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Computer Graphics

Lecture 05
Color and Perception

Recall: Light is Electromagnetic
Radiation
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Recall: Color = Wavelength

« But rather, an integral over the wavelengths of the energy
encoded of some power spectrum
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Color and Perception

Recall: We have three types of
cones (Short, Medium, and Long)
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Colin Ware, Information Visualization: Perception for Design
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Trichromacy

* QOur 3 cones cover the visible spectrum (theoretically, all
we might are 2 though)

* Most birds, some fish, reptiles, and insects have 4, some
as many as 12 (e.g. the mantis shrimp)

« This is a “reason” why many of our acquisition devices
and displays use 3 channels, and why many of our color
spaces are three dimensional
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Key Idea:
Perception of color
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Ultimately, color is a perceptual phenomenon, we all perceive it differently

Color Models




Color Terminology

¢ Color Model
¢ Is an abstract mathematical system for representing color.
¢ Is often 3-dimensional, but not necessarily.

¢ Is typically limited in the range of colors they can represent and
hence often can’t represent all colors in the visible spectrum

* Gamut or Color Space

e The range of colors that are covered by a color model.

Edward H. Adelson

Simultaneous Contrast

Simultaneous Contrast

Light Mixing

« Additive mix of colored lights (start
with black)

Red

¢ Add up wavelengths of light to
make new colors

Primary: RGB

Secondary:
CMY (cyan, magenta yellow)

Neutral=R+ G +B

Commonly used by monitors,
projectors, etc.

I n k M iXi n gmr than a black screen

Different game, since we start with white page
Each color filters the light that is reflected from the white page.

Yellow * Subtractive mix of transparent inks

* Start with white and other wavelengths
are selectively filtered.

* The Yellow region does not completely
prevent reflection of light from the white
page. But it TENDS (depending on
transparency) to filter others frequencies)

Primary: CMY (Cyan, Magenta, Yellow)

Secondary: RGB

~Black: C+ M +Y

In practice, we use CMYK, with some
amount K of black ink, to get true black

Cyan Magenta




Converting from RGB to CMY

* Assuming RGB values are normalized (all channels
between [0,1]), the exact same color in CMY space can
be found by inverting:

C 1-R
M |=|1-G
Y

Color Spaces

gamma-Correction

Individual respond from the display (monitor) to every value of GrayScale

Lets normalize the intensity by using float in [0,1] instead of 255 values of RGB
such that

0 = black, and 1=white

A pixel with input intensity 0.5 might look very different in different devices.
Furthermore, the individual response is always monotonic but usually not linear.
On top of it, viewer/illumination/other environmental factor

So is there a subjective definition of what is gray (middle between white and black) ? .
Gamma-Correction. We will assume approximately that if the input is « then

displayed intensity = (maximum intensity)a”. |

® . here is the input intensity to the monitor (between 0 to 1)

® yis a constant the user could change,

® |f no gamma-correction is needed, then the left and right should look
the same (when viewed from a distance)

@ Change « continuously to the right region, until the output a” looks like
the left region.

® If this happens for some value a of input intensity, we deduce that Chessboard of Uniform region with grey

i pixels, all get input of 0.5
o a’=0.5, ory = (In0.5)/(Ina) black/uiite  Hoetore conection.
® Now every new image, with intensity « ', will be displayed using intensity
@V

RGB Color Space

* Additive, useful for computer monitors
* Not perceptually uniform

* For example, more “greens” than “yellows”

o

Converting from CMY to CMYK
(less relevant to us)

* Assuming CMY values are normalized (all channels
between [0,1]), the exact same color in CMYK is

N (0,0,0,1) if min(C’, M',Y") = 1,
(CMY K) = {(C,_K MK Y'-K [} otherwise where K = min(C’, M',Y")
I-K * 1=K > 1=K’ : = oy M
(3.2)

* Kis a measure of the ‘blackness’ of the color and
essentially serves as an offset after which the remaining
amounts of cyan, magenta and yellow are ‘added’

HSL, HSV Color Space

* Hue - what people think
of as color (color,
normalized by ,-

sensitivity) -
Lati
Saturation - purity, Vw

distance from grey

SSSue
o

* Also called Chroma

Lightness - from dark to
light (how many
photons, alternatively,

add more sources of i
light) Hue wheel (cre i)
(not a single fre

* Also Brightness or
Value




Conversion from RGB to HSB

¢ Assuming RGB values are normalized (all channels between
[0,1]), the exact same color in HSB space can be found by first
figuring out which channel (R,G, or B) has the max intensity

undefined if max = min,
ifmax =R and G > B,
H= ifmax =R and G < B,
ifmax =G, Note: this method
ifmax = B. (3.3)| returnsHasa
value between 0°
0 if max =0, and 360°
S =
1— % otherwise
B = max. // ‘B’ for “brightness”. Not ‘B’ for “blue”

Encoding Color Images

¢ Could encode 256 colors with a single unsigned byte.
But what convention to use?

