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Outline
❑ Objective: Develop methods and algorithms to 

mathematically model shape of real world objects 
  
❑ Categories: 

 Wire-frame representations 

 Boundary representations 

Volumetric representations
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Wire-Frame Representation

❑ Object is represented as as a set of points and edges (a graph) 
containing topological information.  

❑ Used for fast display in interactive systems. 
❑ Can be ambiguous:
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Volumetric Representation
❑ Voxel based (voxel = 3D pixels).  
❑ Advantages: simple and robust Boolean operations, in/

out tests, can represent and model the interior of the 
object. 

❑ Disadvantages: memory consuming, non-smooth, 
difficult to manipulate.
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Constructive Solid Geometry
❑ Use set of volumetric primitives 

Box, sphere, cylinder, cone, etc… 
❑ For constructing complex objects 
    use Boolean operations 

Union 
Intersection 
Subtraction 
Complement
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CSG Trees

❑ Operations performed 
recursively 

❑ Final object stored as 
sequence (tree) of 
operations on primitives 

❑ Common in CAD 
packages – 

mechanical parts fit well 
into primitive based 
framework 

❑ Can be extended with 
free-form primitives
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Freeform Representation
❑ Explicit form: z = z(x, y) 
❑ Implicit form: f(x, y, z) = 0 
❑ Parametric form: S(u, v) = [x(u, v), y(u, v), z(u, v)] 

❑ Useful to assign to texture - the (u,v) coordinates indicates a 
textile  

❑ Example – origin centered sphere of radius R:
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Motivation: Surface of Revolution
❑ Rotate a, usually planar, 
    curve around the z-axis  
First construct the curve in the  

xz-plane 

  β(t) = (βx(t), βz(t))
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https://www.geogebra.org/m/q8qf6jtd
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Big picture - what do we want 
The designer could control a small number of points , and a curve connecting 
theses points is generated.  
• Desired Properties:  

• Easily controlled - small number of controlled points, and should be easy to 
predict the effect of each 

• Effect should be local and stable (hopefully small change of control 
parameter  small change of the curve) 

• Locality changes are near the control point  

• Continuity.   continuity. Geometric continuity (will discuss later) 

• Easy to calculate, calculate intersection points etc. (nothing more 
complicated than cubic) 

(unfortunately) before creating splines, lets create a segment of the spline. 
Then we could stitch them.  
If theses segments starts/stops at control points, they must `glue’ nicely. 

⇒

C1



13

B-Spline (Basic spline) 

• The user enters a sequence of control points (  

• Each point on the curve is a convex combination of these points  

•  

• As the weights changes in time, the curve is created 

•  

• So 

{p1…pn}

C(t) = ∑ wi(t) ⋅ pi

wi(t) = w(t − i )

C(t) = ∑ wi(t − i ) ⋅ pi

Problems: The curve is attracted to the control points,  
but in general, not passing through the points.  

Nor does is start nor ends at the first/last control point (boundary conditions)  

…but this could be hacked. 

https://www.geogebra.org/m/tpjr4sn4
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Hermit Curve 

Input - 2 points A,B  

  and two directions (vectors)  

Output- a curve that is defined for every , and assigns a 
location and a direction of a ‘bug’ to each time t.   
At every time, the curve is defined by a convex combination of 
these parameters (each with some weight). The weights changes 
in time 

⃗vA , ⃗vB
0 ≤ t ≤ 1

https://www.geogebra.org/m/uwfvgapt
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Concatenating Hermit Curves into a Spline
❑  that will handle location at 

beginning of end of the segment.  

❑  effects the start and end 
directions. 

❑ Note  Means that the curve 
 starts at A and ends at B. No 

need to find a polynomial that will fit only specific 
location.

h00(t), h01(t)

h10(t), h10(t)

h00(0) = 1
Ah00(t) + Bh01(t)

Given points A,B,C, each with directs direction,  
Create a split H such that  

for 0 ≤ t ≤ 1, use A, B,  and for 1 ≤ t ≤ 2, use B, C
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Catmull-Rom Spline do OK

Actually doing excellent for many 
applications 

Not too much control, not too little - 
back to talk about them later 
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Big picture - what do we want 
The designer could control a small number of points , and a curve connecting theses points is generated.  

