Convolusions and Kernels

- Mean filters sum colors of the pixels in a local neighborhood $N\left(p_{i}\right)$ of pixel p_{i}, and divide the by the total number (averaging)
- Where the $N\left(p_{i}\right)$ is a square, and pixels have same weight, we call these box filter.
- Sometimes we give less weight to pixels farther from p_{i} - tent filter, gaussian filter.

Weighted average

- The weights $w_{1} \ldots w_{k}$ are convex combination. Meaning that they are all positive, and thier sum $w_{1}+w_{2}+\ldots w_{k}=1$. For example, $w_{1}=w_{2}=w_{3}=\frac{1}{3}$
- Important: the source image and target image has same number of pixels.

Kernels

https://www.geogebra.org/m/ta5cwm3a

- Comparison In 1D-2 box kernels, Tent and Gaussian. Note that with tent and gaussians we could also interpolate between the data points (e.g. if needed to increase the resolution of the image)

Kernels

- Convolution employs a rectangular grid of coefficients, (that is, weights) known as a kernel
- Kernels are like a neighborhood mask, they specify which elements of the image are in the neighborhood and their relative weights.
- A kernel is a set of weights that is applied to corresponding input samples that are summed to produce the output sample.
- For smoothing purposes, the sum of weights must be 1 (convex combination).
- Promo: Sometimes some input value are not available (e.g. near boundaries) or we prefer not to be include them - we will have to adjust the kernels weights so the remain convex combination.

$$
\frac{1}{9}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \frac{1}{13}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 5 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \frac{1}{37}\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 2 & 5 & 2 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Low-pass and high-pass filtering

The smoothing operation is always a low pass filter.
Only lower frequencies could pass.
It removes higher frequencies from the input. Input: $y=f(x)$

We convolved the original signa
$\mathrm{f}(\mathrm{x})$ a smoothing kernel H .
For example
$\underline{f(x-1)+f(x)+f(x+1}$

One-dimensional Convolution

- Can be expressed by the following equation, which takes a kerne (sometimes called "filter") H and convolves it with G : (note notation of convolution)

$$
\begin{aligned}
& . \hat{G}[i]=\left({ }^{\text {input image }} \frac{\text { kernel }}{H}\right)[i]=\sum_{j=-1}^{j=+1} G[i-j] \cdot H[j]
\end{aligned}
$$

2-Dimensional Version

- Given an image a and a kernel b with $(2 r+1)^{2}$ values, the convolution of a with b is given below as $a * b$:
$(a \star b)[i, j]=\sum_{i^{\prime}=i-r}^{i+r} \sum_{j^{\prime}=j-r}^{j+r} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]$
- The ($\mathrm{i}-\mathrm{i}$ ') and ($\mathrm{j}-\mathrm{j}$ ') terms can be understood as reflections of the kernel about the central vertical and horizontal axes.
- The kernel weights are multiplied by the corresponding image samples and then summed together.

Convolution Can Also Convert from Discrete to Continuous

- Discrete signal a
- Continuous filter f
- Output a*f defined on positions x as opposed to discrete pixels i

Smoothing Spatial Filters

- Any weighted filter with positive values will smooth in some way, examples:

- Normally, we use integers in the filter, and then divide by the sum (computationally more efficient)
- These are also called blurring or low-pass filters

A Note on Indexing

- Convolution reflects the filter to preserve orientation.
- Correlation does not have this reflection.
- But we often use them interchangeably since most kernels are symmetric!!

Types of Filters: Smoothing

Smoothing Kernels

Gaussians $G(x, y)=\frac{1}{2 \pi \sigma^{2}} \frac{e^{-\left(a^{2}\right)}}{2 z^{2}}$

- Gaussian kernel is parameterized on the standard deviation σ
- Large o's reduce the center peak and spread the information across a larger area
- Smaller o's create a thinner and taller peak
- Gaussians are smooth everywhere.
- Gaussians have infinite support

- >0 everywhere

- But often truncate to 2σ or 3σ

- Volume $=1$ (sum of weights $=1$)
http://en.wikipedia.org/wiki/Gaussian_function

Types of Filters: Sharpening

Smoothing Comparison

(b) 17×17 Box.

(c) 17×17 Gaussian.

Figure 6.10. Smoothing examples.

Another example

Original Image, Imaged convolved

Left: difference (only boundaries are non-black) Right Imaged minus differences convolved

Unsharp Masks

- Sharpening is often called "unsharp mask" because photographers used to sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement

- The parameter $\boldsymbol{\alpha}$ controls how much of the source image is passed through to the sharpened image.

(a) Source image.

(b) $\alpha=.5$.

(c) $\alpha=2.0$.

Higure 6.20. Image sharpening.

