
oriented programming.

Bjarne Stroustrup, the designer of C++, says:

"C++ is a general purpose programming language designed to
make programming more enjoyable for the serious programmer."

"C++ is designed to:
Be a better C
Support data abstraction
Support object-oriented programming"

"As close to C as possible, but no closer."

C Sc 328, Fundamentals of C++ Slide 3
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

What is C++?, continued

C++ is designed to handle large, complex systems.

The primary tools in C++ for coping with complexity are strong
compile-time type checking and encapsulation of data inside objects.

C is a language that's close to the machine. C++ is designed to be
close to the problem to be solved, to allow a direct and concise
solution.

With respect to C, C++ has relatively few new keywords, but has a
great deal of new syntax.

A driving factor in the design of C++ is that you "pay" for only what
you use.

C Sc 328, Fundamentals of C++ Slide 4
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Why choose C++?

C++ provides strong support for object-oriented programming.

Because C++ is roughly a superset of C, it builds on existing C
language skills.

C++ fits well with existing C programming environments,
especially with respect to libraries.

A C++ program can be as fast and memory efficient as an equivalent
program in C.

C++ is a proven language. It has been used successfully for many
large applications.

C++ is well documented. Many good books on C++ have been
published. There's a vast amount of information on the web about
C++.

C Sc 328, Fundamentals of C++ Slide 5
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The C++ time line

May 1979: Bjarne Stroustrup, a researcher at Bell Labs, took a
number of ideas from Simula-67 and produced a dialect of C called "C
with Classes".

August 1983: First C++ implementation in use.

December 1983: Name ''C++'' coined by Rick Mascitti.

February 1985: First external release of C++ (version "e").

October 1985: Version 1.0 of C++ (cfront) released; 1st edition of
Stroustrup's C++ book published.

June 1989: Version 2.0 of cfront released.

1989: ANSI XJ316 formed to begin standardization.

1991: Version 3.0 of C++ released.

1995: Draft ANSI standard completed.

1998: ISO/IEC standard approved (14882:1998). Sometimes called
C++98.

2003: Technical Corrigendum 1 for standard due (14882:2003)

200X: C++0x

C++ evolved informally and pragmatically. The design was driven to
a large extent by user feedback.

C Sc 328, Fundamentals of C++ Slide 6
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The Bad News about C++

C++ is a chameleon of a language. It tries to:

Be fast

Be memory-efficient

Be close to the machine

Be close to the problem to be solved

Support user-defined types

Support object-oriented programming

Support development of very large systems

It succeeds at all of these goals, but at the cost of complexity.

Some say that C++ has a fractal-like quality.

The C++ Standard Library has a very limited scope.

C Sc 328, Fundamentals of C++ Slide 7
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C++ vs. C

C++ is in essence a superset of C.

C++ uses C's:
Data types
Operators
Control structures
Preprocessor
And more...

Most C code will compile as C++.

Almost everything you know about C is directly applicable in C++.

The executable instructions generated for a body of C++ code are
generally as fast and memory-efficient as the same code in C.

Just like C, C++ source files are compiled into object files that are then
linked to produce an executable program.

The name C++ was chosen to signify the evolutionary nature of the
changes from C. C++ was not called "D" because it is an extension of
C and doesn't try to remedy problems in C.

C Sc 328, Fundamentals of C++ Slide 8
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C++ vs. Java

In 1990 Sun Microsystems formed a group called the Green project.
The initial focus was to create a software development environment
for consumer electronics products.

C++ was the initial choice for a language for Green but frustration
with C++ led to a new language, Oak, designed by James Gosling.

Oak is now called Java.

Java borrows heavily from C++ in many ways. Among them:

Class definition syntax
Class/object relationship
Data types
Operators
Control structures
Compile-time type checking philosophy

C Sc 328, Fundamentals of C++ Slide 9
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C++ vs. Java, continued

Here are some things from Java that you'll probably miss in C++:

Speedy compilation

Garbage collection

Vast standard library

Easy to use 3 -party librariesrd

Language support for multi-threading

Reflection capabilities

Security model

.class files

Class loading

C Sc 328, Fundamentals of C++ Slide 10
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C++ vs. Java, continued

Here are some things about C++ that you may like better than Java:

Faster execution (as a rule)

Few compromises on encapsulation and type safety

Classes and functions with parameterized types

Operator overloading for user-defined types

Multiple inheritance

Readily usable with C libraries

The IO Streams facility

A very interesting set of container classes

Everything you "love" from C, including:

Closeness to the hardware

Global functions and variables

Preprocessor

No restrictions on file names and directory structure

C Sc 328, Fundamentals of C++ Slide 11
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Class and Object Basics in C++

Class definition

Working with objects

class vs. struct

this

Source file organization

C Sc 328, Fundamentals of C++ Slide 12
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Class definition in C++

The form of class definitions in C++ is very similar to Java. Here is a
trivial Java class representing a "counter":

public class Counter {
 private int itsCount = 0;
 private String itsName;

 public Counter(String name) { itsName = name; }
 public void bump() { itsCount++; }
 public void print()
 {
 System.out.println(itsName + "'s count is " + itsCount);
 }
}

An equivalent class definition in C++:

class Counter {
 private:
 int itsCount;
 string itsName; // 'string' is from std. library
 public:
 Counter(string name) { itsCount = 0; itsName = name; }
 void bump() { itsCount++; }
 void print() {
 printf("%s's count is %d\n", itsName.c_str(), itsCount);
 }
};

C Sc 328, Fundamentals of C++ Slide 13
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Class definition in C++, continued

For reference:

class Counter {
 private:
 int itsCount;
 string itsName;
 public:
 Counter(string name) { ... }
 void bump() { itsCount++; }
 void print() { ... }
};

Points to note:

itsCount and itsName are called data members.

bump() and print() are called member functions.

A public: or private: access specification applies to all following
members up to the next access specification, if any.

There may be any number of public and private sections, and in
any order. If no specifiers, all members are private.

Unlike Java, there are no class-level modifiers.

C++ places no requirements on source file names.

Note that a class definition must end with a semicolon.

C Sc 328, Fundamentals of C++ Slide 14
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Class definition in C++, continued

Just as in Java, a C++ class definition establishes the rules for creating
and interacting with instances of a class.

Public and private specifications have the same meaning as in Java:

Public members can be accessed by any code.

Private members can only be accessed by code in member
functions of the same class.

Source code that violates the rules established by a class definition
generates a compilation error.

C Sc 328, Fundamentals of C++ Slide 15
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with objects in C++

In Java, objects are created with a new expression and reside in the
heap. Variables of class type hold references to objects.

Counter c1 = new Counter("#1"); // Java

Counter c2;
c2 = new Counter("two");

In C++ an object can be created on the stack, in the heap, or in a global
data area.

Consider the following C++ function:

void f()
{
 int i = 7;
 Counter c1("#1");
 ...
}

When f is called, two variables are created:

A variable named i of type int that is initialized with the value 7.

A variable named c1 of type Counter that is initialized with the
value "#1".

Both i and c1 reside on the stack. After f returns, the memory
provided for both i and c1 is available for reuse.

C Sc 328, Fundamentals of C++ Slide 16
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with objects in C++, continued

For variables of class type, member functions are invoked using the "."
operator:

Counter c1("#1");
Counter c2("two");

c1.print();
c1.bump();
c2.bump();
c2.bump();
c1.print();
c2.print();

Output:

#1's count is 0
#1's count is 1
two's count is 2

Note that c1 and c2 are objects, not references to objects. Their
address and size can be computed:

printf("&c1 = %X, &c2 = %X, sizeof(c1) = %d\n",
 &c1, &c2, sizeof(c1));

Output:

&c1 = 22FEB8, &c2 = 22FE98, sizeof(c1) = 8

C Sc 328, Fundamentals of C++ Slide 17
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with objects in C++, continued

In some cases one must reference an object using a pointer to it rather
than the name of the object.

Imagine a routine that returns a pointer to a Counter:

Counter *findCounter(...);

Given that routine, one might write this:

Counter *cp = findCounter(...);
cp->bump();

Here is a routine that prints each Counter referenced in a zero-
terminated array of Counter pointers:

void printAll(Counter *counters[])
{
 for (int i = 0; counters[i] != 0; i++) {
 Counter *cp = counters[i];
 cp->print();
 }
}

Usage:

Counter a('a'), b('b'), c('c');
Counter *cs[] = { &a, &b, &c, 0 };
printAll(cs);

C Sc 328, Fundamentals of C++ Slide 18
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with objects in C++, continued

Consider this routine:

Counter *makeLoadedCounter(string name, int count)
{
 Counter c(name);
 while (count--)
 c.bump();

 return &c;
}

and an invocation:

Counter *cp = makeLoadedCounter("loaded", 5);
cp->print();

Are there any problems with it?

C Sc 328, Fundamentals of C++ Slide 19
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Sidebar: class vs. struct

The C++ syntax for member function invocation is obviously an
extension of the C syntax for structure references:

struct Point {
 int x, y;
 };

int main()
{
 struct Point pt;
 struct Point *p;

 pt.x = 30;
 pt.y = 40;

 p = &pt;

 printf("x = %d, y = %d\n", p->x, p->y);
}

Note that "class" is "syntactic sugar". The declaration

class X {
 ...declarations...
 };

is exactly equivalent to:

struct X {
 private:
 ...declarations...
 };

C Sc 328, Fundamentals of C++ Slide 20
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The special pointer variable this

Inside every member function C++ makes available a variable named
'this'. It contains the address of the object whose member function is
being invoked. It is very similar to 'this' in Java.

Here is a new version of bump() for Counter:

void bump()
{
 printf("Bumping Counter at %X\n", this);
 itsCount++;
}

Usage:

Counter c("c");

printf("c is at %X\n", &c);
c.bump();

Output:

c is at 22FEB8
Bumping Counter at 22FEB8

C Sc 328, Fundamentals of C++ Slide 21
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

this, continued

For member functions of a class X, the type of 'this' is "X *const".
(The const specification prevents modifications to the value of this.)

If desired, we can reference members using this:

void bump()
{
 printf("Bumping Counter at %X\n", this);
 this->itsCount++;
}

Usage of this in C++ programs is usually for the same reasons as in
Java, such as an object registering itself with an observer, or an object
needing to identify itself in a data structure containing like objects.

C Sc 328, Fundamentals of C++ Slide 22
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Counter in C

To better understand how C++ works, it is useful to consider how a
Counter "class" might be approached in C:

typedef struct {
 char itsName; // 'char' to keep things simple in C
 int itsCount;
 } Counter;

Counter_init(Counter *this, char name)
{
 this->itsCount = 0;
 this->itsName = name;
}

void Counter_bump(Counter *this)
{
 this->itsCount++;
}

void Counter_print(Counter *this)
{
 printf("%c's count is %d\n", this->itsName, this->itsCount);
}

int main()
{
 Counter a;
 Counter_init(&a, 'a');

 Counter_bump(&a);
 Counter_print(&a);
}

The machine code generated by a C++ compiler for Counter is very
similar to the code a C compiler generates for the above.

C Sc 328, Fundamentals of C++ Slide 23
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Source file organization

Member function definitions do not need to appear in the class
definition itself. One alternative is to place them in a separate source
file.

One possible partitioning of code would produce this Counter.h:

#ifndef _Counter_h_
#define _Counter_h_ // Handle multiple inclusion
using namespace std; // Use standard namespace
#include <string> // Standard library string class header
class Counter
{
 private:
 int itsCount;
 string itsName;
 public:
 Counter(string); // Note: no parameter name, only type
 void bump();
 int getCount();
 void print();
};
#endif

Unlike Java but just like C, C++ has a notion of a translation unit. A
translation unit is a source file with #includes expanded and
appropriate processing of directives like #ifdef.

A translation unit must include an appropriate declaration or definition
of identifiers before code references them. For example, Counter.h
needs to be #included in a source file before any members of Counter
are referenced.

C Sc 328, Fundamentals of C++ Slide 24
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Source file organization, continued

The other piece of Counter is Counter.cc: (or .cpp, .cxx, .C, etc.)

#include <cstdio>
#include "Counter.h"

Counter::Counter(string name)
{
 itsCount = 0;
 itsName = name;
}

void Counter::bump() { itsCount++; }

int Counter::getCount() { return itsCount; }

void Counter::print()
{
 printf("%s's count is %d\n", itsName.c_str(), itsCount);
}

The scope resolution operator (::) is used to associate the functions
with the Counter class.

Each function designated as a member of Counter must correspond to
a declaration in Counter.h, which is included.

Member function definitions can be distributed across any number of
source files. A missing definition manifests itself as an unresolved
symbol when linking.

Note that C++ does not require "Counter" to appear in the name of the
files that define the class.

C Sc 328, Fundamentals of C++ Slide 25
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Source file organization, continued

The third piece of the picture is code that makes use of Counter.
Here's a test program, ctest.cc:

#include "Counter.h"

int main()
{
 Counter c1("#1");
 Counter c2("two");

 c1.print();
 c1.bump();
 c2.bump();
 c2.bump();
 c1.print();
 c2.print();
}

An executable is produced by compiling Counter.cc and ctest.cc, and
linking them together. Here's one way:

% g++ ctest.cc Counter.cc

Here's another way:

% g++ -c Counter.cc
% g++ -c ctest.cc
% g++ -o ctest ctest.o Counter.o

The discussion of in-line functions will raise some additional issues
with source organization.

C Sc 328, Fundamentals of C++ Slide 26
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 27
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Common compilation problems

Here are some common errors when coding in C++.

Missing semicolon at end of class declaration:

class X {
 int itsValue;
 }

This might generate an error about "multiple types in one declaration",
or "too many types", "can't define type X here".

If the class declaration is the last thing in a header file, such problems
turn up in the including file or the next included file.

Omission of scope resolution operator:

double getArea() // Should be Rectangle::getArea()
{
 return itsWidth * itsHeight;
}

This might generate an error claiming that itsWidth and itsHeight are
undeclared identifiers.

C Sc 328, Fundamentals of C++ Slide 28
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Common compilation problems, continued

Use of C++ keywords as identifiers:

if (typename == 0)
...

This might generate "parse error before '==' token" or "type expected".

Mismatching declaration of member function:

class X {
...
int print();
};

void X::print() ...

This might generate an error claiming that print is not a member of X.

Missing parentheses in member function invocation:

area = r.getArea;

This might produce an error about "member function must be called or
address taken" or "argument of type 'int (Rectangle::)()' does not
match 'int'.

C Sc 328, Fundamentals of C++ Slide 29
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on Classes and Objects

More on constructors and destructors

Construction and global objects

Interesting uses for destructors

Dynamic memory management

Static members

In-line functions

Default arguments

C Sc 328, Fundamentals of C++ Slide 30
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Constructors

In C++, as in Java, constructors specify what data must be supplied to
create a new instance of a class and how to initialize that new instance.

In Java, the predominant use of constructors is to initialize objects
created with new expressions.

In C++, constructors are used in several contexts. One use of
constructors is to support type extensibility—the ability to define new
types that are as easy to use as built-in types such as int and float.

The compiler "knows" the definition "int i = 7;" indicates that:

(1) Memory to hold an integer should be set aside

(2) The memory should be initialized with the value 7

(3) The memory will be referred to as i

For a definition such as 'Counter c("x")' the compiler knows to set
aside memory to hold a Counter and that it will be referred to as c,
but it doesn't know how to initialize c with the value "x".

The constructor(s) for a class extend the compiler's repertoire by
describing, in terms of C++ code, how to initialize a new instance of a
type.

As in Java, member functions having the same name as the class are
considered to be constructors.

C Sc 328, Fundamentals of C++ Slide 31
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Constructors, continued

Recall the constructor for Counter:

Counter::Counter(string name)
{
 itsCount = 0;
 itsName = name;
}

Just as in Java, constructors can be overloaded. Here's a second
constructor; it provides for an initial count for a Counter:

Counter::Counter(string name, int count)
{

itsCount = count;
itsName = name;

}

With the second constructor in hand, the compiler is able to generate
code for this definition:

Counter a("a",5), b("b",10), c("c");

Will the following line compile?

Counter a("a"), b("b",10), counters[10];

C Sc 328, Fundamentals of C++ Slide 32
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Default constructor

In Java, a default constructor is one that is supplied by the compiler.

In C++ a default constructor is a constructor that requires no
arguments.

Here is a C++ class whose instances can be created with or without an
integer initializer:

class X {
 public:
 X(int); // Note: no parameter name – it's optional
 X();
 };

If an initializing value is specified, X(int) is called:

X a(1);
X pair[2] = { 7, 11 };

If no initializing value is specified, X() is called:

X a;
X xlist[10];

The compiler will generate a default constructor for a class iff no
constructors have been specified for the class. Generated default
constructors are public.

Will the following line of code compile?

X pair[2] = { 7 };

C Sc 328, Fundamentals of C++ Slide 33
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Details on constructors

In C++ as in Java...

Conceptually, every class has a constructor.

Conceptually, a constructor is always called whenever an object
comes into existence. Always.

A constructor can do whatever it wants. It might initialize all,
some or none of the data members. It might call other functions.

Constructors may be private.

A very important difference from Java:

Scalar data members are not zeroed as part of object
creation—the value of uninitialized members is unpredictable.
(Exception: memory for globals is zeroed.)

It is important to note that the definition

X a = 10;

is valid, but is NOT equivalent to

X a(10); // "direct initialization"

The former causes a copy constructor to be invoked. Copy
constructors are discussed later.

C Sc 328, Fundamentals of C++ Slide 34
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Details on constructors, continued

It is possible, and often convenient, to use temporary objects.

Examples:

int day = Date("7/4/04").day_of_week(); // not in std. library...

int span = Range(x, y, 'a').span();

"Temporary objects are destroyed as the last step in evaluating
the full expression that (lexically) contains the point where they were
created."—ISO C++ Standard

C Sc 328, Fundamentals of C++ Slide 35
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Destructors

The counterpart of a constructor is a destructor.

The destructor for a class X is a member function named ~X.

The destructor of a class is automatically called when the lifetime of
an instance is over.

One situation in which objects are destroyed is when a block is exited:
objects with local scope (automatic variables) are destroyed.

Example:

void f()
{
 Point p1(3,4); // (A)

 ... computation ...

 if (...)
 return;

 Point p2(5,6); // (B)

... more computation ...

}

p1 is created when execution reaches (A). p2 is created when/if
execution reaches (B).

p1, and p2 if created, are destroyed when the routine returns.

C Sc 328, Fundamentals of C++ Slide 36
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Destructors, continued

The Java counterpart for a destructor is a finalizer, a method denoted
by its name: finalize(). A finalizer is called when the memory of an
object is about to be reclaimed by the garbage collector.

Java finalizers are often of little practical use because there is no
guarantee that a finalizer will ever be called.

C Sc 328, Fundamentals of C++ Slide 37
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Destructors, continued

"Instrumenting" constructors and destructors with output expressions
can aid understanding:

class X {
public:

X(char tag);
~X();

private:
char itsTag;

};
X::X(char tag) { itsTag = tag; printf("X(%c)\n", itsTag); }

X::~X() { printf("~X(%c)\n", itsTag); }

int main()
{

printf("...1...\n");
X a('a');
printf("...2...\n");
X b('b');
printf("...3...\n");

}

Output:

...1...
X(a)
...2...
X(b)
...3...
~X(b)
~X(a) (Note LIFO ordering...)

C Sc 328, Fundamentals of C++ Slide 38
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Destructors, continued

The relationship between constructors and destructors is not exactly
symmetrical—a constructor initializes an object but a destructor
"salvages" still-useful resources when the object is destroyed.

Here's a start at a very simple string class. The constructor allocates
memory and stores a copy of the string:

class String {
public:

String(char *s);
~String();

private:
char *itsPtr;

};

String::String(char *s)
{

itsPtr = (char*)malloc(strlen(s)+1);
strcpy(itsPtr, s);

}

Usage:

String s("abc");

The destructor needs to free the allocated memory:

String::~String()
{

free(itsPtr);
}

C Sc 328, Fundamentals of C++ Slide 39
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Construction and global objects

Constructors for global (file scope) objects in a file are guaranteed to
be called before any routine in the file. Destructors for global objects
are called when main() returns or when exit() is called.

Example:

X g1("g1");
X g2("g2");

int main()
{

printf("main entered\n");

X a("a");
{

X b("block 1");
{

X b("block 2");
}

}

X b("b");

printf("exiting main\n");
}

X g3("g3");

Output with instrumented constructors and destructors:
X(g1), X(g2), X(g3), main entered, X(a), X(block 1)
X(block 2), ~X(block 2), ~X(block 1), X(b),
exiting main, ~X(b), ~X(a), ~X(g3), ~X(g2), ~X(g1)

C Sc 328, Fundamentals of C++ Slide 40
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Interesting uses for destructors

Problem: Imagining a graphical application, speculate on the purpose
of the object hg in this sketch of code:

void render()
{
 Hourglass hg;

 ...a long and involved computation, but no use of 'hg'...
}

C Sc 328, Fundamentals of C++ Slide 41
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management

In C, responsibility for providing explicit memory management is
placed on the C library, which typically provides the functions malloc,
free, and others.

C++ has language facilities for explicit memory management through
the new and delete operators.

The new operator has several forms. This is the form that is most
similar to Java:

new type (initializing value(s))

Example:

Counter *cp = new Counter("#1"); // C++

Three things happen:

(1) Sufficient memory to hold a Counter is allocated from the
heap.

(2) The constructor Counter(string) is invoked, passing a char*
for "#1". It initializes the data members.

(3) The memory address of the new Counter is the result of the
new expression. The value is assigned to cp.

The analogous Java code is this:

Counter c = new Counter("#1");

C Sc 328, Fundamentals of C++ Slide 42
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

If a class has a default constructor the initializing value(s) may be
omitted:

X *p = new X;

It is possible to create an array of objects:

X *xs = new X[10];

In this case, the end result is that xs will hold the address of an array of
ten initialized Xs.

The type named in a new expression may be a scalar type. This
expression allocates space for an array of 100 characters:

char *str = new char[100];

If desired, space can be allocated for a single scalar value. An
initializer can be specified, too:

int *ip = new int;
double *dp = new double(12.34);

C Sc 328, Fundamentals of C++ Slide 43
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

In general terms, here are the three commonly used forms of the new
operator:

new T
new T (initializers)
new T [number-of-elements]

In all cases the result type of a new expression is T*.

Will the following line compile?

X* p = new X*[10];

C Sc 328, Fundamentals of C++ Slide 44
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

The counterpart of new is delete. Here is one of the two commonly
used forms of the delete operator:

delete pointer-to-object

Example:

Counter *cp = new Counter("#1");

cp->bump();

cp->print();

delete cp;

If the object being deleted is of class type, the first action is to invoke
its destructor. The next step is to deallocate the memory, making it
available for subsequent allocation.

