CSC 433/533
Computer Graphics

Review
Course Material Source Credits

Transformations in 2D
Short version

We will discuss transformation in 3D, and with full details, later in the course
(will need Matrix Multiplication and Homogenous coordinates)

About hw1
Aliasing and Anti-Aliasing

* This about an image where each pixels is fully black or
fully white

What if we rotate the rectangle

* Some pixels are partially covered by the rectangle. Show
they be rendered as black, white, or some shade of grey ?

What if we rotate the rectangle

« IWe still need to assign a value to each pixel.
« If we draw each partially covered pixel as black, we will obtain a very pixelated shape. This is an example of aliasing.

= A possible solution is to render some pixels as gray. For example, based on the portion of its area which is covered. This

technique is call antialiasing. Essentially, the color of a pixel might be determined using input from several neighboring pixels.

« We wil study much much more about it. Do not worry about it in hw1

« Inhw1, each rendered pixel has the (rgb) value of one (single) input pixel. No averaging or mixing.

Something to be careful about with hw1

Translations (shift) by(a, /)

Translation (shift) by (4,4)
(z,y) = (z+4,y+4)

(x=9.y=7)

[Tt 1ot 1oy 1o T [T 15 T T T

¢ Adding a constant a to the x-coordinate of every point
» Adding a constant f to the y-coordinate of every point

Y > (+ay+p)

Scaling

*We can use two constants (sx,sy) for the x-axis and the y-axis. Then we shift each
point (x,y) into the point (s, X, s, -y)

s (6y) = (5% 5,0y)

«Example (x,y) — (x/2, y/2)

Scaling

e Example: (x,y) — (0.5x, 2y)

(3:3)

312

(6,6)

The mathematician and coffee cup non-funny joke
Part 1

Empty Coffee
cup

Full Coffee Kettle

.
T

Ma ! ;E; atician

Solution:

. Walk around the fence,
2. fetch coffee kettle,

3. walk back pure coffee,
4. drink

The mathematician and coffee cup non-funny joke
Part 2

Full Coffee Empty Coffee
Kettle cup

Solution:
1. Bring the coffee Kettle to the other table, and walk to the left table
2. Apply the solution from the previous slide

Pl BN TR B R |

Resize the clock, without
changing its center

Problem: scale the clock, but without changing its center and without effecting the green rectangle

w1 T3 Tas Tol7 Tado T w1 T3 Tads Tolr Todo T

1 So in 3 steps

(2.2)
(22,29

y=

f Ko rofthe clock s on
Ir T T2

o here

N 4

Slate by (+5,+5).
ow the center of the clock

Trom here 12 Pk (3:9)

Shearing

¢ |f we move each point (x,y) into the point
) > @+y)

Shearing

* Vertical shearing shifts each
column based on the x value.

(xy) = (x, x+Yy)

Rotation

* Rotate counterclockwise by an angle ¢ about the origin.

(x,y) = (xcos p—ysing, xsingp+ycos¢p)
ew x New y

0,1)

(~707,.707)

L (707,.707)

707 =707
707 707

Assume we rotate p by an angle § CCW

Starting from a point p=(x,y), where will this point
p=(2.y) find itself after rotation by @ in the
CounterClockwise direction ?
y = sin(¢)
Let p’ = (x’,y’) denote the new location of this
point. Lets compute this location:

2’ = cos(¢ +0)

Reflection on the x-axes: (x,y) = (x, — V)

«
Il
Il

«©
I
|

= <
[Il

P O S VN BRI |
|

P I R VI B |

(%

Il
G

=

Il
&L

o

«©
[

FrSE pom pe gy g TS TG T T T

. SR
=|. Arbitrary Reflection - promo
| We will get back to it later in the semester

a=tan-(a)
y o YRR y y=ax+b
P ‘ P
(0,b) L] 0,b) ™ ©
L P
X x
1. Compute b.
2. Shift by (0,-b) Very scartrrrry....
3. Rotate by —a CCW Unless we represent
4. Reflect through x transformation by matrices
5. Rotate by o And then it is trivial
6. Shift by (0,b)

A Simple Mathematical
Abstraction for Images
* We can abstract an image as a function, I
e RV

* The domain, R, is a some continuous rectangular area
(R < R?) and the range,

e V,is a set of possible values.

¢ Since R is two dimensional, we can use /(x,y) to represent
the value of the image at a position (x,y) € R

Raster Images

* We digitize I(x,y) as an array of values, I/y//x], called
pixels, for picture elements

y
y=25
02| © © %62
o o o
©1
NOTE: (0,0) is
often the top | —— 00)) 20 G0)
left, not the y=-05
bottom left!

x=-05 x=35

How Do We Acquire
Raster Images?

Light

* Is both: (1) particles known as photons that (2) act as waves.
* Amplitude (height of wave)
* Wavelength (distance of which wave repeats)
* Frequency is the inverse of wavelength
* Relationship between wavelength (A) and frequency (f):
e A=c/f

* Where ¢ = speed of light = 299,792,458 m / s

Light

Light is Electromagnetic Radiation

FREQUENCY WAVELENGTH

Color != Wavelength

http://www.webexhibits.org/colorart/bh.html

/popup-m-cvision.shtml

https://www.

