HOMEWORK #3 — THE ART CRITIC (PART 2)

In this assignment we will construct an arbitrary 3D world to experiment with a
simple shadowing algorithm. This assignment may be done in teams of two. Due
March 8, 2012 by 11:59PM.

We revisit the art critic analogy. The critic has just walked into a great gallery,
where numerous paintings are hanging on wires from the ceiling. Three colored spot-
lights illuminate the room. Your objective is to construct this gallery from a scene
descriptor file and to apply a simple z-buffer algorithm to determine which pictures
are illuminated by each of the lights (Fig.1). Specifically, you should:

(1) (50 pts) Construct a 3D world from descriptor file: The gallery should be
constructed at program startup from the scene description given in con fig.ini,
which defines the lights, viewpoint, and pictures. You should assume that
there are up to 3 lights, and that each light is monochromatic on either the
Red, Green, or Blue color channel, exclusive. There is exactly one viewpoint
and an arbitrary number of pictures (up to small n) scattered about the room.
The pictures are always orthogonal to the 7 axis.

(a) The format of the scene descriptor file is as follows:

viewpoint pos; posy pos. look, look, look, fov

light channel pos, pos, pos. look, look, look, fov
light channel pos; posy pos. look, look, look, fov
light channel pos; posy pos. look, look, look, fov

picture filel.jpg width height pos, pos, pos.
picture file2.jpg width height pos, pos, pos.

picture filen.jpg width height pos, pos, pos.

where
® pos,, . are reals defining the position of an object in world space
e width, height are reals defining dimensions of a picture
e [0ok, , . are reals defining a view reference point in world space
e fou is a real defining field of view in degrees
e channel is a character (R,G,B) defining the light channel

(b) For your convenience, a # in your scene descriptor file should designate
a comment line. You should be able to add as many of these lines as you
wish, and have your program ignore them.

(c) Render the scene using perspective projection, with Z-buffering enabled
to provide the correct depth occlusion cues.

(d) Allow the viewpoint to be moved interactively. The up and down arrow
keys move the viewpoint forward along the line of sight, parallel to the
X-Z plane. The left and right keys rotate the viewpoint about its "Up"
axis.

(e) As an invariant, let the Y-axis define "Up" in this world, such that the
user’s walk is constrained in the X-7Z plane.

(f) Assume that the pictures are always upright and orthogonal to the Z axis.
You may ignore the existence of the ceiling and floor, as well as the wires
from which the pictures are suspended. A background is welcomed, but
not necessary for full credit.

(g) Mark the location of each spotlight in the 3D world using any convenient
method, e.g. via simple geometric models or block pixels. You should
use lines, cylinders, or cones, emanating from the light source, to indicate
spotlight direction. Set the color of the model equal to the light’s emissive
color. This will simplify your debugging and our grading!

(2) (50 pts) Cast shadows using Z-buffer algorithm: You should determine
which pictures are in shadow with respect to each light source and illuminate
the scene accordingly. Use the simple Z-buffer algorithm discussed in class
to determine visibility; ray casting solutions are not acceptable, as they are
impractically slow for realtime rendering.

(a)

(b)

For simplicity, assume that a picture is either completely in shadow or
completely illuminated by a spotlight [. In particular, a picture is in
shadow for [if and only if no part of that picture is visible from [. This
will allow each picture to be uniformly lit (or unlit) by each light source.
[lluminate each picture using the appropriately colored incident light.
Each spotlight, for which the picture is not in shadow, adds one mono-
chrome color component. For example, if all three lights illuminate the
picture, the incident light is white. If the picture is in shadow to green but
not for red and blue, the incident light is purple. Thus, simply modulate
the color channels of each picture by 0 or 1 on the basis of your shadow
test. If the light for a particular channel does not exist in the scene
descriptor, the modulation value for that color channel is 0 by default.
Lights should be animated to move parallel to the Z axis, so that the
shadows they cast will change dynamically over time. A light’s orien-
tation, i.e. direction, will never change. Let the lights start out in a
stationary state at the position given in the descriptor file. The user can
then choose a light for movement by pressing the letter corresponding to
the light’s color (i.e. "R", "G", or "B"), followed by the "{" or "}" but-
ton to increment its velocity. For the active light, let each "}" key press
add some small, positive stepping dV to the velocity, and, conversely, let
"{" add a negative stepping —dV. Pressing "p" should reset that light’s
velocity to 0 (a stationary position). Be sure to update the light’s graph-
ical representation (see above) as it moves !

(3) Use the power of OpenGL: You may use any and all available functions of
OpenGL, GLU, and GLUT to complete this assignment. In debugging your
shadow algorithm, it’s often good to start by rendering to the screen what
each light actually sees. Texturing in this assignment may be done as in the
"GL" mode of HW2. Note that hardware lighting and materials should not
be needed for this assignment. You may find the following to be useful:

(a)
(b)

()

gluLook At() and gluPerspective() can be used to define the view param-
eters of your spotlights for the shadowing casting algorithm.

The primitive geometry functions of the GLU package, such as gluSphere(),
may be useful for marking light locations and direction vectors. Alterna-
tively, you may draw lights with GL _POINTS and GL_LINES.

Read back the contents of an OpenGL frame buffer into an array using
the function glReadPixels(). The format parameter should be set to
GL_RGB for the color component, or to GL_ DEPTH COMPONENT
for the Z-buffer component.

(d) (at most 8 points bonus) It would be nice to have some keys controlling
parameters. For example change the speed and direction of motions of
the viewpoint/lamps. If you opt to add these options, then hitting the
'h’ key should print a help list of the other keys you have defined. Also
add some details in a 'readme’ file.

(e) (at most 15 points) Rather than treating each picture uniformly as far as
shadows from other pictures are concern, apply a quad-tree like subdivi-
sion of each picture. Alternatively, and less challenging least subdivide
each picture to 5 x 5 smaller pictures and treat each one individually.