C Sc 328, Fundamentals of C++ Slide 45
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

Here is the other common form of delete:

delete [] pointer-to-array of objects

This form should be used if the pointer references an array:

Counter *counters = new Counter[10];
char *p = new char[100];
...
delete [] counters;
delete [] p;

For an array of objects, such as counters above, the destructor is called
for each of the objects before the memory is released.

The behavior of mixing an array allocation with a non-array delete is
not defined by the standard. One common behavior is that if the array
is of class type, only the first object in the array has its destructor
called.

Question: Why does delete have differing forms for the two cases?

C Sc 328, Fundamentals of C++ Slide 46
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

Problem: Write code that allocates an array of ten pointers to Counter
and then populates the array with the addresses of ten new Counters,
using the default constructor for each.

Problem: Write code that destroys the above-created Counters and
appropriately deallocates memory.

C Sc 328, Fundamentals of C++ Slide 47
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Dynamic memory management, continued

new and delete may make use of malloc() and free() in the C library,
but it is an error to mix and match them, calling free() with a value
produced by new, for example.

It is permitted to call delete with the value zero:

delete 0; // No problem...

The new and delete operators can be overridden both globally and/or
on a class by class basis.

In some cases it is useful to direct new to place an object at a
particular location. The placement syntax accommodates that need, but
is not discussed here.

Last but not least...

The absence of garbage collection in C++ raises the possibility of
the same types of memory management errors that can occur when
working in C.

C Sc 328, Fundamentals of C++ Slide 48
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 49
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Static members

Just as Java, C++ provides a way to associate data and methods with a
class itself rather than each instance of a class.

Here is a C++ class that maintains a count of the number of instances
that exist:

// File: X.h
class X {
 public:
 X() { theInstanceCount++; }
 ~X() { theInstanceCount--; }

 static int getInstances() { return theInstanceCount; }

 private:
 static int theInstanceCount;
 };

Just as in Java, "static" is used to indicate that a data member or
member function is associated with the class rather than an instance.

The scope resolution operator is used to associate a class with a static
member:

int n = X::getInstances();

The Java equivalent:

int n = X.getInstances();

C Sc 328, Fundamentals of C++ Slide 50
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Static members, continued

Example:

#include "X.h"

int main()
{
 printf("[1]: %d Xs exist\n", X::getInstances());

 {
 X a, b, c;

 X *xs = new X[5];

 printf("[2]: %d Xs exist\n", X::getInstances());
 }

 printf("[3]: %d Xs exist\n", X::getInstances());
}

Output:

[1]: 0 Xs exist
[2]: 8 Xs exist
[3]: 5 Xs exist

C Sc 328, Fundamentals of C++ Slide 51
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Static members, continued

The preceding example hides a detail: Compiling and linking the main
program shown produces an error saying that X::theInstanceCount is
an unresolved symbol.

A static data member in C++ requires a definition for the data member
that is external to the class definition.

In this case the solution is a third source file: X.cc.

//----- X.h -----
class X {
 public:
 X() { theInstanceCount++; }
 ~X() { theInstanceCount--; }
 static int getInstances() { return theInstanceCount; }
 private:
 static int theInstanceCount; // declares theInstanceCount
 };

// ----- X.cc -----
int X::theInstanceCount = 0; // defines theInstanceCount

// ----- xtest.cc -----
int main()
{
 int n = X::getInstances();
 ...
}

Note that the definition of theInstanceCount can't include static.

C Sc 328, Fundamentals of C++ Slide 52
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Static members, continued

In Java there is no notion of global functions but an equivalent effect is
provided by static methods such as Math.sqrt().

In C++ most library functions with C equivalents are global. For
example, there is a global sqrt() in <cmath>.

Just as in Java, class libraries often use static members to congregate
data and functions. For example, imagine a Geometry class:

// --- Geometry.h ---
class Geometry {
 public:

static double PI;
static double GoldenRatio;
static double Slope(Point p1, Point p2);
static double SphericalVolume(double radius);
...

 private:
Geometry(); // Can't make a Geometry...
};

// --- Geometry.cc ---
double Geometry::PI = 3.141592653589793;
double Geometry::GoldenRatio = 1.618033988749895;

// ... method bodies ...

Usage:

area = Geometry::PI * radius * radius;
volume = Geometry::SphericalVolume(...);

C Sc 328, Fundamentals of C++ Slide 53
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

In-line functions

For a given function it is possible to indicate that the function's code
should be placed "in-line" rather than be called as a separate routine.

Given this declaration in a header file,

inline int abs(int i)
{

if (i >= 0)
return i;

else
return -i;

}

a use such as

int a = abs(b);

will cause code to be generated that performs the calculation "in-
line"—no function call takes place.

The net result is as if this,

int a = (b >= 0) ? b : -b;

had been written instead.

In C++, in-lining is preferred over a preprocessor macro because inline
functions have full function call semantics.

C Sc 328, Fundamentals of C++ Slide 54
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

In-line functions, continued

Specifying a method body in a class definition implicitly indicates that
the method is to be in-lined.

// Rectangle.h
class Rectangle {
 public:
 Rectangle(double width, double height);
 ...
 double getArea() {
 return itsWidth * itsHeight;
 }
 private:
 double itsWidth, itsHeight;
 };

getArea is implicitly declared as inline because its method body
appears in the class definition.

Given Rectangle r(3,4), the statement

int a = r.getArea();

results in code generated as if this had been written instead:

int a = r.itsWidth * r.itsHeight;

C Sc 328, Fundamentals of C++ Slide 55
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

In-line functions, continued

The inline keyword can be applied to member functions defined
outside the class declaration:

// Rectangle.h
class Rectangle {
 public:
 Rectangle(double width, double height);
 ...
 double getArea();
 private:
 double itsWidth, itsHeight;
 };

inline double Rectangle::getArea()
{
 return itsWidth * itsHeight;
}

The result is completely equivalent to placing the function body in the
class definition. This form is sometimes used to make a class
definition easier to read.

Questions:

What happens if "inline" on the getArea() definition is omitted?

What happens if "Rectangle::" is omitted?

What happens if the above definition of getArea() is placed in
Rectangle.cc instead of Rectangle.h?

C Sc 328, Fundamentals of C++ Slide 56
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

In-line functions, continued

The benefit of in-lining:

In-line methods provide access that is just as fast as directly
referencing the members, but without loss of encapsulation.

Some things to note about in-lining:

Can lead to "code bloat"
Creates additional dependency on header files
Can complicate debugging
A request to in-line a routine might not be honored

Rule of thumb:
Keep inline functions trivial (e.g., "setters" and "getters") until
performance requirements dictate a change.

C Sc 328, Fundamentals of C++ Slide 57
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Default arguments

Default arguments can provide a concise alternative to overloading.

Recall the example with two constructors for Counter:

class Counter
{
 Counter(string nm) { itsName = nm; itsCount = 0; }
 Counter(string nm, int ct) { itsName = nm; itsCount = ct; }
 ...
};

Here's an alternative that uses a default argument:

Counter(string name, int count = 0)
{
 itsCount = count;
 itsName = name;
}

A declaration like this:

Counter c("loops");

is treated as if it were this:

Counter c("loops", 0);

C Sc 328, Fundamentals of C++ Slide 58
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Default arguments, continued

A further step is to supply a default for the name:

Counter(string nm = "<unknown>", int ct = 0)
{
 itsCount = ct;
 itsName = nm;
}

This single constructor allows a Counter to be created in three
different ways:

Counter a, b("b"), c("c", 7);

Default arguments in C++ are often used in situations where Java
constructors call "this(...)". For comparison, here's how the same
problem might be approached in Java:

class Counter {
 public Counter() { this ("<unknown>", 0); }
 public Counter(String nm) { this (nm, 0); }
 public Counter(String nm, int ct)

{ itsName = nm; itsCount = ct; }
 ...
 }

There is no C++ equivalent to calling this(...) in Java.

C Sc 328, Fundamentals of C++ Slide 59
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Default arguments, continued

Default arguments are not limited to constructors—they can be used in
any function. Another example:

string TrimChars(string s, char what = ' ');

String s = "aaabbb ";
s = TrimChars(s); // now "aaabbb"
s = TrimChars(s, 'b'); // now "aaa"

A default value specification for an argument can appear only once in
a translation unit. The usual practice is to specify default arguments
in a header file:

// --- strutils.h ---
string TrimChars(string s, char what = ' ');

// --- strutils.cc ---
string TrimChars(string s, char what)
{

...processing...
}

The body of a function having default arguments often has no evidence of
defaults being present.

Although literal values are most commonly specified for defaults, an
arbitrary expression can be used. (Several rules apply, however.)

C Sc 328, Fundamentals of C++ Slide 60
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 61
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Miscellany

References

The const qualifier

NULL vs. 0

bool

The friend specifier

Copy constructors

C Sc 328, Fundamentals of C++ Slide 62
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

References

The declaration int x; creates an integer object with the name x.

C++ provides a way to create a reference to an object, which is an
alternative name, or alias, for the object.

Example:

int x = 1;

int& xref = x;

xref = 2;

printf("x = %d, xref = %d, &x = %X, &xref = %X\n",
 x, xref, &x, &xref);

Output:

x = 2, xref = 2, &x = EFFFFBE4, &xref = EFFFFBE4

References must always be initialized:

int& intref; // Invalid -- no initialization!

C Sc 328, Fundamentals of C++ Slide 63
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

References, continued

A reference may name an object with no prior name:

Rectangle *rp;

rp = FindRectangle();

Rectangle& r = *rp;

double a = r.getArea();

References cannot be changed. (And even if they could be changed,
special syntax would be needed—think about it!)

C Sc 328, Fundamentals of C++ Slide 64
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

References, continued

Consider a C routine to swap the value of two ints:

void swap(int *ap, int *bp)
{

int tmp = *ap;
*ap = *bp;
*bp = tmp;

}

Its usage:

int i = 5, j = 10;
swap(&i, &j); // sets i to 10, j to 5

int v[2] = { 3, 4 };
swap(&v[0], &v[1]);

Using references, swap can be implemented like this:

void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

Its usage:

swap(i, j);
swap(v[0], v[1]);

The code generated for reference parameters is essentially the same as
parameters that are pointers.

C Sc 328, Fundamentals of C++ Slide 65
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

References, continued

The most common use of references in C++ is to reference instances of
classes:

double maxArea(Rectangle& a, Rectangle& b)
{

if (a.getArea() >= b.getArea())
return a.getArea();

else
return b.getArea();

}

Usage:

Rectangle a(3,4), b(5,6);

int max = maxArea(a, b);

Same routine, but with pointers:

int maxArea(Rectangle* ap, Rectangle* bp)
{

if (ap->getArea() >= bp->getArea())
return ap->getArea();

else
return bp->getArea();

}

Usage:

Rectangle a(3,4), b(5,6);
int max = maxArea(&a, &b);

C Sc 328, Fundamentals of C++ Slide 66
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

References, continued

Note that the potential of references means that you can't tell whether a
function call might modify a scalar parameter.

Consider this call:

int n = f(i);

Does f() change i?

Although references are used in a variety of ways in C++, the language
feature that "closed the deal" to include references is operator
overloading.

C Sc 328, Fundamentals of C++ Slide 67
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The const qualifier

const is a declaration of invariability.

const can be applied to simple variables:

const int couple = 2; // integer constant

couple = 3; // compilation error — couple can't be modified

The Java counterpart for const is final:

final int couple = 2;

const can be applied to the object referenced by a pointer:

const char *p;
 // p points to characters that are not to be modified

p = "abc"; // OK — modifies p
*p = '?'; // compilation error — uses p to change

// a character

const can be applied to a pointer:

char buf[] = "Testing";
char *const q = &buf[2];
 // q can't be changed; what q points to can

*q = 'x'; // OK — changes the 's' to an 'x'
q++; // compilation error — would change q

C Sc 328, Fundamentals of C++ Slide 68
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The const qualifier, continued

const can be applied to both a pointer and what it references:

const char *const r = "abcd";
 // constant pointer to constant characters

Recall that in a member function for a class X the variable this has the
type "X *const", i.e.:

X *const this;

A const static member may include an initialization. Example:

class Geometry {
 public:
 const static double PI = 3.141592653589793;
 const static double GoldenRatio = 1.618033988749895;
 static double Slope(Point p1, Point p2);
 static double SphericalVolume(double radius);
 //...
 private:
 Geometry();
 };

C Sc 328, Fundamentals of C++ Slide 69
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The const qualifier, continued

const can be applied to member functions. Imagine a class that
represents a list of integers:

class IntList {
 public:
 IntList();
 void addValue(int value);
 int getLength() const;
 ...
 };

The const specification for the getLength() member function
specifies that getLength will change no data members.

Having no const specification, addValue() is free to change data
members.

const can be applied to parameters to indicate that the parameter
should not be modified:

void f(const IntList& ilist)
{
 int len = ilist.getLength(); // OK

 ilist.addValue(7); // compilation error — ilist is const
}

Note that inside a const method for class X, this is treated as

const X *const this;

What benefit is provided by const member functions?

C Sc 328, Fundamentals of C++ Slide 70
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The const qualifier, continued

Here's some code from a Java class:

//
// isDrainable determines whether water will fully drain from gs.
// NOTE: The GutterSystem is not modified!
//
boolean isDrainable(GutterSystem gs) { ...lots of code... }

Does isDrainable() cause any changes in the state of a GutterSystem?

Here's the signature of an equivalent method in C++:

//
// isDrainable determines whether water will fully drain from gs.
//
bool isDrainable(const GutterSystem& gs);

Does isDrainable() cause any changes in the state of a GutterSystem?

The combination of const member functions and const reference
parameters provides two benefits:

The developer of a routine can be sure that the code is not
inadvertently modifying a parameter that should not be changed.

The user of a routine can be sure that it won't modify a parameter.

C Sc 328, Fundamentals of C++ Slide 71
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The const qualifier, continued

Problem: Appropriately apply const to this Rectangle class:

//
// Rectangle.h
//
class Rectangle {
 public:
 Rectangle(double width, double height);
 double getArea();
 double getPerimeter();
 double getWidth();
 double getHeight();
 void print();
 private:
 double itsWidth, itsHeight;
 };

//
// Rectangle.cc
//
double Rectangle::getWidth()
{
 return itsWidth;
}
double Rectangle::getArea()
{
 return itsWidth * itsHeight;
}
...and more...

C Sc 328, Fundamentals of C++ Slide 72
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Logical vs. physical const-ness

Consider this simple class and a function that uses it:

class X {
 public:
 X(int val) { itsValue = val; }
 int getValue() const { return itsValue; }
 private:
 int itsValue;
 };

int f(const X& x)
{
 int v = x.getValue();
 ...
}

Consider X augmented with an access count:

class X {
 public:
 X(int val) { itsValue = val; itsAccCnt = 0; }

 int getValue() const {
 itsAccCnt++;
 return itsValue;
 }
 private:
 int itsValue;
 int itsAccCnt;
 };

Does X still compile? If not, how can we fix it?

C Sc 328, Fundamentals of C++ Slide 73
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Logical vs. physical const-ness, continued

At hand:

int getValue() const {
 itsAccCnt++;
 return itsValue;
 }

The problem with getValue() is that it maintains logical constancy but
not physical constancy.

The mutable type specifier designates that a data member is allowed
to be changed in a const method.

Here's a solution for the getValue() problem:

class X {
 ...
 private:
 int itsValue;
 mutable int itsAccCnt;
 };

As a rule, mutable data members are used to hold data that has no
direct external manifestation but that aids with things such as
performance monitoring and caching.

C Sc 328, Fundamentals of C++ Slide 74
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

NULL vs. 0

In C, NULL is a macro that expands to an implementation-defined null
pointer constant, commonly ((void*)0), but is not guaranteed that
NULL is numerically a zero.

In C, the recommended practice is to use NULL to represent a null
pointer:

Node *next = NULL;

(C code that doesn't use NULL to represent a null pointer is
considered to be non-portable.)

For C++, it is explicitly stated that the literal 0 (zero) can be used as a
null pointer constant, as well as being an int literal.

A common practice in C++ is to use 0 to represent a null pointer, but
NULL is OK, too:

Node *next = 0; // Very common
Node *last = NULL; // Also common (but be consistent!)

Visual C++ .NET defines NULL as 0.

g++ defines NULL as _ _null, a zero value but with pointer type, which
causes a statement like this,

int i = NULL;

To generate a warning:

initialization to non-pointer type `int' from NULL

C Sc 328, Fundamentals of C++ Slide 75
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The bool type

The bool type in C++ is used to represent Boolean values.

There are two bool literals: true and false

In C, operators such as <, ==, &&, and ! yield an int result that is 0 or 1.

In C++ those same operators yield a bool result that is either true or
false.

Any arithmetic (numeric) or pointer value can be implicitly converted
to a bool value. A zero numeric value or a null pointer is converted to
false. All other values are converted to true.

A bool value can be converted to an arithmetic type, producing either 0
or 1.

Problem: What is the value of j after the execution of this code?

int n = 10, m = 20;
bool a = n < m;
bool b = true;
int i = a < b;
bool c = 1.2 || false;
int j = !i + c;

C Sc 328, Fundamentals of C++ Slide 76
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The bool type, continued

The condition expressions for control structures (like if and while) and
the operands of logical operators like == and ! are implicitly converted
to type bool, producing an end result that is the same as C: A non-zero
value indicates true and a zero indicates false.

Two examples:

//
// Print "Hello!" ten times
//
int i = 10;
while (i--) // Java: while (i-- != 0)
 puts("Hello!");

//
// Walk a linked list, printing the value in each node
//
for (node *p = first; p; p = p->next)
 printf("Value: %d\n", p->value);

The boolean and bool types in Java and C++, and their contexts of
usage, are largely identical, essentially differing only by the automatic
conversions in C++, but that difference has great effect.

C Sc 328, Fundamentals of C++ Slide 77
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The friend specifier

C++ has the concept of friends of a class. A friend is a function that is
not a method of the class but is permitted access to the private
members of the class.

Example:

class X {
 public:

X(int val) { itsValue = val; itsAccCnt = 0; }

int getValue() const {
itsAccCnt++;
return itsValue;
}

 private:
int itsValue;
mutable int itsAccCnt;

 friend void Xamine(const X& theX);
};

void Xamine(const X& theX)
{

printf("The X at %x has an access count of %d\n",
&theX, theX.itsAccCnt);

}

Being a friend of X, the function Xamine() can do its job, but there's
no general exposure of the access count.

C Sc 328, Fundamentals of C++ Slide 78
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

friend, continued

A class can name other classes as friends. Specific member functions
of classes may be named as well.

class X {
friend class Y;
friend int Z::q(int);
...
};

The first friend declaration makes all member functions of Y friends of
X. Private data members and member functions of X can be accessed
in any member function of Y.

The second friend declaration makes one member function of class Z a
friend, too.

Some points about friendship in C++:

Friendship is granted, not taken.

A friend of a class should be thought of as part of the abstraction
of that class.

"Without friends you expose too much". — Booch

C Sc 328, Fundamentals of C++ Slide 79
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Copy constructors

In certain situations in C programs, a value is initialized using an
existing value of the same type. One situation is a variable definition
with an initializer:

int i = 3;
int j = i + 10;

Both i and j have no previous value and are initialized with an int
value.

Another situation arises in passing arguments to functions:

int add(int a, int b)
{

return a + b;
}

Given a call such as add(i +2, j), the value of i + 2 is computed and
used to initialize the parameter a. The value of j is used to initialize b.

A class may define a copy constructor, which describes how to
initialize a new instance of the class with an existing instance of that
class.

The copy constructor is another component of C++'s support for type
extensibility.

C Sc 328, Fundamentals of C++ Slide 80
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Copy constructors, continued

Recall the data members of the simple rectangle class:

class Rectangle {
 ...
 private:

double itsWidth, itsHeight;
 };

Imagine a routine that returns the larger of the areas of two rectangles:

double largerArea(Rectangle a, Rectangle b)

It might be used like this:

Rectangle r1(7,8) , r2(5,12);
double largest = largestArea(r1, r2);

The type of the parameters, simply Rectangle, indicate the arguments
are to be passed by value. This is a case where a copy constructor is
used: the parameters are initialized with values of the same type.

C Sc 328, Fundamentals of C++ Slide 81
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Copy constructors, continued

Because Rectangle does not define a copy constructor the compiler
automatically generates one. Generated copy constructors use
memberwise copy and are public.

Here's an approximation of the generated copy constructor:

Rectangle(const Rectangle& r)
{

itsWidth = r.itsWidth;
itsHeight = r.itsHeight;

}

The generated copy constructor works just fine. There's no reason to
write one ourselves, except perhaps for debugging output.

In what situations will a generated copy constructor be inadequate?

C Sc 328, Fundamentals of C++ Slide 82
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 83
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregations of Objects

Aggregation using pointers

Aggregation by value

Member initializers

Aggregation using references

Choosing representation of aggregation

C Sc 328, Fundamentals of C++ Slide 84
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregations of objects

In Java there is only one way to represent an aggregation of objects: an
aggregate holds references to elements.

In Java we might represent 2D points and lines like this:

class Point {
 public Point(int x, int y) { itsX = x; itsY = y; }
 private int itsX, itsY;
 }

class Line {
 public Line(Point A, Point B) { itsA = A; itsB = B; }
 private Point itsA, itsB;
 }

Usage:

Point origin = new Point(0,0);
Point p1 = new Point(3,4);

Line L1 = new Line(origin, p1);

Line L2 = new Line(new Point(7,11), new Point(5,10));

Aggregation is sometimes called the "has-a" relationship. For
example, a line has two points.

C Sc 328, Fundamentals of C++ Slide 85
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation using pointers

In C++ there are three distinct ways to represent aggregation. One
way is to use pointers. Here are Point and Line in C++:

class Point {
 public:
 Point(int x, int y) { itsX = x; itsY = y; }
 private:
 int itsX, itsY;
 };

class Line {
 public:
 Line(Point *p1, Point *p2) { itsP1 = p1; itsP2 = p2; }
 private:
 Point *itsP1, *itsP2;
 };

Usage:

Point origin(0,0);
Point p1(3,4);

Line L1(&origin, &p1);

How does the above code compare to the Java code?

How about the following alternative for L1?

Line *L1 = new Line(&origin, &p1);

C Sc 328, Fundamentals of C++ Slide 86
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation using pointers, continued

Recall the second Line created in Java:

Line L2 = new Line(new Point(7,11), new Point(5,10));

Is the following a suitable C++ analog?

Line L2(new Point(7,11), new Point(5,10));

Are there any problems with the following routine?

