Representing Solids
(- p g

[J Boundary representation
[J Spatial decomposition
[J Constructive solid geometry

[J Boolean operations on solids

Boundary Representation (b-re
— y Rep ( p)—\

[J Describes an object in terms of its surface
boundaries: vertices, edges, faces.

[J Most common representation in computer
graphics.

[J Suitable for planar, polygonal boundaries.

[J Defining faces for curved
objects is tricky.

[J Most b-reps support only
solids whose boundaries
are 2-manifolds.

(@) (b)
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Polyhedra
S N

[J Bounded by a set of polygons, each edge adja-
cent to even number of faces.
e Adjacent to exactly two faces for 2-
manifolds.

[0 Simple polyhedron: Can be deformed to a ball;
no holes.
e Examples: Cube, tetrahedron, prism, pyra-
mid.

e Torus is not a simple polyhedron.

V=8 V=5 V=
E=12 E=8 E=
F=6 F=5 F=

O Euler’s  formula  for simple polyhedra
V—-E+F=2.

[J Necessary but not sufficient condition for a
simple polyhedron.

\ e -/
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Nonsimple Polyhedra
- ple oy \

Euler formula generalizes to non-simple polyhedra
with 2-manifold boundaries.
V—-E+F-H=2C-QG).

[0 H: # holes in 2D faces

0 G: # holes passing through the polyhedra
(tunnels); called genus

0 C: # connected components

2V A

V-E+F-H=2C-G0)
24 36 15 3 101

\ g~
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Winged Edge Representation Boolean Operations
‘ e )
[ Used to represent simple polyhedra.
[J Expedites certain operations. Complex objects are defined as Boolean formula of
simple objects

e =
V2

[J Each edge e stores
e Two faces fi, fo adjacent to e
e Two endpoints v, vs of e

[1 Intersection
[1 Union

e Two edges incident to v; immediately before U Difference

and after e in clockwise direction
e Two edges incident to vy immediately before
and after e in clockwise direction

¥
Union(A.B) Intersection (A,B)

[J Each vertex v stores pointer to one of the edges

incident to v. The resulting object may have some dangling ver-

[J Each face f stores pointer to one of the edges tices, edges, and faces.

bounding f.
~ ‘ene N~ ‘ene
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Regularized Boolean Operations Spatial Decomposition
e ) ~ ™

[J Divide the space into primitive cells.
Interior (B): Points at distance > 0 from the

complement of B. [J Represent all cells lying in the object.
Boundary (B): Points at distance 0 from both B Spatial occupation enumeration
and the complement of B. [J Divide the space into identical cells arranged in
Closure (B): Interior (B) + Boundary (B). a fixed regular grid structures.
0 3D Analog of 2D images.
Regularize(A) = closure(int(A4)) O Cells are often cubes and are called vozels.
AN*B = closure(int(AA B)). [ Popular representation in volume rendering and

CAT.
[J High storage requirement.

Empty Set
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(- Oct Trees ~N (- Quad Trees ~N

[l Hierarchical representation. [0 Can be reprsented as a 4-way tree.
[J Requires much less space.

{1 Extension of 2D quad tree. [1 Each node v represents a square @,

o If Q, C P, vis black.

Quad tree: e IfQ, NP =0, vis white.
[] Recursively subdivide the plane into four o Otherwise v is gray.
squares by bisecting it in both directions. o Gray nodes are further subdivided.
0 A square is full, empty, partially full. R
00 A partiually full square is further subdivided. o] ]

[J Parttioning continues until a cutoff threshold is

reached.

