— Rendering Surfaces ~N ~ Visible Surface Determination

O Visible surface determination
O Illumination and shading

e Shade individual images
e Ambient light

e Complex light sources.

O Material properties
O Modeling curved surfaces
) o % Given a 3D scene (set of polygons)
O Improved illumination models
p Viewpoint
O Tezture and bump mappings
F View frustum
O Shadows
Compute the portion of ¥ visible from p within F.
O Transparency and reflections

Perspective view: p is at finite distance.
O Improved camera models
Orthographic view: p is at infinity.

Only viewing direction is relevant.
~ @m0 cartith

Slide 1 Slide 2

CPS124, 296: COMPUTER GRAPHICS VISIBILITY Page 1

~ Occlusion ~ Canonical View Volumes
View volume affects the projectors, which define

[Viewing direction is along the (—z)-axis. occlusion.

Perspective view volume:
[0 Py and P,: Two points in 3D.
Py = (21,91, 21), Pa = (22,92, 22)
[0 Py occludes Py if
Py, Py on the same projector if
e P; and P, lie on the same projector, and

e P; is closer to the center of projection. 0 z1/z = z2/ 2,

v O y/z

e

yz/zz-

Orthographic: Py, P, on the same projector if
[0 If P, and P, are nof on the same projector, U a1 =2,
they do not occlude each other. Oy = .
[J No divisions!
~ wHe— N et~

Slide 3 Slide 4

CPS124, 296: COMPUTER GRAPHICS VISIBILITY Page 2

(- Canonical View Volumes _\

Transform perspective view volume to ortho-
graphic view volume.

(1,1,-1)

(@

~ et —

Slide 5

CPS124, 296: CoMPUTER GRAPHICS

— General Approaches

Image-space approach:

(each pixel 7 € II) {
Find the closest object o pierced by
the projector through 7;

Draw 7 in color of o;

— General Approaches

¥ Set of objects.

II Set of pixels.

Object-space approach:

(each object o € X) {

Find the visible part ¢’ of o

Draw the pixels corresponding to o’
in color of o;

A A
B B A B B

(a) (b) (c) (d)

Slide 7

CPS124, 296: CoMPUTER GRAPHICS

\ e -/

Slide 6

VISIBILITY Page 3

Scan-Line Algorithm
~ & N

Generalize the polygon scan-conversion algorithm
to handle many polygons.
y

[0 Scan from bottom to top.

[1 For each scan line, visit the pixels from left to
right.

[J For each pixel 7 determine the polygon ¢ clos-
est to the viewpoint.

[0 Draw 7 with the color of o.

\ e -

Slide 8

VISIBILITY Page 4

Edge Coherence Scan-Line Algorithm
8 ~ &

Data structures:

[J FEdge table: Same as in polygon scan conver-
sion.

[J Polygon table: Each entry stores

[J Scan line corresponds to a horizontal plane h o Coeflicients of the plane equation.

(parallel to the zz-plane) in 3D. e Shading and color information.

[J Intersection of h and a polygon P is a line seg- O Active edge lists

ment ab.
[Endpoints of ab are intersection points of the Scan line Entries
scan line and the edges of P. e AB, AC
[0 Let ¢1, qa,- .. be the intersection points of pro- B AB, AC, FD, FE
jections of polygon edges and the scan line. v.v+1 AB,DE,CB, FE
b} AB, CB, DE,FE

[J Same polygon is visible between ¢; and g;+1.