Line f()
{
 Point p1(1,1);
 Point p2(2,2);

 Line L(&p1, &p2);

 return L;
}

C Sc 328, Fundamentals of C++ Slide 87
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation by value

Another way to represent aggregation in C++ is to have objects
physically contain other objects. Sometimes this is called composition
or composition by value, or containment by value.

Example:

class Point {
public:

Point(int x, int y) { itsX = x; itsY = y; }
private:

int itsX, itsY;
};

class Line {
public:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }
private:

Point itsP1, itsP2;
};

Point physically contains two ints. Line physically contains two
Points. If sizeof(int) is 4, then sizeof(Point) is 8 and sizeof(Line) is
16.

Usage:

 Point origin(0,0);
 Point p1(3,4);

 Line L1(origin, p1);
 Line L2(Point(7,11), Point(5,10));

C Sc 328, Fundamentals of C++ Slide 88
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation by value, continued

At hand:

class Point {
public:

Point(double x, double y) { itsX = x; itsY = y; }
private:

double itsX, itsY;
};

class Line {
public:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }
private:

Point itsP1, itsP2;
};

Only one problem: It doesn't compile. Here's what g++ says:

agg2.cc: In constructor `Line::Line(Point, Point)':
agg2.cc:10: error: no matching function for call to
`Point::Point()'
agg2.cc:1: error: candidates are: Point::Point(const Point&)
agg2.cc:3: error: Point::Point(double, double)
agg2.cc:10: error: no matching function for call to
`Point::Point()'
agg2.cc:1: error: candidates are: Point::Point(const Point&)
agg2.cc:3: error: Point::Point(double, double)

C Sc 328, Fundamentals of C++ Slide 89
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation by value, continued

If an object contains other objects by value, the contained objects are
constructed first and in the order they appear as data members in the
containing object. Then, the constructor for the containing object is
called. (A postorder tree traversal, in essence.)

class Milk { public: Milk() { puts("Milk"); } };

class Bread { public: Bread() { puts("Bread"); } };

class Yolk { public: Yolk() { puts("Yolk"); } };

class Egg {
 public: Egg() { puts("Egg"); }
 private: Yolk itsYolk;
 };

class CartonOfEggs {
 public: CartonOfEggs() { puts("CartonOfEggs"); }
 private: Egg itsEggs[6];
 };

class Groceries {
 public:

Groceries() { puts("Groceries"); }
 private:

Milk itsMilk;
Bread itsBread[2];
CartonOfEggs itsEggs;
};

int main() { Groceries g; }

Output: (compressed)
Milk, Bread, Bread, Yolk, Egg, Yolk, Egg, Yolk, Egg, Yolk, Egg,
Yolk, Egg, Yolk, Egg, CartonOfEggs, Groceries

C Sc 328, Fundamentals of C++ Slide 90
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Member initializers

The correct way to write the constructor for Line is to use member
initializers.

Instead of this:

Line(Point p1, Point p2) { itsP1 = p1; itsP2 = p2; }

Use this:

Line(Point p1, Point p2) : itsP1(p1), itsP2(p2) { }

Member initializers provide a way to associate initializing values with
members. In this case the copy constructor for Point is used to
initialize itsP1 and itsP2 using the values of p1 and p2.

A rule:

If an instance of class X is a data member then either (1) the data
member must have a member initializer, or (2) X must have a
default constructor.

The constructor for Line has an empty body, but it need not.

The need for member initializers is due to the strong distinction
between initialization and assignment in C++.

C Sc 328, Fundamentals of C++ Slide 91
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Member initializers, continued

 Here is another constructor for Line:

Line(int x1, int y1, int x2, int y2)
 : itsP1(x1, y1), itsP2(x2, y2) { }

This declares that the members itsP1 and itsP2 should be initialized
with the values x1, y1 and x2, y2, respectively.

Member initializers can used with scalar data members, too:

Point(int x, int y) : itsX(x), itsY(y) { }

The expressions used for member initialization may be of arbitrary
complexity.

A member initializer is the only way to initialize a non-static const
data member:

class X {
 public:
 X(int N) { itsN = N; q = new int[N]; } // Compilation error
 X(int N) : itsN(N), q(new int[N]) { } // OK
 private:
 const int itsN;
 int *const q;
 };

C Sc 328, Fundamentals of C++ Slide 92
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation using references

The third way to represent aggregation in C++ is to use references.

Example:

class CounterPair {
 public:
 CounterPair(Counter& c1, Counter& c2)
 : itsA(c1), itsB(c2) { }

 void bump() { itsA.bump(); itsB.bump(); }

 void print(char *label)
 {
 printf("%s", label);
 itsA.print();
 itsB.print();
 }

 private:
 Counter& itsA; // Alternative: Counter &itsA, &itsB;
 Counter& itsB;
 };

Using references to represent aggregation implies that the objects
always exist and don't vary (i.e., are not swapped in and out).

Note that member initializers are required for itsA and itsB.

Internally, a data member of reference type is represented with a
pointer.

C Sc 328, Fundamentals of C++ Slide 93
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Aggregation using references, continued

Usage:

Counter a("a"), b("b");

CounterPair p1(a, b);
p1.bump();
p1.print("p1:\n");

Counter *cp = new Counter("c");

CounterPair p2(b, *cp);
p2.bump();

p2.print("p2:\n");

Output:

p1:
a's count is 1
b's count is 1
p2:
b's count is 2
c's count is 1

C Sc 328, Fundamentals of C++ Slide 94
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Choosing representation of aggregation

C++ provides three ways to represent aggregation:

An object can physically contain other objects
(Aggregation by value)

An object can hold pointers to other objects
(Aggregation with pointers)

An object can hold C++ references to other objects
(Aggregation with references)

A single class might use all three.

Here are some guidelines for selection of a representation:

Objects that have no existence beyond that of the aggregate
suggest aggregation by value.

Aggregation by value creates a header file dependency. For
example, Line.h needs to include Point.h if composition is used
but if not, a forward declaration (class Point;) would suffice.

Independent lifetimes suggests use of pointers or references.

A varying number of contained objects suggests use of pointers.

An object present in more than one aggregation requires
representation using a pointer or a reference.

C Sc 328, Fundamentals of C++ Slide 95
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A choice in aggregation

Problem: Ignoring the lack of a constructor that takes two points,
comment on the merit of this implementation of Line:

class Line {
 public:
 Line(double x1, double y1,
 double x2, double y2)
 : itsP1(new Point(x1, y1)), itsP2(new Point(x2, y2)) { }

 ~Line() { delete itsP1; delete itsP2; }

 private:
 Point *itsP1, *itsP2;
 };

C Sc 328, Fundamentals of C++ Slide 96
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 97
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Type Extensibility and Operator Overloading

Overload resolution

Operator overloading basics

Operators as member functions

Choice in overloading

Overloading assignment

A simple string class

Default arguments

Operator overloading basics

Conversion operators

Review of constructors, destructors, and assignment

C Sc 328, Fundamentals of C++ Slide 98
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution

C++ allows both functions and operators to be overloaded.

A simple example of function overloading:

int max(int a, int b)
{

return (a > b ? a : b);
}

double max(double a, double b)
{

return (a > b ? a : b);
}

Selection between overloaded functions is based on which function
best matches the supplied arguments.

max(1, 2); // calls max(int, int)
max(3.4, 3.5); // calls max(double, double)

In both cases there is an exact match between the supplied arguments
and a version of min.

The process of determining which overloaded function should be
selected is called overload resolution.

C Sc 328, Fundamentals of C++ Slide 99
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution, continued

At hand:

int max(int a, int b);

double max(double a, double b);

Here's a call that doesn't exactly match either function:

max('a', 'b');

C++ will apply conversions to match a call with a function. In this
case the standard conversion of integral promotion is applied to
convert the two char values into two int values, and then match the
max(int, int) form.

Here's a call that is said to be ambiguous; it will not compile:

max(3.4, 4);

One way to produce a match would be to convert 4 to a double.
Another way to produce a match would be to convert 3.4 to an int.
C++ considers those two conversions to be of equivalent merit and will
not choose between them.

We can eliminate the ambiguity with either of two casts:

max(3.4, (double)4); // calls max(double, double)
max((int)3.4, 4); // calls max(int, int)

C Sc 328, Fundamentals of C++ Slide 100
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution, continued

In addition to standard conversions, C++ will also apply one user-
defined conversion to match a call to a function. Construction is one
example of a user-defined conversion.

Consider this class:

class X {
 public:
 X(double);
 };

In addition to telling the compiler what's required to make an X and
how to do it, the class defines this conversion:

If you have a double and need an X, call this constructor.

Here's a function that requires an X as its argument:

void f(X x) { }

All of these calls are valid:

f(1); // Converts int to double, calls f(X(double))
f('a'); // Promotes char to int, converts int to double,

// calls f(X(double))
f(1.2); // Calls f(X(double))

X x1(2.0);
f(x1); // Exact match – no conversion

C Sc 328, Fundamentals of C++ Slide 101
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution, continued

At hand:

class X {
 public:
 X(double);
 };

void f(X x) { }

Let's add another class and also overload f:

class Y {
 public:
 Y(double);
 };

void f(Y y) { }

The call f(1) is now ambiguous. The compiler can't choose between

Convert int to double, call f(X(double))

and

Convert int to double, call f(Y(double))

Is f(1.2) ambiguous?

C Sc 328, Fundamentals of C++ Slide 102
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution, continued

In some cases, treating a constructor as a user-defined conversion
creates headaches.

Adding the explicit specifier to a constructor indicates that only
explicit calls of the constructor are permitted; such a constructor is not
considered to specify a user-defined conversion.

Example:

class X {
 public:
 X(double);
 };

class Y {
 public:
 explicit Y(double);
 };

void f(X x) { }
void f(Y y) { }
void g(Y y) { }

Calls:

f(1); // Unambiguous
f('a'); // Ambiguous or OK?
f(1.2); // Ambiguous or OK?

g(1.0); // Ambiguous or OK?
g(Y(1.0)); // Ambiguous or OK?

C Sc 328, Fundamentals of C++ Slide 103
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overload resolution, continued

C++ will not consider a series of conversions that requires more than
one user-defined conversion.

Two trivial classes and two functions:

class A {
 public:
 A(int);
 };

class B {
 public:
 B(A);
 };

void f(A) { }
void g(B) { }

The two classes define two user-defined conversions:
An A can be made from an int
A B can be made from an A

Which of following calls are valid? Why or why not?

f(1);
f('a');
g(1);
g('a');
g(A(1));
g(A('a'));

C Sc 328, Fundamentals of C++ Slide 104
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operator overloading

It is possible to overload the operators of the C++ language so that
they have meaning for user-defined types.

A type to represent complex numbers:

Complex a(1,0), b(2,-3), p, q;

p = a + b;
q = (a + b) / (-p * 5);

A type to represent character strings:

String first = "John", last = "Smith";

String name = first + " " + last; // produces "John Smith"

Types for times and durations:

Time FirstArrival("12/31/2002 18:00");
Time LastDeparture("1/1/2003 04:27");

Duration PartyLength = LastDeparture - FirstArrival;
// Represents 10 hours, 27 minutes

Operator overloading is another aspect of C++'s support for type
extensibility.

C Sc 328, Fundamentals of C++ Slide 105
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Ground rules for operator overloading

By convention, operators have an expected interpretation, but that is
left to the discretion of the programmer. A class designer homesick
for Icon might do this:

int n = *segmentList; // produces the number of segments

Operator overloading in C++ is not as flexible as in some languages:

No new operators can be defined. For example, you can't define
an operator /\ to represent a logical conjunction, such as P /\ Q.

Operator/operand type combinations that already have a meaning
can't be redefined. For example, the meaning of i + j, where i and
j are ints, can't be changed. ("C++ should be extensible, but not
mutable."—Stroustrup)

The precedence and "arity" of operators cannot be changed. Two
examples:

^ can be overloaded to mean exponentiation but x*y^z would
mean (x*y)^z, not x*(y^z).

A unary | operator can't be defined.

C Sc 328, Fundamentals of C++ Slide 106
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operator overloading basics

Here is an ordinary function that "sums" two Rectangles by adding
their widths and heights:

Rectangle Sum(Rectangle a, Rectangle b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

It might be used like this:

Rectangle x(3, 4);
Rectangle y(5,10);

Rectangle z = Sum(x, y);
z.print('z'); // 'z' labels output

x = Sum(Sum(x,y), z);
x.print('x');

To produce this output:

Rectangle 'z': 8 x 14
Rectangle 'x': 16 x 28

C Sc 328, Fundamentals of C++ Slide 107
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operator overloading basics, continued

If instead of a functional form, an operator form is desired for
producing the sum of two rectangles, we can say:

Rectangle operator+(Rectangle a, Rectangle b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

This declares (to the compiler):

If two Rectangle-valued expressions are the operands of +, call this
routine and for a result, use the value it returns.

Rectangles can now be "added" using operator syntax:

Rectangle x(3,4);
Rectangle y(5,10);

Rectangle z = x + y;

x = x + y + z;

Note that providing an overloaded definition for + does not imply a
definition for +=.

C Sc 328, Fundamentals of C++ Slide 108
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operator overloading basics, continued

For reference:

Rectangle operator+(Rectangle a, Rectangle b) ...

Passing a and b by value is inefficient. It is better to pass const
references. There are no changes aside from the parameter list:

Rectangle operator+(const Rectangle& a, const Rectangle& b)
{

double new_w = a.getWidth() + b.getWidth();
double new_h = a.getHeight() + b.getHeight();

Rectangle newRect(new_w, new_h);

return newRect;
}

C Sc 328, Fundamentals of C++ Slide 109
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More Rectangle operators

// Compare two rectangles
//
bool operator==(const Rectangle& a, const Rectangle& b)
{ return a.getWidth() == b.getWidth()
 && a.getHeight() == b.getHeight(); }

// Scale a rectangle by a factor n:
//
Rectangle operator*(const Rectangle& a, double n)
{ return Rectangle(a.getWidth() * n, a.getHeight() * n); }

// "Rotate" a rectangle 90 degrees
//
Rectangle operator-(const Rectangle& a)
{ return Rectangle(a.getHeight(), a.getWidth()); }

Usage:

Rectangle a(3,4), b(1,2);

Rectangle c = b * 3;
c.print('c');

Rectangle d = -c;
d.print('d');

if (-(Rectangle(2,3) * 3) == d + Rectangle(3,3))
printf("Works!\n");

Output:

Rectangle 'c': 3 x 6
Rectangle 'd': 6 x 3
Works!

C Sc 328, Fundamentals of C++ Slide 110
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operators as member functions

The preceding slides show overloaded operators implemented as free-
standing functions—they are in no way part of the Rectangle class.

Given the preceding definition for operator+, if a and b are
Rectangles, the expression a+b is treated as this:

operator+(a,b)

Alternatively, operators may be defined as member functions. In such
a case, a+b would be treated as this:

a.operator+(b)

C Sc 328, Fundamentals of C++ Slide 111
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operators as member functions

At hand: If operator+ is a member function, then

a+b

is treated as:

a.operator+(b)

Here is operator+ defined as a member function of Rectangle:

class Rectangle {
 public:

Rectangle operator+(const Rectangle& rhs) const {
double new_w = itsWidth + rhs.itsWidth;
double new_h = itsHeight + rhs.itsHeight;

Rectangle newRect = Rectangle(new_w, new_h);
return newRect;
}

 ...
};

A member function for an N-ary operator has N-1 parameters.

Question: This implementation of operator+ uses itsWidth and
itsHeight while the free-standing function uses getWidth() and
getHeight(). Why?

C Sc 328, Fundamentals of C++ Slide 112
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operators as member functions, continued

Here are more Rectangle operators in the form of member functions:

class Rectangle {
 public:

...
Rectangle operator*(double rhs) const;
Rectangle operator-() const;
bool operator==(const Rectangle& rhs) const;
bool operator!=(const Rectangle& rhs) const;
};

Rectangle Rectangle::operator*(double rhs) const
{
 return Rectangle(itsWidth * rhs, itsHeight * rhs);
}

Rectangle Rectangle::operator-() const
{
 return Rectangle(itsHeight, itsWidth);
}

C Sc 328, Fundamentals of C++ Slide 113
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Operators as member functions, continued

For comparison, here are statements in infix form and their
interpretation both with operators as free-standing functions and with
operators as member functions.

Rectangle x = a + b + c;

Rectangle x = operator+(operator+(a, b), c);

Rectangle x = a.operator+(b).operator+(c);

Rectangle e = -d * 3;

Rectangle e = operator*(operator-(d),3);

Rectangle e = d.operator-().operator*(3);

C Sc 328, Fundamentals of C++ Slide 114
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Choice in overloading

A trivial wrapper class for ints:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; }
 private:
 int value;
 };

Addition is overloaded via a free standing function:

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

These statements compile:

Num a(5);
Num b(7);

Num c = a + b;
Num d = c + 2;
Num e = 5 + d;

The first addition is matched directly by operator+.

Why do the second and third additions work?

C Sc 328, Fundamentals of C++ Slide 115
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Choice in overloading, continued

Let's add subtraction via a member function:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; }
 Num operator-(const Num& rhs) const {
 return Num(getValue() - rhs.getValue());
 }
 private:
 int value;
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

It almost works:

Num a(5);
Num b(7);

Num c = a + b;
Num d = c + 2;
Num e = 5 + d;
Num f = a - b;
Num g = f - 2;
Num h = 5 - g; // Error: no match for 'operator-' in '5 - g'

What's the problem?

C Sc 328, Fundamentals of C++ Slide 116
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Choice in overloading, continued

At hand:

class Num {
 public:
 Num operator-(const Num& rhs) const {
 return Num(getValue() - rhs.getValue());
 }

...
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

Usage:

Num e = 5 + d; // OK
Num h = 5 - g; // Error

Addition works because the conversion Num(int) can be applied to 5
and then the call matches operator+(Num, Num).

C++ simply does not consider treating 5-g as Num(5).operator-(g).

As a rule of thumb, overload binary operators with free-standing
functions to avoid asymmetries.

Question: Operators that are member functions can access private data.
How can that same access be provided to operators that are free-
standing functions?

C Sc 328, Fundamentals of C++ Slide 117
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Choice in overloading, continued

At hand:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; }
 ...
 private:
 int value;
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.getValue() + rhs.getValue());
}

The friend specifier can be used to allow a free-standing function
operator+ to access private data:

class Num {
 public:
 Num(int i) : value(i) { }
 int getValue() const { return value; }
 friend Num operator+(const Num&, const Num&);
 private:
 int value;
 };

Num operator+(const Num& lhs, const Num& rhs)
{
 return Num(lhs.value + rhs.value);
}

C Sc 328, Fundamentals of C++ Slide 118
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overloading assignment

By default, if one instance of a class X is assigned to another,
memberwise assignment is performed.

For example, the result of the assignment r2 = r1 in:

Rectangle r1(3,4), r2(1,2);
r2 = r1;

is as if these two statements had been executed:

r2.itsWidth = r1.itsWidth;
r2.itsHeight = r1.itsHeight;

If an object contains others objects, memberwise assignment is
recursively applied. For example, if L1 and L2 are Lines, then L2 =
L1 causes

L2.itsP1 = L1.itsP1;

which in turn causes

L2.itsP1.itsX = L1.itsP1.itsX;
L2.itsP1.itsY = L1.itsP1.itsY;

Resuming at the level of L2 = L1,

L2.itsP2 = L1.itsP2;

in turn causes

L2.itsP2.itsX = L2.itsP2.itsX;
L2.itsP2.itsY = L2.itsP2.itsY;

C Sc 328, Fundamentals of C++ Slide 119
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overloading assignment, continued

Memberwise assignment happens to be satisfactory for Rectangle,
but we can provide an overloaded assignment operator:

void Rectangle::operator=(const Rectangle& rhs)
{

itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;

}

The language definition requires assignment to be implemented as a
member function; it cannot be implemented as a free-standing
function.

C Sc 328, Fundamentals of C++ Slide 120
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overloading assignment, continued

The current state of Rectangle:

class Rectangle {
 public:

Rectangle(double w, double h);

void operator=(const Rectangle& rhs) {
itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;
}

...
 private:

double itsWidth;
double itsHeight;
};

Unfortunately, if r1, r2, and r3 are instances of Rectangle, our
current implementation doesn't allow this:

r1 = r2 = r3;

(With functional syntax:)

r1.operator= (r2.operator= (r3)) ;

Why doesn't it?

C Sc 328, Fundamentals of C++ Slide 121
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overloading assignment, continued

At hand: The statement

r1 = r2 = r3;

does not compile

Solution:

Rectangle& operator=(const Rectangle& rhs)
{

itsWidth = rhs.itsWidth;
itsHeight = rhs.itsHeight;

return *this;
}

The above routine is essentially what's generated if no assignment
operator is specified in the definition of Rectangle.

C Sc 328, Fundamentals of C++ Slide 122
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Overloading assignment, continued

Suppose it is decided that assigning a double value to a Rectangle is
meaningful, and that it means the width and height of the Rectangle
should be set to the given value.

Usage:

Rectangle r(3,4);

r = 10;
r.print('r');

Output:

Rectangle 'r': 10 x 10

Implementation:

Rectangle& Rectangle::operator=(double side)
{

itsWidth = itsHeight = side;

return *this;
}

C Sc 328, Fundamentals of C++ Slide 123
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A simple string class

It is rare to a find a program that doesn't make some use of character
strings.

C has no string data type but it has a very strong convention: Strings
are represented by a null-terminated array of characters.

String handling in C is tedious and error prone, and can lead to
shortcuts such as hoping the result of a concatenation will not overrun
a fixed length buffer.

Many languages have a built-in string data type that allows strings to
be manipulated in a very natural fashion.

Java has a built-in string type but it is no gem: It is immutable and the
only operator available is concatenation.

The C++ language itself has no string data type, but the standard
library includes a string class. It is mutable, and supports a reasonable
set of operators.

string is built using the type extensibility mechanisms of C++.

Building a simple string type from scratch is a good exercise in type
extensibility. Our string type will be called String.

C Sc 328, Fundamentals of C++ Slide 124
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String

String has one data member, a pointer to a null-terminated array of
characters in allocated memory (a C-style string):

class String {
 private:
 char *itsPtr;
 };

What constructors are needed to support the following definitions?

String s1("This is s1")
String s2;
String s3('x');
String names[10];

Does String need a destructor?