http://www.thestargarden.co.uk/Newtons-theory-of-light.html

») 7 10 g o) But rather, a combination of wavelengths and energy
* Visible spectrum is j o endo 7{
<«— Wavelength ———» T broadcast bands |— ¢ r
tin — 10 |
[y y H F radio e . yellow
:% V H F radio [-~ I~ 2
E ¢ Wavelength range: UHF radio | 10 2 !
<] - '
p 380-740 nm SHF radio | 10 '%
radar 5 |
10 s :
micro waves 010" g ‘ brown
extreme infra red s !
s “ina vctor | !
b1 10)~ 1
S X-rays 1" T f t t T i } } T } T t
Dist Waveiongtn (vm) ‘ﬁ 400 500 600
stance — 100 Wavelength (nm)
gamma rays B
-l N T |
N / 10 10
. .
L]
Isaac Newton, 1666 Optics: Thin Lenses
* Alens is a transparent device that allows light to pass
through while causing it to either converge or diverge.
Glass prism . .) '
\/\ * Given a camera, a target object, and a single converging lens:
White .
e H * Let S1 and S2 be the distance from the lens to the target
— A — and film
Newton'’s experiment for splitting white light into a spectrum * The focal length, f, is a measure of how strongly a lens
converges light

* The magnification factor, m = S2/S1, relates the two
distances.

Thin Lens Equation

s, s,

image size S, 1 1
ms= ————— = — — + ==
object size S S Sy f

In human vision, the cornea acts as a
protective lens that roughly focuses Rotina
incoming light

Iris controls the amount of light that
enters the eye

Optc dic

Optcnorve ——

The lens sharply focuses incoming light
onto the retina

* Absorbs both infrared and ultraviole "K: M
light which can damage the lens o e
* The retina is covered by LiGHT ‘:’Jg\
photoreceptors (light sensors) which :::tg 4
measure light :\(ch
Q)

Photoreceptors

LiGHT

* Rods (detect low-light / scoptopic vision)

* Approximately 100-150 million rods (Non-
uniformly distributed across the retina)

* Sensitive to low-light levels (scotopic
vision)
* Cones (detect day-light / phototopic vision)
* Approximately 6-7 million cones.
* Detect color with 3 different kinds:

* Red (L cone) : 564-580nm
wavelengths (65% of all cones)

* Green (M cone) : 534-545nm (30% of
all cones)

* Blue (S cone) : 420-440nm (5% of all
cones)

.

From Humans to Machines:
Charge-Coupled Devices (CCDs)

A CCD is an electronic circuit
with a grid of small
rectangular photocells.

The optical lens focuses a
scene onto the sensors.

Each photocell measures the
amount of light that hits it.

The collective data of the YR LA
sensors represents an image v e
when viewed from a distance.

http://en.wikipedia.org/wiki/Charge-coupled device

Color Image Acquisition

Scene
~
Lens
Image
= sensor

Color Image Acquisition

In a single CCD color digital camera each individual
photosite of the CCD is filtered to detect either red, green,
OR blue light

Most filters mimic the cone density of the human eye

* The Bayer filter uses 50% green and 25% red and blue
sites.

* The ‘RAW’ data must be demosaiced (fill in the gaps) to
produce a true-color image.

Bayer Filter

* Newer technology allows each photosite is able to
discriminate and measure red, green and blue light
simultaneously.

How Do We Encode
Raster Images?

Bitmaps

—»

[T

e R e
O el e N e
Hroooococor
HPORREREE P
FOoOrRRRREER
Hrooooocor
P el Sl N WSS
N el o S S S

¢ Bitmap: digital image that is a 2d array of pixels which store
one bit.

* Simplest digital image, a representation of a black and
white image.

¢ Bit: ones/zeros, convention is 0 = black & 1 = white.

Digital Images Linearized

* While we think of images as 2-
dimensional, in memory we
usually prefer to pack storage
so that they are 1-dimensional.

The same image can be
represented in both binary and
hexadecimal

N e e]
[e
HOoOOOOOOK
HORRRERE R
HORRRERE R
HoooOoOoOOKR
[e
el el e el e

(11111111 [11011011 | 11011011 | 11011011 | 11011011 | 11011011 | 11000011 | 11111111]

[FF [DB | DB | DB [DB [DB [C3 [FF |

Greyscale Images - Pixmaps

¢ \We use 0 for black and 1 for white -- what value should
we use for grey?

¢ Could use floating point numbers

¢ Instead, one convention is to use 8 bits for pixel -- how
many different “shades of grey”?

¢ Can convert to [0.0,1.0] by dividing by 255

Javascript and Arrays

* Standard Array type in Javascript is sparse:

* No guarantee of contiguous block of memory, memory is allocated on
demand.

* Can store mixed types
¢ Javascript TypedArray does use a contiguous block of memory

* But, requires a fixed type. E.g. Byte,

The operation Array.from

Definition and Usage
The Array.from() method returns an Array object from any object with a length property or an iterable
object.

Create an Array from a String:

[var myArr = Array.from("ABCDEFG")}

Image Allocation

let ROWS =
let COLS =
let pixmap2

i
i

Array.from(Array(ROWS), () => Array(COLS));

Rows separated in

Pixmap
Declaration
e =15 ™ 2= n Javascript

=11
for (let r = 0; r < ROWS; r++) {
pixmap[r] = [1;

let ROWS = 8; let COLS = 8;

y of arrays, but with lengths specified
om(Array(COLS), () Array(COLS))