* One of the most common is to use 3 channels or bands

* Red-Green-Blue or RGB color is the most common --
based on how color is represented by lights.

¢ Coincidentally, this just happens to be related to how our
eyes work too.

NOTE : There are many schemes to represent color, most
use 3 channels, but the same idea extends to >3 channels

CSC 433/533
Computer Graphics

Anti-Aliasing and
Signal Processing
Sampling, Smoothing and Convolutions

Recall:
Images are Functions

Domains and Ranges

¢ All functions have two components, the domain and
range. For the case of images, : R = V

e The domain is:

* R, is some rectangular area (R ¢ R?)
* Therange is:

* A set of possible values.

e ...in the space of color values we’re encoding

Concept for the Day:
Pixels are Samples of
Image Functions




Image Samples

o Each pixel is a sample of what?

* One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

* The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

« Key Idea: An image represents data in either (both?) of

¢ Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

* Discrete domain, where intensity is defined only at a
discretely sampled set of points.

¢ This seem like a philosophical discussions without clear practical
applications. Surprisingly, it has very concrete algorithmic
applications.

Converting Between Image Domains

* When an image is acquired,
an image is sampled from
some continuous domain
to a discrete domain.

Acquisition o
Digital Image

Reconstruction

* Reconstruction converts
digital back to continuous.

Sampling/Quantizing

Destination

* The reCOﬂStrUCted Image Continous Domain Discrete Domain
can then be resampled
and quantized back to the
discrete domain.

Figure 7.7. Resampling.

Naive Image
//scale factor .
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; row++) {
for (let col = 0; col < W; col++) {

let index = row*W + col;
let index2 = (k*row)*W + (k*col);

output[index2] = input[index];

..




What’s the Problem?

* The output image has gaps!
* Why: we skip a many of the pixels in the output.

* Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor Nalve Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; row++) {
for (let col = 0; col < W; col++) {
let index = row*W + col;
let index2 = (k*row)*W + (k*col);
output[index2] = input[index];

“Inverse” Image
//scale factor .
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.
for (let row = 0, row < k*H; r
for (let col = 0; col < k*W; col++) {
let index = (row/k)*W + (col/k);
let index2 = row*k*W + col;

output[index2] = input[index];

Inverse Image Rescaling

i
® Not great, but could become worse

400x400 image

100x100 image

What’s the Problem?

* The output image is too “blocky”

+ Why: because our image reconstruction rounds the index
to the nearest integer pixel coordinates

* Rounding to the “nearest” is why this type of
interpolation is called nearest neighbor interpolation

Sampling Artifacts /
Aliasing




Motivation: Digital Audio

¢ Acquisition of images takes a continuous object and converts

Undersampling Artifacts

this signal to something digital "N .". .". /M e e
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* The sampling frequency must be double the highest
frequency of the content.

¢ If there are any higher frequencies in the data, or the
sampling rate is too low, aliasing, happens

* Named this because the discrete signal “pretends” to
be something lower frequency

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?
o What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?
o What signals can be reconstructed without loss
for a given sampling rate?




S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?
o What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?
o What signals can be reconstructed without loss
for a given sampling rate?

Aliasing in images

Two outcomes of under-sampling

1) Moire Pattern
2) Rasterization

Moire Patterns

Aliasing for edges

v A

Without antialiasing With antialiasing

Each pixel is effected by nearby pixels
For example, even though the input image image is black/white,
We allow grey values for output pixels.

Convolution

Each pixel is effected by nearby pixels
For example, even though the image is black/white,
We allow grey values




Neighborhood Filtering (Schematic)

f(Nj)=average color in this region (neighborhood)=

(12x8) (12x8) 255+ (12x38)
9 7 9 9

) ~(10,10,39)
neighborhood

J

P N |

A *

original image filtered image

* Said another way, we rep| pixel as a linear

An Example: Mean Filtering

« Mean filters sum all of the pixels in a local neighborhood Niand divide by the total number, computing the average pixel.

of its neighbors (with equal weights!)