C Sc 328, Fundamentals of C++ Slide 125
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

Here are constructors, a destructor, and a "dump" method:

class String {
 public:
 String(const char *s) {
 itsPtr = new char[strlen(s) + 1];
 strcpy(itsPtr, s);
 }

 String() { itsPtr = new char[1]; itsPtr[0] = '\0'; }

 ~String() { delete [] itsPtr; }

 void dump(char *label)
 { printf("%s: '%s' (at %x)\n", label, itsPtr, itsPtr); }

 private:
 char *itsPtr;
 };

Usage:

String s1("This is s1"), s2;

s1.dump("s1");
s2.dump("s2");

Output:

s1: 'This is s1' (at a0416a8)
s2: '' (at a0416b8)

C Sc 328, Fundamentals of C++ Slide 126
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

No assignment operator is defined for String and therefore, assigning
one String to another is done with memberwise assignment.

Unfortunately, the result of memberwise assignment is a shared
pointer:

String s1("This is s1"), s2;

s1.dump("s1");
s2.dump("s2");

s2 = s1; // Result: s2.itsPtr = s1.itsPtr; (bad!!!)
puts("---");

s2.dump("s2 after 's2 = s1'");

Output:

s1 = 'This is s1' (at a0416a8), s2 = '' (at a0416b8)

s2 = 'This is s1' (at a0416a8)

Note that s1 and s2 reference the same piece of memory. A change in
the contents of one will be reflected in the other.

That behavior is not what's typically desired—strings should have
value semantics, like scalar types, not reference semantics.

C Sc 328, Fundamentals of C++ Slide 127
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

Here is a method that simply overwrites a string with a given
character:

void String::overwrite(char c) {
 for (char *p = itsPtr; *p; p++)
 *p = c;
 }

We can use it to demonstrate the inappropriate sharing of data that
results from assignment using the generated assignment operator:

String s1("This is s1"), s2;

s2 = s1;

s2.overwrite('X');

s1.dump("s1 after overwrite");
s2.dump("s2 after overwrite");

Output:

s1 after overwrite: 'XXXXXXXXXX' (at a041b70)
s2 after overwrite: 'XXXXXXXXXX' (at a041b70)

Are there other ill-effects in addition to this unwanted sharing?

C Sc 328, Fundamentals of C++ Slide 128
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

Memberwise assignment is obviously not suitable for String—an
assignment operator must be written. A first cut:

String& String::operator=(const String& rhs)
{

delete [] itsPtr;

itsPtr = new char[strlen(rhs.itsPtr) + 1];
strcpy(itsPtr, rhs.itsPtr);

return *this;
}

Recall that s1 = s2 is equivalent to s1.operator=(s2).

Are the any problems with the following code?

String s("abc");
s = s;

C Sc 328, Fundamentals of C++ Slide 129
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

At hand—self assignment:

String s("abc");
s = s;

Solution:

String& String::operator=(const String& rhs)
{

if (this != &rhs) { // know myself
delete [] itsPtr;

itsPtr = new char[strlen(rhs.itsPtr)+1];
strcpy(itsPtr, rhs.itsPtr);
}

return *this;
}

Thus, self-assignment is a "no-op".

C Sc 328, Fundamentals of C++ Slide 130
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String, continued

Remember that there is a distinction between initialization and
assignment.

This is initialization of two Strings, s1 and s2:

String s1("This is s1");
String s2(s1);

s1 is initialized with the character string "This is s1", of type char *.
The initialization is handled by String(const char *).

In the second case, s2 is initialized with s1. What constructor handles
the initialization?

C Sc 328, Fundamentals of C++ Slide 131
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A copy constructor for String

To initialize an object of type X with another object of type X, C++
uses the copy constructor of X.

If no copy constructor is declared, one is generated by the compiler.
The generated copy constructor for String is equivalent to this:

String(const String& s) : itsPtr(s.itsPtr) { }

The result is two Strings with the same itsPtr value.

This is a suitable copy constructor for String:

String::String(const String& s)
{

itsPtr = new char[strlen(s.itsPtr) + 1];
strcpy(itsPtr, s.itsPtr);

}

Contrast with assignment:

String& String::operator=(const String& rhs)
{

if (this != &rhs) { // know myself
delete [] itsPtr;
itsPtr = new char[strlen(rhs.itsPtr)+1];
strcpy(itsPtr, rhs.itsPtr);
}

return *this;
}

Why doesn't the copy constructor need to free memory, too?

C Sc 328, Fundamentals of C++ Slide 132
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A copy constructor for String, continued

The copy constructor is also used when passing an object to a function
by value, and when returning an object by value.

Example:

String trivial(String a)
{
 String b("xyz");

 return b;
}

void f()
{
 String s1("abc");

 String s2 = trivial(s1);
}

C Sc 328, Fundamentals of C++ Slide 133
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on copy constructors

A copy constructor for a class X usually has this form:

X(const X&)

What's wrong with the following?

class X {
public:

X(X value);
...

};

If it makes no sense to copy an object, or you don't want to worry
about it (yet) for a class, declare a copy constructor and make it
private.

C Sc 328, Fundamentals of C++ Slide 134
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A detail on initialization

A String can be initialized like this:

String s = "testing";

It seems reasonable for that to be equivalent to this,

String s("testing");

but it is not guaranteed.

The first form may generate two constructor calls, equivalent to this:

String T("testing");
String s(T);

The form String s("testing"), with parentheses, is called direct
initialization.

Note that if String(const char*) is made explicit,

explicit String(const char *s) { ... }

then String s = "abc"; won't compile but String s("abc"); will.

Scalars may be initialized using the direct initialization form:

int i(7); // equivalent to int i = 7;
char c('x'); // equivalent to char c = 'x';
int i = int(); // equivalent to i = 0; (what does 'int i();' mean?)

C Sc 328, Fundamentals of C++ Slide 135
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String: concatenation

Consider overloading '+' to allow concatenation of two strings:

String a = "xyz";
String b = "pdq";
String c = a + b; // c is "xyzpdq"

String c = a.operator+(b); // equivalent, as a member function

Implementation:

class String {
 public:

...
String operator+(const String& rhs);

 ...
};

String String::operator+(const String& rhs)
{

int len = strlen(itsPtr) + strlen(rhs.itsPtr);

char *p = new char[len + 1];
strcpy(p, itsPtr);
strcat(p, rhs.itsPtr);

String r(p); // Invokes String(const char *)
delete [] p;
return r;

}

C Sc 328, Fundamentals of C++ Slide 136
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String: subscripting

Consider overloading '[]' to provide array-like access to individual
characters:

String s("aeiou");

char c = s[0]; // c is 'a'

s[2] = 'I'; // changes s to "aeIou"

Another example of usage—print the index, address, and value of each
character in a String:

String s = "smudge";
s.dump("s");

for (int i = 0; i < s.getLength(); i++) {
char *p = &s[i];
printf("s[%d] at %x is '%c'\n",

 i, p, *p);
}

Output:

s: 'smudge' (at a041cf0)
s[0] at a041cf0 is 's'
s[1] at a041cf1 is 'm'
s[2] at a041cf2 is 'u'
s[3] at a041cf3 is 'd'
s[4] at a041cf4 is 'g'
s[5] at a041cf5 is 'e'

C Sc 328, Fundamentals of C++ Slide 137
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

String: subscripting, continued

 Implementation:

char& String::operator[](int pos)
{

assert(pos >= 0 && pos < strlen(itsPtr));

return itsPtr[pos];
}

Note that because a reference is returned it is possible to change
contained characters and/or obtain their address.

It would be trivial to add meaning for negative subscripts.

The assert macro terminates execution if the subscript is out of range.
A better choice would be to throw an exception.

This simple String class provides value semantics, worry-free
concatenation and subscripting, but also provides C-like semantics
with the ability to get the address of an individual character.

C Sc 328, Fundamentals of C++ Slide 138
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Conversion operators

A conversion operator is a specialized member function that defines
how an object can create an instance of another type that is a
representation of itself.

For example, here is a conversion operator for Rectangle:

class Rectangle {
 public:

...
operator double() { return getArea(); }

 private:
...
};

This declares (to the compiler):

If you have a Rectangle and need a double, call this function and
use the value it returns.

Note the general form:

operator type-name() { ... }

Example:

Rectangle r(3,4);
double a = r; // assigns 12 to a

double b = Rectangle(5,6) / 3; // assigns 10 to b

Conversion operators are another type of user-defined conversion.

C Sc 328, Fundamentals of C++ Slide 139
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Conversion operators, continued

Another example:

class String {
public:

String(char *s);
~String() { delete [] itsPtr; }
operator const char *() const { return itsPtr; }
operator char *() const {

char *p = new char[strlen(itsPtr) + 1];
strcpy(p, itsPtr);
return p;
}

private:
char *itsPtr;

};

Usage:

String s("testing");

const char *p1 = s; // refs same data as in s

char *p2 = s; // refs allocated data,
*p2 = 'x'; // must be freed
...
delete [] p2;

A class may have any number of conversion operators.

It is easy to get carried away with conversion operators—use them
with caution.

C Sc 328, Fundamentals of C++ Slide 140
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Review—ctors, dtors, and assignment

Whenever an instance of a class is created, an appropriate constructor
is called. The task of a constructor is to appropriately initialize a block
of memory that is to represent an object.

The implementor of a class defines what constructors do; the compiler
determines when constructors are called; the run-time system
determines where objects reside in memory.

Distinguished types of constructors:

Default constructor: A constructor that requires no parameters.

Used to initialize an object if no initializing values are
supplied.

Examples:

X x1, x2;

X *xp = new X;

X xs[10];

class Y { X itsX; };

If a class has no constructors, a public default constructor is
supplied.

C Sc 328, Fundamentals of C++ Slide 141
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Review—ctors, dtors, and assignment, cont.

Copy constructor:
A constructor of the form X(X&) or X(const X&).

Used to initialize a new instance of a class given an existing
instance.

A copy constructor using memberwise copy is generated if
no copy constructor is specified.

Examples:

X x3 = x2;
X x4(x3);

X *xp = new X(x3);

void f(X a, X b);
f(x3, *xp);

Ordinary constructor:
Neither a default or copy constructor.

Selected based on types of initializing values.

Examples:

X x5(1);
X x6("abc", 'a', 10);

C Sc 328, Fundamentals of C++ Slide 142
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Review—ctors, dtors, and assignment, cont.

Destructors:
A destructor is responsible for salvaging any reusable resources
immediately before an object ceases to exist.

Local variables of class type are destroyed when they go out of
scope. Objects occupying memory allocated from the heap are
destroyed immediately before that memory is freed due to a call
to delete.

Conceptually, every class has a destructor. If a destructor is not
defined by the implementor of a class, one is generated that
essentially does nothing.

A class never has more than one destructor.

Assignment:
The assignment operator is used to change the contents of an
existing object based on a given value.

If a class X has no assignment operator defined that accepts an
object of type X, an assignment operator using memberwise
assignment is generated.

Do not confuse initialization with assignment. Assignment is used
to change the contents of an already existing object.

C Sc 328, Fundamentals of C++ Slide 143
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Review—ctors, dtors, and assignment, cont.

Consider the following class definition and function declarations:

class X {
 public:

X(int);
X(X&);
X& operator=(X& rhs);

 };
void f(X val);
void g(X& val);
void h(X* valp);

What operations would be invoked for each of the following
statements?

X x1(1);

X x2 = x1;

X *xp; xp = new X(x1);

x2 = *xp;

f(x2);

f(*new X(x2));

g(x2);

h(xp);

X x3 = 3;

C Sc 328, Fundamentals of C++ Slide 144
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 145
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

IO Streams

Basics of stream I/O

Inserters for user-defined types

Extractors for user-defined types

C Sc 328, Fundamentals of C++ Slide 146
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

IO Streams

There are some big problems with I/O via printf (et al.) in the C
library:

Not typesafe—prone to mismatch errors
Not extensible—there's no support for user-defined types

As in C, the C++ language itself has no I/O facilities, but the "IO
Streams" library is provided as an alternative to C-style I/O.

The IO Streams library overloads the operators << and >> to have
additional meaning in C++.

But, the entire C "stdio" library is available as well.

The terms "IO Streams", "I/O Streams", "Stream I/O", and just
"Streams" all mean the same thing.

C Sc 328, Fundamentals of C++ Slide 147
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

IO Streams, continued

A sample program:

#include <iostream>
using namespace std;

int main()
{
 cout << "Hello, World!" << endl;

 for (int i = 1; i <= 3; ++i)
 cout << "i = " << i << endl;

 cout << "Length and width? " << flush;

 int length, width;
 cin >> length >> width;

 cout << "The area is " << length * width << endl;
}

The <iostream> header declares cin and cout as an istream and an
ostream, respectively. Initially, cin is associated with standard input
and cout is associated with standard output.

Using << is called insertion. Using >> is called extraction.

Hello, World!
i = 1
i = 2
i = 3
Length and width? 8 13
The area is 104

C Sc 328, Fundamentals of C++ Slide 148
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Manipulators

Manipulators are used to cause various changes in the state of a stream.

Print x, y, and z on three separate lines:

cout << x << endl << y << endl << z << endl;

Prompt for name and don't print a newline:

cout << "Name? " << flush;

Print every tenth value from 0 to 100 in decimal and hexadecimal:

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{
 for (int i = 0; i < 100; i += 10)
 cout << dec << setw(3) << i << " "
 << hex << setw(2) << i << endl;
}

Output:

 0 0
 10 a
 20 14
 30 1e
...

C Sc 328, Fundamentals of C++ Slide 149
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

IO manipulators, continued

Note that with streams, it usually takes more to say something,

for (int i = 0; i < 100; i += 10)
 cout << dec << setw(3) << i << " "
 << hex << setw(2) << i << endl;

than with printf:

for (int i = 0; i < 100; i += 10)
 printf("%3d %2x\n", i, i);

C Sc 328, Fundamentals of C++ Slide 150
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Evaluation of insertion expressions

Consider:

int i = 10; double x = 1.5; Point p(3,4);

cout << "i = " << i << ", x = " << x << ", p = " << p << endl;

Output:

i = 10, x = 1.5, p = (3,4)

Evaluation:

cout << "i = "

Call: ostream& op<<(ostream&, char*)

Side effect: output of "i = "

Return: A reference to cout (just a pointer, internally)

cout << i

Call: ostream& op<<(ostream&, int)

Side effect: output of "10";

Return: A reference to cout

cout << ", x = "

cout << x

Call: ostream& op<<(ostream&, double)

Side effect: output of "1.5"

cout << ", p = "

cout << p

Call: ostream& op<<(ostream&, const Point&)

cout << endl

Calls: ostream& op<< (ostream&, ostream& (f)(ostream&));

Side effect: output of newline; flushes buffer

C Sc 328, Fundamentals of C++ Slide 151
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters for user-defined types

Imagining Line::getSlope(), consider this example:

Point a(1,1), b(4,2);
Line ln(a,b);

cout << "The slope of the line from " << a << " to " << b
 << " is " << ln.getSlope() << "." << endl;

Output:

The slope of the line from (1,1) to (2,4) is 3.

An overloaded definition of << for Point is required:

ostream& operator<< (ostream& o, const Point& p)
{

o << "(" << p.getX() << "," << p.getY() << ")";
return o;

}

C Sc 328, Fundamentals of C++ Slide 152
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters for user-defined types, continued

An inserter for Line that uses the inserter for Point:

ostream& operator<<(ostream& o, const Line& line)
{
 o << "[" << line.getP1() << ", " << line.getP2() << "]";
 return o;
}

Now we can write:

Point a(1,1), b(4,2);
Line L(a,b);

cout << "L = " << L << endl;
cout << Line(Point(0,0), Point(100,50)) << endl;

Output:

L = [(1,1), (4,2)]
[(0,0), (100,50)]

What's the Java counterpart for user-defined stream inserters?

C Sc 328, Fundamentals of C++ Slide 153
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters for user-defined types, continued

The nearest analog in Java for user-defined stream inserters is to
override Object.toString():

class Point {
 ...
 public String toString() {
 return "(" + getX() + "," + getY() + ")";
 }
 }

class Line {
 ...
 public String toString() {
 return "[" + getP1() + ", " + getP2() + "]";
 }
 }

Usage:

Point a = new Point(1,1), b = new Point(4,2);
Line L = new Line(a,b);

System.out.println("L = " + L);
System.out.println(
 new Line(new Point(0,0), new Point(100,50)));

Output:

L = [(1.0,1.0), (4.0,2.0)]
[(0.0,0.0), (100.0,50.0)]

C Sc 328, Fundamentals of C++ Slide 154
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters for user-defined types, continued

Imagine an inserter for our String class:

String a = "purple";
String b = "parsnips";

cout << "a = " << a << ", b = " << b << endl;
cout << "a + b = " << a + " " + b << endl;

Output:

a = purple, b = parsnips
a + b = purple parsnips

Problem: Write it!

C Sc 328, Fundamentals of C++ Slide 155
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Sidebar: A handy macro

This preprocessor macro works with inserters to conveniently produce
labeled output.

#define ShowVal(x) #x " = " << (x) << "; "

Usage:

int i = 7;
double x = 3.4;
Point p(5,10);

cout << ShowVal(i) << ShowVal(x) << ShowVal(p) << endl;

Output:

i = 7; x = 3.4; p = (5,10);

In contrast:

cout << "i = " << i << "; x = " << x << "; p = " << p
 << ";" << endl;

Note that the macro relies on the unary # preprocessor operator and the
fact that adjacent string literals are concatenated.

C Sc 328, Fundamentals of C++ Slide 156
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Extractors for user-defined types

Providing an extractor for Point allows this:

Point p1, p2; // assumes default constructor

cin >> p1 >> p2;

A simple extractor that considers a Point to be two numbers separated
by whitespace:

istream& operator>>(istream& i, Point& p)
{
 double x, y;

 i >> x >> y;

 p = Point(x,y);

 return i;
}

C Sc 328, Fundamentals of C++ Slide 157
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Extractors for user-defined types, continued

A loop to read and write Points:

while (true) {
cout << "Point? " << flush;
Point p;
cin >> p;
if (!cin)
 break;
cout << "p = " << p << endl;
}

Interaction:

Point? 3 4
p = (3,4)
Point? 1.2 3.4
p = (1.2,3.4)
Point? 10

(carriage return)
20
p = (10,20)

Writing an extractor that handles input such as "(2.3 , 4.5)" is more
involved.

Question: What's going on with if (!cin) ... ?

C Sc 328, Fundamentals of C++ Slide 158
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 159
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance

Basics of inheritance in C++

Virtual member functions

Abstract classes and methods

Virtual destructors

Base class initialization

Inserters and inheritance

The protected access specifier

C Sc 328, Fundamentals of C++ Slide 160
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics

In general, inheritance in C++ is very similar to Java.

In Java, inheritance is indicated with the keyword extends:

class Clock { }

class AlarmClock extends Clock { }

In C++, inheritance is indicated by following the class name with a
colon and a superclass specification:

class Clock { };

class AlarmClock : public Clock { };

Unlike Java, C++ supports three forms of inheritance: public, private,
and protected. Public inheritance in C++ is essentially equivalent to
inheritance in Java.

C++ programmers commonly use the term "base class" as a synonym
for "superclass", and "derived class" as a synonym for "subclass".

C Sc 328, Fundamentals of C++ Slide 161
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

A fundamental language design choice in Java is that every class is a
direct or indirect subclass of Object. If a Java class doesn't name a
superclass, Object is assumed. For example, the class declaration

class Clock { }

is equivalent to

class Clock extends Object { }

The result of having Object as a direct or indirect superclass of every
class is of course that every instance of every class can be treated as
an Object.

This allows great generality when coding: A variable of type Object
can refer to an instance of any class; an array of type Object[] can hold
instances of any combination of classes; methods such as toString()
can be invoked on any object, etc.

 Actually, due to multiple inheritance in C++, it is a forest of directed graphs.1

C Sc 328, Fundamentals of C++ Slide 162
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

The language design choice made in C++ is the opposite of Java: there
is no common base class.

In the early days of C++ some class libraries borrowed ideas from
Smalltalk and used a common base class such as Object. Classes such
as String, List, and Date were derived from Object. Working with
those libraries was somewhat similar to working with Java today.

The C++ Standard Library does not introduce a common base class.
By far the most common situation is that a C++ system is composed of
a forest of class trees rather than a single class tree as in Java.1

Having a common base class provides many advantages. Why was
that route was not taken in C++?

C Sc 328, Fundamentals of C++ Slide 163
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

Public inheritance in C++ has the same essential property as
inheritance in Java: A derived class inherits the member functions and
data members of the base class.

Example:

class Clock {
 public:
 Clock();
 void setTime(Time);
 Time getTime();
 private:
 Time itsTime;
 };

class AlarmClock: public Clock {
 public:
 AlarmClock();
 void setAlarmTime(Time);
 void setAlarm(bool);
 private:
 Time itsAlarmTime;
 bool isAlarmSet;
 };

Instances of AlarmClock have three data members: itsTime,
itsAlarmTime, and isAlarmSet.

Along with setAlarmTime() and setAlarm(), an AlarmClock can
respond to setTime() and getTime().

As in Java, derived class member functions do not have access to
private members of a base class.

C Sc 328, Fundamentals of C++ Slide 164
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

We can create instances of derived classes and work with them just
like any other class in C++:

AlarmClock ac;

ac.setTime(Time("now") + Duration("3m"));
ac.setAlarmTime(Time("6:00am"));
ac.setAlarm(true);

AlarmClock *acp = new AlarmClock;
acp->setAlarmTime(Time("now") + Duration("5h"));

AlarmClock alarm_battery[5];

Note that Time and Date are imagined for this example. They are not
in the standard library.

C Sc 328, Fundamentals of C++ Slide 165
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

A very useful rule:

If B and D are classes and B is the base class of D, we may
reference instances of D using a pointer of type B*.

Example:

Clock *cp = new AlarmClock; // Clock is B; AlarmClock is D

cp->setTime(Time("8:00am"));

Keeping in mind that a Java variable of class type in Java is essentially
a pointer, here's the Java version:

Clock c = new AlarmClock();

c.setTime(new Time("8:00am"));

Because the type of cp is Clock*,

cp->setAlarm(true); // Compilation error

won't compile, even though the referenced object really is an
AlarmClock.

If we cast cp, the call is permitted:

((AlarmClock*)cp)->setAlarm(true);

C Sc 328, Fundamentals of C++ Slide 166
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

Reminder:

If B and D are classes and B is the base class of D, we may
reference instances of D using a pointer of type B*.

A similar rule applies to references:

If B and D are classes and B is the base class of D, a B& may
refer to an instance of D.

Example:

AlarmClock ac;

Clock& c = ac;
c.setTime(Time("8:00am"));

Just as with pointers, we can't call an AlarmClock method using c
unless we cast:

c.setAlarm(true); // Compilation error

((AlarmClock&)c).setAlarm(true); // OK

C Sc 328, Fundamentals of C++ Slide 167
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

Because an instance of AlarmClock occupies more memory than an
instance of Clock, it is almost always a Bad Idea to assign an instance
of AlarmClock to an instance of Clock, even though the language
allows it:

Clock c;
AlarmClock ac;

c = ac; // It does compile...