//Instead of storing as 0..255, can use other types

Array.from() is not supported in Internet Explorer 11 (or earlier).) - pixmap2[2][3]
pixmap2 o memory!
Definition and Usage //pixmap3 is utilizes a 1-d array for the whole thing
The Array.from() method returns an Array object from any object with a length property or an iterable pixmap2[2]_ A let pixmap3 = Array(ROWS x COLS);
object. - .
Syntax 2[3] //top left p:!.xe'l_. (x,y) = (0:0)_ .
|B=Array.from(object, mapFunction, thisValue) r4] | p1xmap[0] [e1; p1xmap2[a] [e1; p1xmap3[0] ’
- —x+ 0 { | . . //top right pixel (x,y) = (7,0)
B=Array.from([1, 2, 3], x => / : .
comotelomy T retum .- from(X . | But it’s even worse since pixnap[01171; pixnap2[01(71; pixmap3[71;
Output: Array [2, 4, 6] H HIH HYH H
f123 — mlelduaI elements Ilkely //bottom left pixel, in general [index] = [y*COLS+x]
- - i 71[0]1; pi 2[71[0]; pi 561;
— are not adjacent either! pixmap[71[01; pixmap2[71[01; pixmap3[56]
Pixmap Declaration with TypedArrays . .
Image Allocation Encoding Color Images
//pixmap4 is utilizes a 1-d array for the whole thing
let pixmap4 = new Uint8Array(ROWS*COLS); let ROWS = 8;
let COLS = 8;

//e.g. Uint8ClampedArray, Float32array, etc.
// Clamped here means “automatic and reasonable rounding:
1/ -3.9-> 0; 266.5->255 etc”

//can we do multidimensional TypedArray

//using Arrays of arrays?

let pixmap4 = new Uint8Array(ROWS);

pixmapd[0] = new Uint8Array(COLS); //incorrect!

//for Typedhrrays, we must use 1-d indexing
//e.g. [index] = [y*COLS+x]

Imnnnmm
pixmap4{

, .
let pixmap4 Uint8Array (ROWS*COLS) ; We don’t have this

pixmapa2}3}

pimaps——t | LI [T TTTTTTTTTTTT

pixmap4[2]
pixmap4[3] Memory contiguous,
pixmap4[4] but cannot index by

row / column

* Could encode 256 colors with an unsigned char. But
what convention to use?

¢ One of the most common is to use 3 channels or bands

¢ Red-Green-Blue or RGB color is the most common --
based on how color is represented by lights.

Coincidentally, this just happens to be related to how our
eyes work too.

NOTE: There are many schemes to represent color, most
use 3 channels. We’ll come back to this next lecture

RGB Colors

Think about black bacl und

* Additive Mixing
of 3 Lights

RGB Color Cube

0,1,1) (1,1,1)

b
(1,0,1) ,,* (0,1,1) 0,1,1) g (1,1,0) 0,1,1)

(1,1,1)

“ b
>g

(1,1,0)

RGB

Golor Red
Wlle e]’ Rag ﬂu;rr\' 25;1—0-0 L’#lm’w

255-125-0

255-0-125

255-255-0

7 Spring Green
Violet Q% g
25095 125-255-0

Green
120°

0-0-255 0-255-0
Ug?? Turquoise
0-125-255 (yan 0255125
180°
0-255-255 bluelobsterart.com

Encoding Color Channels

¢ Could use 8-bits, spread across all 3 channels (a bit
ugly...)

5916 = = (2/7,6/7,1/3) = (0.286,0.757,0.333)

¢ The textbook outlines a collection of other methods. The
most common? 8-bit RGB images (24-bits per pixel)

//separate channel encoding

let red_pixmap = new Uint8Array(ROWS*COLS);
let green_pixmap = new Uint8Array(ROWS*COLS);
let blue_pixmap = new Uint8Array(ROWS*COLS);

//all together, could use an 32-bit uint,
//by standard convention we have 4 channels
let rgb_pixmap = new Uint8Array(4*ROWS*COLS);

//access colors
let index = COLS*r + c;

RGB Pixmap

rgb_pixmap[4*index + 1]; //green EnCOdIng
rgb_pixmap[4*index + 2]; //blue Optlons

Alpha channel is skipped

rgb_pixmap[4*index + 0]; //red

How Do We Display
Raster Images?

°
°
°
°
°
°
°
°
°
°
°
°
°
°

Optical Mixing

To make (almost) any color, we combine light from three
channels, Red, Green, Blue

As pixels get smaller, the
light blends

0. 0.0.000000020%%0%0%: %%

LEDs
(Light-Emitting Diodes)

Anode

V2NV

LEDS_:|_/ |II| |Ill\\r’)lll| |II]\\Wlll| |I@

/ On Off On
Cathodes

LCD Technology

¢ LCDs or Liquid Crystal
Displays produce color
by selectively blocking
light through different
filters

¢ Pixels are organized in
various units of 3

Polarized Light

¢ Light oscillates as a wave in all directions perpendicular to
its path. Polarizers selectively block certain oscillations

Light Passing Through Crossed Polarizers

Polarizer 1 Polarizer 2
(Vertical)

Light Waves Vibrating
=3 Perpendicular

to the Highway,

Incident Beam
(Unpolarized)

IS

Vertically
Polarized
Light Wave

Figure 1

0.com/primer/li lor/polarization.html

http://www.

Twisted Nematics

Horizontal
polarization filter Grooved
— alignment layers ~ Vertical
polarization filter

Unpolarized

OFF i Lit

Polarized light

Horizontal

tion filter
- Grooved

alignment layers

Vertical
polarization filter

Unpolarized

o N backlight

LCD Technology

¢ Four basic layers (in twisted nematics

displays):

¢ (1) Vertical filter film to polarize the light as it -
enters/exits. —

* (2 - 4) Glass substrate sandwiched with r—‘ ﬁl
electrodes. The activation of these ‘j
electrodes will determine what light will ‘ e

~3

penetrate via twisted nematic LCDS

* (5) Horizontal polarizer to filter light.

