
 

Animation 

Jungle Book (1967)

https://youtu.be/1oklEheeHjs

Pencil Test

https://youtu.be/jvatdZsXWqo

Computer Animation

https://youtu.be/1oklEheeHjs
https://youtu.be/jvatdZsXWqo


Keyframing

Keyframe Animation
• Idea: Draw a subset of important frames 

(called key frames) and fill in the rest with 
in-betweens 

• In hand-drawn animation, the head 
animator would draw the poses and the 
assistants would do the rest


• In computer animation, the artist draws 
the keys and the computer does the in-
betweening


• Interpolation is used to fill in the rest! 

Double Buffering
• If you draw directly to video buffer, the user will see the 

drawing happen

• Particularly noticeable artifacts when doing animation

Draw on one buffer, display on the other 
http://techpubs.sgi.com/library/dynaweb_docs/linux/SGI_Developer/books/Perf_GetStarted/sgi_html/figures/double.buffering.gif 
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• Manually place every control point at every keyframe?
– labor intensive
– hard to get smooth, consistent motion

• Animate using smaller set of meaningful degrees of freedom
– modeling DOFs are inappropriate for animation

e.g. “move one square inch of left forearm”

– animation DOFs need to be higher level
e.g. “bend the elbow”

Controlling geometry conveniently
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• Start with modeling DOFs (control points)
• Deformations control those DOFs at a higher level

– Example: move first joint of second finger on left hand

• Animation controls control those DOFs at a higher level
– Example: open/close left hand

• Both cases can be handled by the same kinds of 
deformers

Controlling shape for animation
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Character with DOFs
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• Surface is deformed by a set 
of bones

• Bones are in turn controlled 
by a smaller set of controls

• The controls are useful, 
intuitive DOFs for an 
animator to use

Rigged character
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Interpolating 
Rotations
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• Affine transformations position things in modeling
• Time-varying affine transformations move things around 

in animation
• A hierarchy of time-varying transformations is the main 

workhorse of animation
– and the basic framework within which all the more sophisticated 

techniques are built

The most basic animation control
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• Move a set of points by applying an affine transformation
• How to animate the transformation over time?

– interpolate the matrix entries from keyframe to keyframe?
this is fine for translations but bad for rotations

Interpolating transformations
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Interpolating Rotations

Not easy! 
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Not a rotation matrix! 

© 2018 Steve Marschner •  
(with previous instructors James/Bala) 

Cornell CS4620 Fall 2018 • Lecture 18

• Linear interpolation of matrices is not effective
– leads to shrinkage when interpolating rotations

• One approach: always keep transformations in a canonical 
form (e.g. translate-rotate-scale)
– then the pieces can be interpolated separately
– rotations stay rotations, scales stay scales, all is good

• But you might be faced with just a matrix.  What then?

Interpolating transformations
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Issues occurs when the source and target angles are not close to each other  



Could Instead Decompose 
Rotation by Euler Angles

http://upload.wikimedia.org/wikipedia/commons/7/73/EulerG.png 
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• Euler angles
– rotate around x, then y, then z
– nice and simple

• Axis/angle
– specify axis to rotate around,  

then angle by which to rotate

– multiply axis and angle to get a more 
compact form

Parameterizing rotations

 20

â

✓ = kak

R(✓x, ✓y, ✓z) = Rz(✓z)Ry(✓y)Rx(✓x)

R(â, ✓) = FâRx(✓)F
�1
â

R(a) = R(â, kak)

     is a frame 
matrix with a as 
its first column.

Fâ

https://youtube.com/clip/UgkxUmrgadPxgCNZAFuTCBA0ZUc0yRb3KGWk

Gimbal Lock

https://youtu.be/zc8b2Jo7mno

https://youtube.com/clip/UgkxUmrgadPxgCNZAFuTCBA0ZUc0yRb3KGWk
https://youtu.be/zc8b2Jo7mno


Quaternions Representation and their properties 

• No Gimble lock 

• Could be represented as  matrices, so could be 

concatenated easily (matrix multiplication


Rotation from  could be specified by the axis 
of rotation  and the length (in 
radians) of this arc


This is a good start. This solves the Gimble Lock issue, 
but fail to address 


1) Rotation around its own axis (the missing 
degree of freedom


2) Concatenations of rotations

4 × 4

q1 → q2
(o − q1) × (o − q2)

• Representing each rotation as a 4 values

• Encapsulate a rotation axis, and amount of rotation


• (if rotation axis is X,Y,Z, then we are back to Eulear Coordinates)


• Corresponds to points in the 4D unit sphere. Yet lets stick to the 3D unit sphere

• Represent rotations by source and destination on unit sphere, with the understanding that the 

rotation is along a geodesic (shortest path).
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• Why not linear interpolation?
• Need to be normalized

• Does not have constant rate of rotation

Interpolating between quaternions

 33

https://www.geogebra.org/m/mwuczhjw
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Spherical linear interpolation (“slerp”)
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Spherical linear interpolation (“slerp”)
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Spherical linear interpolation (“slerp”)
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 = cos�1(q0 · q1)

q(t) =
q0 sin(1� t) + q1 sin t 

sin 

• Spherical linear interpolation naturally works in any 
dimension

• Traverses a great arc on the sphere of unit quaternions
– Uniform angular rotation velocity about a fixed axis

Quaternion Interpolation
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https://www.geogebra.org/m/mwuczhjw

Character Animation

Animating w/ Skeletal Hierarchies

https://www.geogebra.org/m/mwuczhjw


Forward vs. Inverse 
Kinematics

Inverse Kinematics Solves for 
all Intermediate Constraints 

https://youtu.be/0a9qIj7kwiA?t=50

https://youtu.be/0a9qIj7kwiA?t=50

