
CSC 433/533
Computer Graphics

Lecture 05
Color and Perception

Recall: Light is Electromagnetic
Radiation

• Visible spectrum is
“tiny”

• Wavelength range:
380-740 nm

Recall: Color != Wavelength
• But rather, an integral over the wavelengths of the energy

encoded of some power spectrum

Color and Perception

Recall: We have three types of
cones (Short, Medium, and Long)

space. In this chapter, a number of color spaces, designed for different purposes, are
discussed. Complex transformations are sometimes required to convert from one color
space to another, but they are all three dimensional, and this three-dimensionality
derives ultimately from the three cone types. This is the reason why there are three dif-
ferent colors of liquid crystal in a television screen—red, green, and blue—and this is
the reason why we learn in school that there are three primary paint colors—red, yel-
low, and blue. It is also the reason why printers have a minimum of three colored inks
for color printing—cyan, magenta, and yellow. Engineers should be grateful that
humans have only three color receptors. Some birds, such as chickens, have as many
as 12 different kinds of color-sensitive cells. A television set for chickens would require
12 types of differently colored pixels!

Figure 4.2 shows the human cone sensitivity functions. The plots show how light of
different wavelengths is absorbed by the three different receptor types (S, M, L). It is
evident that two of the functions, L and M, which peak at 540 nanometers and 580
nanometers, respectively, overlap considerably; the third, S, is much more distinct,
with peak sensitivity at 450 nanometers. The short-wavelength S receptor absorbs light
in the blue part of the spectrum and is much less sensitive, which is another reason
(besides chromatic aberration, discussed in Chapter 2) why we should not show
detailed information such as text in pure blue on a black background.

Because only three different receptor types are involved in color vision, it is possible to
match a particular patch of colored light with a mixture of just three colored lights,
usually called primaries. It does not matter that the target patch may have a completely
different spectral composition. The only thing that matters is that the matching pri-
maries are balanced to produce the same response from the cone receptors as the

400

0.2

0.4

R
el

at
iv

e
ab

so
rb

an
ce

0.6

0.8

1.0

500
Wavelength (nanometers)

S

M

L

600 700

Figure 4.2 Cone sensitivity functions. The colors are only rough approximations to
spectrum hues. Abbreviations: S, short-wavelength cone sensitivity; M, medium-
wavelength cone sensitivity; L, long-wavelength cone sensitivity.

Trichromacy Theory 97

Colin Ware, Information Visualization: Perception for Design

Hunters Gatherers

Trichromacy

• Our 3 cones cover the visible spectrum (theoretically, all
we might are 2 though)

• Most birds, some fish, reptiles, and insects have 4, some
as many as 12 (e.g. the mantis shrimp)

• This is a “reason” why many of our acquisition devices
and displays use 3 channels, and why many of our color
spaces are three dimensional

Mantis Shrimp

16 Photoreceptors, 12 for color sensitivity!

Key Idea:
Perception of color

Ultimately, color is a perceptual phenomenon, we all perceive it differently

Color Models

Color Terminology
• Color Model

• Is an abstract mathematical system for representing color.

• Is often 3-dimensional, but not necessarily.

• Is typically limited in the range of colors they can represent and
hence often can’t represent all colors in the visible spectrum

• Gamut or Color Space

• The range of colors that are covered by a color model.

Simultaneous Contrast

18http://persci.mit.edu/_media/gallery/checkershadow_double_full.jpg

SIMULTANEOUS CONTRAST

http://persci.mit.edu/_media/gallery/checkershadow_double_full.jpg

18http://persci.mit.edu/_media/gallery/checkershadow_double_full.jpg

SIMULTANEOUS CONTRAST

Simultaneous Contrast Simultaneous Contrast

Light Mixing
• Additive mix of colored lights (start

with black)

• Add up wavelengths of light to
make new colors

• Primary: RGB

• Secondary:
CMY (cyan, magenta yellow)

• Neutral = R + G + B

• Commonly used by monitors,
projectors, etc.

Red

BlueGreen

Ink Mixing
• Subtractive mix of transparent inks

• Start with white and other wavelengths
are selectively filtered.

• The Yellow region does not completely
prevent reflection of light from the white
page. But it TENDS (depending on
transparency) to filter others frequencies)

• Primary: CMY (Cyan, Magenta, Yellow)

• Secondary: RGB

• ~Black: C + M + Y

• In practice, we use CMYK, with some
amount K of black ink, to get true black

Yellow

MagentaCyan

Different game, since we start with white page rather than a black screen
Each color filters the light that is reflected from the white page.