* (6) Reflective surface or light source to send
light back to viewer.

http://en.wikipedia.org/wiki/Lcd

Sidebar: Framebuffers are used to
prepare image data for the screen

* A framebuffer is an array of memory, large enough to store
an image on the screen. Often implemented in hardware.

* Alookup table or LUT converts information from memory to
actual color responses on the display.

e Uses:

 Color correction, since display may not respond at the
same levels as how the data represents it.

* Simple example: Gamma corrections, brightness/contrast
adjustment, etc.

gamma-Correction

Individual respond from the display (monitor) to every value of GrayScale

Lets normalize the intensity by using float in [0,1] instead of 255 values of RGB
such that

0 = black, and 1=white

Apixel with input intensity 0.5 might look very different in different devices.
Furthermore, the individual response is always monotonic but usually not linear. v
On top of it, viewer/illumination/other environmental factor

Sois there a subjective definition of what is gray (middle between white and black) ?

Gamma-Correction. We will assume approximately that if the input is « then

displayed intensity = (maximum intensity)a”,

® ¢ here is the input intensity to the monitor (between 0 to 1)

® yis a constant the user could change,

® If no gamma-correction is needed, then the left and right should look
the same (when viewed from a distance)

® Change « continuously to the right region, until the output a” looks like
the left region.

@ If this happens for some value a of input intensity, we deduce that

e a’ =025, ory = (In0.5)/(Ina)

@ Now every new image, with intensity « ", will be displayed using intensity
('

Chessboard of - uniform region with grey
black/white pixels, al get input of 0.5
pixels (before correction)

RGB Color Space

« Additive, useful for computer monitors
* Not perceptually uniform

¢ For example, more “greens” than “yellows”

.

Converting from RGB to CMY

* Assuming RGB values are normalized (all channels
between [0,1]), the exact same color in CMY space can
be found by inverting:

c M C 1-R]
Ml=|1-G
Y 1-B ”
Y G

Converting from CMY to CMYK

¢ Assuming CMY values are normalized (all channels
between [0,1]), the exact same color in CMYK is

{0.0,0,1) ifmin(C", M",Y'") =1,
<(1_ 3 “(:KK YL’,{?’,K) otherwise where K = min(C’, M',Y”)
(3.2)

(C, MY, K) = {

* Kis a measure of the ‘blackness’ of the color and
essentially serves as an offset after which the remaining
amounts of cyan, magenta and yellow are ‘added’

(H,C/S,L/B/V) Color Space

Hue - what people think of
as color (color, normalized
by sensitivity)

Saturation - purity,
distance from grey

¢ Also called Chroma

Lightness - from dark to
light Hue wheel (credit: Wi
(not a single fre

¢ Also Brightness or Value

CSC 433/533
Computer Graphics

Anti-Aliasing and
Signal Processing
Sampling, Smoothing and Convolutions

Recall:
Images are Functions

Domains and Ranges

* All functions have two components, the domain and
range. For the case of images, I: R = V

* The domain is:

¢ R, is some rectangular area (R ¢ R?)
* The range is:

¢ A set of possible values.

e ...in the space of color values we’re encoding

Operations on Images

Slides inspired from Fredo Durand

¢ Point (Range) Operations:

| .,
B

o)

il % §

« Affect only the range of the image (e.g. brightness)
* Each pixel is processed separately, only depending on the color

Operations on Images

Slides inspired fron Fredo Durand
¢ Domain Operations:

¢ Only move the pixels around

Operations on Images

Slides inspired from Fredo Durand

* Neighborhood operations:

¢ Combine domain and range
* Each pixel evaluated by working with other pixels nearby

Concept for the Day:
Pixels are Samples of
Image Functions

Image Samples

e Each pixel is a sample of what?

¢ One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

¢ The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

¢ Key Idea: An image represents data in either (both?) of

* Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

* Discrete domain, where intensity is defined only at a
discretely sampled set of points.

* This seem like a philosophical discussions without clear practical
applications. Surprisingly, it has very concrete algorithmic
applications.

Converting Between Image Domains

When an image is acquired,
an image is sampled from

some'contlnuous dpmam P
to a discrete domain. sl

Reconstruction

Reconstruction converts
digital back to continuous.

Sampling/Quantizing

The reconstructed image
can then be resampled
and quantized back to the
discrete domain.

Continous Domain Discrete Domain

Figure 7.7. Resampling

//scale factor Nalve Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; row++) {
for (let col = 0; col < W; col++) {

let index = row*W + col;
let index2 = (k*row)*W + (k*col);
output[index2] = input[index];

What’s the Problem?

* The output image has gaps!
* Why: we skip a many of the pixels in the output.

* Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor Naive Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; rowt++) {
for (let col = 0; col < W; col++) {
let index = row*W + col;
let index2 = (k*row)*W + (k*col);
output[index2] = input[index];

[13 ”
//scale factor Invers_e Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.
for (let row = 0, row < k*H; r
for (let col = 0; col < k*W; col++) {

let index = (row/k)*W + (col/k);
let index2 = row*k*W + col;
output[index2] = input[index];

Inverse Image Rescaling

Not great, but could become worse

ik

[

400x400 image 100x100 image

What’s the Problem?

¢ The output image is too “blocky”

* Why: because our image reconstruction rounds the index
to the nearest integer pixel coordinates

* Rounding to the “nearest” is why this type of
interpolation is called nearest neighbor interpolation

Sampling Artifacts /
Aliasing

Motivation: Digital Audio

Acquisition of images takes a continuous object and converts
this signal to something digital

Two types of artifacts:
* Undersampling artifacts: on acquisition side

¢ Reconstruction artifacts: when the samples are interpreted

Lowpass filter
Vi - v~ @
converter

Lowpass filter

@»Mv%‘m*** W*ﬂ>>>>

Undersampling Artifacts

S"\]a“"_Oft" S-N Theorem lllustrated
uis AAHSVARTTY
Thyq M U How many samples are enough to avoid aliasing?
eorem N o How many samples are required to represent
(not needed for the S a given signal without loss of information?
exam)

¢ The sampling frequency must be double the highest
frequency of the content.

