
Applications of Texture Mapping

Prof. Vladlen Koltun
Computer Science Department

Stanford University

Light maps

http://www.irrlicht3d.org

Opacity mapping

http://lectrablog.lectralizard.com/page/2

Specular mapping

Mirrors Lets understand how texture
mapping works

• Mapping a single triangle - use the b-coordinates
and restoring mechanizem

https://www.geogebra.org/m/jamjwsuk

What About cylinders?

• https://www.geogebra.org/m/vckhvb6s

• Map (i, j) ↔ (cos(i), sin(i), j)

Surface of revolution

•
• (later in the syllabus (modeling)

• Idea - calculate the length of the curve

Shadows

Akenine-Moeller and Haines

• Valuable cue of spatial relationships

• Increases realism

Shadows

Mark J. Kilgard

• Valuable cue of spatial relationships

• Increases realism

Shadow mapping

Akenine-Moeller et al., Real-Time Rendering

• First pass: render the scene from the viewpoint of the light, store depth buffer
as texture (shadow map)

• Second pass: project vertices into shadow map and compare depth values

Shadow mapping

Akenine-Moeller et al., Real-Time Rendering

• First pass details: can disable all rendering features that do not affect depth map.

• Second pass details: For each fragment, use the light’s modelview and projection
transforms to obtains (u,v) coordinates in the shadow map and the depth w of
the vertex.

• Compare w with value w’ stored in (u,v) in the shadow map. If w ≤ w’, perform
lighting calculations with this light. Otherwise, do not.

Bias

• Numerical imprecision leads to self-shadowing

• Solution: add a bias . Change comparison from to

• Can use glPolygonOffset

" w  w0 w  w0 + "

Akenine-Moeller et al., Real-Time Rendering

Setting the bias

• Numerical imprecision leads to self-shadowing

• Solution: add a bias . Change comparison from to

• Can use glPolygonOffset

" w  w0 w  w0 + "

Too little Too much Just right

Mark J. Kilgard

Shadow map aliasing

• Insufficient shadow map resolution leads to blocky shadows

• No easy solution. Should not filter depth values: leads to errors at object
boundaries

• Percentage-closer filtering: filter comparison results

Unfiltered Filtered

Bunnell and Pellacini

Other issues

• Additional rendering pass for each shadow-casting light

• Setting the “field of view” of the light. Can use spotlights, or a cube map (six
shadow maps) for a point light.

• For directional lights, use orthographic projection

Reflection mapping

Terminator 2

Reflection mapping

Terminator 2

• Render the scene from a single point inside the reflective object. Store
rendered images as textures.

• Map textures onto object. Determine texture coordinates by reflecting view ray
about the normal.

Cube mapping

• Render the scene six times, through six faces of a cube, with 90-degree field-of-
view for each image.

• Store images in six textures, which represent an omni-directional view of the
environment

Greene, 1986

Cube mapping

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html; TopherTG (Wikipedia)

• To compute texture coordinates, reflect the view vector v about the normal n:

• The highest (in absolute value) coordinate of r identifies which of the six maps
we need. The texture coordinates in this map are obtained by normalizing the
other two coordinates of r.

r = 2(v · n)n� v

Cube mapping

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html

Sphere mapping

• Cube maps require maintaining six texture in memory

• Sphere mapping uses a single viewpoint-specific environment map, updated
every frame

• Map depicts a perfectly reflective sphere viewed orthographically

Greene, 1986

Rough Surfaces

• Relief mapping, Bump Mapping, Parallax Mapping

• Parallax Mapping - far way objects looks smaller,
and appear to move slower, comparing to same-
size nearby objects

Relief mapping

normal mapping relief mapping

Image from Natalya Tatarchuk

Relief mapping

Image from Policarpo et al. (2005)

Relief mapping

Image from Policarpo and Oliveira (2008)

• Trace the eye ray into the bump map. A simple implementation
can rasterize the projection of the ray onto the tangent plane,
stepping along and adjusting the height by a factor
proportional to .

