Geometric
Modeling

Outline

Objective: Develop methods and algorithms to
mathematically model shape of real world objects

Categories:

W Wire-frame representations

[l Boundary representations

WVolumetric representations

An Example

Wire-Frame Representation

Object is represented as as a set of points and edges (a graph)
containing topological information.

Used for fast display in interactive systems.
Can be ambiguous:

Volumetric Representation

Voxel based (voxel = 3D pixels).

Advantages: simple and robust Boolean operations, in/
out tests, can represent and model the interior of the
object.

Disadvantages: memory consuming, non-smooth,
difficult to manipulate.

CSG Trees

Operations performed

recursively

Final object stored as

sequence (tree) of

operations on primitives

Common in CAD

packages —

Emechanical parts fit well

into primitive based
framework

Can be extended with

free-form primitives

kl

Motivation: Surface of Revolution
Rotate a, usually planar,

curve around the z-axis
First construct the curve in the

XZ-plane

https://www.geogebra.org/m/q8af6jtd

p0) = (BLD), (1))

x(u,v) = 8, (u) cos(v),
y(,v) = B,()sin(v),
2(u,v) = B.(w).

Constructive Solid Geometry

Use set of volumetric primitives
WBox, sphere, cylinder, cone, etc...

For constructing complex objects

use Boolean operations
WUnion
HWintersection
WSubtraction
mComplement

Freeform Representation
Explicit form: z = z(x, y)

Explicit is a special case of
implicit and parametric form
Implicit form: f(x, y, z) =0

Parametric form: S(u, v) = [x(u, v), y(u, v), z(u, v)]
Useful to assign to texture - the (u,v) coordinates indicates a
textile

Example — origin centered sphere of radius R:

Explicit :
z= +\/R2 -x*-y*Uz= —\/R2 -xt -y
Implicit :

x>+’ 42" -R*=0
Parametric :
(x,¥,2) =(RcosB cosy, RsinB cosy, Rsiny)P €[0,2n |2 E[-

E

' Big picture - what do we want

The designer could control a small number of points , and a curve connecting
theses points is generated.

Desired Properties:

« Easily controlled - small number of controlled points, and should be easy to
predict the effect of each

« Effect should be local and stable (hopefully small change of control
parameter = small change of the curve)
Locality changes are near the control point

« Continuity. C! continuity. Geometric continuity (will discuss later)

+ Easy to calculate, calculate intersection points etc. (nothing more
complicated than cubic)

(unfortunately) before creating splines, lets create a segment of the spline.
Then we could stitch them.

If theses segments starts/stops at control points, they must "glue’ nicely.

| Hermit Curve

Input - 2 points A,B

B-Spline (Basic spline)

+ The user enters a sequence of control points ({p;...p, }

and two directions (vectors) ﬁ _lf

Each point on the curve is a convex combination of these points

- CH= Z wit) - p;

+ Asthe weights changes in time, the curve is created

Output- a curve that is defined for every 0 < ¢ < 1, and assigns a
location and a direction of a ‘bug’ to each time t.

At every time, the curve is defined by a convex combination of
these parameters (each with some weight). The weights changes
in time

o ow)=wl—i)

.« SoC(t) = Z"V” —i)-p;

v
(+2)

0

SN
se0es s
@-v

8 a2

. .
s wgan
Problems: The curve is attracted to the control points,
butin general, not passing through the points.
Nor does is start nor ends at the first/last control point (boundary conditions)
...but this could be hacked.

13

Concatenating Hermit Curves into a Spline

| hoo(), hg, (2) that will handle location at
beginning of end of the segment.

hy(2), hyo(2) effects the start and end

l Catmull-Rom Spline do OK

directions.