« Tofind the new color of a pixel j, we will look at N, defined as the (say) 3 X 3 neighborhood of the pixel p;, and set

* Where the N;is a square, we call these box filters

* Think about it as a weighted average:

1
SNy = M WG = M Le
pixels , in the region »; pixels 5, in the region x,
1
+ The weights w, ... are convex combination. Meaning that they are all positive, and w, + w, + ...w, = 1. For example, w; = w, = w; = 3

(convex combination)

* Remember: The input matrix and the output matrix have the same size (in this case). This is not rescaling.
* Refer to the geogebra app hitps://www.geogebra.org/m/cetovwaw

« The term fitter is very common, but might be very confusing. We don’t necessarily filter out anything.

he matrix of weights is
called a Kernel

11
w1 1 1
11

Convolution

* This process of adding up pixels multiplied by various weights is called
convolution. We denote the result by (confusion warning) the symbol *
See example below.

new pixel color = 30/16

neighborhood N; of i /—\

] ,/ N
1116 2 i Ne
1 182
3[1]2
kernel H >

original image G filtered image G*H

Kernels

« Convolution employs a rectangular grid of coefficients, (that
is, weights) known as a kernel

* Kernels are like a neighborhood mask, they specify which
elements of the image are in the neighborhood and their
relative weights.

« Akernel is a set of weights that is applied to corresponding
input samples that are summed to produce the output
sample.

¢ For smoothing purposes, the sum of weights must be 1
(convex combination)

1
1(111) ‘(iéi) Al
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One-dimensional Convolution

* Can be expressed by the following equation, which takes a filter H and
convolves it with G:

Gli] = (G = H)[i] = Z GljlH[i —j], i € [0,N —1]

¢ Equivalent to sliding a window

1 0 -1

.
o SPEFERER enpd T
_-_1_ 01 2 3 7 01 2 3 4 5 6

4 5 6 7

Input A Output

reflection reflection

Low-pass and high-pass filtering

The smoothing operation is always a low pass filter.
Only lower frequencies could pass.
It removes higher frequencies from the input.

Input: y = f(x)

We convolved the original signal
original signal y f(x) a smoothing kernel H.
For example

0 1 20 % 40 s 6 70 8 9 100
Low Pass filter. Signal y after with gaussian

The output of the smoothing operation
)=f)*H

e need to move a lot (in ) to notice a large

New idea: High-pass filter.
h(x) ()
Only high frequencies pass
(shown: Original signal (blue) and the result of the high pass filter (rec))

We remove (subtract) from the signal all lower frequencies

Twitter - could move very
fast, but only small distances

Woofer - moves slowly but
cold cover large distances

Low pass and hight pass filters - another example-

original signal y /\
6 000e | /
4
2
0 o
20 3 4 s0 6 70 8 9 100

Low Pass filter. Signal y after with gaussian

We convolved the
4 - . .
original signal y with
2 this gaussian
o .
o 10 2 3 4 s 6 70 8 % 100
High Pass Filter: y-conv(y,w)
6
4
. | J ‘
. J [
) 10 20 %0 40 s 6 70 8 9 100

Ci ion is a Moving, Wei Average

« Getting used to the new notation:

b[l]:%(u[r—1]+a[t]+a[t+|]) Vi [ [
4

« is similar to writing b = a % w, where

bli] = (a % w)lil = 2a[[—j+2] - w[jland
=1

wiilwizl=w@i1s

Jeitr
. Commonly (a * w)li] = Z aljwli—j1
==
. . .
.
« For example, w[-1]=w[0]=w[1]=1/3 °
* Note that we did not define exactly what are the first
and last values { W {

2-Dimensional Version

¢ Given an image a and a kernel b with (2r+1)2 values, the
convolution of a with b is given below as a*b:

i+r  jt+r
(@ % D)= Y > a[t,f]bli—¢,j— ]
i =i—r j’=j—r

¢ The (i-i") and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

* The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing

« Convolution reflects the filter to preserve orientation.
* Correlation does not have this reflection.

* But we often use them interchangeably since most kernels are symmetric!!

Convolution reflects 1 973
and shifts the kernel Given kernelH=4 5 ¢
789
:E)Lg_ﬂ 00000 0OODOODODOODOO O0O0O0OODO
16 5 4: 0O0000DO0OO0OD OCDOODOODOOOO 01230
I3 2 1_1I 000000 OCOOOOOOOO 04560
0O000O0O0O0OO0O©O0 000123000 0 7 9 0
) OO 0O1T O0O0OO0O0 000456000 00000
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Convolution Can Also Convert
from Discrete to Continuous

o et il

« Discrete signal a
* Continuous filter f

o Output a*f defined ‘
on positions x as P . . y* : .
opposed to T .
discrete pixels i

I_z+rJ
(a % N)= > alilf(z—1)
i=|_z—r]

Filtering helps to reconstruct
the signal better when rescaling

Reconstructed w/ Discrete-to-Continuous

Inverse Rescaling

Types of Filters:
Smoothing

Smoothing Spatial Filters

* Any weighted filter with positive values will smooth in some way, examples:

o=
=

* Normally, we use integers in the filter, and then divide by the sum
(computationally more efficient)

* These are also called blurring or low-pass filters

Smoothing Kernels

G(I7 y) =

T 2702

f(x,y) = —a-max(|z|, [y])

(2) Pyramid. (b) Cone.

flay) = —0- VT

(0) Gaussian.