N . \. ‘ewg

Slide 9 Slide 10

CPS124, 296: CoMPUTER GRAPHICS VISIBILITY Page 5

Z Buffer Algorithm Z Buffer Algorithm

[J Simple to implement in hardware. A
[J Requires two buffers. ¥
B
Frame buffer F[z,y]: color of pixel (z,y). maE
R
. . . i]
Z buffer Z[z,y]: z-coordinate of the object visi- T o \
ble at pixel (z,). K e
INEEN i/'b“) e
Initially, each element in the Z buffer stores the z- /
value of the fur clipping plane of the view volume.
3: Set of polygons. z
O'GS{ ofofofoJoJofo]o 5[5[5[5[5[5](5] 5[5[5[5[5[5]5]0
ch vixel . . . ¢ olofofofofofofo 5[5(5[5[5]5] 5[5[5[5[5[5[0]0
1X = in pr 0n ofofofofo]o]o]o 5[5]5[5]5] 5[5[5[5[5/00]0
ea pep (x,y) pOJeCtOOU{ ojojofofo|ojofo| *+ [5[5]|5]5 = |5[5]|5[5[0o]oj0|0O
z=z-valueofaatp' olofofofofoo]o [5]5]s] 5[5[5]ofofofo]o
P ! olofofo]ofofo]o [5]5] 5[5[ofolofolo]o
0jojojojojofo0]|0O 5 5|ojo|o|of0 0|0
ZP>Z[$’y]{ @ Lololoololofo]o - ofofofofo]o]o]o
= H s[s]s[s]s[5]5]0 [s]s[s[s[5[s]5 [0
Z[(E,y} “ps 5(s5|5[5[5[5]0]0 [5[5[s5[s[5]5]0]0
3 3 I . 5|5|5|5|5[0f0]0 5|5|5[5|5|0/0]0
wrlteplxel (X7 y’asco]or a‘t p)7 5|5|5|5[0(0|0|o| + = 5|5[(5[/0|0j0|0
} 5|5]5]0]ofofo]o [5[8ooo]o]
5|5|0|0f0f0f0]|0 0J0|0|
5|0j0j0fofof0]|0O 0]0]
}} @ Lololoolololo]o oo
Slide 11 Slide 12

CPS124, 296: CoMPUTER GRAPHICS VISIBILITY Page 6

Z Buffer Algorithm
~ g \

Use polygon scan conversion algorithm to process
the pixels of o.

(g, 97,29

ax+by +cz+d =0

Plane equation of o: Az + By + Cz + D = (.

—D — Az — By
r=—>=
C

D A+l By o A
c ARy TG

2(z+1,y) =

Between scan lines, y increments by 1, so

B
2(z,y +1) = 2(z,y) - ol

Z Buffer Algorithm
~ g \

Disadvantages

[J Uses only the front-most polygon to set pixel
colors.

[J Cannot handle transparent objects.

[0 Aliasing problems: Different polygons may
share the same pixel.

O Roundoff errors
e Perspective view to orthogonal view trans-
formation reduces z precision.

e Polygons with different depths may have
the same 2-value.

e Static objects may swap occlusion as the
camera moves.

\ g~

Slide 13

CPS124, 296: CoMPUTER GRAPHICS

(-Z Buffer in OpenGL
glClear(GL.DEPTH BUFFER BIT);

~

glEnable(GL_DEPTH TEST);

glDepthFunc(GLenum fn);

GL_NEVER GL_ALWAYS
GL_LESS GL_LEQUAL
GL_GREATER GL_GEQUAL
GL_EQUAL GL_NEQUAL

e z-value: Distance between the object and
the viewpoint.

e If z-value of the new fragment satisfies fn,
its z-value is written in the depth buffer.

o Default is GL_LESS.
glDepthMask(mask);

e GL_TRUE: z-buffer in read/write mode.
e GL FALSE: z-buffer in read only mode.

\ e -/

Slide 14

VISIBILITY Page

~

~ Blending ~N

[J Without blending a pixel is overwritten in the
frame buffer (objects are opague).

[J Blending allows to combine the existing color
of a pixel with that of incoming fragment.

[J Blending allows to display transpar-
ent/translucent objects.

[0 A (Alpha) in RGBA mode specifies blending.
glColor4f (R, G, B, A)

[J Smaller values of A denote higher trans-
parency.

Example: glColor4f (1.0, 0.0, 0.0, 0.2)
A = 0: transparent; A = 1: opaque

[Red glass with 80% transparency.

[J Can have Multiple transparent objects.

\ g~

Slide 15

CPS124, 296: CoMPUTER GRAPHICS

\ e -

Slide 16

VISIBILITY Page 8

Source: Incoming fragment.
Value: (R, G;, Bs, As)
Blending factor: (S,,S,, S, Sa)
Destination: Stored pixel.
Value: (R4, Gg, Ba, Ag)

Blending factor: (D,,D,, Dy, D,)

New value of pizel:
DEST

(RS, + RaDy, G.S, + GaD, oo

B, Sy + BiDy, AsS, + AaD,)

glEnable(GL_BLEND)

glBlendFunc(sfactor, dfactor)

Slide 17

CPS124, 296: CoMPUTER GRAPHICS

~ Blending ~N

—~ Blending Factors ~
n

= e i £l =
2 352 3% 23 5 1 <
E S T I R I S
i I R RIS = . |
Yl = < & & T 4 o5 5o Y
fle = 0 o & & 5 < % < = 4
Ll e & I & 0= < 4 = 5 = % =H
fle =2 == L L = L = L < [

Ala a A AARA

~ T T~ T~ T T
Nl ¥ »v» A vn A ©»» ©»1» »n »n »

2= i1 <

22 E EE

o5 5 B o<

o35 = =5

28 8 g

/A9) /A«

g g n » v <« wn
SEEE8ZB8EBE
SAEERERNES

glo 99323523535
a8l &= H O O H (&)

i Z Z 4 Z wn 4
1858855 888¢8 8
e I e I R B B B B B B B
ORI CIE CIE CIR CIE C IR CER CRR C IR C IR O

\ g~

Blending: Examples
Example 1: Combining two images with equal
blending factor.

[J Draw the first image with
sfactor = GL_ONE
dfactor = GL_ZERO

[J Draw the second image with
sfactor = GL_.SRC_ALPHA
dfactor = GL_LONE_MINUS_SRC_ALPHA
As = 0.5

Example 2: Image through a photographic filter
that blocks 20% red light, 60% green light, and
28% blue light.

[J Set destination color

(Ra, G4, By, Ag) = (0.8,0.4,0.72,1.0).

[J Draw the image with
sfactor = GL_DST_COLOR
dfactor = GL_ZERO.

Slide 19

CPS124, 296: CoMPUTER GRAPHICS

\ g~

t

Slide 18

VISIBILITY Page 9

Handling Transparent Objects
(- g P) —_

¥: Scene (set of polygons) consisting of
[J Opaque objects
[J Transparent objects
[J Draw all the opaque objects
e Depth buffer in the normal write mode

[0 glDepthMask(GL_FALSE); (Read only mode)
glEnable(GL_BLEND); (Turn on blending)

[J Draw translucent objects with blending.
e Translucent objects behind an opaque ob-
jects do not have any effect.

e Translucent objects in front of all opaque
objects do not change the z-value.

e Colors are blended.

\ e -

Slide 20

VISIBILITY Page 10

O

O

Blending and Antialiasin
s € T

Pixel 7 is not a point.
z-value is not the same over the entire pixel.

Compute z-values at the center of .

: zanl

Compute all polygons o1, . ..oy visible at .
C;: color of o;.
Assume o;’s sorted by their depth value.

For each polygon, compute the area A; of o;
visible within .

Blend the colors accordingly.

k
C(Tf) = Z CZAI
=1

e

Slide 21

CPS124, 296: CoMPUTER GRAPHICS

Antialiasing and Blendin
s € T

Computing I, and II are expensive!

Use a mask (M) (super sampling) for each
pixel.
(Typical masks size: 4 x 8).

Run the z-buffer algorithm on all the subpixels.