Converting from RGB to CMY

• Assuming RGB values are normalized (all channels
between [0,1]), the exact same color in CMY space can
be found by inverting:

Color Spaces

• Individual respond from the display (monitor) to every value of GrayScale

• Lets normalize the intensity by using float in [0,1] instead of 255 values of RGB

• such that

• 0 = black, and 1=white

• A pixel with input intensity 0.5 might look very different in different devices.

• Furthermore, the individual response is always monotonic but usually not linear.
• On top of it, viewer/illumination/other environmental factor

• So is there a subjective definition of what is gray (middle between white and black) ?

• Gamma-Correction. We will assume approximately that if the input is a then

gamma-Correction

• a here is the input intensity to the monitor (between 0 to 1)
• is a constant the user could change,
• If no gamma-correction is needed, then the left and right should look

the same (when viewed from a distance)
• Change a continuously to the right region, until the output looks like

the left region.
• If this happens for some value a of input intensity, we deduce that
• , or
• Now every new image, with intensity a’ , will be displayed using intensity

γ

aγ

aγ = 0.5 γ = (ln 0.5)/(ln a)

(a′)1/γ

Chessboard of
black/white

pixels

Uniform region with grey
pixels, all get input of 0.5
(before correction).

RGB Color Space
• Additive, useful for computer monitors

• Not perceptually uniform

• For example, more “greens” than “yellows”

mixture of the red, green, and blue (rR, gG, bB) primaries look identical. Figure 4.4
illustrates the concept. Three projectors are set up with overlapping beams. In the fig-
ure, the beams only partially overlap so that the mixing effect can be illustrated, but in
a color-matching experiment they would overlap perfectly. To match the lilac-colored
sample, the projectors are adjusted so that a large amount of light comes from the red
and blue projectors and a smaller amount of light comes from the green projector.

(a) (b)

G + B
+ R

Figure 4.4 A color-matching setup. (a) When the light from three projectors is combined
the results are as shown. Yellow light is a mixture of red and green. Purple light is a mixture
of red and blue. Cyan light is a mixture of blue and green. White light is a mixture of red,
green, and blue. (b) Any other color can be matched by adjusting the proportions of red,
green, and blue lights.

R

G

B

(r, g, b)

Figure 4.5 The three-dimensional space formed by three primary lights. Any internal color
can be created by varying the amount of light produced by each of the primaries.

Color Measurement 99

Converting from CMY to CMYK
(less relevant to us)

• Assuming CMY values are normalized (all channels
between [0,1]), the exact same color in CMYK is

• K is a measure of the ‘blackness’ of the color and
essentially serves as an offset after which the remaining
amounts of cyan, magenta and yellow are ‘added’

HSL, HSV Color Space
• Hue - what people think

of as color (color,
normalized by
sensitivity)

• Saturation - purity,
distance from grey

• Also called Chroma

• Lightness - from dark to
light (how many
photons, alternatively,
add more sources of
light)

• Also Brightness or
Value

Hue wheel (credit: Wiki)
(not a single frequency)

The HSL color space was invented for television in 1938 by Georges Valensi as a method to add color
encoding to existing monochrome broadcasts, allowing existing receivers to receive new color broadcasts
(in black and white) without modification as the luminance (black and white) signal is broadcast unmodified.
It has been used in all major analog broadcast television encoding including NTSC, PAL and SECAM and all
major digital broadcast systems and is the basis for composite video.

Conversion from RGB to HSB

• Assuming RGB values are normalized (all channels between
[0,1]), the exact same color in HSB space can be found by first
figuring out which channel (R,G, or B) has the max intensity

Note: this method
returns H as a
value between 0°
and 360°

// ‘B’ for “brightness”. Not ‘B’ for “blue”

Encoding Color Images

• Could encode 256 colors with a single unsigned byte.
But what convention to use?

• One of the most common is to use 3 channels or bands

• Red-Green-Blue or RGB color is the most common --
based on how color is represented by lights.

• Coincidentally, this just happens to be related to how our
eyes work too.

NOTE : There are many schemes to represent color, most
use 3 channels, but the same idea extends to >3 channels

CSC 433/533
Computer Graphics

Anti-Aliasing and
Signal Processing

Sampling, Smoothing and Convolutions

Recall:
Images are Functions

Domains and Ranges
• All functions have two components, the domain and

range. For the case of images, I: R → V

• The domain is:

• R, is some rectangular area (R ⊆ ℝ2)

• The range is:

• A set of possible values.

• …in the space of color values we’re encoding

Concept for the Day:
Pixels are Samples of

Image Functions

Image Samples

• Each pixel is a sample of what?

• One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

• The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

• Key Idea: An image represents data in either (both?) of

• Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

• Discrete domain, where intensity is defined only at a
discretely sampled set of points.

• This seem like a philosophical discussions without clear practical
applications. Surprisingly, it has very concrete algorithmic
applications.