Edges

(a)

(c)

[^0]
Defining Edges

- Sharpening uses negative weights to enhance regions where the image is changing rapidly
- These rapid transitions between light and dark regions are called edges
- Smoothing reduces the strength of edges, sharpening strengthens them.
- Also called high-pass filters
- Idea: smoothing filters are weighted averages, or integrals. Sharpening filters are weighted differences, or derivatives!

(Review?) Derivatives via Finite Differences

- We can approximate the derivative with a kernel w:
$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+h, y)-f(x-h, y)}{2 h} \approx \frac{f(x+1, y)-f(x-1, y)}{2}$

$\frac{\partial f}{\partial x} \approx w_{d x} \circ f \quad w_{d x}=$| $-\frac{1}{2}$ | 0 | $\frac{1}{2}$ |
| :--- | :--- | :--- |

$\frac{\partial f}{\partial y} \approx w_{d y} \circ f \quad w_{d y}=$| $-\frac{1}{2}$ |
| :---: |
| 0 |
| $\frac{1}{2}$ |

Figure 6.14. Numeric example of an image gradient.

Gradients with Finite Differences

- These partial derivatives approximate the image gradient, ∇I.
- Gradients are the unique direction where the image is changing the most rapidly, like a slope in high dimensions
- We can separate them into components kernels $G_{x}, G_{y} . \nabla I=\left(G_{x}, G_{y}\right)$
$\nabla I(x, y)=\binom{\delta I(x, y) / \delta x}{\delta I(x, y) / \delta y}$
$G_{x}=[1,0,-1] \quad G_{y}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] ;$
$\nabla I=\binom{\delta I / \delta x}{\delta I / \delta y} \simeq\binom{I \otimes G_{x}}{I \otimes G_{y}}$

Figure 6.12. Image gradient (partial)

Gradients G_{x}, G_{y}

Second Derivatives (Sharpening, almost)

- Partial derivatives in x and y lead to two kernels:

$$
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y)
$$

and, similarly, in the y-direction we have

$$
\frac{\partial^{2} f}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y)
$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

Back to smoothing (aka mean filter, averaging...)
Problem: It blurs boundaries between region $\xrightarrow{\mathrm{sig}=1.37}$

Lets simplify (for box filter)

- Define $g(i, j)= \begin{cases}1 & \text { if }|f(i)-f(j)| \leq 10 \\ 0 & \text { othewise }(\end{cases}$
. Instead of $s(i)=\sum_{j \in \mathrm{nbr} \text { of } i} f(j) w[i-j]$

- Define
- $s(i)=\sum_{j \in \text { nbr of } i} f(j) w^{\prime}[i-j] g(i, j)$
- where
- $w^{\prime}[i-j]=w[i-j] / \sum_{j \in \operatorname{nbr} \text { of } i} w[i-j] g(i, j)$

How to smooth if some value are unwanted /unavailable

- $s(i)=\sum_{j \in \text { nbr of } i} w[i-j] \cdot f(j) \quad$ and $\sum w_{j}=1 \quad w_{j} \geq 0$
- First attempt: Define a useful neighbors.
- j only if if is near i, and its intensity is close to intensity at i. For example, include $j \in N(i)$ only if $|f(j)-f(j)| \leq 10$:
- $s(i)=\sum_{\substack{j \in \text { nbr of } i \\ \mathrm{j} \text { useful nbr }}} w[i-j] \cdot f[j]$
- Problem: The sum of weights is much smaller than 1.

$$
\text { Idea: Define } w^{\prime}[i-j]=w[i-j] / \sum_{\substack{j \in \text { nbr of } i \\ \mathrm{j} \text { useful nbr }}} w[i-j] \text {. }
$$

$$
\text { - } s(i)=\sum_{\substack{j \in \text { nbr of } i \\ \mathrm{f}(\mathrm{j}) \text { useful }}} w^{\prime}[i-j] \cdot f[j]
$$

This will lead us to bilateral filters
This trick with normalizing the wights is very useful if the number of terms is the summation is not fixed (for example, near boundaries) or when sliding a window

Boundaries

Handling Image Boundaries

- What should be done if the kernel falls off of the boundary of the source image as shown in the illustrations below?

(a) Kernel at $I(0,0)$.

(b) Kernel larger than the source.

Figure 6.4. Illustration of the edge handling problem.

Handling Image Boundaries

- When pixels are near the edge of the image, neighborhoods become tricky to define
- Choices:

1. Shrink the output image (ignore pixels near the boundary)
2. Expanding the input image (padding to create values near the boundary which are "meaningful")
3. Shrink the kernel (skip values that are outside the boundary, and reweigh accordingly)

Boundary Padding

- When one pads, they pretend the image is large and either produce a constant (e.g. zero), or use circular / reflected indexing to tile the image:

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.

[^0]: Figure 6.11. (a) A grayscale image with two edges, (b) row profile, and (c) first derivative.

