- Achromatic Light -

Attributes:

Luminance: Physical intensity Brightness: Perceived intensity

Intensity Display:

- **★** b: # bits to encode 2^b levels of intensity.
- ★ How should levels be distributed? Black: 0 White: 1
- \star Linear scale: Uniformly distributed $I_k = k/2^b \quad 0 \le k < 2^b$

Intensity Perception:

- * Eyes perceive ratio of intensities.
- ★ Intensity 0.11 is to 0.1, perceptually the same as 0.55 is to 0.5.

Slide 1

Logarithmic Display -

Ideally: Each level should increase the intensity by a constant factor.

 $n=2^b-1$, I_0 : minimum intensity, $I_n=1$.

$$I_1 = rI_0$$
, $I_2 = rI_1 = r^2I_0$, $I_3 = rI_2 = r^3I_0$.

$$I_n = r^n I_0 = 1.0 \Rightarrow r = \left(\frac{1}{I_0}\right)^{1/n}$$

$$I_j = I_0^{1-j/n}.$$

Example:
$$I_0 = 1/128, b = 3, n = 7.$$

$$I = \frac{1}{128}, \frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1.$$
 $\Rightarrow Dynamic \ range: 1/I_0.$

- \bigstar # Intensities: $n = \log_r(1/I_0)$.
- **★** Typical value of r: 1.01.

Slide 2

CPS124, 296: COMPUTER GRAPHICS

COLOR MODELS

Page 1

Typical values —

Display Media	Dynamic range # Intensity	# Intensity
CRT	50 - 200	400 - 350
Photographic prints	100	465
Photographic slides	1000	200
Coated B/W paper	100	465
Coated colored paper	50	400
Newspaper print	10	234

Slide 3

Examples -

Gamma Correction

- ★ V: Input voltage.
- \star N: # electrons in the beam.

$$I = k'N^{\gamma} = kV^{\gamma} \qquad 1.8 \le \gamma \le 2.5.$$

$$V = \left(\frac{I}{k}\right)^{1/\gamma}.$$

How do we determine the voltage for a perceived intensity?

- \star Compute the I_j closest to I. $j = \mathrm{Round}(\log_r \frac{I}{I_0}); \qquad I_j = I_0^{1-j/n}.$
- $\star V_j = \operatorname{Round}((\frac{I_j}{k})^{1/\gamma}).$

Slide 5

Halftone Approximation —

- ★ More intensity levels than allowed by the de-
- ★ Integration of intensity over small areas.
- ★ A small area is printed with black disks.
- \star Black area is proportional to 1-I.
- ★ Newspaper: 60-80 halftones per inch. Magazine: 110-200 halftones per inch.

Example: 2×2 pixel area of bilevel display

- $n \times n$ pixel matrix generates $n^2 + 1$ levels.
 - 3×3 pixel matrix values:

Slide 6

CPS124, 296: COMPUTER GRAPHICS

COLOR MODELS

Page 3

- Halftone Approximation -

Slide 7

0000

Chromatic Light —

Color depends on:

- ★ Physical conditions
 - Material properties.
 - Spectral distribution of incident light.
 - Medium in which light travels.
- ★ Psychophysical conditions
 - Background/surrounding color.
 - Adaption of visual system.

Slide 8

Colorimetry -Dominant wavelength: Hue. Wavelength of the color we see. Excitation purity: Saturation. Ratio of pure light of the dominant wavelength and the white light present in the color. Luminance: Lightness, brightness. Amount of light energy. Energy density Dominant Wavelength 700 Slide 10

Slide 9

CPS124, 296: COMPUTER GRAPHICS

COLOR MODELS

Page 5

Colored Light -

Colored light is distribution of energy over wavelength (400-700 nm)

Color can be specified by

- ★ dominant wavelength,
- * excitation purity,
- ★ luminance.

Many spectral distributions produce the same color.

Slide 11

0000

- Human Visual System -

Retina has four main layers:

- ★ Epithelium
- * Rods and cones
- * Bipolar cells
- ★ Ganglion cells
- ★ Many more rods ($\approx 120M$) than cones ($\approx 6M$).
- * Rods are more sensitive.
- * Rods are responsible for achromatic light.
- ★ Cones detect colors.
- ★ Cones are concentrated near fovea: ≈ 147K cones/mm.

Trichromatic Theory:

- ★ First proposed by Thoms Young, 1801.
- ★ Refined by Herman von Helmhotz, 1861.
- ★ Three types of cones: blue, green, red.
- ★ Explains color blindness.
 - Protanope (red blindness)
 - Deuteranope (green blindness)
 - Tritanope (blue blindness); very rare.

Slide 12

Spectral Response of three types of cones.

Luminous efficiency. Conjecture: Sum of the response of three cones.

Conjecture: Colors can be specified by the positive weighted sum of red, blue, and green!

Slide 13

Commission Internationale de l'Éclairage (CIE),

Some values are negative!

Trichromatic Theory

R, G, B values needed to match the color lumi-

Defined three primary colors: X, Y, Z.

nance for each dominant wavelength.