Note /1p5(0) = 1 Means that the curve

Ahyy(t) + Bhy, (?) starts at Aand ends at B. No

need to find a polynomial that will fit only specific

location. Curve
. . Tgo (1)
A hoo(t) + B hor(t) + Vahwo(t) + VB hi(t) ho1(t)
h1o(t)
h11(t)

Actually doing excellent for many
applications

Not too much control, not too little -
back to talk about them later

.=V Given points A,B,C, each with directs direction,
Create a split H such that
for0 <t <1,useA,B, andfor1 <t <2,useB,C

“uC
[B hoot) + C hoa(t) + Vishuo(t) + V& hll(t)]

1 2 3 4 5

| Big picture - what do we want

The designer could control a small number of points , and a curve connecting theses points is generated

Parametric Curves

- Desired Properties

> Rl e GG SR €T e P D R e Analogous to trajectory of particle in space.
+ Effect should be local and stable (hopefully small change of control parameter = small change of the curve) SI ng Ie pa rameter te [-r1 ,Tz] — Ilke nti meu .

- Locality char e near the control point

(x(t).y(t))

+ Continuity. C" continuity. Geometric continuity (will discuss later) iti — =
position = p(t) = (x(t) y(t)
velocity = v(t) = (X'(t),y'(t))

If we want more control, we could construct the curve from segments connecting the control points JC T
(e.g. every thlrd control point) Ehtioicotuolive = Ud

Circle:
> .x = cos(t),

If theses segments starts/stops at control points, they must “glue’ nicely.

y(t) =sin(t) t€[0,2m) [v(t)|| =1
t) = cos(2t), y(t) = sin(2t) t € [0,x) ||v(t)
+2),

Lets see how this is done with Hermite curves. .X() = (1-2)/(1 y(t) = 2t/(1+t2) t € (-o0,+0)

Why cubics (deg=3) ?

Simplicity, locality, finding intersections easily.
At least 4 control points (hence cubic)

Reason: Want to define curves in 3D.
If we use only 3 control points, the curve will be
contained in a plane

What about 7, , and £,
Wat is the direction of the curve C(¢) near B ? It

1 :
is the direction of the vector E(‘CU — Ar) — C(r))

This is just the derivative, which is

A (@) + B hy (1) + V5 hio() + Vg hy, ()

Note that /1;(0) = h;,(0) = 0, so they

cannot change the slope at A
The only function of the four that has

non-zero derivative at t = (O is

—_—

h1((0). So we could add h,,(f) VA
to the curve,

it will not mess the other properties,
since h1((0) = hyo(1) = h{;(0) =0

Hermite Cubic Basis (cont’d)

Lets solve for /,(f) as an example. [EEOEOIZeNICOIXS]
e Ay 0 0 0

)T

ho@)=at+bet+ct+d

1 0 0
0 1 0
0 0 1

h11(2)

must satisfy the following four

constraints:
ey (0)=1=d,

hpy()=0=a+b+c+d,
hy'(0)=0=c,
hy'1)=0=3a+2b+c.

Four linear equations in four unknowns.

The four Cubic Hermite weights function

| hoo(1), by (f) that will handle location at
beginning of end of the segment.

hyo(D), hyo(2) effects the start and end

directions.

Note /1g5(0) = 1 Means that the curve
Ahyy(t) + Bhg, (7) starts at Aand ends at B. No
need to find a polynomial that will fit only specific

location. Curve

R R hgo (1)
A Tioo(t) + B hoi(t) + Vahio(t) + VB hii(t) ho1 (%)

- h1o(?)
s VA h11 (1)

A

[B hun(t)

1

0]

5

+ C ho(t) + vshio(t) + Ve hn
3 3 7

Hermite Cubic Basis

hoo () =7 (2t =3) +1
th(t) = t(t_l)z

o (6) =~ =3)
hll(t):tz(t_l)

hoo(t) ho1(t)

hio(t)

h11(t)

Hermite Cubic Basis (cont'd)
To generate a curve through P, & P, with slopes 7, & T},

use
C(t) = Ryhyo(8) + By (6) + Tyhyo () + Ty, (1)

The segments glue nicely, as long as the velocity vectors
are opposite

C! continuity: The velocity vector is continuous
A hoo(t) + B ho(t) + Vahwo(t) + Vi hu(t)

jo ud

[B hoo(t) + C hon(®) + Vihuo(t) + V& hn(t)