Converting Between Image Domains

• When an image is acquired,
an image is sampled from
some continuous domain
to a discrete domain.

• Reconstruction converts
digital back to continuous.

• The reconstructed image
can then be resampled
and quantized back to the
discrete domain.

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {
 for (let col = 0; col < W; col++) {

 let index = row*W + col;
 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];
 }

}

Naive Image
Rescaling Code

Naive Image Rescaling
• Consider resizing an image to a large resolution

• Simple approach: Take all the pixels in input and place
them in an output location.

100x100 image

What’s the Problem?

• The output image has gaps!

• Why: we skip a many of the pixels in the output.

• Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor

let k = 4;

//create an output greyscale image that is both
//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {
 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);
 output[index2] = input[index];

 }
}

Naive Image
Rescaling Code

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.

for (let row = 0, row < k*H; row++) {
 for (let col = 0; col < k*W; col++) {

 let index = (row/k)*W + (col/k);
 let index2 = row*k*W + col;

 output[index2] = input[index];
 }

}

“Inverse” Image
Rescaling Code Inverse Image Rescaling

100x100 image

Not great, but could become worse

400x400 image

What’s the Problem?

• The output image is too “blocky”

• Why: because our image reconstruction rounds the index
to the nearest integer pixel coordinates

• Rounding to the “nearest” is why this type of
interpolation is called nearest neighbor interpolation

Sampling Artifacts /
Aliasing

Motivation: Digital Audio
• Acquisition of images takes a continuous object and converts

this signal to something digital

• Two types of artifacts:

• Undersampling artifacts: on acquisition side

• Reconstruction artifacts: when the samples are interpreted

Undersampling Artifacts

Image Reduction
• Consider reducing the high resolution image:

Shannon-
Nyquist

Theorem
(not needed for the

exam)

• The sampling frequency must be double the highest
frequency of the content.

• If there are any higher frequencies in the data, or the
sampling rate is too low, aliasing, happens

• Named this because the discrete signal “pretends” to
be something lower frequency

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

Aliasing in images

Two outcomes of under-sampling

1) Moire Pattern
2) Rasterization

Moire Patterns

Aliasing for edges

Each pixel is effected by nearby pixels
For example, even though the input image image is black/white,
We allow grey values for output pixels.

Convolution

Each pixel is effected by nearby pixels
For example, even though the image is black/white,
We allow grey values

Neighborhood Filtering (Schematic)

f(Nj)=average color in this region (neighborhood)=

((12 × 8)
9

,
(12 × 8)

9
,

255 + (12 × 8)
9) ≈ (10,10,39)

original image filtered image

neighborhood of pixel Nj pj

pixel pj

=Blue (for illustration)Cj = (0, 0, 255)

=GREY Ck = (12, 12, 12)

An Example: Mean Filtering
• Mean filters sum all of the pixels in a local neighborhood Ni and divide by the total number, computing the average pixel.

• Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)

• To find the new color of a pixel j, we will look at , defined as the (say) neighborhood of the pixel , and set

• Where the Ni is a square, we call these box filters

• Think about it as a weighted average:

• The weights are convex combination. Meaning that they are all positive, and . For example,

(convex combination)

• Remember: The input matrix and the output matrix have the same size (in this case). This is not rescaling.

• Refer to the geogebra app https://www.geogebra.org/m/cetpvwaw

• The term filter is very common, but might be very confusing. We don’t necessarily filter out anything.

Nj 3 × 3 pj

w1…wk w1 + w2 + …wk = 1 w1 = w2 = w3 =
1
3

f (Ni) = ∑
pixels pk in the region Nj

wkCk = ∑
pixels pk in the region Nj

1
9

Ck

p

f

origi filter

neighb

Box Filtering

The matrix of weights is

 called a Kernel

Box Filtering

Convolution
• This process of adding up pixels multiplied by various weights is called

convolution. We denote the result by (confusion warning) the symbol *
See example below.

1 3 2
1 2 2
3 1 2

kernel H

new pixel color = 30/16

original image G filtered image G*H

neighborhood Ni of i

1/16
1 2 1
2 4 2
1 2 1

Kernels
• Convolution employs a rectangular grid of coefficients, (that

is, weights) known as a kernel

• Kernels are like a neighborhood mask, they specify which
elements of the image are in the neighborhood and their
relative weights.

• A kernel is a set of weights that is applied to corresponding
input samples that are summed to produce the output
sample.

• For smoothing purposes, the sum of weights must be 1
(convex combination)

1
9 (

1 1 1
1 1 1
1 1 1) 1

37

1 1 1 1 1
1 2 2 2 1
1 2 5 2 1
1 2 2 2 1
1 1 1 1 1

1
13 (

1 1 1
1 5 1
1 1 1)

One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and
convolves it with G:

• Equivalent to sliding a window

The smoothing operation is always a low pass filter.