* [f there are any higher frequencies in the data, or the
sampling rate is too low, aliasing, happens

* Named this because the discrete signal “pretends” to
be something lower frequency

o What signals can be reconstructed without loss
for a given sampling rate?

VAVAVAV;

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

NN

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

AN

S-N Theorem lllustrated

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

SARY

Shannon-Nyquist Theorem

A signal can be reconstructed from its samples,
iff the original signal has no content >=
1/2 the sampling frequency - Shannon

[Aliasing will occur if the signal is under-sampled]

Aliasing in images

Two of under-

1) Moire Pattern
2) Rasterization

Moire Patterns

Neighborhood Filtering

Aliasing for edges (Schematic)

Convolution

neighborhood N; of i N
A/ \
4
L 4
o Co Each pixel is effected by nearby pixels ixel i
Without antialiasing With antialiasing For example, even though the image is black/white, P \ ’/ >
We allow grey values

Each pixel is effected by nearby pixels

For example, even though the input image image is black/white,
We allow grey values for output pixels.

original image filtered image

An Example: Mean Filtering

Mean filters sum all of the pixels in a local neighborhood N and divide by the total number, computing the average pixel.

Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)

Tofind the new color of a pixelj, we will look at N, , defined as the (say) 3 X 3 neighborhood, and set

1
% =5 > G

Where the Niis a square, we call these box filters PkEN/

Think about it as a weighted average:
) = z "G
pixel j in the rergion N i

« The weights w,...w, are convex combination. Meaning that they are all positive, and w, + W, + ...w, = 1. For
!

example, Wy = w,

Convolution

¢ This process of adding up pixels multiplied by various
weights is called convolution

neighborhood N; of i new pixel color = 30/16

.

d N
1]2]1 7 N
1116[2]4]2 s
1]2[1 g B
31]2
kernel H = >

Kernels

Convolution employs a rectangular grid of coefficients,

known as a kernel

Kernels are like a neighborhood mask, they specify which
elements of the image are in the neighborhood and their

relative weights.

A kernel is a set of weights that is applied to

corresponding input samples that are summed to

produce the output sample.

One-dimensional Convolution

* Can be expressed by the following equation, which takes a filter H and
convolves it with G:

Glil = (G« D) = i GjJH[i - j], i € [0,N —1]

* Equivalent to sliding a window

¢ For smoothing purposes, the sum of weights must be 1
o BREMEAEET oafduff [
/111 /11 L2221 e]
sl sl i12521 ;101234567 0123456
L. . . R L1 [37 12 2 21 A Input A Output
original image G filtered image G*H 11111 reflection reflection
Low pass and hight pass filters Low pass and hight pass filters - h, Convolution iS a
. . 7N\ Moving, Weighted
) .) \ original signal y / \
) R, : T/ \ Average .
2) o Y \
B . T N P 0 h itr
A Low Pass filter. Signal y after convolution with gaussian o o 2 a0 a0 0 e 70 s s o0 a % b)[i] = a] bli —] [
N We convolved the R Low Pass filter. Signal y after convolution with gaussian ()[] j;r [] [] I
0 original signal y with We convolved the _ 1
2 this gaussian ! original signal y with . o b= 001464100 bT3
. 2 this gaussian * Mathematically, this is
o 0 @ w @ o o 7w % s -
R signa vs. High Pass Fiter: y-conv(y:w) %o 0 2w w0 o e 7w s o ?quwale.nt to
) , High Pass Filter: y-conviy.w) integrating the prodgct Z
ol . of a and b with a shift
2 2 \ | ‘ in the domain
e e e e ° \ V AR ? !
2 =
0 10 20 30 40 50 60 70 80 90 100 .

* Compare a to a*b on

the right

2-Dimensional Version

¢ Given an image a and a kernel b with (2r+1)2 values, the
convolution of a with b is given below as a*b:

i+r j+r
(@ % D), dl= > > ali,f]bli—i,5—7]
i'=i—r j=j—r

¢ The (i-i") and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

¢ The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing

« Convolution reflects the filter to preserve orientation.
* Correlation does not have this reflection.
* But we often use them interchangeably since most kernels are symmetric!!

Convolution reflects
and shifts the kernel

1273
Given kernelH=4 5 ¢
8 9

0Oo00O0OO0O0OO0OO0OOCOOOPU
0O0000O0O0DO0OO0OD ODOO0ODDQO

7

:§l§’7’: ™oo0o000 000DO0DO0ODODODOO 000 (
654000000 000000O0O0O0 1 2 3 (
:;2_2__1_: 0000O0O0O OOODOOOOODQO0) 4 5 6
0O000DO0OO0DODODOD OO0OTO0T1) 0 0) 7 8 9 (
00 0O01O0O0O0OQ0 000 4) 0 0) 0 0 0
0O000DO0DO0DODODOD OO0OO0C7) 0 0 G*H

0

)

)

oSO oW

An lllustration

X-1 X X+1
-1 0 +1 321455548 |89
-1 1 Y-1 37|41 78
0 1 Y 38|54 57
+1 1 Y+1 40 | 50 71

49 | 53| 63 |59 | 61

Kernel Digital Image

Figure 6.2. A 3 x 3 kernel is centered over sample I (z, y).