/ = -

/ — / -

\ (

\ [ ] I~ |
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— Oct Trees ~ — Boolean Operations on Quad Trees ~
[J Oct tree is a similar to quadtrees.
[J Each cube is divided into eight octants.
[J Useful for many operations, e.g., collision de-
tection, ray tracing.
y (®)
! AN AN
> 3
R £ 27 3 A Object S Object T
6| 7|01
° 4|5 (91
X
5
4 5
[J Space requirement is still large. item Sensitive ®
to the position of the object. ~
. . ®
0 Only approximate representation for ‘k
nonorthogonal objects.
Union (S, T) Intersection (S,T)
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Binary Space Partiton (BSP) Trees — Constructive Solid Geometry (CSG) ~
P: Polyhedron; Normal of each face point to exte-
rior of P
[J Simple primitives are combined using regular-

ized Boolean operations
[J Object is stored as a tree with operators at in-

terior nodes
[J Edges of the tree are ordered

[J Spatial decomposition a special case of CSG

[0 Each interior node v is associated with a plane
7, (containing a face of P) and convex poly-

tope Q.
e 7} : outside halfspace bounded by 7.
e 7, : inside halfspace bounded by 7. ﬁ g
[J The left child w of v is associated with Q, N7~
. . . A /_\
O If Q. is monochromatic, w is a leaf.

0 The right child z of v is associated with @, N i g %
+

™.

[J If @, is monochromatic, w is a leaf.

N . \. ‘ewg
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Constructive Solid Geometry (CSG Particle Systems
~ (CS6) ~ ~ N

[0 A collection of points is used to model an ob-
ject
[1 Particles follow physical laws
[J Examples
e Smoke, fire, fog
o Deformable objects: clothes, elastic objects,
rope
o Wayve action, storm
e Scientific visualization

Newtonian Particles

[J Obey Newton’s second law of motion

O f=ma
Opi=|wy | vi=pi=|y
2 2

N . \. ‘ewg
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~ Newtonian Particles ~N ~ Spring Forces ~

[ Independent particles. Position of a particle

does not depend on others, e.g., particles under

gravity [J Adjacent particles are con-

Each time step requires ©(n) time. nected by a spring

U p,a: Two adjacent particles;

[0 Interactive particles. Position of a particle de- d=p—-q
pends on the others, e.g., stars O f: Force on p from g
Each time step requires ©(n?) time. O s: Stationary length of spring (D —-

[0 In  practice  the dynamics of a U k: Spring constant
particle  depnds on  its  neighbors, Hook’s Law:

e.g., clothing simulation, ropes f=—k,(d| - 5)1
) |d|

pi j+
e [J Include damping term in Hook’s law
’.'. [J Depends on the vecloity of p and ¢
d-d)\ d
f=-— (ks dl—s +kd—) —

~ wEe— N
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(- Fractal Models ~N

[J Self similar objects.

[J Repeat the same construction recursively.

VA D i NI T

(@) (b) ©
[ Fractal dimension: Scaling factor at each step.

[J Examples: Julia-Fatou set and Mandelbrot
sets.

[J Fractals are used to model mountains, rocks,
trees, coastlines, ditches, etc.

Fractals: Modeling Peaks
a & )

First used by Fournier, Fussell, and Carpenter in

1982.
1 o ® 1 o © 1

@
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(— Grammar Models ~ (— Grammar Models: Examples _\

Only left branch.

[J Generalization of fractals 0. B
1. A[BJAA[B]
[0 A typical grammar with alphabet 2. AAJA[BJAA[B]JAAAAJA[B]AA[B]]
{Aan[v]v(v)}' AA A
e A is a vertical segment; (,): right branch; ’ﬁf
[,]: left branch. B B ﬁ
e A— AA
o B — A[B]AA[B] B An A la
o B — A[BJAA(B) A T
B A
N A B B A

~ wEe— N e~
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Grammar Models: Examples Grammar Models: Examples
s PES =\ a P\

Apical bud
Node
Both left and right branches Leaf
0. B’ /F Internode
1. A[BJAA(B),
2. AAJA[BJAA(B)]JAAAA(A[BJAA(B)) Axillary bud
Order-3 axis
B
A Order-2 axis
A
~ B
B A

|«——— Order-1 axis

~ wEe— N e~
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