• Desired Properties:  

• Easily controlled - small number of controlled points, and should be easy to predict the effect of each 

• Effect should be local and stable (hopefully small change of control parameter  small change of the curve) 

• Locality changes are near the control point  

• Continuity.   continuity. Geometric continuity (will discuss later) 

• Easy to calculate, calculate intersection points etc. (nothing more complicated than cubic) 

If we want more control, we could construct the curve from segments connecting the control points 

(e.g. every third control point)  

If theses segments starts/stops at control points, they must `glue’ nicely.  

Lets see how this is done with Hermite curves. 

⇒

C1

ant more control, we 
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Parametric Curves
❑ Analogous to trajectory of particle in space. 
❑ Single parameter t∈ [T1,T2] – like “time”. 
❑ position = p(t) = (x(t),y(t)),  
 velocity = v(t) = (x’(t),y’(t)) 

❑ Circle: 
x(t) = cos(t), y(t) = sin(t)  t ∈ [0,2π)   ||v(t)|| ≡ 1 
x(t) = cos(2t), y(t) = sin(2t)  t ∈ [0,π)   ||v(t)|| ≡ 2 
x(t) = (1-t2)/(1+t2), y(t) = 2t/(1+t2)  t ∈ (-∞,+∞) 

(x(t),y(t))

v(t) = (x’(t),y’(t))

(x(t),y(t))

r(t)

k(t) = 1/r(t)
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Why cubics (deg=3) ?  

Simplicity, locality, finding intersections easily. 
At least 4 control points (hence cubic)  

Reason: Want to define curves in 3D.  
If we use only 3 control points, the curve will be 
contained in a plane 
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The four Cubic Hermite weights function
❑  that will handle location at 

beginning of end of the segment.  

❑  effects the start and end 
directions. 

❑ Note  Means that the curve 
 starts at A and ends at B. No 

need to find a polynomial that will fit only specific 
location.

h00(t), h01(t)

h10(t), h10(t)

h00(0) = 1
Ah00(t) + Bh01(t)
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What about  and h1,0 h1,1

❑What is the direction of the curve  near B ? It 

is the direction of the vector  

❑This is just the derivative, which is 

❑Note that , so they 
cannot change the slope at A

C(t)
1
Δt (C(t − Δt) − C(t))

h′ 01(0) = h′ 00(0) = 0

A h′ 00(t) + B h′ 01(t) + ⃗vA h′ 10(t) + ⃗vB h′ 11(t)

Only h′ 01(0) ≠ 0

The only function of the four that has 
non-zero derivative at  is  

. So we could add  
to the curve,  
it will not mess the other properties, 
since 

t = 0
h′ 10(0) h10(t) ⃗vA

h10(0) = h10(1) = h′ 10(0) = 0

https://www.geogebra.org/m/z46dmqkp
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Hermite Cubic Basis 

)1()()1()(

)32()(1)32()(
2

11
2

10

2
01

2
00

−=−=

−−=+−=

ttthttth
ttthttth
)1()()1()(
)32()(1)32()(

2
11

2
10

2
01

2
00

-=-=

--=+-=

ttthttth
ttthttth

23

Hermite Cubic Basis (cont’d)

❑ Lets solve for h00(t) as an example. 

❑ h00(t) = a t3 + b t2 + c t + d 
    must satisfy the following four 
    constraints: 

❑ Four linear equations in four unknowns.
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Hermite Cubic Basis (cont’d)

Pi

   

To generate a curve through P0 & P1 with slopes T0 & T1, 
use

The segments glue nicely, as long as the velocity vectors 
are opposite 

 continuity: The velocity vector is continuousC1

)()()()()( 111100011000 thTthTthPthPtC +++= )()()()()( 111100011000 thTthTthPthPtC +++=



Besier curves 
Similar to Hermite. The input is slightly different:  
Input to Hermite: Two points and two tangents 
Input to Beiser: 2 endspoints and two control points 
Sum of weights =1. Always in convex Hull of points  

26 https://www.geogebra.org/m/szgz85dn
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• Mixture of points and vectors is awkward
• Specify tangents as differences of points

Hermite to Bézier
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p0

t0

p1

– t1

Bezier curve - need 4 control points, but passes through first and last.  
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Hermite to Bézier
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Hermite to Bézier
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Hermite to Bézier
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– note that these are the Bernstein polynomials
 

 

and that defines Bézier curves for any degree

Bézier matrix
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Bézier basis
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• A really boring spline segment: f(t) = p0
– it only has one control point
– the curve stays at that point for the whole time

• Only good for building a piecewise constant spline
– a.k.a. a set of points

Another way to Bézier segments

26

p0

https://www.geogebra.org/m/gcchthfa
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• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a  
piecewise linear spline
– a.k.a. a polygon or polyline

Another way to Bézier segments

27
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• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a  
piecewise linear spline
– a.k.a. a polygon or polyline

Another way to Bézier segments
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These labels show 
the weights, not 
the distances.
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• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a  
piecewise linear spline
– a.k.a. a polygon or polyline

Another way to Bézier segments
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• A linear blend of two piecewise linear segments
– three control points now
– interpolate on both segments using α and β
– blend the results with the same weights

• makes a quadratic spline segment
– finally, a curve!