Besier curves
Similar to Hermite. The input is slightly different:
Input to Hermite: Two points and two tangents
Input to Beiser: 2 endspoints and two control points
Sum of weights =1. Always in convex Hull of points

“Bezier = A boo(t) + B bor(t) + A'hu(t) + B hya(t)

.
VB

3

Bezier Spline, defined by 3 segments. The first segment

In the next segment C2, the point c2 is opposite to d1, tc 18
£

12 hol(t) =3, (0<t<1)

C1= A ho(t) + B ho(t)+ A'hyot %" ho() = (-9’ (o <e<)
10(t) = 3(t—1)%t, (0<t<1
C1

o¢ R11(t) = 3%(t — 1)

02 11 2](1 — \¢*
h10

02 04 06 08 1 12 14 16 18

26 https://www.geogebra.org/m/szgz85dn

Hermite to Bézier

Bezier curve - need 4 control points, but passes through first and last.
* Mixture of points and vectors is awkward
* Specify tangents as differences of points

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 22

Hermite to Bézier

Po = 9o
P1=4q3
to = 3(q1 — qo)

t1 = 3(q3 — q2)

Po 1 0 0 0 |qo
P1| _ 0 0 1| |a
o 33 0 0 |q
Vi 0 0 =3 3] |as

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 23

Hermite to Bézier

Po = do
P1=4aqs3
to = 3(qa1 — qo)
t1 = 3(as — q2)

a 2 -2 1 171 0 0 0] [aq
b| |3 3 —2 —1/|0 0 0 1| |a
cl o o 1 of||-33 0 0f]|aq
d 1 0 0 o0]|0o 0 =3 3||as

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 23

Hermite to Bézier

Po = do
P1=4Qqs3
to = 3(a1 — qo)
t1 = 3(qa3 — q2)

a —1 3 -3 1 qo0
b| |3 -6 3 0| |
¢l 7 |-3 3 o0 0f|aq
d 10 0 0] a3

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner + 23

Bézier matrix

-1 3 -3 1 Po
3 -6 3 0| |p:

_ 3 2
£t)=[t* * t 1] 33 0 0| |p
1 0 0 0| |ps

— note that these are the Bernstein polynomials
boi(t) = (Z)tm —f)nk
and that defines Bézier curves for any degree

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner « 24

Bézier basis P, e

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 25

Another way to Bézier segments

* A really boring spline segment: f(t) = p0
— it only has one control point
— the curve stays at that point for the whole time

* Only good for building a piecewise constant spline
— aka.a set of points

°po

Cornell CS4620 Fall 2017 + Lecture 16 © 2017 Steve Marschner « 26

Another way to Bézier segments

* A piecewise linear spline segment
— two control points per segment
— blend them with weights c and S =1 -«

* Good for building a
piecewise linear spline
— a.k.a.a polygon or polyline

Po

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 27

Another way to Bézier segments

* A piecewise linear spline segment
— two control points per segment

— blend them with weights c and 8 =1 -« Pi

* Good for building a
piecewise linear spline

— a.k.a.a polygon or polyline

These labels show
the weights, not
the distances.

Po

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner « 27

Another way to Bézier segments

A piecewise linear spline segment
— two control points per segment
— blend them with weights ¢ and =1 -«

* Good for building a
piecewise linear spline
— a.k.a.a polygon or polyline

These labels show
the weights, not
the distances.