Blend the colors of the subpixels to compute
the color of a pixel.

\

\e
)

.
g

°

.

LKA
AY

O=n
t=1i<k,i++){
Hfront:Hﬂai

_ Area (Hfrunt) .
0=0+ TE O
I=1I \ Hfront
}

e

Slide 23

CPS124, 296: CoMPUTER GRAPHICS

5 48

Slide 22

VISIBILITY

e

Page 11

(- Buffers

00 Frame (color) buffer

[J Depth buffer

0 Accumulation buffer

[0 Stencil buffer

Slide 24

VISIBILITY

e

~ Accumulation Buffer ~N ~ Accumulation Buffer in OpenGL N

[J Analogous to multiple exposures.
[J Sequence of images is generated.

[J Images are accumulated into the accumulation glClearAccum(R, G, B, A);

buffer.
glClear(GL_ACCUM_BUFFER_BIT);

[0 After accumulation the result is copied back to

the frame buffer for viewing. glhccun(op, val);

00 Accumulation buffer has higher precision. Buff: Value of the frame buffer.
GL_LOAD Acc = Buff * val
GL_.ACCUM Acc = Acc + Buff * val
(=Li<pit+){ GLRETURN Buff = Acc * val
Offset the image by i-th subpixel position;

GL_ADD Acc = Acc + val

Draw the shifted image;
Accumulate the color values into the A-buffer; GL.MULT Acc = Acc * val

Antialiasing

}

Divide the color values of each pixel by y;
Draw the normalized image;

~ wEe— N e~

Slide 25 Slide 26
CPS124, 296: COMPUTER GRAPHICS VISIBILITY Page 13
Accumulation Buffer Accumulation Buffer
e) e)
Depth of field
Antialiasing
(i=1,i < ACSIZE, i+ +){ [J Objects lying only on a particular plane are in
glClear(GL COLOR BUFFER BIT | focus in a picture.
GL’PEPTH’BUFFER’BIT); [0 All objects are in focus in a scene drawn by
accPerspective (---); OpenGL.
displayobjects ();
glAccum(GL_ACCUM, 1.0/ACSIZE); [0 Draw the scene repeatedly with slightly differ-
ent values of glFrustum and accumulate the
al f g d 1 h
glAccum(GL_RETURN, 1.0); results.
Motion Blur o Viewpoint is slightly different

e Objects on a particular plane remain focused

[J Offset the image by the motion of objects.
Soft shadows

[Different objects can move at different speed.
[J Draw the shadows from each light source sep-
[J Entire scene can be made dimmer by arately

glAccum(GL_MULT, decay)
00 Accumulate the results.

~ wEe— N e~

Slide 27 Slide 28

CPS124, 296: COMPUTER GRAPHICS VISIBILITY Page 14

Stencil Buffer (-Stencil Buffer
[J Restricts drawing to a certain portion of the
image plane.
E.g.: Drawing a scene through an odd-shaped
window

[0 glStencilFunc (func, ref, mask) o Possible options:
e func: Comparison function to decide
whether a pixel should be drawn.

GL_KEEP GL_ZERO
GL_REPLACE GL.INCR
GL_NEVER GL_ALWAYS GL_DECR GL_INVERT
GL.LESS GL LEQUAL e fail: Function used when the stencil test
GL_GREATER GL_GEQUAL fails
GLEQUAL GLNEQUAL o zfail: Function used when the stencil test
o ref: The value stored in stencil buffer is passes but the depth test fails.
compared with ref using func. o zpass: Function used when both the stencil

e mask: Both ref and stencil-buffer are bitwise
ANDed with mask.

and depth tests pass.

[glStencilOp(fail, zfail, zpass)

e Specifies how the data in the stencil buffer
is updated when a fragment passes or fails
the test.

N~ et~ N~ et~

Slide 29 Slide 30

CPS124, 296: CoMPUTER GRAPHICS VISIBILITY Page 15