Slide 14

CPS124, 296: COMPUTER GRAPHICS

COLOR MODELS

Page 7

Trichromatic Theory —

- ★ Y: Same as luminance-efficiency curve.
- \star Each color C is specified as a positive weighted sum of X, Y, Z.

$$C = XX + YY + ZZ.$$

- $\star P(\lambda)$: Spectral distribution of C. $X = k \int P(\lambda) x_{\lambda} d\lambda, \ Y = k \int P(\lambda) y_{\lambda} d\lambda,$ $Z = k \int P(\lambda) z_{\lambda} d\lambda$.
- \star (X, Y, Z) specify a color; called XYZ-space.

Cone specifies all visible colors.

Clipped at the plane

X + Y + Z = 1.

0000

Slide 15

Chromaticity —

Chromaticity:

- ★ depends on dominant wavelength & saturation.
- ★ Independent of luminance.

$$x = \frac{X}{X + Y + Z}, \ y = \frac{Y}{X + Y + Z}, \ z = \frac{Z}{X + Y + Z}.$$

Chromaticity is encoded in the cross-section of the cone with the plane X + Y + Z = 1.

- ★ Interior and boundary contain all visible chromaticities.
- ★ Spectral pure colors lie along the bound-

White light: Center dot C, near x = y = z = 1/3Power distribution that is close to daylight at a correlated temp. 6774K.

Slide 16

CIE Diagram -

Color adding:

- ★ Combination of two colors C_1, C_2 lies on the segment C_1C_2 .

 A is mix of white C and B.
- \star Dominant wavelength of A is B.
- \star Excitation purity of A = |AC|/|BC|.

Slide 17

- CIE Diagram -

Complementary colors:

- ★ Mixing complementary colors C_1, C_2 produces white C.
 - C is the midpoint of the segment C_1C_2 .
- \star D and E are complementary colors.

Non spectral colors:

- ★ Cannot be defined by a dominant wavelength (e.g. F).
- ★ Define dominant wavelength as: Dominant wavelength of its complementary color.
- ★ Excitation purity remains the same. Excitation purity of F: |CF|/|CG|.

- (\$4)

Slide 18

CPS124, 296: COMPUTER GRAPHICS

COLOR MODELS

RGB Model -

* Origin is black.

★ Additive color model.

★ Grays: principal diagonal.

★ Uses Cartesian coordinate system.

Page 9

- Color Gamut -

- \bigstar Mixture of I, J, K produces colors in $\triangle IJK$.
- $\star \triangle IJK$: color gamut of I, J, K.

Short persistence

Long persistence

	\mathbf{R}	G	В	\mathbf{R}	\mathbf{G}	В
x	0.61	0.29	0.15	0.62	0.21	0.15
v	0.35	0.59	0.063	0.33	0.685	0.063

- \star Smaller gamut \Longrightarrow fewer colors.
- ★ Can compare gamuts.

 $\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] = \left[\begin{array}{ccc} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{array}\right] \left[\begin{array}{c} R \\ G \\ B \end{array}\right]$

Slide 20

White = (1, 1, 1) Green = (0, 1, 0) Red = (1, 0, 0) Yellow = (1, 1, 0)

Linear relationship between RGB and XYZ colors.

G11.1 00

- CMY Model -

- * Subtractive primitives.
- ★ Cartesian coordinate system.
- ★ Start with white; color is specified by what is removed.

Example: RGB color printer.

- ★ Cyan ink absorbs red light.
- * Magenta ink absorbs green light.
- * Yellow ink absorbs blue light.

$$\left[\begin{array}{c} C \\ M \\ Y \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] - \left[\begin{array}{c} R \\ G \\ B \end{array}\right]$$

C + M + Y = Black

CMYK Model: Use black ink (K: Carbon)

$$K = \min(C, M, Y).$$

 $C = C - K, M = M - K, Y = Y - K.$

• (\$1

Slide 21

CPS124, 296: COMPUTER GRAPHICS

YIQ Model -

- * Used for TV broadcasting.
- ★ Compatibility with black and white TV.
- ★ Y: Primary color Y; luminance efficiency.
- ★ Y component is used by black and white TV.
- \star Chromaticity is encoded by I and Q.

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{array}{ccccc} & R & G & B \\ x & 0.67 & 0.21 & 0.14 \\ y & 0.33 & 0.71 & 0.09 \end{array}$$

White: $x_w = 0.31$, $y_w = 0.316$, and $Y_w = 100.00$

— (1000)

Slide 22

COLOR MODELS

HSV Model -

Page 11

YIQ Model -

- ★ Human eyes are more sensitive to luminance than to chromaticity.
- \star Assigns more bandwidth to Y
 - 4MHz to Y
 - 1.5 MHz to I
 - ullet 0.6 MHz to Q
- \star Use Y values to disambiguate colors when converting to black and white TV.
- ★ Objects lying in a narrow field of view:
 - Color is not so important.
 - Use only one color(I).

Cyan White Red

gray V < 1, S = 0.

Green

Blue

Yellow

Magenta

Magenta Gree

Cvan

★ Top of hexcone:V = 1; bright colors.

vertical axis:

 $B=240^{\circ}$.

 $\star H$: Angle around the

 $R = 0^{\circ}, G = 120^{\circ},$

Slide 24

★ Complementary colors are 180° apart.

 \star $S \in [0,1]$: Fractional distance from the vertical

 \star Apex: Black (V = 0), white: S = 0, V = 1,

c