Another way to Bézier segments

28

p1,0 = ↵p0 + �p1

p1,1 = ↵p1 + �p2

p2,0 = ↵p1,0 + �p1,1

= ↵↵p0 + ↵�p1 + �↵p1 + ��p2

= ↵2p0 + 2↵�p1 + �2p2

β = 1 − α
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• A linear blend of two piecewise linear segments
– three control points now
– interpolate on both segments using α and β
– blend the results with the same weights

• makes a quadratic spline segment
– finally, a curve!

Another way to Bézier segments
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p1,0 = ↵p0 + �p1
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• Cubic segment: blend of two quadratic segments
– four control points now (overlapping sets of 3)
– interpolate on each quadratic using α and β
– blend the results with the same weights

• makes a cubic spline segment
– this is the familiar one for graphics—but you can keep going

Another way to Bézier segments
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p3,0 =↵p2,0 + �p2,1

=↵↵↵p0 + ↵↵�p1 + ↵�↵p1 + ↵��p2

�↵↵p1 + �↵�p2 + ��↵p2 + ���p3

=↵3p0 + 3↵2�p1 + 3↵�2p2 + �3p3
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Cathull-Rom curve: 

Problem - Bsplines is an approximating curve, but not 
interpolating one. Not passing through the control points:  

Hermit Splines are interpolating, but requires the user to 
specify tangents at each control points , Bezier splines all 
requires the user to specify tangent for every control 
points. Possibly this is fine, possibly annoying.  

Catmull-Rom uses Hermits, but tangents are calculated 
based on other control points. 

42

⃗t i = 0.5(pi+1 − pi−1)
The tangents are calculated from the control points, interpolated by the curve. 

https://www.geogebra.org/m/mvs3nt6w
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Catmull-Rom based on Bezier 

⃗t i = (P(i + 1) − P(i − 1))
1
2
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Surface Constructors
❑ Construction of the geometry is a first stage in any 

image synthesis process 
❑ Use a set of high level, simple and intuitive, surface 

constructors:  
Bilinear patch 
Ruled surface 
Boolean sum 
Surface of Revolution 
Extrusion surface 
Surface from curves (skinning) 
Swept surface  

Surface represented implicitly s(u,v)
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Sphere 

Sphere  

(cos u cos v, cos u sin v, sin u)

https://www.geogebra.org/m/gqsg9spt

From Curves to Surfaces (cont’d)
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Bilinear Patches
❑ Bilinear interpolation of 4 3D points - 2D analog of 1D 

linear interpolation between 2 points in the plane 
❑ Given P00, P01, P10, P11 the bilinear surface for u,v∈[0,1] 

is: 

❑

11100100 )1()1()1)(1(),( uvPPvuvPuPvuvuP +−+−+−−= 11100100 )1()1()1)(1(),( uvPPvuvPuPvuvuP +-+-+--=
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❑ Given two curves a(t) and b(t), the corresponding ruled 
surface between them is:  

The corresponding points on a(u) and b(u) are connected by 
straight lines 

❑ Questions:  
When is a ruled surface a bilinear patch? 
When is a bilinear patch a ruled surface?

Ruled Surfaces

S(u,v) = v a(u) + (1-v)b(u)
a(u)

b(u)
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Surface of Revolution
❑ Rotate a, usually planar, 
    curve around an axis  
Consider curve β(t) = (βx(t), 0, βz(t))  
and let Z be the axis of  
 revolution. Then,
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Extrusion
❑ Extrusion of a, usually  
    planar, curve along a  
    linear segment.  

❑ Consider curve β(t) and 
    vector 

❑ Then 
    

⃗v⃗v

t′ ⋅ ⃗v + β(t), 0 ≤ t, t′ ≤ 1,
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Sweep Surface
❑ Rigid motion of one (cross section) curve along another (axis) curve:  S(u,v)   

❑ In general, keeping one u fixed will generate a curve, which is a rigid motion 
(translation and ROTATION) of S(0,u)  

❑ The cross section may change as it is swept 

 