1121321 00100 147|411

214|642 0(2(22]|0 416 | 28 | 16 | 4

3169613 112|521 71284928 |7

24642 0[2(2]2]|0 4116 | 28 | 16 | 4

1121321 00100 1147 |41
(a) Pyramid. (b) Cone. (c) Gaussian.

Table 6.1. Discretized kernels.

—<z2§y2>

20




Box Filter

te this brown strip

Gaussian Filter

e brown strip

Gaussians ¢,y - -

2102

Gaussian kernel is parameterized on the
standard deviation o

Large o’s reduce the center peak and spread
the information across a larger area

Smaller o’s create a thinner and taller peak
Gaussians are smooth everywhere.
Gaussians have infinite support

* >0 everywhere
But often truncate to 20 or 3o

Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

e

—(z24+42)

202

Smoothing Comparison

(a) Source image. (b) 17 x 17 Box. (c) 17 x 17 Gaussian.

Figure 6.10. Smoothing examples.

Types of Filters:
Sharpening

Sharpening (Idea)

blurred

High pass

Sharpened
image




Another example

Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Unsharp Masks

¢ Sharpening is often called “unsharp mask” because
photographers used to sandwich a negative with a blurry
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement

« The parameter a controls how much of the source image
is passed through to the sharpened image.

(a) Source image. (b)a=.5.

Figure 6.20. Image sharpening.

Defining Edges
* Sharpening uses negative weights to enhance regions where
the image is changing rapidly

» These rapid transitions between light and dark regions are
called edges

* Smoothing reduces the strength of edges, sharpening
strengthens them.

¢ Also called high-pass filters

« |dea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

Edges

(@)

250
10
200
« 5
150 E
8 0
100
-5
50
-10
0
0 50 100 150 200 0 50 100 150 200

Column Index Column Index

®) ©

Sample Value
Derivative

Figure 6.11. (a) A grayscale image with two edges, (b) row profile, and (c) first derivative.

Taking Derivatives with Convolution
(just in case you studied calculus. Not required)

a 1
Ef(xvy) ~Ef(x+ H—fx+1)




Gradients with Finite Differences

(just in case you studied calculus. Not required)
o These partial derivatives approximate the image gradient, V/.

« Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

* We can separate them into components kernels Gx, Gy. V/ = (Gx, Gy)

Gy =[1,0,-1 G, =

vi=( i )=

Figure 6.12. Image gradient (partial).

128 | 187 | 210

(a) Source Image. (b)61/6z. (c) 81 /5y.

210

(e) Gradient.

(d) Center sample gradient. (f) Magnitude of gradient.

Figure 6.14. Numeric example of an image gradient.

Gradients Gx, Gy

|G

|G = J(Gx2 + Gy?)

Second Derivatives
(Sharpening, almost)
¢ Partial derivatives in x and y lead to two kernels:

T — fx+ 1,9) + fx — 1,3) = 25, 9)

ax

and, similarly. in the y-direction we have

P
p ]j =flxy+ D)+ flxey —1) = 2f(x.y)
ay”
0 1 0 1 1 1 Compare with 1 1 1
Sharpening filter:
unbalanced counts!
1 -4 1 1 =8 1 1 9 1

—a —a -
—a (9+8a) —a
—a —a —a 1 1 1

Boundaries

Handling Image Boundaries

* What should be done if the kernel falls off of the boundary
of the source image as shown in the illustrations below?

(a) Kernel at 7(0,0). (b) Kernel larger than the source.

Figure 6.4. Illustration of the edge handling problem.




Handling Image Boundaries

* When pixels are near the edge of the image, neighborhoods
become tricky to define

« Choices:

1. Shrink the output image (ignore pixels near the
boundary)

2. Expanding the input image (padding to create values
near the boundary which are “meaningful”)

3. Shrink the kernel (skip values that are outside the
boundary, and reweigh accordingly)

Boundary Padding

* When one pads, they pretend the image is large and
either produce a constant (e.g. zero), or use circular /
reflected indexing to tile the image:

(@) (b) (©

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.




