Representing Solids -

- ★ Boundary representation
- ★ Spatial decomposition
- ★ Constructive solid geometry
- ★ Boolean operations on solids

Slide 1

0000

- Boundary Representation (b-rep) -
- ★ Describes an object in terms of its surface boundaries: vertices, edges, faces.
- ★ Most common representation in computer graphics.
- ★ Suitable for planar, polygonal boundaries.
- ★ Defining faces for curved objects is tricky.
- ★ Most b-reps support only solids whose boundaries are 2-manifolds.

Slide 2

CPS124, 296: COMPUTER GRAPHICS

DATA STRUCTURES

Page 1

Polyhedra —

- ★ Bounded by a set of polygons, each edge adjacent to even number of faces.
 - Adjacent to exactly two faces for 2manifolds.
- ★ Simple polyhedron: Can be deformed to a ball; no holes.
 - Examples: Cube, tetrahedron, prism, pyra-
 - Torus is not a simple polyhedron.

- ★ Euler's formula for simple polyhedra V - E + F = 2.
- ★ Necessary but not sufficient condition for a simple polyhedron.

Nonsimple Polyhedra —

Euler formula generalizes to non-simple polyhedra with 2-manifold boundaries.

$$V - E + F - H = 2(C - G).$$

- ★ H: # holes in 2D faces
- ★ G: # holes passing through the polyhedra (tunnels); called genus
- ★ C: # connected components

Slide 4

Winged Edge Representation -

- ★ Used to represent simple polyhedra.
- ★ Expedites certain operations.

- \star Each edge e stores
 - Two faces f_1, f_2 adjacent to e
 - Two endpoints v_1, v_2 of e
 - Two edges incident to v_1 immediately before and after e in clockwise direction
 - Two edges incident to v_2 immediately before and after e in clockwise direction
- \star Each vertex v stores pointer to one of the edges incident to v.
- \star Each face f stores pointer to one of the edges bounding f.

-

Slide 5

CPS124, 296: COMPUTER GRAPHICS

Boolean Operations -

Complex objects are defined as Boolean formula of simple objects

- ★ Intersection
- **★** Union
- **★** Difference

The resulting object may have some dangling vertices, edges, and faces.

Slide 6

DATA STRUCTURES

Page 3

Regularized Boolean Operations -

Interior (B): Points at distance > 0 from the complement of B.

Boundary (B): Points at distance 0 from both B and the complement of B.

Closure (B): Interior (B) + Boundary (B).

 $\frac{\text{Regularize}(A) = \text{closure}(\text{int}(A))}{A\triangle^*B = \text{closure}(\text{int}(A\triangle B))}.$

Slide 7

0000

Spatial Decomposition -

- ★ Divide the space into *primitive* cells.
- * Represent all cells lying in the object.

Spatial occupation enumeration

- ★ Divide the space into identical cells arranged in a fixed regular grid structures.
- ★ 3D Analog of 2D images.
- \bigstar Cells are often cubes and are called voxels.
- \star Popular representation in volume rendering and CAT.
- * High storage requirement.

Slide 8

Oct Trees -

- * Hierarchical representation.
- ★ Requires much less space.
- ★ Extension of 2D quad tree.

Quad tree:

- * Recursively subdivide the plane into four squares by bisecting it in both directions.
- ★ A square is full, empty, partially full.
- ★ A partically full square is further subdivided.
- * Parttioning continues until a cutoff threshold is reached.

Slide 9

Quad Trees -

- ★ Can be represented as a 4-way tree.
- \star Each node v represents a square Q_v
 - If $Q_v \subseteq P$, v is black.
 - If $Q_v \cap P = \emptyset$, v is white.
 - Otherwise v is gray.
 - Gray nodes are further subdivided.

Slide 10

CPS124, 296: COMPUTER GRAPHICS

DATA STRUCTURES

Page 5

Oct Trees -

- ★ Oct tree is a similar to quadtrees.
- ★ Each cube is divided into eight octants.
- ★ Useful for many operations, e.g., collision detection, ray tracing.