This is called slicing or shearing, because the AlarmClock portion is
lost.

In this case, c is a valid Clock but that's not true in general. For
example, a pointer in the base class portion may refer to a data
member in the derived class portion.

Of course, if we slice and then cast back to the derived class, the best
we can hope for is a program fault sooner, rather than later:

Clock c;
AlarmClock ac;

c = ac;
((AlarmClock*)&c)->setAlarm(true); // Probably clobbers

// something. With luck
// it blows up now.

C Sc 328, Fundamentals of C++ Slide 168
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance basics, continued

In short, if we want to treat an instance of a derived class as an
instance of a base class, we must refer to the instance using a pointer
or a reference.

Consider an array that is to hold an arbitrary mixture of a varying
number of Clocks and AlarmClocks. Additionally, the array may need
to also hold Clock-derived classes that are currently not imagined.

The only choice is an array of Clock pointers:

Clock *clocks[MAXCLOCKS];

Here's a routine that sets a number of clocks to (about) the same time:

void setClocks(Clock *clocks[], const Time& t)
{
 for (int i = 0; clocks[i] != 0; i++) // Assumes 0-terminated
 clocks[i]->setTime(t);
}

Usage:

Clock* clocks[MAXCLOCKS];
clocks[0] = new Clock;
clocks[1] = new AlarmClock;
clocks[2] = new Clock;
clocks[3] = 0;

setClocks(clocks, Time("12:00"));

Problem: Explain why Clock clocks[N], AlarmClock clocks[N], and
Clock& clocks[N] are all unsuitable choices.

C Sc 328, Fundamentals of C++ Slide 169
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual member functions

Consider a Java class hierarchy to represent geometric shapes:

class Shape {
 public double getArea() { return 0; } // Should be abstract...
 }

class Rectangle extends Shape {
 public Rectangle(double w, double h) { itsW = w; itsH = h; }
 public double getArea() { return itsW * itsH; }
 public double itsW, itsH;
}

An attempted analog in C++:

class Shape {
 public:
 double getArea() { return 0; }
 };
class Rectangle: public Shape {
 public:
 Rectangle(double w, double h) : itsW(w), itsH(h) { }
 double getArea() { return itsW * itsH; }
 private: double itsW, itsH;
};

Test code: (it reports area = 0!)

Shape *sp = new Rectangle(3,4);
cout << "area = " << sp->getArea() << endl;

What's wrong?

C Sc 328, Fundamentals of C++ Slide 170
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual member functions, continued

At hand:

class Shape {
 public:
 double getArea() { return 0; }
 };
class Rectangle: public Shape {
 public:
 Rectangle(double w, double h) : itsW(w), itsH(h) { }
 double getArea() { return itsW * itsH; }
 private: double itsW, itsH;
};

By default, C++ does not use virtual dispatch (also called dynamic
binding) for member functions.

In contrast, Java uses virtual dispatch unless a method is declared to be
final. Consider this Java code:

Shape s = new Rectangle(3,4); // Java
double a = s.getArea();

The idea of virtual dispatch is that the exact routine that will be called
by s.getArea() is not known until execution. All that is assumed at
compile time is that s will reference an instance of Shape or a
subclass of Shape.

When the code is executed, the object referred by s is examined to
determine which getArea() should be called. In the case above it is
Rectangle.getArea().

Why does C++ not use virtual dispatch by default?

C Sc 328, Fundamentals of C++ Slide 171
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual member functions, continued

At hand: Why does C++ not use virtual dispatch by default?

If virtual dispatch is used by default, then every instance of every class
(that has any methods) must contain enough information to support
run-time lookup of methods, and that lookup would be done on every
call.

The overhead to support virtual dispatch is actually very
small—typically one more word of memory per object and one pointer
dereference per call, but imposing that default overhead would conflict
with the C++ philosophy of not imposing overhead for features you
don't use.

C Sc 328, Fundamentals of C++ Slide 172
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual member functions, continued

The solution is simple: add the virtual specifier to Shape::getArea():

class Shape {
 public:
 virtual double getArea() { return 0; }
 };
class Rectangle: public Shape {
 ...no changes...
};

The virtual specifier indicates that virtual dispatch is to be used for
calls to that member function.

If a class has any virtual functions then every instance will have the
extra data, typically only a pointer to a virtual table (or vtbl), required
to dynamically bind the call.

Only calls to virtual functions will incur run-time overhead.

C Sc 328, Fundamentals of C++ Slide 173
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual member functions, continued

Summary:

Unless a method is final, Java uses virtual dispatch, deferring until
execution the decision of which routine to invoke.

If a C++ member function is virtual, virtual dispatch is used.

If a member function is not virtual, the routine to call is
determined at compile time, based on the class type of the
expression referencing the method. (static binding)

A boiled-down example of third point:

class B {
 public: void f() { cout << "B::f()" << endl; }
 };

class D: public B {
 public: void f() { cout << "D::f()" << endl; }
 };

Usage:

D d;

B *bp = &d;
bp->f(); // Calls B::f() because bp is B*

D* dp = &d;
dp->f(); // Calls D::f() because dp is D*

C Sc 328, Fundamentals of C++ Slide 174
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Abstract classes and methods

Logically, the getArea() method of Shape should be abstract—we
never intend to create a Shape. Instead we intend to create instances
of derived classes such as Rectangle and Circle.

In Java, the abstract keyword expresses those two points:

abstract class Shape {
 abstract public double getArea();
 }

There is no abstract keyword in C++. Instead:

class Shape {
 public:
 virtual double getArea() = 0;
 };

The '= 0' indicates that getArea() is a pure virtual method—C++ lingo
for an abstract method.

Note that '= 0' has nothing to do with the return type. It is simply the
syntactic mechanism used in C++.

C++ has no class-level specification that a class is abstract. A C++
class is considered abstract iff it defines at least one pure virtual
method, or if it inherits one that has not been overridden.

C Sc 328, Fundamentals of C++ Slide 175
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on Shape et al.

Here is a more complete version of the shape hierarchy:

class Shape {
 public:

Shape() { }
virtual double getArea() const = 0;
virtual double getPerimeter() const = 0;
virtual double getBoundingBoxArea() const = 0;

 };

class Rectangle: public Shape {
 public:

Rectangle(double w, double h) : itsW(w), itsH(h) { }

double getArea() const { return itsW * itsH; }

double getPerimeter() const {
return 2 * (itsW + itsH);
}

double getBoundingBoxArea() const {
return getArea();
}

 private:
double itsW, itsH; // width and height

};

C Sc 328, Fundamentals of C++ Slide 176
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on Shape et al.

class Circle: public Shape {
 public:

Circle(double radius) : itsR(radius) { }

double getArea() const {
return Geometry::PI * itsR * itsR;
}

double getPerimeter() const {
return Geometry::PI * (itsR * 2);
}

double getBoundingBoxArea() const {
return Rectangle(itsR*2, itsR*2).getArea();
}

 private:
double itsR;
};

C Sc 328, Fundamentals of C++ Slide 177
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Constructors and destructors

When an instance of a derived class is constructed, the base class part
is built first and then the derived class.

The order is reversed for destruction.

A simple inheritance hierarchy:

class Base { };

class Derived: public Base { };

class MoreDerived: public Derived { };

Assuming the presence of instrumented constructors and destructors,
here's what we'd see:

Code: { Base b; puts("---"); }
Output: Base(), ---, ~Base()

Code: { Derived d; puts("---"); }
Output: Base(), Derived(), ---, ~Derived(), ~Base()

Code: { MoreDerived m; puts("---"); }
Output: Base(), Derived(), MoreDerived()

~MoreDerived(), ~Derived(), ~Base()

C Sc 328, Fundamentals of C++ Slide 178
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

An ugly detail: virtual destructors

Consider the following code:

Base *b;

b = new Derived;
cout << "deleting..." << endl;
delete b;

The output, assuming instrumented constructors and destructors:

Base()
Derived()
deleting...
~Base()

The destructor for Derived is not called!

The solution:

class Base {
public:

Base() { }
virtual ~Base() { }

};

By default, destructors are not virtual. By making ~Base() virtual,
when an object referenced by a Base* is destroyed, virtual dispatch is
used to call the destructor.

Why not make destructors implicitly virtual?

C Sc 328, Fundamentals of C++ Slide 179
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Base class initialization

Consider a modification to Shape that associates a one-character tag
with each shape:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 virtual double getArea() = 0;
 virtual double getPerimeter() = 0;
 virtual double getBoundingBoxArea() = 0;
 char getTag() { return itsTag; }
 private:
 char itsTag;
 };

Problem: How can the tag be communicated to the base class
constructor via a constructor call such as the following?

Rectangle r(3,4,'r');

In Java, the solution is a call to super:

public Rectangle(double w, double h, char tag) {
 super(tag);
 itsW = w; itsH = h;
 }

C Sc 328, Fundamentals of C++ Slide 180
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Base class initialization, continued

In C++ the member initialization list is used to pass values to a base
class constructor:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 private:
 char itsTag;
 };

class Rectangle: public Shape {
 public:
 Rectangle(double w, double h, char tag)

: Shape(tag), itsW(w), itsH(h) { }
...

 private:
 double itsW, itsH; // width and height
};

C Sc 328, Fundamentals of C++ Slide 181
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters and inheritance

 Consider this inserter for Rectangle,

ostream& operator<<(ostream&, const Rectangle&);

which works fine with this,

Rectangle r(3,4, 'r');

cout << "r = " << r << endl;

but not with this:

Shape& s = r;

cout << "s = " << s << endl;

Shape *sp = &r;
cout << "*sp = " << *sp << endl;

Compilation errors are produced:

ShapeIOErr.cpp:11: error: no match for 'operator<<' in '

 std::operator<<(std::basic_ostream<char, _Traits>&, const char*) [with

 _Traits = std::char_traits<char>]((&std::cout), "s = ") << s'

/usr/include/c++/3.3.1/bits/ostream.tcc:63: error: candidates are:

[...about 100 more lines of output...]

ShapeIOErr.cpp:14: error: no match for 'operator<<' in '

 std::operator<<(std::basic_ostream<char, _Traits>&, const char*) [with

 _Traits = std::char_traits<char>]((&std::cout), "*sp = ") << *sp'

/usr/include/c++/3.3.1/bits/ostream.tcc:63: error: candidates are:

[...about 100 more lines of output...]

C Sc 328, Fundamentals of C++ Slide 182
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters and inheritance, continued

The problem is that virtual dispatch does not come into play with
overloaded operators. This code:

Shape& s = r;

cout << "s = " << s << endl;

Shape *sp = &r;
cout << "*sp = " << *sp << endl;

needs a Shape inserter.

C Sc 328, Fundamentals of C++ Slide 183
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inserters and inheritance, continued

Solution: Provide a pure virtual method print(ostream&) in Shape and
override it in derived classes. Call print(...) in an inserter for Shape.

class Shape {
 public:
 ...
 virtual void print(ostream&) const = 0;
 };

void Rectangle::print(ostream& o) const {
 o << "Rectangle(" << getTag() << "), "
 << itsW << "x" << itsH << ", area = " << getArea();
 }

void Circle::print(ostream& o) const {
 o << "Circle(" << getTag() << "), r = " << itsR << ", area = "
 << getArea();
 }

ostream& operator<<(ostream& o, const Shape& s)
{
 s.print(o);
 return o;
}

What will the inserters for Rectangle and Circle look like?

C Sc 328, Fundamentals of C++ Slide 184
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Complete source for Shape hierarchy

#include <iostream>

using namespace std;

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 virtual double getArea() const = 0;
 virtual double getPerimeter() const = 0;
 virtual double getBoundingBoxArea() const = 0;
 char getTag() const { return itsTag; }
 virtual void print(ostream&) const = 0;
 private:
 char itsTag;
 };

ostream& operator<<(ostream& o, const Shape& s)
{
 s.print(o);
 return o;
}

C Sc 328, Fundamentals of C++ Slide 185
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Complete source for Shape hierarchy, continued

class Rectangle: public Shape {
 public:
 Rectangle(double w, double h, char tag)
 : Shape(tag), itsW(w), itsH(h) { }

 double getArea() const { return itsW * itsH; }

 double getPerimeter() const {
 return 2 * (itsW + itsH);
 }

 double getBoundingBoxArea() const {
 return getArea();
 }

 void print(ostream& o) const {
 o << "Rectangle(" << getTag() << "), "
 << itsW << "x" << itsH << ", area = " << getArea();
 }

 private:
 double itsW, itsH;
};

C Sc 328, Fundamentals of C++ Slide 186
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Complete source for Shape hierarchy, continued

class Circle: public Shape {
 public:
 Circle(double radius, char tag) : Shape(tag), itsR(radius) { }

 double getArea() const {
 return Geometry::PI * itsR * itsR;
 }

 double getPerimeter() const {
 return Geometry::PI * (itsR * 2);
 }

 double getBoundingBoxArea() const {
 return
 Rectangle(itsR*2, itsR*2, 't').getArea();
 }

 void print(ostream& o) const {
 o << "Circle(" << getTag()
 << "), r = " << itsR << ", area = " << getArea();
 }

 private:
 double itsR;
 };

C Sc 328, Fundamentals of C++ Slide 187
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with Shapes

//
// Calculate the sum of the areas of a list of Shapes.
//
double SumOfAreas(Shape *shapes[])
{
 double area = 0.0;

 for (int i = 0; shapes[i] != 0; i++) {
 Shape *sp = shapes[i];
 area += sp->getArea();
 }

 return area;
}

//
// Find the shape with the largest area in a list of Shapes.
//
Shape* Biggest(Shape *shapes[])
{
 Shape *bigp = shapes[0];

 for (int i = 0; shapes[i] != 0; i++) {
 Shape *sp = shapes[i];
 if (sp->getArea() > bigp->getArea())
 bigp = shapes[i];
 }
 return bigp;
}

Note that we don't need to modify, or even recompile SumOfAreas
and Biggest to handle future subclasses of Shape. (Just like Java.)

C Sc 328, Fundamentals of C++ Slide 188
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Working with Shapes, continued

int main()
{
 Rectangle a(1,1,'a'), b(3,4,'b'), c(5,10,'c');
 Circle d(1,'d'), e(2,'e'), f(3,'f');

 Shape *shapes[] = { &a, &b, &c, &d, &e, &f, 0};

 cout << "Shapes:" << endl;

 for (Shape **sp = shapes; *sp; sp++) {
 cout << **sp << endl;
 }
 cout << endl;

 cout << "Total area: " << SumOfAreas(shapes) << endl;

 Shape *bp = Biggest(shapes);
 cout << "Biggest shape: " << *bp << endl;
}

Output:

Shapes:
Rectangle(a), 1x1, area = 1
Rectangle(b), 3x4, area = 12
Rectangle(c), 5x10, area = 50
Circle(d), r = 1, area = 3.14159
Circle(e), r = 2, area = 12.5664
Circle(f), r = 3, area = 28.2743

Total area: 106.982
Biggest shape: Rectangle(c), 5x10, area = 50

C Sc 328, Fundamentals of C++ Slide 189
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The protected access specifier

C++ has a protected access specifier that has the same meaning as in
Java: only member functions of derived classes may access protected
members.

Recall the "tag" in Shape:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 char getTag() { return itsTag; }
 private:
 char itsTag;
 };

As is, getTag() can be called from anywhere. itsTag can only be
accessed in Shape and not in Rectangle or Circle.

If we desire to expose getTag() only to derived classes, we make it
protected:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 protected:
 char getTag() const { return itsTag; }
 private:
 char itsTag;
 };

C Sc 328, Fundamentals of C++ Slide 190
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The protected access specifier, continued

Alternatively, we can dispense with getTag() and simply allow derived
classes to directly access itsTag:

class Shape {
 public:
 Shape(char tag) : itsTag(tag) { }
 ...
 protected:
 char itsTag;
 };

C Sc 328, Fundamentals of C++ Slide 191
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Invocation of base class methods

The invocation of a virtual method is always resolved to the method in
the most-derived class.

However, it is sometimes useful for a derived class method to invoke
its overridden counterpart in a base class.

class Window {
 public:
 virtual void Draw() {
 cout << "Window::Draw()" << endl;
 }
 };

class ScrollingWindow: public Window {
 public:
 virtual void Draw() {
 Window::Draw();
 cout << "ScrollingWindow::Draw()" << endl;
 }
 };

int main()
{
 Window *w = new ScrollingWindow();
 w->Draw();
}

Output:

Window::Draw()
ScrollingWindow::Draw()

How is this effect achieved in Java?

C Sc 328, Fundamentals of C++ Slide 192
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 193
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Templates

Function templates

A template class: List

Nested class templates

A template class: Table

Inheritance and template classes

C Sc 328, Fundamentals of C++ Slide 194
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function templates

Templates provide a means to parameterize a class or function with a
type.

An example of a template function:

template <typename T>
T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}

The function min can be called for any type T for which
T < T is valid. (i.e. operator<(T, T) is defined.)

Examples:

int i = 5, j = 10;
int minint = min(i, j);

String s1("just"), s2("testing");
String minstr = min(s1, s2);

Point p1(3,4), p2(5,10);
Point minpt = min(p1, p2);

Generics in Java 1.5 and C# (Whidbey), are a similar language facility.

C Sc 328, Fundamentals of C++ Slide 195
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function templates, continued

For reference:

template <typename T> // (old) equivalent: template <class T>
T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}

Code such as

int minint = min(5, 10);

causes template instantiation. The end result of template instantiation
is a specialization—a version of the function with the appropriate
type(s) plugged in.

The above call to min() would produce this specialization:

int min(int a, int b)
{

if (a < b) return a;
else return b;

}

Note that template <typename T> simply indicates that entity that
follows is a templated class or function and that in it, T refers to a
template parameter.

C Sc 328, Fundamentals of C++ Slide 196
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A list class using templates

Entire classes may be parameterized on a type. This is often seen with
container classes, whose primary purpose is to hold instances of
another class and provide access to them.

This program uses a templated class called List to accumulate a
sequence of integers and then print them out:

int main()
{
 List<int> ilist;

 int i;
 while (cin >> i)
 ilist.add(i);

 cout << ilist.length() << " elements in list: ";

 for (i = 0; i < ilist.length(); i++)
 cout << ilist[i] << " "; // What operators are overloaded?

 cout << endl;
}

Interaction:

5 7 7
6 4 3 1
^Z
7 elements in list: 5 7 7 6 4 3 1

Note that List<int> is a type name, just like Point and Rectangle.

What would be necessary to handle Points instead of ints?

C Sc 328, Fundamentals of C++ Slide 197
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A list class, continued

A list of Strings:

List<String> L;

L.add("ab");
L.add(L[0] + "xyz");
L.add(L[1] / 2);

String s = L[0];
L.add(s * 2);

String s2 = L[0] + L[1] + L[L[0].length()];

cout << L << endl;

List<String> a[2];

a[0].add(s2 * (a[1].length()+1));

cout << a[0] << "," << a[1] << endl;

f(L, a[0], a[1]);

Output:

[ab abxyz ab abab]
[ababxyzab],[]

Note that there's no casting whatsoever.

C Sc 328, Fundamentals of C++ Slide 198
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A list class, continued

Implementation of List:

template <typename T> class List {
 public:
 List();
 void add(T);
 T operator[](int) const;
 int length() const { return itsLength; }
 int capacity() const { return CAPACITY; }
 private:
 static const int CAPACITY = 100;
 T itsValues[CAPACITY];
 int itsLength;
 };

template <typename T> List<T>::List() : itsLength(0) { }

template <typename T> void List<T>::add(T newValue)
{
 if (itsLength >= CAPACITY)
 return;

 itsValues[itsLength++] = newValue;
}

template <typename T> T List<T>::operator[](int index) const
{
 return itsValues[index];
}

What are the restrictions on the type held by an instance of List?

Is an assignment operator and/or copy constructor needed?

C Sc 328, Fundamentals of C++ Slide 199
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A more flexible version of List

A class can be templated on the value of a scalar type. In this version
of List, the template instantiation can specify an optional capacity for
the list, which defaults to 20.

template <typename T, int CAPACITY = 20> class List {
 public:

List();
void add(T);
T operator[](int) const;
int length() const { return itsLength; }
int capacity() const { return CAPACITY; }

 private:
T itsValues[CAPACITY];
int itsLength;
};

template <typename T, int CAPACITY>
List<T, CAPACITY>::List() : itsLength(0) { }

template <typename T, int CAPACITY>
void List<T, CAPACITY>::add(T newValue)
{

if (itsLength >= CAPACITY)
return;

itsValues[itsLength++] = newValue;
}

template <typename T, int CAPACITY>
T List<T, CAPACITY>::operator[](int index) const
{ return itsValues[index]; }

Usage:

List<int> L1; // capacity is 20
List<int, 1000> L2; // capacity is 1000

C Sc 328, Fundamentals of C++ Slide 200
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Nested templates

Just as int is a type, so is List<int> and therefore a list of List<int>s
can be created:

List<int> odds;
for (int i = 1; i <= 10; i += 2)

odds.add(i);

List<int> evens;
for (int i = 2; i <= 10; i += 2)

evens.add(i);

cout << "odds: " << odds << endl;
cout << "evens: " << evens << endl;

List< List<int> > both;
both.add(odds);
both.add(evens);

cout << "both: " << both << endl;

Output: (with an upcoming inserter)

odds: [1 3 5 7 9]
evens: [2 4 6 8 10]
both: [[1 3 5 7 9] [2 4 6 8 10]]

Note that the above code shows a workaround for lexical bug in C++.
Instead of this,

List<List<int>> both;

we must say this:
List<List<int> > both; // Note the space in '> >'

C Sc 328, Fundamentals of C++ Slide 201
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Nested templates, continued

An inserter for List<T>:

template<typename T> ostream&
operator<<(ostream& o, const List<T>& list)

{
o << "[";

for (int i = 0; i < list.length(); i++)
o << list[i] << " ";

o << "]";
return o;

}

What template specializations would result from the following code?

List< List< List<char> > > x;

cout << x;

What would sizeof(x) produce?

C Sc 328, Fundamentals of C++ Slide 202
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

A template class: Table

Consider a class Table that is similar to List, but can be indexed by
values (keys) of any type, not just integers.