An
lllustration 0

49|53 63|59 |6l
Kernel Digital Image

Figure 6.2. A3 x 3 kernel is centered over sample /(.).

Reflect Kernel Term by Term Multiplication Sum the Products
s-lo| 1 1 0 -1 41 | 59 | 46 41| 0 |-46
Ao |l [o [X [sa]ss]| | > el o [)| =
-lo|1 1 0 -1 50 | 65 | 56 50 0 [-56

Figure 6.3. Convolution steps.

Convolution Can Also Convert
from Discrete to Continuous

_ SRR ARE NI RN A
« Discrete signal a

* Continuous filter f | “lil/~ Z / %: ES;

¢ Qutput a*f defined
on positions x as P : .

opposed to . . : *
discrete pixels i

Lo+
(@* fle)= D alilf(z—1)
i:[z—r‘|

Filtering helps to reconstruct //scale factor Discrete-Continuous
H . let k = 4; .
the signal better when rescaling Image Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead. Types Of Filters:

for (let row = 0, row < k*H; row++) { .
for (let col = 0; col < k*W; col++) { Smoothlng
let x = col/k;
let y = row/k;
let index = row*k*W + col;
output[index] = reconstruct(input,x,y);

Inverse Rescaling Reconstructed w/ Discrete-to-Continuous

Smoothing Spatial Filters Smoothing Kernels Box Filter

1 —(22+42)
F(x,y) = —a - max(lz], |y]) Glay) =

=——e¢
2702

* Any weighted filter with positive values will smooth in some way, examples:

A
A

R
A
Y
R

R
\
W
R
R
-

N
A
\

te this brown strip

x| 1 1 1 —=x| 2 4 2 (2) Pyramid (b) Cone, (c) Gaussian.

fley) =—a- a2+ 2

of=
=

12321 ofof[1]o]o 1[a]7]4]1
24642 0j2]2[z]0 41628 16| 4
* Normally, we use integers in the filter, and then divide by the sum 3 6/9]6|3 1125721 7128|149 287
(computationally more efficient) 2 4]6[4]2 0j2]2]2]0 41628 16| 4
I[2[3]2]1 ojof1]0]o0 147 a1

(a) Pyramid. (b) Cone. (o) Gaussian.

* These are also called blurring or low-pass filters

Table 6.1. Discretized kernels.

Gaussian Filter

e brown strip

Gaussians ¢y -t

2702

Gaussian kernel is parameterized on the
standard deviation o

Large o’s reduce the center peak and spread
the information across a larger area

Smaller o’s create a thinner and taller peak

Gaussians are smooth everywhere.

Gaussians have infinite support
* >0 everywhere
* But often truncate to 20 or 30

* Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

e

—(22+3?)

202

Smoothing Comparison

(a) Source image. (b) 17 x 17 Box. (¢) 17 x 17 Gaussian.

Figure 6.10. Smoothing examples.

Smoothing the Smoothing
Filters

¢ Box * Box = Tent (Pyramid)

¢ Tent * Tent = Bell

3— e 2=
- . -
1—e- » - 2— » .. 8 —
! [oi-e e i= e .
o— } e e e e e A B e e e e e o

b) tent filter c) bell filter

Types of Filters:
Sharpening

Sharpening (Idea)

Input blurred

%

High pass

Sharpened
image

Another example

Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Sharpening is a Convolution

¢ This procedure can then expressed as a single kernel

¢ Assume that | = I"d and liow = I*fg.0.
* dis the discrete identify function (kernel with 1 in center, 0 elsewhere)
* fg,0 is a smoothing filter (e.g. Gaussian of width o).

¢ This leads to:

Liap =1+) —a(l % fy0)
=1 % ((1+a)d—afg,,,)
=1 % fsha:p(o',a),

Sharpening is a Convolution

Isha.rp = (1 + a)I - a(I * fg,v)
=1 % ((1+a)d—af,,)

Note: could also ? Y g
define d as 000

=1 * fsharp(ava)v _ ‘/

L, [ooo
d= -x109 01,
% 1o oo
[t
foo= sx|1 1 1],
O 11
1 -—Oé -« —«
((1+a)d_afg,a): g x| @ (9+8a) -—a
_*Oé —Q -«

Unsharp Masks

* Sharpening is often called “unsharp mask” because
photographers used to sandwich a negative with a blurry
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement

¢ The parameter a controls how much of the source image
is passed through to the sharpened image.

(a) Source image. () a=5

Figure 6.20. Image sharpening.

Defining Edges
¢ Sharpening uses negative weights to enhance regions where
the image is changing rapidly

* These rapid transitions between light and dark regions are
called edges

.

Smoothing reduces the strength of edges, sharpening
strengthens them.

* Also called high-pass filters

* |dea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

@
ox 2h 2
250
10
200 /\
2 L, s
S 150 2 .
fo ! of
~ - —
£l g Swazof war=[—5[0]5]
50 oz
-10
0
0 50 100 150 200 0 50 100 150 200 _ 1
Column Index Column Index a f 2
® © " Rwgof wg=| 0
Figure 6.11. (a) A grayscale image with two edges, (b) row profile, and (c) first derivative. Y %

(Review?) Derivatives via
Finite Differences

¢ \We can approximate the derivative with a kernel w:

Yry) ferthy) —fx—hy) o+ 19) = f = Ly)

Taking Derivatives with Convolution

-

Gradients with Finite Differences

* These partial derivatives approximate the image gradient, V/.

* Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

« We can separate them into components kernels Gx, Gy. V/ = (Gx, Gy)
N
Vimy) = (o1(zy)/dy)

1
G, =[1,0,-1] Gy:|: 0 }:

_(élfsx)\ [19GC,
v (i)= (156,

Figure 6.12. Image gradient (partial).

-100f -73

-106

(b) 61 /bz. (c) 81/5y.

oo

117

(d) Center sample gradient. (e) Gradient.

Figure 6.14. Numeric example of an image gradient.

(f) Magnitude of gradient.

Gradients Gy, Gy

|Gyl |G

6] = /G2 + G

=025 and B=0 @=0.25 and f=50

Effects of
200 w0,
H 2 z
Rescalin : E
150 %_ 150 ;-:_
) 8
g £
100 ‘i 100 5
L i o £
50 1 50
77777777777 -25 |
L 0 L 0
0 50 100 150 200 255 0 50 100 150 200 255
Input Sample Value Input Sample Value
£ 255 L 255
200 200
3 i 3
- 1 -
77777777777 150 2 | 150 &
] H] H
! & ! &
| 100 5 | 100 5
i & i &
! 8 ! 8
; 50 | 50
| |
0 0
0 50 100 150 200 255 0 50 100 150 200 255

Input Sample Value Input Sample Value

Figure 5.2. Graph of the linear scaling function with various gain and bias settings.

Why Use Both a, ?

* Consider two rescaled source
samples of S rescaled to S’.

Calculate the contrast (the
absolute difference) between the
source and destination, called AS

and AS'.

* Now consider the relative change
in contrast between the source
and destination.

S{ = 0651 +57
Sé = OéSz +5.
AS = [51= 5,
AS = |81 -5,
A |51 = S

AS TS =S,

Why Use Both a, f?

* The relative change in contrast can be simplified as

AS (a8 +8) — (a8 +)]
AS [S1 — Sa|
_ ol]85 = 5
|51 = 5|
= laf.

« Thus, gain () controls the change in contrast.

« Whereas bias (p) does not affect the contrast

* Bias, however, controls the final brightness of the rescaled image. Negative bias
darkens and positive bias brightens the image

Sidebar: Relating
Contrast Sensitivities to
Signal Processing

Contrast Sensitivity Function
Campbell-Robson Chart

>

decreasing contrast

increasing spatial frequency

Contrast Sensitivity Function
Campbell-Robson Chart

decreasing contrast

>

Where the bands

can be distinguished
depends on both the
person and distance

increasing spatial frequency

Contrast Sensitivities Vary by Channel

100

Luminance
10 pars:

1]

Red-Green

Contrast Sensitivity

0.14 Blue—‘{ellowl‘l

0.01 — T
-1 0

—-
[N}

Log Spatial Frequency (cpd)

Figure 1-18. Spatial contrast sensitivity functions for luminance
and chromatic contrast.

Photoshop demo

 Image > Mode > Lab color
* Go to channel panel, select Lightness
* Filter > Blur > Gaussian Blur, e.
—very noticeable
* Undo, then select a & b channels
* Filter > Blur > Gaussian Blur , same radius

Original Blur Lightness Blura &b

Important: Clamping

* Rescaling may produce samples that lie outside of the
output images (e.g. below 0 or above 255 in 8-bit images)

¢ Clamping the output values ensures that the output
samples are truncated to the 8-bit dynamic range limit

* Note that clamping does ‘lose’ information, since it

truncates.
min if |z] < min,
clamp(z, min, maz) = { max if |z] > max,
[z] otherwise.

Rescaling
Examples

gain = |, bias = 55 gain = |, bias = -55

gain = 2, bias=0 gain = .5, bias=0

Rescaling Color Images

« Often, itis desirable to apply differe™§ain and bias values to each channel of a color¥ffage
separately

* Example: A color image that utilizes the HSB (Hue-Saturation-Brightness) color model.
(]

®g®

Credit “Learn Ui Design Blog”
« Since all color information is contained in the H and S channels, it may be useful to adjust

ONLY the brightness, encoded in channel B, without altering the color of the image in any
way.

* Rescaling the channels of a color image in a non-uniform manner is also possible rescaling each
color channel separately.

Example: Gamma Correction

cd

FIGURE 3.9
(a) Aerial image.
(b)~(d) Results of
applying the
transformation in
Eq.(32-3) with

Putting it all together:
Gain, Bias, and Gamma

* Cout = (uCin + ﬁ)7

e «is known as gain
(exposure)

¢ B is known as bias (offset) |

* Y maps to a non-linear
curve (gamma correction)

Image of Photoshop from
Christian Bloch - The HDRI Handbook 2.0

Dynamic Range

The World is a High Dynamic Range (HDR)

11

1:400,000

1:2,000,000,000

Inside is too dark
Outside is too bright

Examples

Sun overexposed
Foreground too dark

Dynamic Range in Displays?

¢ Range of pure black vs. pure white?

Dynamic Range in Displays?
* Typically 1:20 or 1:50
—Black . is ~ 50x darker than white

« Max 1:500
106 106
Realworld | | | | | | | | \ | | | |
]
10-¢ 106
Picture | | | N R I N N

Low contrast

Problem: Displaying the Information
* Problem: How should we map scene radiances (up to 1:100,000) to
display radiances (only around 1:100) to produce a satisfactory image?

¢ Goal: match limited contrast of the display medium while preserving
details

¢ Solution: Tone Mapping

10-6 High dynamic range 100
Realworld | | | | | | | | | | | | |

106 10¢
Picture | | | [N S N A

Low contrast

First solution: Linear mapping

* We will find the pixels with min and max intensity in the
input image.

¢ Map them to the min and max intensities of the display
¢ Everything in between is mapped linearly.