(et, eb)
eh

Note - in a scene with multiple triangles, we do not apter the decision which
triangle is hit

Could be injected into ray-tracing algorithm, or could be use to inject ray tracing
into z-buffer algorithm.

Bump mapping

• Simulates roughness (“bumpiness”) of a surface without adding geometry

• Uses a two-dimensional height field (bump map) to perturb the normal during
per-fragment shading calculations

• Limitation: silhouette is unaffected

• The surface is still smooth - just the normals are modified, so diffused and
specular shading are effected.

GDallimore (Wikimedia Commons)

Bump mapping

• Simulates roughness (“bumpiness”) of a surface without adding geometry

• Uses a two-dimensional height field (bump map) to perturb the normal during
per-fragment shading calculations (but does not effect the geometry)

• Limitation: silhouette is unaffected

Blinn, SIGGRAPH 1978

B = (u, v)

P

N

N0

P0

P0 = P + B(u, v)N

Normal mapping

original wall normal map shaded wall

http://www.blacksmith-studios.dk/projects/downloads/bumpmapping_using_cg.php

• Store the displaced normals directly. Reduces runtime overhead, at the
expense of memory requirements

• (x,y,z) values in the tangent space are stored in the RGB channels. To
compute the normal at a fragment, we simply multiply the (interpolated)
tangent space basis by (x,y,z)

Parallax mapping

Image from Terry Welsh

Can be combined into
Parallax occlusion mapping

Parallax mapping

Image from Terry Welsh

Relief mapping

normal mapping relief mapping

Image from Natalya Tatarchuk

Similar results, different math. Impacts both shading
and outcome image.

Relief mapping

normal mapping relief mapping

Image from Natalya Tatarchuk

1. Similar results to parallel occlusion map.
2. Different math/algorithm
3. Impacts both shading and outcome image.
4. Credit https://developer.nvidia.com/gpugems

Other Buffers

Accumulation buffer

• High-precision image buffer. Can integrate images that are rendered into the
framebuffer. Supports anti-aliasing, motion blur, depth of field, soft shadows, etc.

• 16 bits for each red, green, blue, and alpha component: total of 64 bits per pixel.

• Supports the following operations:

- Clear: set all values to zero.

- Add with weight: Each pixel in the drawing buffer is added to the accumulation buffer
after being multiplied by a floating-point weight that can be positive or negative.

- Return with scale: The contents of the accumulation buffer are returned to the drawing
buffer after being scaled by a positive floating-point constant

• Can integrate up to 256 images without loss of prevision, and even more using
weight less than 1.0

Accumulation buffer

motion blur depth of field soft shadows

Accumulation buffer

motion blur depth of field soft shadows

Haeberli and Akeley, SIGGRAPH 1990

Mipmap
• How accurate should be the images used as

a texture?
• Wasteful if too detailed (depending on

viewer position)
• If multiple copies of image are placed next to

each other, sensitive to aliasing (next slide)
• idea “level of details”

• Antialiasing is only one of the applications of
mipmaps

• To quickly compute averages, store the
texture at multiple resolutions

• For each lookup, estimate the size of the
footprint and index into the mipmap
accordingly

https://en.wikipedia.org/wiki/Mipmap

Problem: Sampling Textures
Can Lead to Aliasing

• Just as we’ve seen with image processing and raytracing
applications, if details are not captured with sufficient
samples we can see noticeable artifacts

• Solution: use a better sampling/reconstruction

Pixel Footprints
• Can vary in size, shape, and orientation relative to the texture

• Problem: Which of the texture pixels show we pick for each image pixel ? (blue or
black)

Answer: neither blue nor black is
correct. We need to average them.

To resolve the aliasing problem: For each rendered image pixel,
we need to average multiple texture pixels.
Their number might be large.

Sampling and Reconstruction
• If footprint is small, need better reconstruction (e.g.

bilinear instead of nearest neighbor)

• If the footprint is large, need to average many samples

