CSC 433/533
Computer Graphics Animation 2

Alon Efrat
Credit: Joshua Levine

Rigged character

* Surface is deformed by a set
of bones

* Bones are in turn controlled
by a smaller set of controls

¢ The controls are useful,
intuitive DOFs for an
animator to use

Character Animation

[CIS 565 staff]

Cornell CS4620 Spring 2017 « Lecture 21 © 2017 Steve Marschner ¢ |5
(with previous instructors James/Bala))

Forward vs. Inverse
Kinematics

f After hip rotation
i p

S

s
Original
IK solver connection “” T
u\' S \
\ & / Hip and knee joint angles

i computed automatically
'\
|

¥
Effector motion ﬂ o

Inverse Kinematics Solves for
all Intermediate Constraints

<« G @ httpsy//www.youtube.com/watch?v=0a9qli7kwiA LI -

= > Youluhe L

INVERSE

KINEMATICS

'
‘ o
6%% «
LN

https://youtu.be/0a9qlj7kwiA?t=50

Skinning

» After solving for the skeleton, one still needs to update
and deform the surface

Mesh skinning math: setup

* Surface has control points p;

— Triangle vertices, spline control points, subdiv base vertices
* Each bone has a transformation matrix Mj

— Normally a rigid motion
* Every point—bone pair has a weight Wi
— In practice only nonzero for small # of nearby bones
— The weights are provided by the user

Cornell CS4620 Spring 2017 « Lecture 21 © 2017 Steve Marschner + 45
[is)

(with previous instructors James/Bal

https://youtu.be/0a9qIj7kwiA?t=50

Mesh skinning math

* Deformed position of a point is a weighted sum
— of the positions determined by each bone’s transform alone
— weighted by that vertex’s weight for that bone

Skinning Mesh Animations

Doug L. James
Christopher D. Twigg

Carnegie Mellon University

p; = ZwiijPi
J

[Lewis et al. SIGGRAPH 2000]

Cornell CS4620 Spring 2017 + Lecture 2| ©2017 Steve Marschner « 46 http://graphics.cs.cmu.edu/projects/sma/, 2005

(with previous instructors James/Bala)

Physics-Based
Animation

2 '®

https://youtu.be/ QZN2ICOvOo

http://graphics.cs.cmu.edu/projects/sma/
https://youtu.be/_QZN2IC0vOo

Animation vs. Simulation

¢ Animation methods use scripted actions to make objects
change

* Simulation: simulate physical laws by associating physical
properties to objects

* Solve for physics to achieve (predict) realistic effects

Using Particle Systems

¢ |dea: Represent the physics on the simplest possible
entity: particles

¢ Used for effects like smoke, fire, water, sparks, and more

¢ Plenty of other approaches, this is just one family

PARTICLE DREAMS

Karl Sims

™ : ol S
Optomystic

http://physbam.stanford.edu/~fedkiw/, 2008

http://physbam.stanford.edu/~fedkiw/

Used in Games Physics

C | @ Secure | https://www.youtube.com,

= > YouTube

Unified Particle Physics for
Real-Time Applications

Miles Macklin Matthias Miiller Nuttapong Chentanez Tae-Yong Kim MAY CONTAIN CONTENT
NVIDIA INAPPROPRIATE FOR CHILDREN

Visit www.esrb.org
for rating information

y. Any

cable law

http://blog.mmacklin.com/flex/, 2014

Particle System Setup Moving Particles

Position is a function of time
- e, T=Z(t)

- Note that ¥(¢t) = (’%

class Particle { Use a function to control the particle’s velocity
Vector3 position; - (1) = f(Z(1))

Vector3 velocity;
s This is an Ordinary Differential Equation (ODE)
Solve this ODE at every frame
- i.e., solve for Z(to), Z(t1), Z(t2), - ..

- Then we can draw each of these positions to the screen

http://blog.mmacklin.com/flex/
https://youtu.be/6DicVajK2xQ

A Simple Example

Let ¥ be constant
- eg., 7= f(&) =(0,0,1)"

Then we can solve for the position at any time:

- Z(t) = £(0) + 7

Not always so easy
* f(#) can be anything!
- Might be unknown until runtime (e.g., user interaction)

- Often times, not solved exactly

Physically-based Motion

Acceleration based on Newton’s laws

- f(t) = ma(t) -..or, equivalently... @(t) = f(t)/m

- i.e., force is mass times acceleration

Forces are known beforehand
- e.g., gravity, springs, others....
- Multiple forces sum together