To construct a Table, the type of the keys and the type of the value
must be specified. This declares a Table indexed by Strings and
holding ints:

Table<String, int> group_sizes;

We now add key/value pairs to the table and print it:

group_sizes.add("duo", 2); // String(const char *) is used
group_sizes.add("trio", 3);
group_sizes.add("quartet", 4);
group_sizes.add("dozen", 12);

cout << group_sizes << endl;

Output:

[(duo -> 2) (trio -> 3) (quartet -> 4) (dozen -> 12)]

An individual value can be accessed via an overloaded indexing
operator:

int trio = group_sizes["trio"];
int doz = group_sizes["dozen"];

cout << ShowVal(trio) << ShowVal(doz) << endl;

Output:
trio = 3; doz = 12;

C Sc 328, Fundamentals of C++ Slide 203
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Implementation of Table

template <typename K, typename V> class Table {
 public:
 Table();
 Table(V defval);
 void add(K, V);
 V operator[](K) const;
 int size() const { return itsSize; }

 private:
 static const int CAPACITY = 100;
 struct Entry {
 K itsKey;
 V itsValue;
 } itsEntries[CAPACITY];
 int itsSize;
 V itsDefaultValue;

 friend ostream& operator<< <>(ostream& o, // Note <>
 const Table<K,V>& table);
 };

template <typename K, typename V>
Table<K,V>::Table() : itsSize(0) { }

template <typename K, typename V>
Table<K,V>::Table(V defval)
 : itsSize(0), itsDefaultValue(defval) { }

C Sc 328, Fundamentals of C++ Slide 204
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Implementation of Table, continued

template <typename K, typename V>
void Table<K,V>::add(K key, V value)
{
 if (itsSize >= CAPACITY)
 return;

 for (int i = 0; i < itsSize; i++)
 if (itsEntries[i].itsKey == key) {
 itsEntries[i].itsValue = value;
 return;
 }

 itsEntries[itsSize].itsKey = key;
 itsEntries[itsSize].itsValue = value;
 itsSize++;
}

template <typename K, typename V>
V Table<K,V>::operator[](K key) const
{
 for (int i = 0; i < itsSize; i++)
 if (itsEntries[i].itsKey == key)
 return itsEntries[i].itsValue;

 return itsDefaultValue;
}

What requirements does Table place on keys? How about values?

C Sc 328, Fundamentals of C++ Slide 205
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Another instance of Table

Consider a table containing strings and indexed by points:

Table<Point, String> point_names("<unknown>");

point_names.add(Point(0,0), "lower left");
point_names.add(Point(0,100), "upper left");
point_names.add(Point(100,100), "upper right");
point_names.add(Point(100,0), "lower right");

Point which;

while (cout << "Point? " << flush && cin >> which) {
 String name = point_names[which];
 cout << "That point is named " << name << endl;
 }

Interaction:

Point? 0 0
That point is named lower left
Point? 100 100
That point is named upper right
Point? 5 10
That point is named <unknown>

Problem: Describe the data structure represented by x in this
declaration:

Table<String, Table<String, int> > x;

C Sc 328, Fundamentals of C++ Slide 206
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Templates and inheritance

A templated class can be derived from another templated class.
Consider OrderedList, a subclass of List that maintains elements in
order from smallest to largest:

template <typename T> class OrderedList: public List<T> {
 public:
 OrderedList() { }
 virtual void add(T);
 };

template <typename T> void OrderedList<T>::add(T newValue)
{
 if (itsSize >= CAPACITY)
 return;

 int i;
 for (i = 0; i < itsSize; i++) {
 if (newValue < itsValues[i]) {
 //
 // newValue should go in itsValues[i]. Make space
 // there by pushing the other values back one.
 for (int j = itsSize-1; j >= i; j--) {
 itsValues[j+1] = itsValues[j];
 }
 break;
 }
 }

 itsValues[i] = newValue;
 itsSize++;
}

Note: The code assumes itsValues is protected.

C Sc 328, Fundamentals of C++ Slide 207
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Templates and inheritance, continued

Usage of OrderedList:

OrderedList<char> letters;

for (char *p = "tim korb"; *p; p++)
 letters.add(*p);

cout << letters << endl;

Output:

[b i k m o r t]

OrderedList can be used anywhere List can be used.

C Sc 328, Fundamentals of C++ Slide 208
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 209
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The C++ Standard Library

The string class

The Standard Template Library (STL)

The vector class

Iterators with vector

Algorithms

Function objects

Algorithms with plain pointers

More on iterators and algorithms

Constant iterators

Iterator adapters

The map class

The set class

C Sc 328, Fundamentals of C++ Slide 210
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The string class

The C++ Standard Library provides a string class to represent
character strings of arbitrary length. NULs are not accommodated.

string provides several constructors and many operators, including
assignment, comparison, concatenation, and indexing. There are a
variety of member functions for searching and producing substrings.

Strings have value semantics—assigning one string to another doesn't
result in a shared value.

Unlike Java, strings are mutable—the characters in a string can be
changed.

string is defined in the <string> header.

The following slides show a handful of the many operations provided
by string.

C Sc 328, Fundamentals of C++ Slide 211
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Example: parse_path

Imagine a routine that breaks a file name such as
/home/whm/jtc/survey.cc into three components: directories,
basename, and extension. The routine is parse_path:

void parse_path(const string& fullpath,
 string& dirs, string& base, string& ext)

Some test code:

string line;
while (cout << "Path? " << flush, getline(cin, line)) {
 string dirs, base, ext;
 parse_path(line, dirs, base, ext);
 cout << sq(dirs) << sq(base) << sq(ext) << endl;
 }

Interaction:

Path? /home/whm/jtc/surveys.cc
dirs = '/home/whm/jtc'
base = 'surveys'
ext = 'cc'

Path? /etc/passwd
dirs = '/etc'
base = 'passwd'
ext = ''

Path? jtcsli.wpd
dirs = ''
base = 'jtcsli'
ext = 'wpd'

C Sc 328, Fundamentals of C++ Slide 212
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

parse_path

void parse_path(const string& fullpath,
string& dirs, string& base, string& ext)

{
 //
 // Isolate directories
 //
 string::size_type lastslash = fullpath.rfind('/');

 if (lastslash != string::npos) // string::npos -> not found
 dirs = fullpath.substr(0, lastslash);
 else
 dirs = "";

 string fname =
 fullpath.substr(lastslash+1); // 2nd arg defaults to npos

 //
 // Isolate base and extension
 //
 string::size_type dotpos = fname.rfind('.');
 if (dotpos != string::npos) {
 base = fname.substr(0,dotpos);
 ext = fname.substr(dotpos+1);
 }
 else {
 base = fname;
 ext = "";
 }
}

Note that values are "returned" via reference arguments.

C Sc 328, Fundamentals of C++ Slide 213
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

string vs. C-strings

A non-explicit string constructor takes a const char *, enabling a
pointer to a C-style string to be used anywhere a string is required.

Instead of a char * or const char * conversion operator string has this
member function:

const char *c_str() const; (slightly simplified)

Example:

string snooze(20, 'z'); // Twenty occurrences of 'z'
const char *p = snooze.c_str();
cout << snooze << endl;

Output:

zzzzzzzzzzzzzzzzzzzz

The pointer returned by c_str() references memory managed by the
string; do not deallocate it! The contents are only valid while the string
exists.

C Sc 328, Fundamentals of C++ Slide 214
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Example: changing a filename extension

This program changes the extension of a file. For example,

% chext Hello.c cc

would be equivalent to "mv Hello.c Hello.cc".

#include <cstdio> (for rename(...))
#include <string>
#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
 string file(argv[1]);
 string new_ext(argv[2]);

 string dirs, base, ext;
 parse_path(file, dirs, base, ext);

 string new_name = base + "." + new_ext;
 rename(file.c_str(), new_name.c_str());
}

Note that the file is assumed to be in the current directory, and there's
no error handling such as checking the argument count or success of
the operation.

C Sc 328, Fundamentals of C++ Slide 215
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

ostringstream

Many string synthesis problems are best solved with ostringstream, a
ostream subclass that "outputs" to a string.

Imagine a function that forms a name like "H.J.Strappman" from a
first, middle, and last name:

mk_name("Hanley","James","Strappman"); // "H.J.Strappman"
mk_name("Hanley", "", "Strappman"); // "H.Strappman"
mk_name("", "", "Strappman"); // "Strappman"

It's easy with an output string stream:

string mk_name(const string& first, const string& middle,
 const string& last)
{
 ostringstream s;

 if (first.length() != 0)
 s << first[0] << '.';

 if (middle.length() != 0)
 s << middle[0] << '.';

 s << last;

 return s.str();
}

ostringstream is defined in the <sstream> header.

C++ Old-Timers should note that ostringstream is preferred over
ostrstream.

C Sc 328, Fundamentals of C++ Slide 216
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

ostringstream, continued

Here is a templated function that converts values of various types to
string:

template<class T>
string toString(T x)
{
 ostringstream oss;

 oss << x;
 return oss.str();
}

Usage:

int i = 73;
double a = 123.456;
Point p(3,4);

string s1 = toString(i); // "73"
string s2 = toString(a); // "123.456"
string s3 = toString(p); // "(3,4)"

The counterpart of ostringstring is istringstream, an input string
stream.

C Sc 328, Fundamentals of C++ Slide 217
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

string really is...

In fact, there is no class named string. string is a typedef for a
template specialization:

typedef basic_string<char> string;

There is also a typedef for wstring, for strings of "wide" characters
(e.g., 16-bits):

typedef basic_string<wchar_t> wstring;

C Sc 328, Fundamentals of C++ Slide 218
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The Standard Template Library

Much of the C++ Standard Library is the Standard Template Library,
or STL. It is a collection of containers, iterators, algorithms, and
function objects. It makes extensive use of templates.

There are a handful of containers:

 vector Generalized array. Similar to Java's Vector and
ArrayList.

 deque Double ended queue.

 list Doubly linked list. Similar to LinkedList.

 set A sorted collection of unique values. Similar to
TreeSet.

 multiset A sorted collection of not necessarily unique
values; sometimes called a "bag".

 map An associative array that maintains keys in sorted
order. Similar to TreeMap.

 multimap A map that allows duplicate keys

Java's container classes make extensive use of inheritance to produce
polymorphic behavior. In contrast, the STL relies mainly on templates
to achieve the same ends. The style of programming is often called
"generic" programming.

The material here is only an introduction to the STL.

C Sc 328, Fundamentals of C++ Slide 219
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The vector class

A vector can contain elements of any type T that supports copy and
assignment operations.

vector is designed to provide random access to elements in constant
time (O(1)), just like an array. Additionally, elements can be added to
the end of a vector in amortized constant time.

A rule of thumb is to use vector to hold a sequence of values unless
there is good reason to use a deque or list instead.

vector is defined in the <vector> header.

C Sc 328, Fundamentals of C++ Slide 220
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The vector class, continued

The following code fills a vector with "words" read from standard
input and prints the count when done.

vector<string> words;

string word;
while (cin >> word) // whitespace delimited string, by default
 words.push_back(word);

cout << "Read " << words.size() << " words" << endl;

This routine produces a vector filled with powers of two:

vector<int> powers_of_two(int n)
{
 vector<int> vals;
 for (int i = 0; i < n; i++)
 vals.push_back(1 << i);

 return vals;
}

Usage:

vector<int> pows = powers_of_two(10);

Contents: (2 to 2)0 9

1 2 4 8 16 32 64 128 256 512

C Sc 328, Fundamentals of C++ Slide 221
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The vector class, continued

Vectors have value semantics—assigning one to another doesn't
produce a shared copy, and comparison is based on contained values.

Example:

vector<int> v1 = powers_of_two(10);
vector<int> v2(5, 3); // Five 3's

cout << SV(v1 == v2) << endl; // false

v2 = v1;

cout << "--- After v2 = v1 ---" << endl;

cout << SV(v1 == v2) << endl; // true

v1.pop_back();

cout << "--- After v1.pop_back() ---" << endl;

cout << SV(v1 == v2) << endl; // false

Output: (assuming cout << boolalpha)

v1 == v2 = false;
--- After v2 = v1 ---
v1 == v2 = true;
--- After v1.pop_back() ---
v1 == v2 = false;

Note that no iostream inserter or extractor is defined for vector.

C Sc 328, Fundamentals of C++ Slide 222
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

vector, continued

A vector can be accessed like an array:

vector<int> pows = powers_of_two(10);

int i = pows[5];

pows[7] = i + 10;
pows[pows[3]] = pows[3] * pows[9];

Note that operator[] returns T& and therefore can be assigned to.

The at() method is a range-checked equivalent of operator[]:

pows = powers_of_two(10);

int i = pows.at(5);

pows.at(7) = i + 10;
pows.at(pows.at(3)) = pows.at(3) * pows.at(9);

An out of bounds access with both forms:

try {
 cout << pows[500] << endl;
 cout << pows.at(500) << endl;
 }
catch (exception& e) { cout << e.what() << endl; }

Output:

168043312
vector [] access out of range

C Sc 328, Fundamentals of C++ Slide 223
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterators with vector

Iterators can be used to navigate in STL containers. An iterator to be
used with a vector<int> is declared like this:

vector<int>::iterator itr; // nested class

One of several vector methods that produce an iterator is begin():

vector<int> v = powers_of_two(10);

itr = v.begin();

An iterator produced by a vector can be used much like a pointer:

cout << *itr << endl; // prints 1 (pows[0])

++itr;

cout << *itr << endl; // prints 2 (pows[1])

itr += 7;

cout << *itr << endl; // prints 256 (pows[8])

itr -=3;
cout << *itr << endl; // prints 32 (pows[5])

cout << (itr - v.begin()) << endl; // prints 5

*itr = 20;
cout << *itr << endl; // prints 20

Note that *itr is really itr.operator*().

C Sc 328, Fundamentals of C++ Slide 224
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterators with vector, continued

A loop that prints the contents of a vector<int>:

vector<int> v = powers_of_two(10);

for (vector<int>::iterator i = v.begin(); i != v.end(); ++i)
 cout << *i << " ";

Output:

1 2 4 8 16 32 64 128 256 512

Important: v.end() is "one past" the last element. Dereferencing
v.end() is considered to be an error.

C Sc 328, Fundamentals of C++ Slide 225
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterators with vector, continued

For reference:

vector<int> v = powers_of_two(10);

for (vector<int>::iterator i = v.begin(); i != v.end(); ++i)
 cout << *i << " ";

We can (awkwardly) work backwards with begin() and end():

for (vector<int>::iterator i = v.end()-1; i >= v.begin(); --i)
 cout << *i << " ";

Output:

512 256 128 64 32 16 8 4 2 1

The better way to navigate from the rear to the front of a vector is to
use rbegin() and rend(). They produce reverse iterators:

for (vector<int>::reverse_iterator i = v.rbegin(); i != v.rend(); ++i)
 cout << *i << " ";

The output is the same.

Note that incrementing a reverse iterator moves backwards.

Speculate: What does v.begin() == v.rend()-1 produce?

C Sc 328, Fundamentals of C++ Slide 226
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Algorithms

The STL includes a number of algorithms that are written in terms of
iterators. Some are simple and others are sophisticated. STL
algorithms are implemented as template functions.

One algorithm is reverse. It is a simply a function that takes two
arguments: iterators naming the beginning and (one past) the end of a
range of elements in a container. The order of the elements in the
range are reversed; the reversal is in-place.

The header <algorithm> is required.

Example:

vector<int> v = powers_of_two(10);

reverse(v.begin(), v.end());
print(v, "reversed: "); // utility routine; non-standard

Output:

reversed: 512 256 128 64 32 16 8 4 2 1

A string is a container. Consider this:

string s("Bjarne Stroustrup");
reverse(s.begin(), s.end());
cout << s << endl;

Output:

purtsuortS enrajB

C Sc 328, Fundamentals of C++ Slide 227
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Algorithms, continued

Another algorithm is random_shuffle:

random_shuffle(v.begin(), v.end());
print(v, "shuffled: ");

String s("Bjarne Stroustrup");

random_shuffle(s.begin()+1, s.end()-3);
cout << "shuffled: " << s << endl;

Output:

shuffled: 4 256 64 2 32 8 1 16 512 128

shuffled: Ba rusrjSttenorup

Note that the algorithms have no knowledge of the containers. An
algorithm is written exclusively in terms of iterators.

If the implementor of a new container implements the appropriate
iterators the container should work with any algorithm written in terms
of those types of iterators.

C Sc 328, Fundamentals of C++ Slide 228
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

This page is intentionally blank

C Sc 328, Fundamentals of C++ Slide 229
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Algorithms, continued

This program reads lines from standard input and prints them in
reverse order on standard output:

#include <iostream>
#include <algorithm>
#include <vector>
#include <iterator>
using namespace std;

int main()
{
 vector<string> lines;
 string line;

 while (getline(cin, line))
 lines.push_back(line);

 reverse(lines.begin(), lines.end());

 for (vector<string>::iterator i = lines.begin();
i < lines.end(); i++)

 cout << *i << endl;
}

Can it be done without calling reverse()?

C Sc 328, Fundamentals of C++ Slide 230
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects

It is possible to overload operator(). Example:

class Negate {
 public:
 int operator()(int x) { return -x; }
 };

Usage:

Negate mk_negative;

int a = mk_negative(3); // a = mk_negative.operator()(3);

cout << a << endl; // prints -3

Imagine a function apply_and_print() that takes a vector<int> and an
instance of a class like Negate, and prints the result of applying
operator() to each value:

vector<int> vals = rand_ints(5, 20); // not in standard library...
print(vals, "Random values:");

Negate mk_negative;
apply_and_print("Negation:", mk_negative, vals);

Output: (manually aligned)

Random values: 13 3 2 9 0
Negation: -13 -3 -2 -9 0

C Sc 328, Fundamentals of C++ Slide 231
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects, continued

For reference:

class Negate {
 public:
 int operator()(int x) { return -x; }
 };

vector<int> vals = rand_ints(5, 20);

Negate mk_negative;
apply_and_print("Negation:\n", mk_negative, vals);

Here is apply_and_print:

template<typename Function>
void apply_and_print(char *label, Function f, vector<int> v)
{
 cout << label;
 for (vector<int>::iterator i = v.begin(); i != v.end(); ++i) {
 int r = f(*i); // Equivalent: f.operator()(*i)
 cout << r << " ";
 }
 cout << endl;
}

An instance of a class like Negate is called a function object or a
functional.

C Sc 328, Fundamentals of C++ Slide 232
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects, continued

Here's another class whose instances are function objects:

class IsEven {
 public:
 bool operator()(int i) { return i % 2 == 0; }
 };

Usage:

vector<int> vals = rand_ints(5, 20);
print(vals, "Random values: ");

IsEven even_fcn;
apply_and_print("Even? ", even_fcn, vals);

Output: (manually aligned)

Random values: 13 3 2 9 0
Even? 0 0 1 0 1

More concise:

apply_and_print("Even? ", IsEven(), vals);

C Sc 328, Fundamentals of C++ Slide 233
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects, continued

Many STL algorithms are written to employ function objects or have
an alternate form that uses a function object. One of them:

int count(InIter first, InIter last, T value)

int count_if(InIter first, InIter last, Predicate pred)

A function object like IsEven(), which has a boolean result, is called a
predicate.

Example:

vector<int> vals = rand_ints(10, 5);

print(vals, "Random values: ");

int n = count_if(vals.begin(), vals.end(), IsEven());

cout << n << " even values" << endl;

Output:

Random values: 3 2 1 1 4 1 1 3 0 3
3 even values

C Sc 328, Fundamentals of C++ Slide 234
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects, continued

Here is a templated predicate:

template<typename T>
class IsNegative {
 public:
 bool operator()(T i) { return i < 0; }
 };

Usage:

n = count_if(vals.begin(), vals.end(), IsNegative<int>());

The STL includes a number of function objects. One of them is
greater. Here is a simplified version of it:

template <typename T>
class greater {
 public:
 bool operator()(T x, T y) { return x > y; }
 };

C Sc 328, Fundamentals of C++ Slide 235
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Function objects, continued

The STL sort algorithm has two forms:

void sort(RandIter first, RandIter last);
void sort(RandIter first, RandIter last, Pr pred);

The first form uses the < operator. The second form uses a predicate.

Note the difference between the result when using the first form of
sort, and the second, which uses an instance of greater<int>):

print(vals, "Values: ");

sort(vals.begin(), vals.end());
print(vals, "Sorted with operator<: ");

sort(vals.begin(), vals.end(), greater<int>());
print(vals, "Sorted with greater<int>: ");

Output:

Sorted with operator<: -3 -1 -1 -1 0 1 2 3 3 4

Sorted with greater<int>: 4 3 3 2 1 0 -1 -1 -1 -3

STL function objects are defined in the <functional> header.

C Sc 328, Fundamentals of C++ Slide 236
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

For reference: print(vector<T>)

template <typename T>
void print(const vector<T>& c, char *label = "")
{
 typename vector<T>::const_iterator i;

 cout << label;

 for (i = c.begin(); i != c.end(); ++i)
 cout << *i << " ";

 cout << endl;
}

C Sc 328, Fundamentals of C++ Slide 237
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Algorithms with plain pointers

Another type of container that's compatible with the STL algorithms is
T a[n]—a plain old array.

Example:

char buffer[] = "Does it really work??";
int n = strlen(buffer);

cout << buffer << endl; // Output: Does it really work??

reverse(buffer, &buffer[n]); // buffer is &buffer[0]

cout << buffer << endl; // Output: ??krow yllaer ti seoD

random_shuffle(&buffer[2], &buffer[n-2]);

cout << buffer << endl; // Output: ??lte eikowasylrroD

fill_n(buffer, 5, 'z'); // start at &buffer[0] and fill with 5 z's

cout << buffer << endl; // Output: zzzzz eikowasylrroD

C Sc 328, Fundamentals of C++ Slide 238
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on iterators and algorithms

There are five categories of STL iterators: input, output, forward,
bidirectional, and random access.

There is no class hierarchy for iterators. Instead, iterators are
categorized by what they can do. For example, an output iterator must
support the following operations:

*itr = value
++itr
itr++
copy constructor

As mentioned earlier, the STL algorithms are written in terms of
iterators. The fill_n algorithm (simply a function) looks like this:

fill_n(OutIter first, Size n, const T& value)

fill_n starts at the position indicated by first, an output iterator, and
stores value in each of the next n positions.

Are the four operations listed above sufficient to implement fill_n?

An example of fill_n with a vector:

vector<int> nums(10, 77); // ten copies of 77

fill_n(nums.begin(), 3, 11);
print(nums, "After fill_n: ");

Output:
After fill_n: 11 11 11 77 77 77 77 77 77 77

C Sc 328, Fundamentals of C++ Slide 239
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on iterators and algorithms, continued

Here are the operations that are required for an iterator to be
considered an input iterator:

*itr (fetch value)
itr->member (access member)
++itr
itr++
itr1 == itr2
itr1 != itr2
copy constructor

The count algorithm looks like this:

int count(InIter first, InIter last, const T& value)

Example:

vector<int> vals = rand_ints(10, 3); // Not in standard library...

print(vals, "Random values: ");
int n = count(vals.begin(), vals.end(), 0);
cout << "Found " << n << " instances" << endl;

Output:

Random values: 2 0 2 2 0 0 1 0 2 1
Found 4 instances

What output iterator operations does count need to make use of?