Po

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 27

Another way to Bézier segments

* A linear blend of two piecewise linear segments

— three control points now

— interpolate on both segments using a and 3
p=1—-a

— blend the results with the same weights

* makes a quadratic spline segment

_ !
finally, a curve! PLo = apo + Ap1

P11 = ap1 + Bp2

P20 = ap1,o + BP1,1

aapo + afp1 + Bap: + BBp2
= a’py + 2a3p1 + 7p2

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner *

Another way to Bézier segments

« Alinear blend of two piecewise linear segments
— three control points now
— interpolate on both segments using « and /3
— blend the results with the same weights

* makes a quadratic spline segment

- ! 3
finally,a curve! P10 = apo + Ap1

P11 =0api + fp2
P20 = P10+ P11
= aapy + afp; + fapy + B8p2

P

= a?pg + 2a8p; + B%pa

Cornell CS4620 Fll 2017 + Lacure 16 O S barscoer 28 g

Cornell CS4620 Fall 2017 » Lecture 16 ©2017 Steve Marschner +29

Another way to Bézier segments

* Cubic segment: blend of two quadratic segments
— four control points now (overlapping sets of 3)
— interpolate on each quadratic using a and 3
— blend the results with the same weights
* makes a cubic spline segment
— this is the familiar one for graphics—but you can keep going

P3,0 =ap20 + P21
=aaapg + aafpr + aBapi + aB6p2
Baap1 + Bafpz + BBap2 + B85ps
=a’py + 3a28p1 + 3a8%p2 + £°ps

Cornell CS4620 Fall 2017 « Lecture 16 © 2017 Steve Marschner * 30

a3pg + 3a2pp; +3a8%p, + p3

P3

Cornell CS4620 Fall 2017 « Lecture 16

© 2017 Steve Marschner * 31

Cathull-Rom curve:

Problem - Bsplines is an approximating curve, but not
interpolating one. Not passing through the control points:

Hermit Splines are interpolating, but requires the user to
specify tangents at each control points , Bezier splines all
requires the user to specify tangent for every control
points. Possibly this is fine, possibly annoying.

Catmull-Rom uses Hermits, but tangents are calculated
based on other control points.

41

Cuthull-Rom curve of {A,B,C,D,E}
Each segment is a Hermit curve.
Instead of using additional controll directions,
we approximate the slopes at these points E.G.

VB =1/2(A.B +B,C)
vB =1/2(A, B+ B,C)
User still needs to specify slope at first and last po|

oC =1/2(B,C +C, D)

?i =0.5(piy1 — Pi-1)

e
The tangents are calculated from the control points, interpolated by the curve.

L | T+

Surface Constructors

Construction of the geometry is a first stage in any
image synthesis process
Use a set of high level, simple and intuitive, surface
constructors:

WBilinear patch

BRuled surface

BBoolean sum

WSurface of Revolution

WExtrusion surface

WSurface from curves (skinning)
WSwept surface

CatmulI-Rom based on Bezier
]
t, =P+ 1)~ P@G - 1))5

—

Surface represented implicitly s(u,v)

_L'——

Sphere From Curves to Surfaces (cont'd)

(cosucosv, cosusinv, sinu)
https://www.geogebra.org/m/ggsg9spt

NUAYES 0.B.(v)B,(u)
sun-3 50

(% (u N W) , %(w,v)>

_L'—

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D
linear interpolation between 2 points in the plane
Given Py, P,,, P, P, the bilinear surface for u,v€[0,1]
is:

P(u,v) = (1=u)(1=v) By + (1~ u)vB, +u(l—v) Py +uvP,

R

uled Surfaces

Given two curves a(¢) and b(¢), the corresponding ruled
surface between them is:

W The corresponding points on a(u) and b(«) are connected by
straight lines

Questions:
BWWhen is a ruled surface a bilinear patch?
WWhen is a bilinear patch a ruled surface?

Surface of Revolution
Rotate a, usually planar,
curve around an axis
Consider curve B(7) = (B,(?), 0, (%))
and let Z be the axis of
revolution. Then,

x(u,v) = 8, (u) cos(v),
y(u,v) = B, (u)sin(v),
2(u,v) = B.(w).

| Sweep Surface

Rigid motion of one (cross section) curve along another (axis) curve: S(u,v)

In general, keeping one u fixed will generate a curve, which is a rigid motion
(translation and ROTATION) of S(0,u)

The cross section may change as it is swept

-

xtrusion

Extrusion of a, usually
planar, curve along a
linear segment.

Consider curve B(f) and
vector

Then .
-V + pQ),