- These often depend on the position, i.e., f(t) = f(Z(t))

+ Sometimes velocity, too

If we know the values of the forces, we can solve for particle’s state

Moving Particles, Revisited

Now, acceleration is in the mix
a2 O =P
= T o
Use a function to control the particle’s acceleration

- d(t) = f(Z(t))
This is a Second Order ODE

Solve this ODE at every frame, same as before
+ Can sometimes be reduced to a first order ODE

+ Calculate position and velocity together

Unary Forces

Constant
+ Gravity

Position/Time-Dependent
+ Force fields, e.g. wind

Velocity-Dependent
- Drag

Ordinary Differential Equations

dX(1)
o = f(X(?),1)

» Given a function f(X,?) compute X(?)

» Typically, initial value problems:
— Given values X(7))=X,
— Find values X(?) fort > ¢,

 We can use lots of standard tools

34

Newtonian Mechanics

* Point mass: 2™ order ODE

- RE
F=maz

F = ma or

This image is in the public domain.
Source: Wikimedia Commons.

* Position x and force F are vector quantities

— We know F and m, want to solve for x

* You have all seen this a million times before

35

Reduction to 1st Order

« Point mass: 2™ order ODE

- d*@
F'=ma or =Mm—F
dt
* Corresponds to system of
ﬁrst Order ODES Source: Wikimedia Commons. '
i - =
gL =0 2 unknowns (X, v)
d= _ 1 instead of just x
20 =F/m

36

Reduction to 1st Order

2 variables (x, v)
instead of just one

el 8

SRS

U
F/m

* Why reduce?

37

Reduction to 1st Order

d = —

qLr =7 2 variables (x, v)
i’l_f _ F/m instead of just one
dt =~

* Why reduce?
— Numerical solvers grow more complicated with increasing
order, can just write one 1st order solver and use it

— Note that this doesn’t mean it would always be easy :-)

38

Notation

» Let’s stack the pair (x, v) into a bigger state vector X
T
v
d

X =150 = (£m)

For a particle in
3D, state vector X
has 6 numbers

X

39

Now, Many Particles

* We have N point masses
— Let’s just stack all xs and vs in a big vector of length 6N

V1 \

(o) [Fix.
X = f(Xat) - :
\vfi \FN(gf,t))

40

Now, Many Particles

* We have N point masses
— Let’s just stack all xs and vs in a big vector of length 6N

— Fi denotes the force on particle i
* When particles don’t interact, F' only depends on xi and vi.

/;’ji\ /Fl&,t)\
f(X,1) = '

! oy
f gives d/dt X, \FN(X, t)/

remember!

\on)

41

Path through a Vector Field

* X(t): path in multidimensional phase space

“When we are at
state X at time {,
where will X be after
an infinitely small
time interval dt ?”

- o —

2 2 A A Y W oW 2 o i
A A A A A A A A A
H G 0 i i i B o P
AAAAAA A A A A

S

Image by MIT OpenCourseWare.

FEETRICES IR RN d
LR R R G N —X = f(X,t
T @ =/

42

Path through a Vector Field

* X(t): path in multidimensional phase space

SERERRRRRRRREREY d
EAERRRR RS AR R, S x =
L @ -soe

e R R e e e

“When we are at
state X at time ¢,
where will X be after
an infinitely small
time interval dt ?”

A A A BN A A A A A
B L P VAT D
A

S O

Image by MIT OpenCourseWare.

» f=d/dt X is a vector that sits at each point in phase
space, pointing the direction.

43

Integration Algorithm 1

Calculating Particle State from Forces: First attempt
- Use forces to update velocity: v(t + h) = 9(t) + %ﬂf)

+ Use old velocity to update position: Z(t + h) = Z(t) + hi(t)

Issues
- Unstable in certain cases!
+ Reducing time step can help, but this becomes computationally expensive

- Erroris O(h?) per step (and accumulatesl). Error is O(h) globally.
This technique is called Forward (Explicit) Euler Integration

Example: circle

Comparison Euler, Step Sizes

Euler
quality is
proportional
to dt

_| —FEulerdt=17100 | |

—a—Euler dt=1/10

—+—Euler dt=1/4

r-1 =—e—Euler dt=172

Intuitive Solution: Take Steps

e Current state X

« Examine f(X,t) at (or near) current state
» Take a step to new value of X d

X = f(X,1)

S~ =fax = atf(x,t)’

f=d/dt Xis a vector
/ that sits at each

\ point in phase
space, pointing the
direction.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