C Sc 328, Fundamentals of C++ Slide 240
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on iterators and algorithms, continued

The call to count is worth another look:

vector<int> vals = rand_ints(10, 3);

print(vals, "Random values: ");
int n = count(vals.begin(), vals.end(), 0);

The values produced by vals.begin() and vals.end() define a range of
elements.

The specification of count says that it operates on this range:

[vals.begin(), vals.end())

The notation is borrowed from mathematics: the range [0.0, 1.0)
includes 0.0 but stops an infinitesimal amount short of 1.0.

As applied to a container, the range includes the element referenced by
vals.begin(), but stops just short of vals.end().

Here's an approximation of count:

int count(InIter first, InIter last, const T& value)
{
 int n = 0;
 for (; first != last; ++first)
 if (*first == value)
 ++n;
 return n;
}

C Sc 328, Fundamentals of C++ Slide 241
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on iterators and algorithms, continued

The capabilities required of forward iterators are roughly a union of
input and output iterators:

*itr
itr->member
++itr
itr++
itr1 == itr2
itr1 != itr2
default constructor
copy constructor
assignment operator

Bidirectional iterators are simply forward iterators that also support
--itr and itr--.

Random access iterators have all the capabilities of bidirectional
iterators and also provide pointer-like operations including
subscripting, subtraction, comparison, and addition/subtraction of
integers.

Here are three more algorithms to consider:

FwdIter min_element(FwdIter first, FwdIter last)

void random_shuffle(RandIter first, RandIter last)

void reverse(BiIter first, BiIter last)

C Sc 328, Fundamentals of C++ Slide 242
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

More on iterators and algorithms, continued

Not all containers produce random access iterators. For example, list
produces bidirectional iterators. An iterator produced by a list can't be
used with an algorithm that counts on a random access iterator.

For example, this program won't compile:

int main()
{
 list<int> L;
 random_shuffle(L.begin(), L.end());
}

The error produced by g++ is triggered by the absence of an
overloaded operator:

stl_algo.h:1643: error: no match for 'operator+' in '__first + 1'
stl_algo.h:1644: error: no match for 'operator-' in '__i - __first'

C Sc 328, Fundamentals of C++ Slide 243
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Constant iterators

Here is a reasonable first cut at the print() routine shown earlier:

template <typename T>
inline void print(const vector<T>& c, char *label = "")
{
 typename vector<T>::iterator i;

 cout << label;
 for (i = c.begin(); i != c.end(); ++i)
 cout << *i << " ";
 cout << endl;
}

Unfortunately, it doesn't compile:

error: invalid conversion from `const int* const' to `int*'

Why?

Solution:

template <typename T>
inline void print(const vector<T>& c, char *label = "")
{
 typename vector<T>::const_iterator i;
 ^^^^^^^^^^^^^
 cout << label;
 for (i = c.begin(); i != c.end(); ++i)
 cout << *i << " ";
 cout << endl;
}

C Sc 328, Fundamentals of C++ Slide 244
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterator adapters

One thing that can be done with the copy algorithm,

OutItr copy(InIter first, InIter last, OutIter result)

is this:

vector<int> nums(10, 0), fives(3, 5);

print(nums, "nums before: ");

copy(fives.begin(), fives.end(), &nums[4]);

print(nums, "nums after: ");

Output:

nums before: 0 0 0 0 0 0 0 0 0 0
nums after: 0 0 0 0 5 5 5 0 0 0

Here's a copy call that doesn't do what's expected:

copy(fives.begin(), fives.end(), nums.end()); // A Bad Thing
print(nums, "nums after(2): ");

Output: (it didn't blow up, unfortunately)

nums after(2): 0 0 0 0 5 5 5 0 0 0

What's wrong with the call?

C Sc 328, Fundamentals of C++ Slide 245
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterator adapters, continued

A solution is provided with an insert iterator, which is one type of
iterator adapter.

Instead of this,

copy(fives.begin(), fives.end(), nums.end()); // A Bad Thing

do this:

copy(fives.begin(), fives.end(), back_inserter(nums));

Result: (with all prints)

nums before: 0 0 0 0 0 0 0 0 0 0
nums after: 0 0 0 0 5 5 5 0 0 0
nums after(2): 0 0 0 0 5 5 5 0 0 0 5 5 5

Here is back_inserter:

template<typename C>
back_insert_iterator<C> back_inserter(C& container) {
 return back_insert_iterator<C>(container);
 }

C Sc 328, Fundamentals of C++ Slide 246
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Iterator adapters, continued

Another type of iterator adapter is a stream iterator. Here's an iterator
that turns assignments into output:

ostream_iterator<int> prt = ostream_iterator<int>(cout, ",\n");
*prt = 3;
*prt = 4;
*prt = 5;

Output: (exact)

3,
4,
5,

Another example:

vector<int> pows = powers_of_two(10);

copy(pows.begin(), pows.end(),
ostream_iterator<int>(cout, " "));

Output:

1 2 4 8 16 32 64 128 256 512

A reverse iterator, such as produced by rbegin() and rend(), is another
example of an iterator adapter.

C Sc 328, Fundamentals of C++ Slide 247
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The map class

A map is an associative array that holds key/value pairs. The Table
class studied in the template section is a very rudimentary equivalent.

Any type K that supports copy, assignment, and comparison can be a
key. Any type V that supports copy and assignment can be a value.
Keys in a map are unique.

Here is a simple word-occurrence counter:

int main()
{
 map<string, int> counts;

 string word;
 while (cin >> word)
 counts[word] += 1;

 map<string, int>::iterator i;

 for (i = counts.begin(); i != counts.end(); ++i) {
 cout << left << setw(15) << i->first
 << right << setw(5) << i->second << endl;
 }

}

The map iterator supports a member reference to access the first (key)
and second (value) elements of the key/value pair. (Yes, operator->
is overloaded!)

Manipulators are used to produce aligned output.

C Sc 328, Fundamentals of C++ Slide 248
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The map class, continued

An input file:

to be or not to be is
not going to be the
question

Execution:

be 3
going 1
is 1
not 2
or 1
question 1
the 1
to 3

C Sc 328, Fundamentals of C++ Slide 249
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The set class

A set is a sorted collection of unique values. A set can contain values
of any type T that supports copy, assignment, and comparison.

This program reads file names on standard input, perhaps piped from
ls or find, and prints a list of unique file extensions:

int main()
{
 set<string> exts;

 string line;
 while (getline(cin, line)) {
 string dirs, base, ext;
 parse_path(line, dirs, base, ext);
 exts.insert(ext);
 }

 cout << exts.size() << " unique extensions:" << endl;
 for (set<string>::iterator i = exts.begin(); i != exts.end(); i++)
 cout << *i << endl;
}

Usage:

% ls | uniqexts
6 unique extensions:
cc
class
htm
icn
java
pdf

C Sc 328, Fundamentals of C++ Slide 250
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 251
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple Inheritance

Basics

Multiple inheritance and Java

Ambiguity in multiple inheritance

Virtual base classes

C Sc 328, Fundamentals of C++ Slide 252
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance basics

If a class has an is-a relationship with more than one class, the use of
multiple inheritance may be appropriate.

Recall Clock:

class Clock {
 public:
 Clock();
 void setTime(Time);
 Time getTime();
 private: Time itsTime;
 };

Consider a new class, Radio:

class Radio {
 public:
 Radio();
 virtual ~Radio();
 void setFrequency(double);
 void setVolume(double);
 private: double itsFrequency, itsVolume;
 };

ClockRadio is derived from both Clock and Radio:

class ClockRadio: public Clock, public Radio {
public:

ClockRadio();
virtual ~ClockRadio();

};

This is an example of multiple inheritance.

C Sc 328, Fundamentals of C++ Slide 253
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance basics, continued

Multiple inheritance creates classes whose instances inherit the
combined interface, structure, and behavior of two or more classes.

Instances of ClockRadio combine the structure and behavior of a
Clock and a Radio:

 ClockRadio cr;
 cr.setTime("10:10"); // Clock::setTime
 cr.setVolume(5); // Radio::setVolume
 cr.setFrequency(1000); // Radio::setFrequency

ClockRadio instances have three data members: itsTime,
itsFrequency, and itsVolume.

The potential presence of multiple inheritance implies that instead of
inheritance relationships defining a tree of classes, they define a
directed acyclic graph (DAG) instead.

There is no limit to the size and complexity of class structures built
with multiple inheritance.

C Sc 328, Fundamentals of C++ Slide 254
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance basics, continued

An important aspect of multiple inheritance is that an instance of a
class with several base classes can be treated as an instance of any of
those base classes.

A ClockRadio is-a Clock and it also is-a Radio. A ClockRadio
may therefore be used anywhere either a Clock or a Radio is
required.

Imagine a function to tune in a radio station currently playing a
particular song:

FindSong(Song& song, Radio& radio)

FindSong can be used with either a Radio or a ClockRadio:

Song s("Chattanooga Choo Choo");

Radio r;
FindSong(s, r);

ClockRadio cr;
FindSong(s, cr);

C Sc 328, Fundamentals of C++ Slide 255
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance basics, continued

ClockRadio pointers can be held in arrays of Clock pointers or Radio
pointers:

Clock c1, c2;
ClockRadio cr1, cr2;
Radio r1, r2;

Clock* clocks[] = { &c1, &c2, &cr1, &cr2 };
Radio* radios[] = { &r1, &cr1, &r2, &cr2 };

An interesting consequence of multiple inheritance is that casting a
pointer may cause adjustment in the value, not just the type:

ClockRadio cr1;

ClockRadio *crp = &cr1;
Radio *rp = (Radio*)crp;
Clock *cp = (Clock*)crp;

cout << SV(crp) << SV(rp) << SV(cp) << endl;

Output:

crp = 0x22fe78; rp = 0x22fe78; cp = 0x22fe90;

Note the difference between cp and rp. Note also that the Radio
portion is first and the Clock portion second.

C Sc 328, Fundamentals of C++ Slide 256
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance and Java

Early versions of C++ did not support multiple inheritance. The merit
of supporting multiple inheritance was hotly debated. Many persons
believe the additional complexity is not worth the benefit.

Java does not support multiple inheritance. It is interesting to consider
how ClockRadio might be approached in Java.

One approach is to define a ClockRadio class that contains a Clock
and a Radio. The combined set of methods is implemented by
appropriately delegating calls to the Clock or the Radio:

class ClockRadio {
 private Clock itsClock = new Clock();
 private Radio itsRadio = new Radio();

 public void setTime(Time t) { itsClock.setTime(t); }
 public Time getTime() { return itsClock.getTime(); }
 public void setVolume(double f) { itsRadio.setVolume(f); }
 public void setFrequency(double f)
 { itsRadio.setFrequency(f); }
 }

What are the disadvantages of this approach?

C Sc 328, Fundamentals of C++ Slide 257
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance and Java, continued

It may be the case that we really don't need to work with a ClockRadio
as a Radio, but it would be very convenient to work with it as a Clock.
If so, we might inherit from Clock and contain a Radio:

class ClockRadio extends Clock {
 private Radio itsRadio = new Radio();

 public void setVolume(double f) { itsRadio.setVolume(f); }
 public void setFrequency(double f)
 { itsRadio.setFrequency(f); }
 }

C Sc 328, Fundamentals of C++ Slide 258
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance and Java, continued

We can match the behavior of the C++ ClockRadio by using a
combination of interfaces and implementation classes:

interface Clock {
 void setTime(Time t);
 Time getTime();
 };

class ClockImpl implements Clock {
 public ClockImpl() { }
 public void setTime(Time t) { itsTime = t; }
 public Time getTime() { return itsTime; }
 private Time itsTime;
 };

interface Radio {
 void setFrequency(double f);
 void setVolume(double v);
 };

class RadioImpl implements Radio {
 public RadioImpl() { }
 public void setFrequency(double f) { itsFrequency = f; }
 public void setVolume(double v) { itsVolume = v; }
 private double itsFrequency, itsVolume;
 };

C Sc 328, Fundamentals of C++ Slide 259
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance and Java, continued

The grand finale:

class ClockRadio implements Clock, Radio {
 private ClockImpl itsClock = new ClockImpl();
 private RadioImpl itsRadio = new RadioImpl();

 public void setTime(Time t) { itsClock.setTime(t); }
 public Time getTime() { return itsClock.getTime(); }

 public void setFrequency(double f)
 { itsRadio.setFrequency(f); }
 public void setVolume(double f) { itsRadio.setVolume(f); }
 }

This matches the behavior of ClockRadio in C++: It combines the
behavior of both Clock and Radio, and an instance of ClockRadio can
be used anywhere an instance of Clock or Radio is required.

Here's the C++ version again:

class ClockRadio: public Clock, public Radio {
public:

ClockRadio();
virtual ~ClockRadio();

};

C Sc 328, Fundamentals of C++ Slide 260
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Ambiguity in multiple inheritance

Multiple inheritance is very expressive but it comes with a cost: there
are a number of potential conflicts and ambiguities that can arise. C++
has mechanisms to resolve those problems, but they are elaborate.

A simple example of ambiguity is an identical member function in two
base classes:

class Clock {
public:

...
void reset();

};

class Radio {
public:

...
void reset();

};

class ClockRadio: public Clock, public Radio { ... };

An instance of ClockRadio can be created, but a call to
ClockRadio::reset() is said to be ambiguous:

ClockRadio cr; // OK
cr.reset(); // Ambiguous: Clock::reset() or Radio::reset()?

C Sc 328, Fundamentals of C++ Slide 261
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Ambiguity in multiple inheritance, continued

This ambiguity can be resolved by supplying ClockRadio::reset().

If the desired behavior of resetting a clock radio is to reset both the
Clock and the Radio, then this is a solution:

class ClockRadio: public Clock, public Radio {
public:

...
void reset() {

Clock::reset();
Radio::reset();
}

};

What are some alternatives?

C Sc 328, Fundamentals of C++ Slide 262
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual base classes

Consider a skeletal set of classes for a windowing system:

class Window {
 public:
 Window(...) { itsWHnd = CreateWindow(...); }
 void setFgColor(...);
 protected:
 WinHandle itsWHnd;
 };

class GraphicalWindow: public Window { // full graphics
 public:
 GraphicalWindow(...);
 void drawRect(...);
 void drawCurve(...);
 };

class TextWindow: public Window { // like an ASCII terminal
 public:
 TextWindow(...);
 void writeLine(...);
 void gotoRowCol(...);
 };

Usage:

GraphicalWindow gw; // opens a window
gw.drawRect(...); // draws a rectangle

TextWindow tw; // opens another window
tw.writeLine(...); // outputs a string as if dumb terminal

C Sc 328, Fundamentals of C++ Slide 263
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual base classes, continued

During development we'd like to see debugging output in the window
along with the graphics. Multiple inheritance seems to offer a simple
solution:

class DebugWindow: public GraphicalWindow,
 public TextWindow {
 ...

};

Usage:

DebugWindow dw;

dw.drawRect(...);
dw.writeLine(...);

Will it work?

C Sc 328, Fundamentals of C++ Slide 264
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual base classes, continued

Here is a representation of the current structure:

The problem is that both GraphicalWindow and TextWindow are
Windows. The constructor for Window calls the OS service
CreateWindow(). Constructing the GraphicalWindow portion of
DebugWindow causes one OS window to be created. A second OS
window results from constructing the TextWindow portion of
DebugWindow.

We'd see graphical drawing in one window and terminal-like output in
the other, instead of seeing both in one window.

Problem: Would the following code compile?

DebugWindow dw;

dw.setFgColor(...);

C Sc 328, Fundamentals of C++ Slide 265
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Virtual base classes, continued

The problem can be solved using a virtual base class:

class GraphicalWindow: public virtual Window { ... };
class TextWindow: public virtual Window { ... };

class DebugWindow: // Unchanged
public TextWindow, public GraphicalWindow { ... }

The result is that a DebugWindow contains one instance of Window,
not two:

Stroustrup describes the effect of a virtual base specification like this:

 "Every virtual base of a derived class is represented by the same
(shared) object."

C Sc 328, Fundamentals of C++ Slide 266
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Multiple inheritance: Worth the weight?

It is a fact that multiple inheritance is part of C++. It won't be going
away.

The basic idea of multiple inheritance—allowing more than one base
class—is very simple and powerful. However, liberal use of multiple
inheritance can easily produce a class structure that is very difficult to
understand.

It is not a bad idea for projects to adopt guidelines about how much use
may be made of multiple inheritance. For example, a very
conservative rule is to use multiple inheritance to provide only the
functionality of Java interfaces.

A final note about multiple inheritance:
Be sure all base classes have a virtual destructor.

C Sc 328, Fundamentals of C++ Slide 267
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exceptions

Basics

Objects as exceptions

Stack unwinding

Exception specifications

Inheritance and exception handling

The auto_ptr class

C Sc 328, Fundamentals of C++ Slide 268
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exception handling basics

In general, the C++ exception handling mechanism is very similar to
Java.

In Java an exception is thrown with a throw statement:

throw new IllegalArgumentException("positive value required");

Java requires the value thrown be assignable to Throwable.

C++ also uses a throw statement, but a value of any type can be
thrown. These are all valid:

throw 1;

throw "x";

throw Rectangle(3,4);

throw new Rectangle(5,6);

C Sc 328, Fundamentals of C++ Slide 269
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exception handling basics, continued

C++ has a try statement that is almost identical to Java. Example:

try {
 g();
 }

catch (int i) { cout << "Caught int = " << i << endl; }

catch (double) { cout << "Caught a double" << endl; }

catch (...) { cout << "Caught something" << endl; }

If an int is thrown by g(), the first catch clause is selected. The value
thrown is assigned to i, and it is printed.

If a double is thrown, the second clause is selected. As is the case
with parameter lists, an identifier need not be specified if the value
doesn't need to be referenced.

The third catch has an ellipsis (...) for the exception declaration. It is
literally three periods. It catches any value. No identifier can be
specified in conjunction with it. If used, it must be the last catch
clause.

Just as in Java, a C++ exception will propagate upwards from an
arbitrarily deep sequence of calls until it is caught or it propagates out
of main. By default, if an exception propagates out of main (i.e., it
was never caught), execution is terminated.

C++ has no counterpart for Java's finally clause.

C Sc 328, Fundamentals of C++ Slide 270
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Objects as exceptions

Although C++ allows values of any type to be thrown the common
practice is to throw an instance of a class that specifically represents an
exception.

With our String class in mind we might create a StringBounds class to
represent a bounds error:

class StringBounds {
 public:
 StringBounds(int pos, const String& str)
 : itsPos(pos), itsStr(str) { }
 String getStr() { return itsStr; }
 int getPos() { return itsPos; }
 private:
 int itsPos;
 String itsStr;
 };

In String:

char& String::operator[](int pos)
{
 if (pos < 0 || pos >= strlen(itsPtr))
 throw StringBounds(pos, *this);

 return itsPtr[pos];
}

C Sc 328, Fundamentals of C++ Slide 271
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Objects as exceptions, continued

Test code:

String s = "test";

try {
 char c = s[10];
 cout << "c = " << c << endl;
 }
catch (StringBounds& sb) {
 cout << "Error: string position " << sb.getPos()
 << " out of bounds in '" << sb.getStr() << "'" << endl;
 }

Execution:

Error: string position 10 out of bounds in 'test'

In the catch, a value is assigned to sb in roughly the same way as for a
function call. Note that the catch names a StringBounds reference.

C Sc 328, Fundamentals of C++ Slide 272
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Stack unwinding

Stack unwinding is a key element of the exception handling
mechanism in C++. It is an orderly deactivation of scopes (such as
function calls) until a suitable exception handler is found.

int main()
{
 try { f(); }
 catch (...) { cout << "caught it!" << endl; }
}
void f()
{
 X x1(1);
 g();
}
void g()
{
 X x2(2);

 throw logic_error("oops"); // from <stdexcept>
}

With instrumented constructors and destructors, here's the output:

X(1), X(2), ~X(2), ~X(1), caught it!

Unwinding ensures that each object that was constructed on the stack
is destroyed in the process of handling the exception.

How does stack unwinding compare to setjmp/longjmp in C?

Is stack unwinding important in Java?

C Sc 328, Fundamentals of C++ Slide 273
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Stack unwinding, continued

Another example of unwinding:

int main() {

try { f(); }

catch (...)

{ cout << "Caught something in main()" << endl; }

}

void f() {

X x("f");

try { g(); }

catch (const char *s)

{ cout << "caught '" << s << "' in f()" << endl; }

}

void g() {

X x("g");

if (time(0) % 2) { // seconds since the epoch

cout << "Throwing 'odd time'" << endl;

throw "odd time!";

}

X x2("g2");

cout << "Throwing 2.0" << endl;

throw 2.0;

}

One possibility:
 X(f), X(g), Throwing 'odd time', ~X(g), caught 'odd time!' in f(), ~X(f)

Another possibility:
 X(f), X(g), X(g2), Throwing 2.0, ~X(g2), ~X(g), ~X(f), Caught something

 in main()

C Sc 328, Fundamentals of C++ Slide 274
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Rethrowing an exception

The statement 'throw;' rethrows the current exception. It can be used
to filter out exceptions of interest.

int main()
{
 for (int i = 1; i <= 12; i++) {
 try { f(i); }
 catch (int i) { cout << "main: Caught " << i << endl; }
 }
}
void f(int i)
{
 try { g(i); }
 catch (int i) {
 cout << "f: Caught " << i << endl;
 if ((i % 3) == 0)
 throw; // Rethrow the current exception
 }
}

void g(int i) { if ((i % 2) == 0) throw i; }

Execution:

f: Caught 2
f: Caught 4
f: Caught 6
main: Caught 6
f: Caught 8
f: Caught 10
f: Caught 12
main: Caught 12

C Sc 328, Fundamentals of C++ Slide 275
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exception specifications

Java has a notion of checked and unchecked exceptions. If a method
invokes a method that throws a checked exception the invoking
method must either enclose the call in a try or specify the exception in
a throws clause.

For example, a method creating a FileReader must do this:

public void f(String fname) {
 try {
 FileReader r = new FileReader(fname);
 ...
 }
 catch (FileNotFoundException e) { ... }
 }

or this:

public void f(String fname) throws FileNotFoundException {
 FileReader r = new FileReader(fname);
 ...
 }

C Sc 328, Fundamentals of C++ Slide 276
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exception specifications, continued

C++ provides exception specifications which, if present, "limit" the
exceptions that can be thrown by a routine.