Only lower frequencies could pass.

It removes higher frequencies from the input.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
original signal y

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
signal vs. High Pass Filter: y-conv(y,w)

We convolved the original signal
f(x) a smoothing kernel H.

For example

 g(x) =
f(x − 1) + f(x) + f(x + 1)

3

Low-pass and high-pass filtering

Input: y = f(x)

The output of the smoothing operation

The higher frequencies are less noticeable:
we need to move a lot (in x) to notice a large different in y

g(x) = f (x) * H

New idea: High-pass filter.

Only high frequencies pass
(shown: Original signal (blue) and the result of the high pass filter (red))

We remove (subtract) from the signal all lower frequencies

h(x) = f (x) − g(x)

Twitter - could move very
fast, but only small distances

Woofer - moves slowly but
cold cover large distances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters - another example

We convolved the
original signal y with
this gaussian

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

original signal y

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6
 High Pass Filter: y-conv(y,w)

Convolution is a Moving, Weighted Average

• Getting used to the new notation:

• is similar to writing , where

and

w[1]=w[2]=w[3]=1/3

• Commonly

• For example, w[-1]=w[0]=w[1]=1/3

• Note that we did not define exactly what are the first
and last values

b[i] =
1
3

(a[i − 1] + a[i] + a[i + 1]) ∀i

b = a ⋆ w

b[i] = (a ⋆ w)[i] =
3

∑
j=1

a[i − j + 2] ⋅ w[j]

(a ⋆ w)[i] =
j=i+r

∑
j=i−r

a[j]w[i − j]

w

2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the

convolution of a with b is given below as a*b:

• The (i-i’) and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

• The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing
• Convolution reflects the filter to preserve orientation.

• Correlation does not have this reflection.

• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H =
Convolution reflects
and shifts the kernel

Convolution Can Also Convert
from Discrete to Continuous

• Discrete signal a

• Continuous filter f

• Output a*f defined
on positions x as
opposed to
discrete pixels i

Back to Image Rescaling

100x100 image

Filtering helps to reconstruct
the signal better when rescaling

Reconstructed w/ Discrete-to-ContinuousInverse Rescaling

Types of Filters:
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:

• Normally, we use integers in the filter, and then divide by the sum
(computationally more efficient)

• These are also called blurring or low-pass filters

Smoothing Kernels

Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦

Thursday, February 16, 12

Same brown strip

Gaussians
• Gaussian kernel is parameterized on the

standard deviation σ

• Large σ’s reduce the center peak and spread
the information across a larger area

• Smaller σ’s create a thinner and taller peak

• Gaussians are smooth everywhere.

• Gaussians have infinite support

• >0 everywhere

• But often truncate to 2σ or 3σ

• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Types of Filters:
Sharpening

Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened
image

Input blurred

High passInput

Thursday, February 16, 12

Another example
Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Unsharp Masks
• Sharpening is often called “unsharp mask” because

photographers used to sandwich a negative with a blurry
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement
• The parameter 𝛂 controls how much of the source image

is passed through to the sharpened image.

Defining Edges
• Sharpening uses negative weights to enhance regions where

the image is changing rapidly

• These rapid transitions between light and dark regions are
called edges

• Smoothing reduces the strength of edges, sharpening
strengthens them.

• Also called high-pass filters

• Idea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

Edges
Taking Derivatives with Convolution

(just in case you studied calculus. Not required)
∂
∂x

f (x, y) ≈
1
2

f (x + 1) − f (x + 1)

Gradients with Finite Differences
(just in case you studied calculus. Not required)
• These partial derivatives approximate the image gradient, ∇I.

• Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

• We can separate them into components kernels Gx, Gy. ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient: [[-1], [1]]

Horizontal
gradient
(absolute

value)

Vertical
gradient
(absolute

value)

Gradient
magnitude

Thursday, February 16, 12

|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Second Derivatives
(Sharpening, almost)

• Partial derivatives in x and y lead to two kernels:

Compare with
Sharpening filter:
unbalanced counts!

-9

Boundaries

Handling Image Boundaries
• What should be done if the kernel falls off of the boundary

of the source image as shown in the illustrations below?

Handling Image Boundaries
• When pixels are near the edge of the image, neighborhoods

become tricky to define

• Choices:

1. Shrink the output image (ignore pixels near the
boundary)

2. Expanding the input image (padding to create values
near the boundary which are “meaningful”)

3. Shrink the kernel (skip values that are outside the
boundary, and reweigh accordingly)

Boundary Padding
• When one pads, they pretend the image is large and

either produce a constant (e.g. zero), or use circular /
reflected indexing to tile the image:

