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Vector Math + Coding

Today’s Agenda

• Reminders:


• A02 questions?


• Goals for today: 


• Introduce some mathematics and connect it to code

Vectors



What is a Vector?
• A vector describes a length and a direction


• A vector is also a tuple of numbers 


• But, it often makes more sense to think in terms of the 
length/direction than the coordinates/numbers


• And, especially in code, we want to manipulate vectors 
as objects and abstract the low-level operations


• Compare with a scalar, or just a single number

Properties
• Two vectors, a and b, are the same (written a = b) if they 

have the same length and direction. (other notation:  )


• A vector’s length is denoted with || ||, (sometimes we just 

denote . When a  =(x,y), then 


• e.g. the length of a is ||a||


• A unit vector has length one


• The zero vector has length zero, and undefined direction

ā, ⃗a

|a | = a . x2 + a . y2

Vectors in Pictures
• We often use an arrow to represent a vector


• The length of the arrow indicates the length of the vector, the direction of the 
arrow indicates the direction of the vector.


• The position of the arrow is irrelevant!


• However, we can use vectors to represent positions by describing 
displacements from a common point

a

a

||a||

b
||b|| = 2||a||

The point p

a

The point a, 
relative to p

Vector Operations
• Vectors can be added, e.g. for vectors a,b, 

there exists a vector c = a+b



• Defined using the parallelogram rule: idea is 
to trace out the displacements and 
produced the combined effect


• Vectors can be negated  (flip tail and head), 
and thus can be subtracted


• Vectors can be multiplied by a scalar, which 
scales the length but not the direction 

a + b = (a . x + b . x, a . y + b . y)

βa = (βa . x, βa . y)



Vectors Decomposition

• By linear independence, any 
2D vector can be written as a 
combination of any two 
nonzero, nonparallel vectors


• Such a pair of vectors is called 
a 2D basis

Canonical (Cartesian) Basis

• Often, we pick two 
perpendicular vectors, x and y, 
to define a common basis


• Notationally the same,


• But we often don’t bother to 
mention the basis vectors, and 
write the vector as a = (xa,ya), or

Vector Multiplication: Dot Products
• Given two vectors a and b, the dot 

product, relates the lengths of a 
and b with the angle ϕ between 
them: 



a・b = ||a|| ||b|| cos ϕ


• Sometimes called the scalar 
product, as it produces a scalar 
value


• Also can be used to produce the 
projection, a→b, of a onto b

a ⋅ b = (a . x ⋅ b . x + a . y ⋅ b . y)

Dot Products are 
Associative and Distributive

• And, we can also define them directly if a and b are 
expressed in Cartesian coordinates:



3D Vectors
• Same idea as 2D, except these vectors are defined 

typically with a basis of three vectors


• Still just a direction and a magnitude


• But, useful for describing objects in three-dimensional 
space


• Most operations exactly the same, e.g. dot products:

Cross Products
• In 3D, another way to “multiply” two vectors is 

the cross product, a ⨉ b: 
||a ⨉ b|| = ||a|| ||b|| sin ϕ


• ||a ⨉ b|| is always the area of the parallelogram 
formed by a and b, and a ⨉ b is always in the 
direction perpendicular (two possible 
answers).


• A screw turned from a to b will progress in the 
direction  a ⨉ b


• Cross products distribute, but order matters:

Cross Products• Since the cross product is always orthogonal to the pair 
of vectors, we can define our 3D Cartesian coordinate 
space with it:


• In practice though (and the book derives this), we use the 
following to compute cross products:
a × b = (yazb − zayb, zaxb − xazb, xayb − yaxb)

Checking orientation 

b

a

b

ab

Assume a, b are in 2D (z=0). There are 3 possible scenarios. 

a might be counter-clockwise (ccw) of b 

a might be clockwise (cw) of b  
a is collinear with b  

xayb − yaxb > 0 xayb − yaxb < 0 xayb − yaxb = 0

a

a is counter-clockwise 
(ccw) of b 

a is clockwise (cw) of b a, b collinear 

This will provide a convenient way to check  if a triangle with vertices u,v,w 

(when vertices are given to us in this order) is CCW or CW 

b

u

v

w

u

v w



Rendering

What is Rendering?

“Rendering is the task of taking three-dimensional objects 
and producing a 2D image that shows the objects as viewed 
from a particular viewpoint”

Two Ways to Think About 
Rendering

• Object-Ordered


• Decide, for every object in 
the scene, its contribution 
to the image 

• Image-Ordered


• Decide, for every pixel in 
the image, its contribution 
from every object

Two Ways to Think About 
Rendering

• Object-Ordered or  
Rasterization


for each object { 


  for each image pixel { 


    if (object affects pixel) 


    { 


      do something 


    }


  } 


}  

• Image-Ordered or  
Ray Tracing


for each image pixel { 


  for each object { 


    if (object affects pixel)


    { 


      do something 


    }


  } 


} 

TODAY



Basics of Ray Tracing

Idea of Ray Tracing
• Ask first, for each pixel: what belongs at that pixel? 


• Answer: The set of objects that are visible if we were 
standing on one side of the image looking into the scene

• Start with a pixel—what belongs at that pixel? 
• Set of points that project to a point in the image: a ray
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Ray tracing idea

4

Key Concepts, in Diagram Idea: Using Paths of Light 
to Model Visibility



Using Paths of Light to 
Model Visibility

Light Source

Using Paths of Light to 
Model Visibility

Emits Light Rays

Using Paths of Light to 
Model Visibility

https://software.intel.com/file/37491

Some arrive at 
 the image plane 

Using Paths of Light to 
Model Visibility

But Most Do Not!

?



Forwarding vs Backward 
Tracing

• Idea: Trace rays from light source to image


• This is slow!


• Better idea: Trace rays from image to light source

Ray Tracing Algorithm
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Ray tracing algorithm

for each pixel { 
    compute viewing ray 
    intersect ray with scene 
    compute illumination at visible point 
    put result into image 
}

6

for each pixel {

  compute viewing ray 

  intersect ray with scene

  compute illumination at intersection

  store resulting color at pixel

}   

Ray Tracing Algorithm
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Ray tracing idea

 

5

Cameras and 
Perspective

If illumination is uniform and directional-free (ambient light): 

for each pixel {

  compute viewing ray 

  intersect ray with scene


copy the color of the object at this point to this pixel.  

}   

for each pixel {

  compute viewing ray 

  intersect ray with scene

  compute illumination at intersection

  store resulting color at pixel

}   

Commonly, we need slightly more involved 



Linear Perspective

• Standard approach is to project objects to an image 
plane so that straight lines in the scene stay straight lines 
on the image


• Two approaches: 


• Parallel projection: Results in orthographic views


• Perspective projection: Results in perspective views

Orthographic Views
• Points in 3D are moved along parallel lines to the image 

plane.


• Resulting view determined solely by choice of projection 
direction and orientation/position of image plane

Perspective Views
• But, objects that are further away should look smaller!


• Instead, we can project objects through a single viewpoint and record 
where they hit the plane.


• Lines which are paper in 3D might be non-parallel in the view

Pinhole Cameras
• Idea: Consider a box with a tiny hole.  All light that passes 

through this hole will hit the opposite side


• Produced image inverts

35 

Pinhole Camera 
• Box with a tiny hole 
• Inverted image 
• Similar triangles 

• Perfect image if hole 
infinitely small 

• Pure geometric optics 
• No depth of field issue 

(everything in focus) 



Camera Obscura
• Gemma Frisius, 16th century

https://en.wikipedia.org/wiki/Camera_obscura

• Eye-image pyramid (view frustum) 
• Note that the distance/size of image are arbitrary 

39 

Simplified Pinhole Camera 

same image 
will result on 
this image plane 

Simplified Pinhole Cameras
• Instead, we can place the eye at the pinhole and consider 

the eye-image pyramid (sometimes called view frustum)

Defining Rays

Mathematical Description of a Ray

• Two components:


• An origin, or a position that the ray starts from


• A direction, or a vector pointing in the direction the ray travels 


• Not necessarily unit length, but it’s sometimes helpful to 
think of these as normalized

origin direction



Mathematical Description of a Ray

• Rays define a family of points, 𝐩(𝑡), using a parametric 
definition


• 𝐩(𝑡) = 𝐨 + 𝑡𝐝, 𝐨 is the origin and 𝐝 the direction 


• Typically, 𝑡 ≥ 0 is a non-negative number

𝐨 𝐝

𝐩(1)

𝐩(0.5)

𝐩(1.5)

𝐩(-0.1)

Orthographic vs. 
Perspective Rays

Defining 𝒐 and 𝒅 in Perspective 
Projection

• Given a viewpoint, 𝐞, and a 
position on the image plane, 𝐬


𝐨 = 𝐞


𝐝 = 𝐬 - 𝐞


• And thus 𝐩(𝑡) = 𝐞 + 𝑡(𝐬 - 𝐞) 

• One last detail: exactly where are pixels located?
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Pixel-to-image mapping
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58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See
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4.4. Orthographic views 73

u

e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Figure 4.8. Ray generation using the camera frame. Left: in an orthographic view, the rays

start at the pixels’ locations on the image plane, and all share the same direction, which is

equal to the view direction. Right: in a perspective view, the rays start at the viewpoint, and

each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on

the image plane.

of the image, as measured from e along the v direction. Usually l < 0 < r and
b < 0 < t. (See Figure 4.8.) Many systems assume

l = −r and b = −t so
that a width and height

suffice.

In Section 3.2 we discussed pixel coordinates in an image. To fit an image

with nx × ny pixels into a rectangle of size (r − l) × (t − b), the pixels are
spaced a distance (r − l)/nx apart horizontally and (t − b)/ny apart vertically,

with a half-pixel space around the edge to center the pixel grid within the image

rectangle. This means that the pixel at position (i, j) in the raster image has the
position

u = l + (r − l)(i + 0.5)/nx

v = b + (t − b)(j + 0.5)/ny

(4.1)

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u,v}. With l and r both

specified, there is

redundancy: moving the

viewpoint a bit to the right

and correspondingly

decreasing l and r will not

change the view (and

similarly on the v axis).

In an orthographic view we can simply use the pixel’s image-plane posi-

tion as the ray’s starting point, and we already know the ray’s direction is the

view direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane

normal, w, to be specified separately from the view direction; the procedure is

otherwise exactly the same.

u
=

l

u
=

r

v = b

v = tj

i

i =
 –

.5

i =
 3

.5

j = 2.5

j = –.5 u 
= 

0

u 
= 

1

v = 0

v = 1

u = (i+ 0.5)/nx

v = (j + 0.5)/ny

Pixel-to-Image Mapping
• Exactly where are pixels located?  Must convert from 

pixel coordinates (i,j) to positions in 3D space (u,v,w)


• What should w be?



Camera Components
• Definition of an image plane


• Both in terms of pixel resolution AND position in 3D 
space or more frequently in field of view and/or 
distance


• Viewpoint 


• View direction


• Up vector (note that is not necessarily the “up” of the 
geometric scene 

Ray Generation in 2D
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field of view α 

image plane 
-1 < x < 1 

D 

1 

right u 

view direction w 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

Generating the rays From 2D to 3D
• Moving from 2D to 3D is 

essentially the same thing 
once you can define the 
positions of pixels in uvw 
space


• Following the convention of 
the book, 𝐰 is the negated 
viewpoint vector


• The up vector, 𝐯, can be used 
to define a local coordinate 
space by computing 𝐮

𝐨 = 𝐞 
𝐝 =   −D ⃗w + u ⃗u + v ⃗v

D



In the Assignment
• An eye position


• A position to lookat, which is 
centered in the image


• w can be defined using eye and 
lookat as well as the distance 
D,  together with the  up vector . 


• A fov_angle for the vertical FOV


• The FOV defines the height of 
the image plane in world space


• You can then use this to compute 
the width of the image plane in 
world space using the aspect 
ratio (rows/columns) of the 
image


• Using the number of rows/columns 
you can then sample 𝑢, 𝑣 

𝐨 = 𝐞 
 = -D𝐰 + 𝑢𝐮 + 𝑣𝐯⃗r

lookat

eye

fov

Intersecting Objects
for each pixel {

  compute viewing ray 

  intersect ray with scene
  compute illumination at intersection

  store resulting color at pixel

}   

Defining a Plane
• Let h be a plane with normal n, and containing a point a. Let p be some other 

point. Then p is on this plane if and only if (iff)   


• Proof. Consider the segment p-a.  p is on the plane iff p-a is orthogonal to n. 
Using the property of dot product       


• Here  is the angle between them. Now cos(90)=0. So if p on this plane then  
    implying 


• If p n > a n  then p lives on the “front” side of the plane (in the direction pointed 
to by the normal


•  p n-an < 0 means that p lives on the “back” side.


• Sometimes used as f(p)=0 iff ``p on the plane’’. So the function f(p) is f(p)=(p-a)n


• If we have 3 points a,p,q all on the plane, then we can compute a normal 
. (cross product). 


• Warning: The term “normal’’ does not mean that it was normalized. 

p ⋅ n = a ⋅ n

(p − a) ⋅ n = |p − a | |n |cos α

α
p ⋅ n = a ⋅ n

n = (p − a) × (q − a)

𝐧

p
a

q

Ray-Plane Intersection
• A ray 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Two conditions must be satisfied:


• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Must be on the plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0


• Can substitute the equations and solve for 𝑡 in 𝑓(𝐩(𝑡)):


(𝐨 + 𝑡𝐝 - 𝐚)・𝐧 = 0


• This means that 𝑡hit = ((𝐚 - 𝐨)・𝐧) / (𝐝・𝐧). The intersection point is  o + thitd



Revisiting dot product: projections 
Let u,v be orthonormal vectors (orthogonal and unit length). r is another vector 

  
is the projection of r on the direction of u  
the length of the “shadow” that r cast on the line containing u 
Sounds obvious when the coordinate system is xyz

But also true if the system is rotated 

r ⋅ u = |r | |u |cos α = |r |cos α

r

u
 r ⋅ u

v
 r ⋅ v

 r = (r ⋅ u)u + (r ⋅ v)v

r

u
 r ⋅ u

v
 r ⋅ v

 r = (r ⋅ u)u + (r ⋅ v)v

Defining a Sphere

• We can define a sphere of radius 𝑅, 
centered at position 𝐜, using the 
implicit form


𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0


• Any point 𝐩 that satisfies the above 
lives on the sphere

𝑅
𝐜

Ray-Sphere Intersection
• Two conditions must be satisfied:


• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Must be on a sphere: 𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0


• Can substitute the equations and solve for 𝑡 in 𝑓(𝐩(𝑡)):


(𝐨 + 𝑡𝐝 - 𝐜)・(𝐨 + 𝑡𝐝 - 𝐜) - 𝑅2 = 0


• Solving for 𝑡 is a quadratic equation

Ray-Sphere Intersection
• Solve (𝐨 + 𝑡𝐝 - 𝐜)・(𝐨 + 𝑡𝐝 - 𝐜) - 𝑅2 = 0 for 𝑡:


• Rearrange terms:


(𝐝・𝐝)𝑡2+ (2𝐝・(𝐨 - 𝐜))𝑡 + (𝐨 - 𝐜)・(𝐨 - 𝐜) - 𝑅2 = 0


• Solve the quadratic equation A𝑡2 + B𝑡 + C = 0 where


• A = (𝐝・𝐝)


• B = 2*𝐝・(𝐨 - 𝐜)


• C = (𝐨 - 𝐜)・(𝐨 - 𝐜) - 𝑅2

Discriminant, D = B2-4*A*C 
Solutions must satisfy: 
𝑡 = (-B ± √(D)) / 2A



Ray-Sphere Intersection 
• Number of intersections dictated by the discriminant


• In the case of two solutions, prefer the one with lower 𝑡

Ray-object intersection 
CS 148, fall 2011 

Geometric Method (instead of Algebraic)Ray-Sphere Intersection II
Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0 

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0
V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Defining a Plane
• A point 𝐩 that satisfies the following implicit 

form lives on a plane through point 𝐚 that has 
normal 𝐧


𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0


• 𝑓(𝐩) > 0 lives on the “front” side of the plane 
(in the direction pointed to by the normal


•  𝑓(𝐩) < 0 lives on the “back” side

𝐧

𝐚

Constructing Orthonormal 
Bases from a Pair of Vectors

• Given two vectors a and b, which might not be 
orthonormal to begin with:


• In this case, w will align with a and v will be the closest 
vector to b that is perpendicular to w



Ray Generation in 2D
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

eye point e 

p 
p is point on image 
plane at coordinate x, 
we want to know the 
direction of the ray r 

r? 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

• The image plane (should actually call it ``image line” )

• Our algorithm will assign a color to each pixel, by tracing a ray through the pixel 

and check the color of the object it hits

• User determined the location e of the camera, the direction w through, and 

orthogonal to the image plane.  

Ray Generation in 2D
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field of view α 

image plane 
-1 < x < 1 

1 

right u 

view direction w 

Ray Generation in 2D 

What is the distance 
D to the screen so 
that the normalized 
coordinates go to 1? 

This image is in the public domain. Source: openclipart
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field of view α 

image plane 
-1 < x < 1 

D 

1 

right u 

view direction w 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

The user specifies the field of view angle  fov_angle. 


We need to calculate the distance D to the image plane Ray Generation in 2D
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

D 

r = p-e = (x*u, D*w) 

eye point e 

r 

p 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

⃗r = p − e
⃗p = e + x ⃗u + D ⃗w

D already computed


Lets normalized  




The ray is 

⃗r
⃗d = ⃗r / | ⃗r |

⃗P (t) = e + t ⃗r

⃗d



Calculating all the rays
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

D 

r = p-e = (x*u, D*w) 

eye point e 

r 

p 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

D already computed


Lets normalized  




The ray is 

⃗r
⃗d = ⃗r / | ⃗r |

⃗P (t) = e + t ⃗r

⃗d
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field of view α 
right u 

view direction w 

image plane 
-1 < x < 1 

x 

eye point e 

p 
p is point on image 
plane at coordinate x, 
we want to know the 
direction of the ray r 

r? 

Ray Generation in 2D 

This image is in the public domain. Source: openclipart

⃗p i = e + xi ⃗u + D ⃗w

pi

User specifies N - the number of pixels 

 xi = i ⋅
2
N

, i = 0, ± 1, ± 2,… ± N
2

From 2D to 3D
• Moving from 2D to 3D is essentially the 

same thing once you can define the 
positions of pixels in uvw space


from now on, we use d to denote 
distance to image plane 

• Following the convention of the book, 
𝐰 is the negated viewpoint vector


• The up vector, 𝐯, can be used to define 
a local coordinate space by computing 
𝐮

𝐨 = 𝐞 
𝐝 = -D𝐰 + 𝑢𝐮 + 𝑣𝐯

In the Assignment
• An eye position


• A position to lookat, which is 
centered in the image


• w can be defined use eye and 
lookat as well as 𝑑


• An up vector, not necessarily v! (but 
the vectors v up w in the same plane)


• A fov_angle for the vertical FOV


• The FOV defines the height of the 
image plane in world space


• Each pixel is a square, but number of 
pixels rows vs columns might be 
different  


• You can then use this to compute the 
width of the image plane in world 
space using the aspect ratio (rows/
columns) of the image


• Using the number of rows/columns 
you can then sample 𝑢, 𝑣 

𝐨 = eye 
𝐝 = -𝑑𝐰 + 𝑢i 𝐮 + 𝑣j 𝐯-e

lookat

eye

up

fov

We use a terminology that is very common.  
Not always most intuitive

ui = i ⋅ 2/Ncols, i = 0, ± 1, ± 2,… ± Ncols /2

Intersecting Objects
for each pixel {

  compute viewing ray 

  intersect ray with scene
  compute illumination at intersection

  store resulting color at pixel

}   



Defining a Plane
• Let h be a plane with normal n, and containing a point a. Let p be some other 

point. Then p is on this plane if and only if (iff)   


• Proof. Consider the segment p-a.  p is on the plane iff p-a is orthogonal to n. 
Using the property of dot product       


• Here  is the angle between them. Now cos(90)=0. So if p on this plane then  
    implying 


• If p n > a n  then p lives on the “front” side of the plane (in the direction pointed 
to by the normal


•  p n-an < 0 means that p lives on the “back” side.


• Sometimes used as f(p)=0 iff ``p on the plane’’. So the function f(p) is f(p)=(p-a)n


• If we have 3 points a,p,q all on the plane, then we can compute a normal 
. (cross product). 


• Warning: The term “normal’’ does not mean that it was normalized. 

p ⋅ n = a ⋅ n

(p − a) ⋅ n = |p − a | |n |cos α

α
p ⋅ n = a ⋅ n

n = (p − a) × (q − a)

𝐧

p
a

q

Ray-Plane Intersection
• A ray 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Two conditions must be satisfied:


• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Must be on the plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0


• Can substitute the equations and solve for 𝑡 in 𝑓(𝐩(𝑡)):


(𝐨 + 𝑡𝐝 - 𝐚)・𝐧 = 0


• This means that 𝑡hit = ((𝐚 - 𝐨)・𝐧) / (𝐝・𝐧). The intersection point is  o + thitd

Revisiting dot product: projections 
Let u,v be orthonormal vectors (orthogonal and unit length). r is another vector 

  
is the projection of r on the direction of u  
the length of the “shadow” that r cast on the line containing u 
Sounds obvious when the coordinate system is xyz

But also true if the system is rotated 

r ⋅ u = |r | |u |cos α = |r |cos α

r

u
 r ⋅ u

v
 r ⋅ v

 r = (r ⋅ u)u + (r ⋅ v)v

r

u
 r ⋅ u

v
 r ⋅ v

 r = (r ⋅ u)u + (r ⋅ v)v

• A coordinate system for triangles 
– algebraic viewpoint:

– geometric viewpoint (areas):
• Triangle interior test:

[S
hi

rle
y 

20
00

]
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Barycentric Coordinates
• A coordinate system to write all points 𝐩 as a 

weighted sum of the vertices

𝐩 = 𝛼𝐚 + 𝛽𝐛 + 𝛾𝐜

𝛼 + 𝛽 + 𝛾 = 1 , 


• Equivalently, 𝛼, 𝛽, 𝛾 are the proportions of area of 
subtriangles relative total area, A 


Aa / A = 𝛼

Ab / A = 𝛽

Ac / A = 𝛾


• Triangle interior test:

𝛼 > 0, 𝛽 > 0, and 𝛾 > 0



Barycentric Coordinates
• Also related to distances


• And, they provide a basis relative to the edge vectors

𝛼 = 1 - 𝛽 - 𝛾


𝐩 = 𝐚 + 𝛽(𝐛 - 𝐚) + 𝛾(𝐜 - 𝐚)

• A coordinate system for triangles 
– geometric viewpoint: distances

– linear viewpoint: basis of edges
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Barycentric Coordinates
• This basis defines the plane of the triangle


• In this view, the triangle interior test becomes:

𝛽 > 0, 𝛾 > 0, 𝛽 + 𝛾 ≤ 1

bb – a

p

β =
 –

2

β =
 –

1

β =
 0 β =

 1

β =
 2

a

c

c –
 a

γ = 0

γ = 1

γ = 2

Barycentric Ray-Triangle 
Intersection

• Two conditions must be satisfied:


• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝 


• Must be in the triangle: 𝐩 = 𝐚 + 𝛽(𝐛 - 𝐚) + 𝛾(𝐜 - 𝐚)


• So, set them equal and solve for 𝑡, 𝛽, 𝛾:


𝐨 + 𝑡𝐝 = 𝐚 + 𝛽(𝐛 - 𝐚) + 𝛾(𝐜 - 𝐚)


• This is possible to solve because you have 3 equations 
and 3 unknowns

Our images so far
• With only eye-ray generation and scene intersection

for each pixel p in Image {

  let hit_surf = undefined;

  ...

 

  scene.surfaces.forEach( function(surf) {

    if (surf.intersect(eye, dir, ...)) {

      hit_surf = surf;

      ...

    }

  });


  c = hit_surf.ambient;

  Image.update(p, c);

} 

Each surface 
storing a single 
ambient color



Shading
• Goal: Compute light reflected 

toward camera


• Inputs: 


• eye direction 


• light direction 
(for each of many lights) 


• surface normal 


• surface parameters  
(color, shininess, ...)  

Normals
• The amount of light that reflects from a surface towards the eye 

depends on orientation of the surface at that point


• A normal vector describes the direction that is orthogonal to the 
surface at that point


• What are normal vectors for planes and triangles?


