

CPS124, 296: COMPUTER GRAPHICS

LIGHTING

Page 1

Illumination Models -

${\bf Photorealism}$

- ★ Accurate representation of objects.
- ★ Good lighting effects:
 - reflections, transparency
 - shading
 - surface details
 - shadows
- ★ Computing the color/intensity at each pixel.
- **★** Interaction of electromagnetic energy and object surfaces.

Slide 3

Light Sources -★ Light emitting sources ★ Light reflecting sources Slide 4

- ★ Directional sources
- * Point sources
 - Same energy emitted in each direction.
 - Good approximation for small, distant light sources.
- ★ Spot light: Light emitted along a cone.
- **★** Distributed light sources
 - Fluorescent light
 - Intensity varies with direction.

Slide 5

Slide

LIGHTING

Page 3

CPS124, 296: COMPUTER GRAPHICS

Ambient Reflection -

- ★ No spatial & directional characterization.
- ★ Light incident on each object is the same.
- ★ Reflection for each surface is independent of spatial orientation or viewing direction.
- ★ A way of approximating global illumination.
- * Reflection depends on optical properties of the surface.
- $\star I_a$: Intensity of the ambient light.
- ★ k_a: Ambient reflection coefficient.

 $I = I_a \cdot k_a$.

Produces flat shading!

Slide 7

0000

Diffuse Reflection -

Illumination Models -

* Ambient reflection

★ Diffuse reflection

🖈 Specular reflection

(a)

Components of a simple illumination model:

(b)

Slide 6

Lambertian Reflection:

- * Point light source.
- ★ Equal light is reflected in all directions.
- ★ Equally bright from all view directions.
- ★ Light incident to a surface depends on spatial orientation.
- ★ Typical of dull, matte surfaces.
- ★ Determines the color of the object.

Slide 8

Slide 9

Light Source Attenuation

- ★ Intensity reduces with distance.
- $\star f_{att}$: Attenuation factor.

$$I = k_a I_a + f_{att} k_d \cdot I_L(\mathbf{N} \cdot \mathbf{L})$$

- \star Makes surface with equal $k_d(\mathbf{N} \cdot \mathbf{L})$ differ in apperance.
- ★ Important for overlapping objects.

Ideally, $f_{att} = 1/d_L^2$.

- ★ Intensity doesn't vary much for large values of d_L .
- \star Varies a lot for small values of d_L .

In practice,

$$f_{att} = \min \left(1, \frac{1}{k_c + k_1 d_L + k_q d_L^2}\right).$$
 $\star k_c, k_l, k_d$ are constants.

- ★ Taylor series approximation of an arbitrary function.

Slide 10

CPS124, 296: COMPUTER GRAPHICS

LIGHTING

Page 5

Light Source Attenuation -★ For all spheres $I_a = I_L = 1.0$. ★ From left to right: $d_L = 1.0, 1.375, 1.75, 2.125, 2.5.$ ★ Top row: $k_c = k_l = 0.0, k_q = 1.0 (1/d_L^2)$. ★ Middle row: $k_c = k_l = 0.25, k_q = 0.5$. ★ Bottom row: $k_c = k_q = 0.0, k_L = 1.0 (1/d_L)$. 0000

Slide 11

Colored Light Sources —

- ★ Write equations for each basic color (e.g., RGB) separately.
- ★ Object diffuse color: (O_{dR}, O_{dG}, O_{dB}) .

$$I_R = k_{aR} I_{aR} O_{dR} + f_{att} k_{dR} \cdot I_{LR} \cdot O_{dR} (\mathbf{N} \cdot \mathbf{L}).$$

- * Assumes that RGB colors model the interaction of light and objects accurately.
- ★ Not true in general
 - Reflectance and transmittance of light depends on the actual frequency of the color.

Atmospheric attenuations

- ★ Depth cueing
- **★** Fog

Slide 12

Specular Reflection -

- \bigstar Shiny surfaces
- \star Ideal reflector: Only in direction R.
- ★ Non-ideal reflector: Specular reflection in

- ★ Angle of the cone depends on material properties.
- ★ Color also depends on the material.