10-6 High dynamic range 10

Real world | | | | |

106 10°
Picture | | |

Low contrast

Without HDR + Tone Mapping

can preserve both the colors of the sky and the details of the

With

o™

HDR + Tone Mapping

CSAIL

Soothing
(using a Gaussian,
box filter, or other)

— A\

(a-glx.y) +p))

low frequencies

Large scale

80) = h(x.y) * G Reduce

contrast

s |
Actually Preserve!

I(x,) = log,g(Intensity) —— @) +BY)

detail=
input log - large scale

e
high frequencies

Before

hi

IProduces EX{re

Check (recommended). e

http://luminous-landscape.com/essays/hdr-plea.shtmi| %32

Tone Mapping

Question: But why do we need more than 100 levels of intensity (luminance) if in the input file we only have 256
values of intensities (RGB) ?

Answer: Not allfile format has so few levels.

Even PPM could have 2 bytes per channel, so 2562-65536 levels per channel.

Other formats gives much wider range:

Radiance RGBE Format (.hdr)

32 bits/pixel
[T e T T [[[[T[]

Red Green Blue Exponent

(145,215, 87, 149) = (145,215, 87, 103) =
(145,215, 87) * 27(149-128) = (145,215, 87) * 27(103-128) =
1190000 1760000 713000 0.00000432 0.00000641 0.00000259

Ward, Greg. "Real Pixels,” in Graphics Gems 1V, edited by James Arvo, Academic Press, 1994

The Radiance
Map

Radiance Definition: much of the
power (in watts) is emitted by a cm?
surface will be received by an optical
system looking at that surface from a
specified angle of view.

The Radiance
Map

Linearly scaled to
display device

Approach: Visual Matching

Pixels

it gives us a visual match.

Eyes and Dynamic Range

* We're sensitive to change (multiplicative) -

* Aratio of 1:2 is perceived as the same contrast as a ratio
of 100 to 200

¢ Use the log domain as much as possible

* But, eyes are not photometers

* Dynamic adaptation (very local in retina)

« Different sensitivity to spatial frequencies

o

Headlights
are ON in
both
photos

Can we just scale? Maybe!

For a color image, try to convert the

input (world) luminance Lw to a target r 1

display luminance Lqg L RW
d

. , . R L,
* This type of scaling works (sometimes). d w
In particular, it works best in the log Gw

and/or exponential domains Gd = Ld I
w

¢ logio(x)=1+log1o(y) means x=10y Bd B
L w

¢ The base of the log is not important, a L

as long as we are consistent in the L W

mapping

What scale value to use?
How about Gamma compression

* Cout = Cin’, where 0 < ¥ < 1 applied to each R,G,B channel

¢ Colors are washed out, why?

Gamma compression on Intensity

* Colors ok, but details in intensity are blurry

Intensity Gamma on intensity

Oppenheim 1968, Chiu et al. 1993

¢ Reduce contrast of low-frequencies

* Keep mid and high frequencies

Low-freq.

—-—

Reduce low frequency

The halo nightmare

fallf8]
CSALL

* For strong edges
» Because they contain high frequency

Low-freq. Reduce low frequency

Our approach A)

* Do not blur across edges

* Non-linear filtering

Large-scale

DetaII

——

Start with Gaussian filtering

* Here, input is a step function + noise

output <

' input

Gaussian filter as weighted average

oL
CSAIL

» Weight of € depends on distance to x

J(x) =

> D

g

output <

1(&)

input

The importance of convex combinations

Wweight function X is the point where we need the answer]|
®=y fx.9) £ is nearby point
Intensity

When we smooth, or interpolate we usually use wighted average.

GX.E.x.E.y) = L[ﬁuf{x)ﬂm—:x)z
Which functions could f(x,£) be - 270

.
A

AN

A
S

g

NN

\
W
2N
N\
\
R
SRR
AR
W

(2) Pyramid. (b) Cone.

(c) Gaussian,

3 3
fx, &) = max {02 = S max(lx— .xl, [y=¢.31) }
a a
s it ey S o, 14

We will try to make sure that sum of weights =1 (this is called convex combination)
See example of bilinear interpolation on the whiteboard

The problem of edges

CSAIL|

* Here, I(E)“pollutes” our estimate J(x)
« It is too different

« To correct it, we will have to change the averaging.
+ Remember that during the smoothing, we wil firstsum " I(£) for all point near x.

« To resolve the halo me We will avoid summing I(£) if I(£) is very far from I(x)

J(x)=

f(x.5) 1(5)

output <]

input

Principle of Bilateral filtering

[Tomasi and Manduchi 1998]

* Penalty g on the intensity difference

Remember that the sum of weights must be 1.
What to do if we skip some terms ?
We will divide the total sum by k(x)

E f(xE) gdE@-1x) 1)

g(la—b|) = lifais close to b, and zero otherwise

J(x)=

k(x)

output <]

input

Bilateral filtering

[Tomasi and Manduchi 1998]

* Spatial Gaussian f

Remember that the sum of weights must be 1.
What to do if we skip some terms ?
We will divide the total sum by k(x)

J(x) = 15 2F(6,8)8U@~10) 1(E)

output <]

input

Bilateral filtering

CSAIL|

[Tomasi and Manduchi 1998]
* Spatial Gaussian f

» Gaussian g on the intensity difference

J(x) = 15 2 F(x.8) gU(E) ~ I(x)I(E)
§

Normalization factor

[Tomasi and Manduchi 1998]

TN p(xE) UE) - 1(x))
5

J(x) =15 2 f(x8) gU&-1x) I(E)
g