46

Euler's Method

» Simplest and most intuitive
* Pick a step size &
Given X,=X(t,), take step:

t,=t,+h
X, =X, +4f(X,,t,)

Piecewise-linear approximation to the path

Basically, just replace dz by a
small but finite number

47

Euler, Visually

d

EE)(::fLXyﬂ
TR TITITI R LY
SEREA SRR ISR AN
AT

e T e e R g e)

A A A A A AR A A AP
%//’/’///////’/’//
B A P R P P PP

- —

Euler, Visually

48

d

Eﬂ)rzzfcx}w
TR TITIRITITLY
EIREATRRERG RS
HHHI
SEEasE ey

Py LU P P,
:;;;//;f/,/,///,///f()(,t) S
AAAAAAAA A A A

e T A R R R e B e I e e T R e e]

49

Euler, Visually

A

/////Xt e

/////’/‘/‘/’//f(x t)’/’/’/’

H

R AL e e A
AAAA DA

D O — — —

Image by MIT OpenCourseWare.

50

Euler, Visually

e e ,

////’/X(t)'/?//)x/r

oo o800 8K
AN

2V W A A A X R A A Y A A

\

S D — — —>
Image by MIT OpenCourseWare.

51

Integration Algorithm 2

Another attempt

- Update velocity with forces at next time step: o(¢t + h) = 9(t) + 1,3(7& +h)
m

+ Use new velocity to update position: #(t + h) = #(t) + ho(t + h)

Benefits

+ Unconditionally stable if the system is linear!

Issues
- Solving for f(t + h) is often expensive
- Can introduce artificial viscous damping

- Error is still O(h?) per step

This technique is called Backward (Implicit) Euler Integration

Another Simple Example:

Sprinkler

list<Particle> PL;

spread = 0.1; //how random the velocity is

//add k particles to the list
for (int i=0; i<k; i++) {
Particle p;
p->position = Vec3(0,0,0);
p->velocity = Vec3(0,0,1) + spread*Vec3(rand(), rand(), rand());
PL->add(p);
}

for (each time step) {
for (each particle p in PL) {
p->position += p->velocity*dt; //dt: time step
p->velocity -= g*dt; //g: gravitation constant

https://webglfundamentals.org/webgl/lessons/webgl-qna-how-to-process-particle-positions.html

(&) ‘ & Secure | https://processing.org/examples/simpleparticlesystem.html

Processing p5 Processing

/ Processing | S : :
NN &\ Binary, n-ary Forces

/

LL“MI‘ , Back To List Much more interesting behaviors to be had from particles that interact
Donate
Simplest: binary forces, e.g. springs

Exhibition

: [i(@i,%5) = —ks (|8 — 5| — 745)
;

Ei

ment

F — &
1; — &5
Tutorials

Nice example project with mass-spring systems:
- https://vimeo.com/73188339

Examples

Book:

More sophisticated models for deformable things use forces relating 3 or more
particles

Shop

»Forum
»GitHub

rocessing.org/examples/simpleparticlesystem.html

Particies are generatea each cycie tnrougn draw(), faii witn gravity and fade out over time A Partciesystem

Particle System Setup, Revisited Basic Algorithm

1) Clear forces from previous calculations
2) Calculate/accumulate forces for each particle
class Particle {
float mass;
Vector3 position;
Vector3 velocity;
Vector3 force;

3) Solve for particle’s state (position, velocity) for the next time step h

https://processing.org/examples/simpleparticlesystem.html

& C | & Secure | https://www.youtube.com/watch?v=Qe9qSLYK5q4 hxe |

Generalizations —

Milller et al. 2005

* It’s not all hacks:
Smoothed Particle Hydrodynamics
(SPH)

— A family of “real” particle-based
fluid simulation techniques.

Computer Graphics

. . . STAR TREK 1l:
— Fluid flow is described by the The Wrath (,f\ Khan
Navier-Stokes Equations, a nonlinear
partial differential equation (PDE)

» SPH discretizes the fluid as small packets

(particles!), and evaluates pressures and > > ooi/ai

for i th m. ‘ o : AutorLAY @)
orces based on the Do a8 s s, T ot st Making of e Genests sequence - hitpSi//youtu.be/Qe9qSLYK5q, 1991 0 ©
http://ocw.mit.edu/help/faq-fair-use/. 71,651 views https://dl.acm.org/citation.cfm?id=357320 egregiousdave

Jos Stam 18 [& 37K views

https://youtu.be/Qe9qSLYK5q4
https://dl.acm.org/citation.cfm?id=357320