Slide 14

CPS124, 296: COMPUTER GRAPHICS

LIGHTING

Page 7

- Phong Model —

- ★ Neglects the effect of object color in specular reflection.
- ★ I_{θ} : Light in direction θ .

$$I = I_{\theta} \cos^{n} \phi \quad I_{\theta} = I_{L} \cdot W(\theta) \quad \cos \phi = \mathbf{R} \cdot \mathbf{V}.$$

$$I_{spec} = I_L W(\theta) (\mathbf{R} \cdot \mathbf{V})^n$$

1

 $\cos^{3} \alpha$
 $\cos^{3} \alpha$
 $\cos^{3} \alpha$

Typically, $W(\theta) = k_{s\lambda}$.

$$\begin{split} I_{\lambda} &= k_a I_{a\lambda} O_{d\lambda} + \\ &\qquad f_{att} I_{L\lambda} \left[k_d \cdot O_{d\lambda} (\mathbf{N} \cdot \mathbf{L}) + k_{s\lambda} (\mathbf{R} \cdot \mathbf{V})^n \right] \end{split}$$

Slide 15

Phong Model -

- \star For all spheres $I_1 = I_p = 1.0$,
- ★ From left to right: n = 3.0, 5.0, 10.0, 27.0, 200.0.
- ★ Top row: $k_s = 0.1$.
- ★ Middle row: $k_s = 0.25$.
- ★ Bottom row: $k_s = 0.5$.

Slide 16

Warn Model -

Flaps:

- * Restricts the area of light in world coordinates.
- \bigstar Six flaps: $x_{\min}, x_{\max}, y_{\min}, \ldots$

Slide 18

CPS124, 296: COMPUTER GRAPHICS

Slide 17

LIGHTING

Page 9

Lighting in OpenGL -

- ★ RGB values of lights and materials.
- ★ Positions of light sources.
- ★ Lighting models.
- ★ Need to specify normals.

Lighting in OpenGL —

```
glLight(if) (light, pname, para);
   glLight{if}v (light, pname, para);
light: GL_LIGHT0, GL_LIGHT1,
   ..., GL_LIGHT7
pname: GL_AMBIENT, GL_DIFFUSE,
   GL_SPECULAR, GL_POSITION
GLfloat amb[] = \{0.0, 0.0, 1.0, 1.0\};
GLfloat diffuse[] = \{ 1.0, 1.0, 1.0, 1.0 \};
GLfloat spec[] = \{1.0, 0.0, 1.0, 1.0\};
glLightfv (GL_LIGHT0, GL_AMBIENT, amb);
glLightfv (GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv (GL_LIGHT0, GL_SPECULAR, spec);
glLightfv (GL_LIGHT0, GL_POSITION, pos);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
```

Slide 20

Slide 19

0000

Lighting in OpenGL =

Distance Attenuation:

$$f_{att} = \frac{1}{k_c + k_l d_L + k_q d_L^2}$$

- \star GL_CONST_ATTENUATION = k_c
- \bigstar GL_LINEAR_ATTENUATION = k_l
- \star GL_QUADRATIC_ATTENUATION = k_q

Spot light: V: Viewing direction

 $\max\{\mathbf{V}\cdot\mathbf{D},0\}^p$

- ★ GL_SPOT_DIRECTION = **D**
- \star GL_SPOT_CUTOFF = δ
- \star GL_SPOT_EXPONENT = p

Slide 21

Lighting Models in OpenGL -

glLightModel{if} (pname, para);

glLightModel{if}v (pname, para);

pname:

- ★ GL_LIGHT_MODEL_AMBIENT
 Ambient RGB value of the entire scene .
- $\begin{tabular}{ll} \bigstar & $\operatorname{GL_LIGHT_LOCAL_VIEWER}$ \\ & & \text{Viewer at finite distance or at infinity.} \end{tabular}$
- ★ GL_LIGHT_TWO_SIDE

 Lighting for both front and back faces.

Slide 22

CPS124, 296: COMPUTER GRAPHICS

LIGHTING

Page 11

Material Properties —

```
{\tt glMaterial} \{ if \} \ (face, \, pname, \, para);
```

glMaterial{if}v (face, pname, para);

face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

pname:

- ★ GL_AMBIENT, GL_DIFFUSE,
- ★ GL_AMBIENT_AND_DIFFUSE
- ★ GL_SPECULAR
- ★ GL_SHININESS

glColorMaterial(face, mode);

- ★ mode: GL_AMBIENT, GL_DIFFUSE, ...
- ★ Only one mode is active.
- ★ glColor will set the color.

Slide 23