For example, here is a routine f with an exception specification that
indicates that only exceptions of type X (and subclasses of X) are
expected to be thrown:

void f() throw (X)
{
}

Unlike Java, it is not guaranteed to be a compile time error to have
code that throws an unexpected exception. g++ compiles the
following code without complaint:

void f() throw(X)
{
 throw Y();
}

If f is called, however, the throw Y(); violates the specification and the
global function unexpected() is called, which terminates execution, by
default.

If no exception specification is present, any value can be thrown as an
exception:

void f()
{
 throw Y();
}

C Sc 328, Fundamentals of C++ Slide 277
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Exception specifications, continued

An exception specification may name any number of types:

Window::Window() throw (NoDisplay, ServerFault, NoAccess)
{
 ...
}

An empty list indicates that no exceptions may be thrown:

void g() throw()
{
 throw X();
}

As with the earlier example, the violation might not be caught until
execution.

C Sc 328, Fundamentals of C++ Slide 278
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Inheritance and exception handling

Just as in Java, a catch clause can discriminate between base and
derived classes:

class OSError {
 public:

OSError(int code);
int getCode();
...
};

class NetworkError: public OSError {
 public:

NetworkError(int code, Interface);
Interface getInterface();
...
};

try { ...some code... }
catch (NetworkError& ne) {
 cout << "Network error; code is "
 << ne.getCode() << ", on interface "
 << ne.getInterface() << endl;
 }

catch (OSError& oserr) {
 cout << "General OS error; code: "
 << oserr.getCode() << endl;
 }

Note that if the OSError catch is first, the NetworkError catch is
effectively unreachable.

C Sc 328, Fundamentals of C++ Slide 279
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C++ Standard Exceptions

The C++ Standard library defines a small inheritance hierarchy of
exceptions: (inheritance is shown via indentation)

exception

logic_error
domain_error
invalid_argument
length_error
out_of_range

runtime_error
overflow_error
range_error
underflow_error

bad_alloc
bad_cast
bad_exception
bad_typeid

ios_base::failure

The exception classes are defined in the <exception> and <stdexcept>
headers.

C Sc 328, Fundamentals of C++ Slide 280
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr

Consider this routine:

void f()
{
 X *xp = new X;
 Y y;

 xp->g();

 delete xp;
}

It creates an instance of X and an instance of Y, does some processing, and
then destroys the X explicitly. The Y is destroyed implicitly when f()
returns and the lifetime of y ends.

If an exception is thrown during X::g(), y will be destroyed when the stack
is unwound, but "delete xp" will not be done.

It can be said that the code above is not "exception safe". It is challenging
to write exception safe code in C++ and much has been written about the
problems involved.

How about wrapping the processing in a try block?

try { xp->g(); }
catch (...) { delete xp; throw; }

delete xp;

C Sc 328, Fundamentals of C++ Slide 281
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr, continued

What's really needed is way to indicate that if a pointer goes out scope, the
object it references, if any, is deleted. That's the idea of auto_ptr.

Example:

void f()
{
 auto_ptr<X> xp(new X);
 Y y;

 xp->g();
}

auto_ptr is a template class. xp is an auto_ptr<X> that holds the address
of the X created in the heap. xp resides on the stack just like y.

Because xp is on the stack, ~auto_ptr<X>() is called when xp goes out of
scope, either due to f() returning or an exception being thrown.

The auto_ptr destructor simply deletes the pointer it holds.

Note that both the original f() and the auto_ptr version make the same
call: xp->g()

An auto_ptr is a "smart pointer". It overloads 'operator->' (a unary
postfix operator) so that an expression like xp-> produces the stored value,
of type X*. That value in turn is used to invoke X::g(). Think of xp->g()
as being this:

(xp.operator->()) -> g()

C Sc 328, Fundamentals of C++ Slide 282
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr, continued

A key property of auto_ptr is that, when used as intended, an object is
always "owned" by exactly one auto_ptr. (Why?)

The auto_ptr copy constructor enforces the one owner rule: initializing an
auto_ptr<X> with an auto_ptr<X> transfers ownership from the old one
to the new one.

For example, the end result of this code,

auto_ptr<X> xp1(new X);
auto_ptr<X> xp2(xp1);

is that xp2 owns the object created by new X and xp1 can no longer be
used—it holds the null pointer.

Example:

X* p = new X;
auto_ptr<X> xp1(p);

cout << SV(p) << SV(xp1.operator->()) << endl << endl;

auto_ptr<X> xp2(xp1);
cout << SV(p) << SV(xp1.operator->()) << endl;
cout << SV(p) << SV(xp2.operator->()) << endl;

Output:

p = 0xa0417e8; xp1.operator->() = 0xa0417e8;

p = 0xa0417e8; xp1.operator->() = 0;
p = 0xa0417e8; xp2.operator->() = 0xa0417e8;

C Sc 328, Fundamentals of C++ Slide 283
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr, continued

Assignment also enforces the one owner rule:

auto_ptr<X> xp1(new X);
auto_ptr<X> xp2(new X);

xp2 = xp1;

When done, xp2 can be used to reference the X and xp1 holds a null
pointer. Additionally, the X originally referenced by xp2 was destroyed.

The behavior of the auto_ptr copy constructor and assignment operator
can be used to create a notion of "sources" and "sinks". A source is a
routine that returns an auto_ptr instance. A sink uses the contained
pointer.

Recall the Int class from the operator overloading section, with
instrumentation added:

class Num {
 public:
 Num(int i) : value(i) { cout << "Num(" << value << ")" <<
endl; }

 ~Num() { cout << "~Num(" << value << ")" << endl; }

 int getValue() const { return value; }

 private:
 int value;
 };

C Sc 328, Fundamentals of C++ Slide 284
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr, continued

Here is an auto_ptr source:

auto_ptr<Num> makeNum()
{
 static int n = 0; // "serial number"
 return auto_ptr<Num>(new Num(n++));
}

Here is an auto_ptr sink:

void printNums()
{
 auto_ptr<Num> ip;

 for (int i = 1; i <= 3; i++)
 {
 ip = makeNum();
 cout << ip->getValue() << endl;
 }
}

Problem: Explain the output of printNums():

Num(0)
0
Num(1)
~Num(0)
1
Num(2)
~Num(1)
2
~Num(2)
...ad infinitum...

C Sc 328, Fundamentals of C++ Slide 285
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

auto_ptr, continued

There is much more to auto_ptr (and the general topic of exception-safe
code) than is discussed here. This material attempts to simply establish a
foundation for further study. Two points, however, are extremely
important:

auto_ptr does not work properly with arrays. For example,

auto_ptr<X> ap(new X[10]);

has been observed to create an array of ten X instances, but only
destroy X[0] when ap goes out of scope. (Officially, the behavior is
undefined.)

The one owner rule of auto_ptr creates fundamental problems with
the idea of a container of auto_ptrs. For example,

List<auto_ptr<Num> >

would be a Bad Idea.

The semantics of auto_ptr were hotly debated during standardization and
not everybody got their way.

Recommendation: A decision about the extent of auto_ptr usage should
be made by a project's technical leadership.

C Sc 328, Fundamentals of C++ Slide 286
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 287
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Run-Time Type Information

The type_info class

The dynamic_cast operator

Other casting operators

C Sc 328, Fundamentals of C++ Slide 288
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Run-time type information (RTTI)

In Java a wealth of information about class types is available during
execution via Object.getClass(), the reflection mechanism, and
constructs such as instanceof.

Type information about C++ objects is available at run-time but it is far
more limited than Java. Additionally, some aspects are implementation
dependent.

C Sc 328, Fundamentals of C++ Slide 289
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

RTTI, continued

A simple class hierarchy:

class Cycle { virtual void f() { } }; // 'virtual' probably required...
class Unicycle: public Cycle { };
class Bicycle: public Cycle { };
class TandemBicycle: public Bicycle { };

A simple usage of RTTI:

void DescribeCycle(Cycle *cp)
{

cout << "It is a '" << typeid(*cp).name() << "'" << endl;
}

Usage:

Unicycle u;
TandemBicycle tb;

DescribeCycle(&u);
DescribeCycle(&tb);

Output: (with g++ 3.3.1; virtual method required)

It is a '8Unicycle'
It is a '13TandemBicycle'

Output: (with Visual C++ 5.0)

It is a 'class Unicycle'
It is a 'class TandemBicycle'

C Sc 328, Fundamentals of C++ Slide 290
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The type_info class

The typeid function returns a reference to a constant type_info object.

The definition of the type_info class is implementation-dependent
but must support comparisons of type_info instances and be able to
produce the name of a type.

An implementation's type_info is defined in the <typeinfo> header. Here
is a representative type_info:

class type_info {
 public:

virtual ~type_info();
int operator==(const type_info&) const;
int operator!=(const type_info&) const;
int before(const type_info&) const;
const char *name() const;

 private:
type_info(const type_info&);
type_info& operator=(const type_info&);

 ...data members not shown...
};

typeid can be applied to non-class types: (SV is the ShowVal macro)

char c;
cout << SV(typeid(c).name()) << SV(typeid(3.4).name())
 << endl << SV(typeid(const char*).name())
 << SV(typeid(10U).name()) << endl;

Output:
typeid(c).name() = c; typeid(3.4).name() = d;
typeid(const char*).name() = PKc; typeid(10U).name() = j;

C Sc 328, Fundamentals of C++ Slide 291
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The type_info class, continued

This routine determines if two Cycles have the same structure by getting
a type_info for each and comparing them:

bool Isomorphic(Cycle& c1, Cycle& c2)
{
 const type_info& t1 = typeid(c1);
 const type_info& t2 = typeid(c2);

 return t1 == t2;
}

Given:

Bicycle b, b2;
Unicycle u;

The expression...

Isomorphic(b, b2) // produces true
Isomorphic(b, u) // produces false
Isomorphic(b, (Bicycle&)u)) // produces false

C Sc 328, Fundamentals of C++ Slide 292
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The dynamic_cast operator

For reference: (Java code)

class Cycle { }
class Unicycle extends Cycle { }
class Bicycle extends Cycle { }
class TandemBicycle extends Bicycle { }

Cycle c = new Cycle();
Cycle u = new Unicycle();
Cycle b = new Bicycle();
Cycle tb = new TandemBicycle();

Java's instanceof operator is used to test whether a value is "assignment
compatible" with a named type. Examples:

b instanceof Cycle is true
u instanceof Bicycle is false
u instanceof Unicycle is true
b instanceof Unicycle is false
tb instanceof Bicycle is true

instanceof can be used to see if a cast will succeed or throw a
ClassCastException.

Example:

Bicycle bike1 = (Bicycle)u; // throws C.C.E.
Bicycle bike2 = (Bicycle)tb; // OK

The C++ counterpart for instanceof is dynamic_cast<T>.

C Sc 328, Fundamentals of C++ Slide 293
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The dynamic_cast operator, continued

The dynamic_cast operator tries to convert a pointer of type Base* to a
pointer of type Derived*, producing zero if the object pointed to is not an
instance of a class derived from Base.

Problem: Given a list of pointers to Cycles how many of them are
Bicycles?

A solution with dynamic_cast:

int CountBikes(Cycle *cycles[])
{

int nbikes = 0;
for (int i = 0; cycles[i] != 0; i++) {

Bicycle *bp =
dynamic_cast<Bicycle*>(cycles[i]);

if (bp != 0)
nbikes++;

}

return nbikes;
}

Invocation:

Cycle c; Unicycle u; Bicycle b, b2; TandemBicycle tb;

Cycle *cycles[] = { &c, &u, &b, &b2, &tb, 0 };
cout << "# of Bikes: " << CountBikes(cycles) << endl;

dynamic_cast is said to provide a typesafe downcast.

C Sc 328, Fundamentals of C++ Slide 294
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

The dynamic_cast operator, continued

As a rule, downcasts are used far more frequently in Java than C++.

Downcasts are commonly used when working with Java classes like
Vector, which work with Objects and have methods that return an
Object, like Vector.elementAt().

Example:

Vector v = loadPoints();

for (int i = 0; i < v.size(); i++) {
 Point p = (Point)v.elementAt(i);
 p.translate(10,20);
 System.out.println(p);
 }

A C++ analog that uses our templated List class:

List<Point> pts = loadPoints();

for (int i = 0; i < pts.length(); i++) {
 Point p = pts[i];
 p.translate(10,20);
 cout << p << endl;
 }

Note that there's no need to cast in the C++ version.

As a rule of thumb, use of dynamic_cast may indicate that C++ facilities
are not being fully utilized.

C Sc 328, Fundamentals of C++ Slide 295
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Other casting operators

There are three other casting operators that are similar in appearance to
dynamic_cast. They are reinterpret_cast, const_cast, and
static_cast.

reinterpret_cast<T>(e) allows any conversion allowed by (T)e.
Example:

long v = 100;
char *p = reinterpret_cast<char *>(v);

const_cast<T>(e) removes the const-ness of the expression e. Example:

const *char p = String("xyz");
char *p2 = const_cast<char*>(p);

static_cast<T>(e) is intended as a replacement for (T)e where e is of
type S and T can be converted to S implicitly. Example:

Cycle *cp = get_a_Bicycle();
Bicycle *bp = static_cast<Bicycle*>(cp);

Note that static_cast does not perform a run-time check of the type as
dynamic_cast does.

C Sc 328, Fundamentals of C++ Slide 296
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

C Sc 328, Fundamentals of C++ Slide 297
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Odds and Ends

Namespaces

Member pointers

Type-safe linkage

Reducing header inclusion

C Sc 328, Fundamentals of C++ Slide 298
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces

Imagine an architectural design application. The developers choose to using a GUI
library from company A and some room modeling software from company B.

The GUI library has a key abstraction called Window that represents a window on
the screen:

class Window { ... };

The room modeling software, a non-graphical set of classes that makes extensive
use of computational geometry, has classes that represent entities found in
buildings:

class Room { ... };

class Door { ... };

class Window { ... };

One day somebody does this:

#include "A.h" // Headers for GUI library
#include "B.h" // Headers for room modeling library

int main()
{
 Window w;
}

Will there be any problems?

C Sc 328, Fundamentals of C++ Slide 299
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces, continued

Both companies have certainly made a reasonable choice when naming their
Window class. We could perhaps persuade one to supply a version that uses a
different name, like a A_Window or attempt some magic with the preprocessor, but
neither option is a good one.

The C++ namespace facility provides a solution for this problem. C++ namespaces
provide an additional level of encapsulation and qualification for identifiers. They
are somewhat like packages in Java.

Example:

// A.h
namespace A {
 class Window { };
 }

// B.h
namespace B {
 class Room { };
 class Door { };
 class Window { };
 }

#include "A.h"
#include "B.h"
int main()
{
 A::Window root;

 B::Window kitchen_sink;
 B::Room kitchen(kitchen_sink);
}

C Sc 328, Fundamentals of C++ Slide 300
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces, continued

Here is some code that will not compile:

#include "A.h"
int f()
{
 Window w; // Error: Window is undefined
}

With clashing classes it's often the case that a given source file uses only one of the
classes predominately.

A using directive tells the compiler to search the cited namespace in order to
resolve a name. This works:

#include "A.h"

using namespace A;

int f()
{
 Window root;
}

A translation unit may contain any number of using directives, and they may
appear anywhere in the file.

The C++ Standard Library is in the namespace std. It is very common to use this
directive,

using namespace std;

to avoid code like this: std::cout << "Hello!" << std::endl;

C Sc 328, Fundamentals of C++ Slide 301
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces, continued

It's reasonable to think of this directive,

using namespace A;

as a rough analog to this Java import:

import com.A_Software.SuperWin.*;

One important difference between C++ namespaces and Java packages is that
package membership plays a role in member accessibility. Namespaces do not carry
a similar implication.

All the names in a namespace don't need to be in a single definition. Namespaces
accumulate names and when an identifier is encountered in a translation unit, the
then-current accumulation is used.

For example, the following series of namespace definitions is completely equivalent
to the all-in-one definition of B used earlier.

// Room.h
namespace B {
 class Room { };
 }
// Door.h
namespace B {
 class Door { };
 }
// Window. h
namespace B {
 class Window { };
 }

C Sc 328, Fundamentals of C++ Slide 302
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces, continued

In some cases a using directive pulls in names that aren't needed and that cause
other conflicts. A using declaration is useful in that case.

Example:

using namespace A;
void f()
{
 using B::Room;
 using B::Door;

 Window w; // Window::A
 Door d; // B::Door
 Room r; // B::Room
}

Door front_door; // Error: Not found
...

A using declaration can be placed at file scope, in which case it's very similar to an
import:

import com.A_Software.SuperWin.Door;

C Sc 328, Fundamentals of C++ Slide 303
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Namespaces, continued

It is possible to create an alias for a namespace. One use of an alias is to make a
long namespace name, perhaps that of a supplier, easier to deal with:

namespace Great_Solutions_Software_Of_North_Dakota {
 class Mosquito { };
 ...
}

namespace gss =
Great_Solutions_Software_Of_North_Dakota;

gss::Mosquito m;

As a whole, the C++ namespace facility is rich, powerful, and complex, but it's not
clear that all developers need a deep understanding of it. Having just one developer
with broad knowledge of namespaces may be sufficient for a project.

Three of the namespace topics not covered here are nested namespaces, unnamed
namespaces, and Koenig lookup.

C Sc 328, Fundamentals of C++ Slide 304
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Member pointers

C++ has the notion of a member pointer that can be used in conjunction with a
class instance to reference a data member or member function.

struct X {
int i, j;
char *p1, *p2;
};

int main()
{

int X::*PIMX;
char *X::*PCPMX;

PIMX = &X::i;
X anX;

anX.*PIMX = 1; // sets anX.i to 1

PIMX = &X::j;
anX.*PIMX = 2; // sets anX.j to 2

X *xp = &anX;
PCPMX = &X::p1;
xp->*PCPMX = "testing";

}

The type of PIMX is "pointer to int data member of X". The type of PCPMX is
"pointer to char * data member of X".

A class instance is not needed to assign a value to a member pointer.

C Sc 328, Fundamentals of C++ Slide 305
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Member pointers, continued

Recall the print() and reset() methods from CounterGroup:

void CounterGroup::print(char *s)
{
 printf("%s", s);
 for (int i = 0; i < itsNumCounters; i++)

 itsCounters[i]->print();
}

void CounterGroup::reset()
{
 for (int i = 0; i < itsNumCounters; i++)

 itsCounters[i]->reset();
}

A better solution using a member pointer to reference a member function of
Counter:

void CounterGroup::doAll(void (Counter::*f)())
{
 for (int i = 0; i < itsNumCounters; i++)

 (itsCounters[i]->*f)();
}

void CounterGroup::print(char *s)
{
 printf("%s", s);
 doAll(&Counter::print);
}

void CounterGroup::reset()
{
 doAll(&Counter::reset);
}

C Sc 328, Fundamentals of C++ Slide 306
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Member pointers, continued

Another example:

class Polygon {
public:

...
double getArea(); { return (this->*AreaFcnP)(); }
enum AreaCalcType {Exact, Approx };
void SetAreaCalc(AreaCalcType);

private:
double ExactArea();
double ApproxArea();
double (Polygon::*AreaFcnP)();
};

void Polygon::SetAreaCalc(AreaCalcType t)
{

if (t == Exact)
AreaFcnP = &Polygon::ExactArea;

else if (t == Approx)
AreaFcnP = &Polygon::ApproxArea;

}
int main()
{

Polygon p;

p.SetAreaCalc(Polygon::Exact);
cout << p.Area() << endl;

p.SetAreaCalc(Polygon::Approx);
cout << p.Area() << endl;

}

The type of Polygon::AreaFcnP is "pointer to Polygon member function with
no parameters and returning a double".

C Sc 328, Fundamentals of C++ Slide 307
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Type-safe linkage

In addition to compile-time checking of type consistency via header file
declarations, C++ provides type-safe linkage. Type-safe linkage ensures a match
between the declared and defined signatures of a function.

Example:

a.cc:

int f(char *, int);

main()
{

f("a test", 10);
}

b.cc:

int f(int, char *)
{

...
}

Compiling and then linking these files together will produce an error citing that the
function int f(char*, int) is undefined.

C Sc 328, Fundamentals of C++ Slide 308
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Type-safe linkage, continued

The scheme used to provide type-safe linkage using current linker technology is
called "name mangling".

The basic idea with name mangling is to transform the name of a function F into a
new name, F', that encodes the types of the arguments.

Examples, with g++:

int FCN() encodes as __Z3FCNv

int FCN(int, int, char) encodes as __Z3FCNiic

int FCN(String, int*) encodes as __Z3FCN6StringPi

double Circle::getArea() encodes as __ZN6Circle7getAreaEv

String::String(char *) encodes as __ZN6Circle7getAreaEv

C functions can be called directly from C++ code, but an extern declaration is
required to avoid name mangling:

extern "C" {
 void some_C_function(int);
 void another_one(char *, int);
 };

void g()
{
 some_C_function(1);
 another_one("x", 1);
}

C Sc 328, Fundamentals of C++ Slide 309
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Type-safe linkage, continued

Wrapping a C++ routine allows it to be called from C. Example:

// rectlib.cc
extern "C" {
double get_area_of_Rectangle(double w, double h)
{
 Rectangle r(w,h);

 return r.getArea();
}
};

A main program in C:

// rtest.c
#include <stdlib.h>
#include <stdio.h>
extern double get_area_of_Rectangle(double w, double h);
int main(int argc, char **argv)
{
 double w = atof(argv[1]);
 double h = atof(argv[2]);

 double a = get_area_of_Rectangle(w, h);

 printf("Area of %g x %g rectangle is %g\n", w, h, a);
}

Build it:

g++ -c rectlib.cc
gcc rtest.c rectlib.o

C Sc 328, Fundamentals of C++ Slide 310
Copyright 1993-2004 by W. H. Mitchell (whm@mse.com)

Reducing header inclusion

Compiling a typical C++ source file requires the inclusion of thousands of
lines of headers. Unnecessary inclusion of header files, especially in other
header files, can greatly increase compilation time.

The declaration of a class B only needs to see the declaration of a class A if B
contains A by value or if it references a member of A.

This class declaration does not need a full declaration of A in order to be
compiled:

class A;
class B {

public:
B(A a);
A f();
void g(A*);
void h(A&);

private:
A* ptrToA;
A& refToA;

};

Any of these additions to B require a full definition of A:

class B {
...
friend int A::x();
int z() { return ptrToA->x(); }
A itsA;
};

If your compiler supports precompiled headers, take time to learn how they
work.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310