- ★ Space requirement is still large. item Sensitive to the position of the object.
- ${\bf approximate}$ ★ Only ${\bf representation}$ for nonorthogonal objects.

Slide 11

Slide 12

Binary Space Partiton (BSP) Trees -

P: Polyhedron; Normal of each face point to exterior of P

- \star Each interior node v is associated with a plane π_v (containing a face of P) and convex polytope Q_v .
 - π_v^+ : outside halfspace bounded by π_v .
 - π_v^- : inside halfspace bounded by π_v .
- \star The left child w of v is associated with $Q_v \cap \pi^-$.
- \star If Q_w is monochromatic, w is a leaf.
- ★ The right child x of v is associated with $Q_v \cap$
- ★ If Q_z is monochromatic, w is a leaf.

Slide 13

CPS124, 296: COMPUTER GRAPHICS

Constructive Solid Geometry (CSG) -

- * Simple primitives are combined using regularized Boolean operations
- ★ Object is stored as a tree with operators at interior nodes
- ★ Edges of the tree are ordered
- ★ Spatial decomposition a special case of CSG

Slide 14

DATA STRUCTURES

Page 7

Constructive Solid Geometry (CSG) -

Slide 15

Particle Systems —

- ★ A collection of points is used to model an ob-
- * Particles follow physical laws
- **★** Examples
 - Smoke, fire, fog
 - Deformable objects: clothes, elastic objects,
 - Wave action, storm
 - Scientific visualization

Newtonian Particles

- ★ Obey Newton's second law of motion
- \star **f** = m**a**

$$\star \mathbf{p}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \quad \mathbf{v}_i = \mathbf{p}_i' = \begin{bmatrix} x_i' \\ y_i' \\ z_i' \end{bmatrix}$$

Slide 16

Newtonian Particles -

★ Independent particles. Position of a particle does not depend on others, e.g., particles under gravity

Each time step requires $\Theta(n)$ time.

- ★ Interactive particles. Position of a particle depends on the others, e.g., stars
 Each time step requires \(\theta(n^2)\) time.
- ★ In practice the dynamics of a particle depnds on its neighbors, e.g., clothing simulation, ropes

Slide 17

Spring Forces -

- ★ Adjacent particles are connected by a spring
- \star **p**, **q**: Two adjacent particles; $\mathbf{d} = \mathbf{p} \mathbf{q}$
- \star **f**: Force on p from q
- ★ s: Stationary length of spring
- $\star k_s$: Spring constant

Hook's Law:

$$\mathbf{f} = -k_s(|\mathbf{d}| - s) \frac{\mathbf{d}}{|\mathbf{d}|}$$

- ★ Include damping term in Hook's law
- \star Depends on the vecloity of p and q
- $\mathbf{d}' = \mathbf{p}' \mathbf{q}'$

$$\mathbf{f} = -\left(k_s(|\mathbf{d}| - s) + k_d \frac{\mathbf{d}' \cdot \mathbf{d}}{|\mathbf{d}|}\right) \frac{\mathbf{d}}{|\mathbf{d}|}$$

Slide 18

Fractals: Modeling Peaks —

CPS124, 296: COMPUTER GRAPHICS

DATA STRUCTURES

Page 9

- Fractal Models -

- ★ Self similar objects.
- * Repeat the same construction recursively.

- \bigstar Fractal dimension: Scaling factor at each step.
- \bigstar Examples: Julia-Fatou set and Mandelbrot sets.

★ Fractals are used to model mountains, rocks, trees, coastlines, ditches, etc.

Slide 19

First used by Fournier, Fussell, and Carpenter in 1982.

Slide 20

CPS124, 296: COMPUTER GRAPHICS

DATA STRUCTURES

Page 11

CPS124, 296: COMPUTER GRAPHICS

DATA STRUCTURES

Page 12