
CSC 433/533

Computer Graphics

Alon Efrat 

Credit: Joshua Levine


 

Animation 2

Character Animation

© 2017 Steve Marschner •  
(with previous instructors James/Bala) 

Cornell CS4620 Spring 2017 • Lecture 21

• Surface is deformed by a set 
of bones

• Bones are in turn controlled 
by a smaller set of controls

• The controls are useful, 
intuitive DOFs for an 
animator to use

Rigged character

[C
IS

 5
65

 s
ta

ff]

15



Forward vs. Inverse 
Kinematics

Inverse Kinematics Solves for 
all Intermediate Constraints 

https://youtu.be/0a9qIj7kwiA?t=50

Skinning
• After solving for the skeleton, one still needs to update 

and deform the surface

© 2017 Steve Marschner •  
(with previous instructors James/Bala) 

Cornell CS4620 Spring 2017 • Lecture 21

• Surface has control points pi
– Triangle vertices, spline control points, subdiv base vertices

• Each bone has a transformation matrix Mj
– Normally a rigid motion

• Every point–bone pair has a weight wij
– In practice only nonzero for small # of nearby bones
– The weights are provided by the user

Mesh skinning math: setup

45

https://youtu.be/0a9qIj7kwiA?t=50


© 2017 Steve Marschner •  
(with previous instructors James/Bala) 

Cornell CS4620 Spring 2017 • Lecture 21

• Deformed position of a point is a weighted sum
– of the positions determined by each bone’s transform alone
– weighted by that vertex’s weight for that bone

[L
ew

is
 e

t 
al

. 
S
IG

G
R
A
PH

 2
00

0]

Mesh skinning math

46 http://graphics.cs.cmu.edu/projects/sma/, 2005

Motion Capture Can Be Used 
for Data-Driven Methods

https://youtu.be/_QZN2IC0vOo

Physics-Based 
Animation

http://graphics.cs.cmu.edu/projects/sma/
https://youtu.be/_QZN2IC0vOo


Animation vs. Simulation

• Animation methods use scripted actions to make objects 
change


• Simulation: simulate physical laws by associating physical 
properties to objects


• Solve for physics to achieve (predict) realistic effects

Using Particle Systems

• Idea: Represent the physics on the simplest possible 
entity: particles


• Used for effects like smoke, fire, water, sparks, and more


• Plenty of other approaches, this is just one family

 , 1988 http://physbam.stanford.edu/~fedkiw/, 2008

http://physbam.stanford.edu/~fedkiw/


http://blog.mmacklin.com/flex/, 2014

Used in Games Physics

https://youtu.be/6DicVajK2xQ, 2009

Particle System Setup

class Particle {
  Vector3 position;
  Vector3 velocity;
};

~v

~x

Moving Particles

Position is a function of time 
• i.e., 

• Note that 


Use a function to control the particle’s velocity 
•  


This is an Ordinary Differential Equation (ODE) 

Solve this ODE at every frame 
• i.e., solve for 

• Then we can draw each of these positions to the screen

~x ⌘ ~x(t)

~v(t) ⌘ @~x

@t

~v(t) = f(~x(t))

~x(t0), ~x(t1), ~x(t2), . . .

http://blog.mmacklin.com/flex/
https://youtu.be/6DicVajK2xQ


A Simple Example

Let      be constant 
• e.g., 


Then we can solve for the position at any time: 
•  


Not always so easy 
•        can be anything!

• Might be unknown until runtime (e.g., user interaction)

• Often times, not solved exactly

~x(t) = ~x(0) + t~v

~v
~v = f(~x) = (0, 0, 1)>

f(~x)

Moving Particles, Revisited

Now, acceleration is in the mix 
•  


Use a function to control the particle’s acceleration 
•  


This is a Second Order ODE 

Solve this ODE at every frame, same as before 
• Can sometimes be reduced to a first order ODE

• Calculate position and velocity together

~a(t) ⌘ @~v

@t
⌘ @2~x

@t2

~a(t) = f(~x(t))

Physically-based Motion

Acceleration based on Newton’s laws 
•                         …or, equivalently… 

• i.e., force is mass times acceleration


Forces are known beforehand 
• e.g., gravity, springs, others….

• Multiple forces sum together

• These often depend on the position, i.e., 

• Sometimes velocity, too


If we know the values of the forces, we can solve for particle’s state 

~f(t) = m~a(t)

~f(t) ⌘ ~f(~x(t))

~a(t) = ~f(t)/m

Unary Forces

Constant 
• Gravity


Position/Time-Dependent 
• Force fields, e.g. wind


Velocity-Dependent 
• Drag




 
 
 

• Given a function f(X,t) compute X(t) 
• Typically, initial value problems: 

– Given values X(t0)=X0 

– Find values X(t) for t > t0 

 
• We can use lots of standard tools 

34 

Ordinary Differential Equations 

35 

Newtonian Mechanics 

or 

• Point mass: 2nd order ODE 
 
 
 
 

• Position x and force F are vector quantities 
– We know F and m, want to solve for x 

 
• You have all seen this a million times before 

This image is in the public domain.
Source: Wikimedia Commons.

36 

Reduction to 1st Order 

2 unknowns (x, v) 
instead of just x 

or 

• Point mass: 2nd order ODE 
 
 

 
• Corresponds to system of 
    first order ODEs 

This image is in the public domain.
Source: Wikimedia Commons.

 
 
 
 

• Why reduce? 