• 𝐧, the vector we already were storing!


• What are normal vectors for spheres?


• Given a point 𝐩 on the sphere 𝐧 = (𝐩 - 𝐜) / ‖𝐩 - 𝐜‖

Light Sources
• There are many types of 

possible ways to model light, 
but for now we’ll focus on point 
lights


• Point lights are defined by a 
position 𝐩 that irradiates equally 
in all directions


• Technically, illumination from 
real point sources falls off 
relative to distance squared, but 
we will ignore this for now.
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Intensity: 𝐼 
(𝑟 = 1)

Intensity: 𝐼/𝑟2

𝑟

Lambertian (Diffuse) Shading
• Lets think about the intensity of the light in terms of energy reflected toward the viewer.  

• Consider a door illuminated by a flashlight (see below).  
• Lets think about the intensity reflected from the door as the door rotates.   

• Let I denote the total light energy that the flashlight emits per second  (can think about it as #photons /
second)  

• The Intensity of the light reflected from the door is  . 

• Intensity before -   (where e is the illuminated part )  
• Intensity after -   (where f is the illuminated part )   

kd ⋅ I
The area of the illumninated portion

kdI/ |e |
kdI/ | f |

e f

door before

door after

|e |
| f |

= cos α   or      | f | = |e |
1

cos α
   Implyting that 

kdI
| f |

=
kdI

|e | 1
cos α

=
kdI
|e |

cos α

But I/|e| is the intensity of the reflected light for the before at the ``before’’ stage.  
Conclusion - the intensity decrease by a factor of  
But    is just the dot product of two vectors:  

1) Normal of the door,  and, 2) direction to the light source

cos(α)
cos(α)

αflashlight normal to 
door



Lambertian (Diffuse) Shading
• Simple model: amount of energy 

from a light source depends on 
the direction at which the light ray 
hits the surface


• Results in shading that is 
view independent


𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse 
coefficient cos 𝜃

intensity/color 
of light

Lambertian Shading
• 𝑘d  is a property of the surface itself (3 constants - one per 

each color channel)  


• Produces matte appearance of varying intensities

• Produces matte appearance

[F
ol

ey
 e

t 
al

.]

kd
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The moon paradox
• why don’t we see this gradual shading when looking at 

the moon ? 

VS

Toward Specular Shading: 

Perfect Mirror 

• Many real surfaces show some 
degree of shininess that 
produce specular reflections


• These effects move as the 
viewpoint changes (as oppose 
to diffuse and ambient shading)


• Idea: produce reflection when 𝐯 
and 𝐥 are symmetrically 
positioned across the surface 
normal

Imaginary light source

light source

d

d

p



Reflection
• Ideal specular reflection, or mirror reflection, can be modeled by 

casting another ray into the scene from the hit point


• Direction 𝐫 = 𝐝 - 2(𝐝・𝐧)𝐧


• r- reflected ray toward the eye, d - ray from lamp. n is a unit vector 
orthogonal to the plane. 


• Proof 


• (handwave) r=(r.x, r.y)   and d=(d.x,d.y)


• 𝐫 and 𝐝 have the same x-value, but opposite y-value: 
r.x=d.x  and r.y= -r.y = r.y+(-2r.y)= r.y -2 (n・r) 


• (𝐝・𝐧)𝐧=(0, r.y). 


• One can then recursively accumulate some amount of color from 
whatever object this hits


• color += 𝑘m *ray_cast()

Blinn-Phong (Specular) Shading

• Many real surfaces show some 
degree of shininess that 
produce specular reflections


• These effects move as the 
viewpoint changes (as oppose 
to diffuse and ambient shading)


• Idea: produce reflection when 𝐯 
and 𝐥 are symmetrically 
positioned across the surface 
normal

Blinn-Phong (Specular) Shading
• For any two unit vectors  , the vector   is a bisector of the 

angle between these vectors. 


