

Animation

Jungle Book (1967)

https://youtu.be/1oklEheeHjs

Pencil Test

https://youtu.be/jvatdZsXWqo

Computer Animation

https://youtu.be/1oklEheeHjs
https://youtu.be/jvatdZsXWqo

Keyframing

Keyframe Animation
• Idea: Draw a subset of important frames

(called key frames) and fill in the rest with
in-betweens

• In hand-drawn animation, the head
animator would draw the poses and the
assistants would do the rest

• In computer animation, the artist draws
the keys and the computer does the in-
betweening

• Interpolation is used to fill in the rest!

Double Buffering
• If you draw directly to video buffer, the user will see the

drawing happen

• Particularly noticeable artifacts when doing animation

Draw on one buffer, display on the other
http://techpubs.sgi.com/library/dynaweb_docs/linux/SGI_Developer/books/Perf_GetStarted/sgi_html/figures/double.buffering.gif

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Manually place every control point at every keyframe?
– labor intensive
– hard to get smooth, consistent motion

• Animate using smaller set of meaningful degrees of freedom
– modeling DOFs are inappropriate for animation

e.g. “move one square inch of left forearm”

– animation DOFs need to be higher level
e.g. “bend the elbow”

Controlling geometry conveniently

 12

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Start with modeling DOFs (control points)
• Deformations control those DOFs at a higher level

– Example: move first joint of second finger on left hand

• Animation controls control those DOFs at a higher level
– Example: open/close left hand

• Both cases can be handled by the same kinds of
deformers

Controlling shape for animation

 13 © 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

Character with DOFs

[G
re

en
be

rg
/P

el
la

ci
ni

 |
C

IS
 5

65
]

 14

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Surface is deformed by a set
of bones

• Bones are in turn controlled
by a smaller set of controls

• The controls are useful,
intuitive DOFs for an
animator to use

Rigged character

[C
IS

 5
65

 s
ta

ff]

 15

Interpolating
Rotations

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Affine transformations position things in modeling
• Time-varying affine transformations move things around

in animation
• A hierarchy of time-varying transformations is the main

workhorse of animation
– and the basic framework within which all the more sophisticated

techniques are built

The most basic animation control

 16 © 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Move a set of points by applying an affine transformation
• How to animate the transformation over time?

– interpolate the matrix entries from keyframe to keyframe?
this is fine for translations but bad for rotations

Interpolating transformations

 17

Interpolating Rotations

Not easy!

1

2

µ
0 1
¡1 0

¶
+
1

2

µ
0 ¡1
1 0

¶
=

µ
0 0
0 0

¶

90° CW 90° CCW

Not a rotation matrix!

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Linear interpolation of matrices is not effective
– leads to shrinkage when interpolating rotations

• One approach: always keep transformations in a canonical
form (e.g. translate-rotate-scale)
– then the pieces can be interpolated separately
– rotations stay rotations, scales stay scales, all is good

• But you might be faced with just a matrix. What then?

Interpolating transformations

 18

Issues occurs when the source and target angles are not close to each other

Could Instead Decompose
Rotation by Euler Angles

http://upload.wikimedia.org/wikipedia/commons/7/73/EulerG.png
© 2018 Steve Marschner •  

(with previous instructors James/Bala)
Cornell CS4620 Fall 2018 • Lecture 18

• Euler angles
– rotate around x, then y, then z
– nice and simple

• Axis/angle
– specify axis to rotate around,  

then angle by which to rotate

– multiply axis and angle to get a more 
compact form

Parameterizing rotations

 20

â

✓ = kak

R(✓x, ✓y, ✓z) = Rz(✓z)Ry(✓y)Rx(✓x)

R(â, ✓) = FâRx(✓)F
�1
â

R(a) = R(â, kak)

 is a frame
matrix with a as
its first column.

Fâ

https://youtube.com/clip/UgkxUmrgadPxgCNZAFuTCBA0ZUc0yRb3KGWk

Gimbal Lock

https://youtu.be/zc8b2Jo7mno

https://youtube.com/clip/UgkxUmrgadPxgCNZAFuTCBA0ZUc0yRb3KGWk
https://youtu.be/zc8b2Jo7mno

Quaternions Representation and their properties

• No Gimble lock

• Could be represented as matrices, so could be

concatenated easily (matrix multiplication

Rotation from could be specified by the axis
of rotation and the length (in
radians) of this arc

This is a good start. This solves the Gimble Lock issue,
but fail to address

1) Rotation around its own axis (the missing
degree of freedom

2) Concatenations of rotations

4 × 4

q1 → q2
(o − q1) × (o − q2)

• Representing each rotation as a 4 values

• Encapsulate a rotation axis, and amount of rotation

• (if rotation axis is X,Y,Z, then we are back to Eulear Coordinates)

• Corresponds to points in the 4D unit sphere. Yet lets stick to the 3D unit sphere

• Represent rotations by source and destination on unit sphere, with the understanding that the

rotation is along a geodesic (shortest path).

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

• Why not linear interpolation?
• Need to be normalized

• Does not have constant rate of rotation

Interpolating between quaternions

 33

https://www.geogebra.org/m/mwuczhjw

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

Spherical linear interpolation (“slerp”)

 35

v0

v1

v(t)

β
α

v(t) = w0v0 + w1v1

sin↵

w1
=

sin�

w0
=

sin(⇡ �)

1
= sin

w0 = sin�/ sin

w1 = sin↵/ sin

 = cos�1(v0 · v1)

↵+ � =

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

Spherical linear interpolation (“slerp”)

 35

v0

v1

v(t)

β
α

v0

v1

v(t)

β
α

π – ψ π – ψ

β
α

v(t) = w0v0 + w1v1

sin↵

w1
=

sin�

w0
=

sin(⇡ �)

1
= sin

w0 = sin�/ sin

w1 = sin↵/ sin

 = cos�1(v0 · v1)

↵+ � =

https://www.geogebra.org/m/mwuczhjw

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

Spherical linear interpolation (“slerp”)

 35

v0

v1

v(t)

β
α

v0

v1

v(t)

β
α

π – ψ π – ψ

β
α

v0

v1

v(t)

β
α

π – ψ π – ψ

β
α

w0

w 1

v(t) = w0v0 + w1v1

sin↵

w1
=

sin�

w0
=

sin(⇡ �)

1
= sin

w0 = sin�/ sin

w1 = sin↵/ sin

 = cos�1(v0 · v1)

↵+ � =

© 2018 Steve Marschner •  
(with previous instructors James/Bala)

Cornell CS4620 Fall 2018 • Lecture 18

 = cos�1(q0 · q1)

q(t) =
q0 sin(1� t) + q1 sin t

sin

• Spherical linear interpolation naturally works in any
dimension

• Traverses a great arc on the sphere of unit quaternions
– Uniform angular rotation velocity about a fixed axis

Quaternion Interpolation

 36

https://www.geogebra.org/m/mwuczhjw

Character Animation

Animating w/ Skeletal Hierarchies

https://www.geogebra.org/m/mwuczhjw

Forward vs. Inverse
Kinematics

Inverse Kinematics Solves for
all Intermediate Constraints

https://youtu.be/0a9qIj7kwiA?t=50

https://youtu.be/0a9qIj7kwiA?t=50