37 

Reduction to 1st Order 

2 variables (x, v) 
instead of just one 



 
 
 
 

• Why reduce? 
– Numerical solvers grow more complicated with increasing 

order, can just write one 1st order solver and use it 
– Note that this doesn’t mean it would always be easy :-) 

38 

Reduction to 1st Order 

2 variables (x, v) 
instead of just one 

• Let’s stack the pair (x, v) into a bigger state vector X 

39 

Notation 

For a particle in 
3D, state vector X 
has 6 numbers 

• We have N point masses 
– Let’s just stack all xs and vs in a big vector of length 6N 

40 

Now, Many Particles 

• We have N point masses 
– Let’s just stack all xs and vs in a big vector of length 6N 
– Fi denotes the force on particle i 

• When particles don’t interact, Fi only depends on xi and vi. 

41 

Now, Many Particles 

f gives d/dt X, 
remember! 



42 

Path through a Vector Field 

“When we are at 
state X at time t, 
where will X be after 
an infinitely small 
time interval dt ?” 

• X(t): path in multidimensional phase space 

Image Ey 0I7 2pen&ourse:are.

43 

Path through a Vector Field 

“When we are at 
state X at time t, 
where will X be after 
an infinitely small 
time interval dt ?” 

• X(t): path in multidimensional phase space 
 
 
 
 
 
 
 

• f=d/dt X is a vector that sits at each point in phase 
space, pointing the direction. 

Image Ey 0I7 2pen&ourse:are.

Integration Algorithm 1

Calculating Particle State from Forces: First attempt 
• Use forces to update velocity: 

• Use old velocity to update position:


Issues 
• Unstable in certain cases!

• Reducing time step can help, but this becomes computationally expensive

• Error is            per step (and accumulates!). Error is          globally.


This technique is called Forward (Explicit) Euler Integration 

Example: circle

~v(t+ h) = ~v(t) +
h

m
~f(t)

~x(t+ h) = ~x(t) + h~v(t)

O(h2) O(h)

Comparison Euler, Step Sizes
Euler
quality is 
proportional
to dt



• Current state X 
• Examine f(X,t) at (or near) current state 
• Take a step to new value of X 

46 

Intuitive Solution: Take Steps 

f = d/dt X is a vector 
that sits at each 
point in phase 

space, pointing the 
direction. 

“            ” 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Simplest and most intuitive 
• Pick a step size h 
• Given X0=X(t0), take step: 

 
 
 
 

• Piecewise-linear approximation to the path 
• Basically, just replace dt by a 

small but finite number 
47 

Euler’s Method 

48 

Euler, Visually 

X(t) 

Image Ey 0I7 2pen&ourse:are.

49 

Euler, Visually 

X(t) 
f(X,t) 

Image Ey 0I7 2pen&ourse:are.



50 

Euler, Visually 

 

X(t) 
f(X,t) 

h f(X,t) 

Image Ey 0I7 2pen&ourse:are.
51 

Euler, Visually 

X(t) 
f(X,t) 

h f(X,t) 
X(t+h) 

Image Ey 0I7 2pen&ourse:are.

Integration Algorithm 2

Another attempt 
• Update velocity with forces at next time step:

• Use new velocity to update position:


Benefits 
• Unconditionally stable if the system is linear!


Issues 
• Solving for               is often expensive

• Can introduce artificial viscous damping

• Error is still            per step


This technique is called Backward (Implicit) Euler Integration 

~v(t+ h) = ~v(t) +
h

m
~f(t+ h)

~x(t+ h) = ~x(t) + h~v(t+ h)

~f(t+ h)

O(h2)

Another Simple Example: 
Sprinkler

list<Particle> PL;

spread = 0.1; //how random the velocity is

 //add k particles to the list

  for (int i=0; i<k; i++) {

    Particle p;

    p->position = Vec3(0,0,0); 

    p->velocity = Vec3(0,0,1) + spread*Vec3(rand(), rand(), rand()); 

    PL->add(p); 

  }

for (each time step) {

  for (each particle p in PL) {

    p->position += p->velocity*dt; //dt: time step 

    p->velocity -= g*dt; //g: gravitation constant 

  }

}

https://webglfundamentals.org/webgl/lessons/webgl-qna-how-to-process-particle-positions.html

https://webglfundamentals.org/webgl/lessons/webgl-qna-how-to-process-particle-positions.html


https://processing.org/examples/simpleparticlesystem.html

Binary, n-ary Forces

Much more interesting behaviors to be had from particles that interact 

Simplest: binary forces, e.g. springs 

Nice example project with mass-spring systems: 
• https://vimeo.com/73188339


More sophisticated models for deformable things use forces relating 3 or more 
particles

~fi(~xi, ~xj) = �ks(k~xi � ~xjk � rij)
~xi � ~xj

k~xi � ~xjk

https://vimeo.com/73188339

Particle System Setup, Revisited

class Particle {
  float mass;
  Vector3 position;
  Vector3 velocity;
  Vector3 force;
};

~v

~x
m

~f

Basic Algorithm

1) Clear forces from previous calculations 

2) Calculate/accumulate forces for each particle 

3) Solve for particle’s state (position, velocity) for the next time step  h

https://processing.org/examples/simpleparticlesystem.html


• It’s not all hacks: 
Smoothed Particle Hydrodynamics 
(SPH) 
– A family of “real” particle-based 

fluid simulation techniques. 
 

– Fluid flow is described by the 
Navier-Stokes Equations, a nonlinear 
partial differential equation (PDE) 

• SPH discretizes the fluid as small packets 
(particles!), and evaluates pressures and 
forces based on them. 

18 

Generalizations 

Jos Stam 

Müller et al. 2005 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

https://youtu.be/Qe9qSLYK5q4, 1991 
https://dl.acm.org/citation.cfm?id=357320

https://youtu.be/Qe9qSLYK5q4
https://dl.acm.org/citation.cfm?id=357320