• Normalize 𝐯 + 𝐥  


𝐡 = (𝐯 + 𝐥) / ‖𝐯 + 𝐥‖


• In a perfect mirror, the 100% of the reflection occurs at the surface 
point where h is the normal n 


• Diffuse reflection. Reflect large value for points where h is ``almost’’ 
n 


• Phong heuristic:   


𝐿s = 𝑘s𝐼 max(0,   (𝐧・𝐡)p.   )

⃗v , ⃗l n

specular 
coefficient Phong 

exponent

Note: shadows are 
additional effort, 
not a specular effect   

⃗l

⃗v
⃗h

Blinn-Phong Decomposed

https://en.wikipedia.org/wiki/Phong_shading

Ambient Diffuse Specular Phong Reflection+ + =



Blinn-Phong Shading
• Increasing 𝑝 narrows the lobe


• This is kind of a hack, but it does look good

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 5

Specular shading

[F
ol

ey
 e

t 
al

.]

19

ks

p

Putting it all together
• Usually include ambient, diffuse, and specular in one 

model 

𝐿 = 𝐿a + 𝐿d + 𝐿s


𝐿 = 𝑘a𝐼a + 𝑘d𝐼 max(0,𝐧・𝐥) + 𝑘s𝐼 max(0,𝐧・𝐡)p


• And, the final result accumulates for all lights in the scene

𝐿 = 𝑘a𝐼a + Σi ( 𝑘d𝐼i max(0,𝐧・𝐥i) + 𝑘s𝐼i max(0,𝐧・𝐡i)p )


• Be careful of overflowing!  You may need to clamp colors, 
especially if there are many lights.

Snell’s Law
• Governs the angle at which a 

refracted ray bends


• Computation based on 
refraction index (confusingly 
denoted nt  ) of the mediums. 
The mediums here are air and 
glass. They air has  refraction 
index n=1, while the glass 
has refraction index nt


• Snell law: nt sin 𝜃 = n sin 𝜙

Snell’s Law

• Working with cosine’s are 
easier because we can use 
dot products


• Can derive the vector for the 
refraction direction 𝐭 as 


•



Shadows
• Idea: after finding the closest 

hit, cast a ray to each light 
source to determine if it is 
visible


• Be careful not to intersect with 
the object itself.  Two solutions:


• Only check for hits against 
all other surfaces


• Start shadow rays a tiny 
distance away from the hit 
point by adjusting 𝑡min  

Reflection
• Ideal specular reflection, or 

mirror reflection, can be modeled 
by casting another ray into the 
scene from the hit point


• Direction 𝐫 = 𝐝 - 2(𝐝・𝐧)𝐧


• One can then recursively 
accumulate some amount of color 
from whatever object this hits


• color += 𝑘m *ray_cast()

Distribution Ray 
Tracing



Ideal Reflection: One Ray 
Per Bounce

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Perfect mirror

Glossy Reflection: Compute Many 
Rays per Bounce and Average

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Polished surface

Glossy Reflection 
• Multiple reflection rays 

polished surface θ θ 

Justin Legakis 

45 

&RXUWHV\ RI -XVWLQ /HJDNLV�

Justin Legakis

Variation in this 
distribution is controlled 
by the glossiness of the 
surface

Other Uses of 
Distribution Ray Tracing

Problem: Hard Shadows

• One shadow ray per intersection 
per point light source

Shadows 
• One shadow ray per 

intersection per point 
light source 

no shadow rays 

one shadow ray 

46 

Shadows 
• One shadow ray per 

intersection per point 
light source 

no shadow rays 

one shadow ray 

46 



Soft Shadows

http://erich.realtimerendering.com/shadow_comparison.html 

Hard shadows Soft shadows 

Soft Shadows
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Distribution Soft Shadows

Randomly sample light rays 

Computing Soft Shadows
• Model light sources as spanning 

an area


• Sample random positions on area 
light source and average rays

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 



Problem: Aliasing

Drawing a black line on a white board

Some pixels need to be rendered as gray, with gray level= 
Area of black region in pixel

Area of pixel

Pixel:

• Problem: Hard to calculate how much of the pixel is covered

• Solution: Random sample points in the pixel. 

• Calculate what is the percentage of the point of each color

Problem: Aliasing

http://www.hackification.com/2008/08/31/experiments-in-ray-tracing-part-8-anti-aliasing/ 

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 

49 



Distribution Antialiasing

Multiple rays per pixel 

Distribution Antialiasing w/  
Regular Sampling

Multiple rays per pixel 

Moiré pattern 

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg 

Distribution Antialiasing w/  
Random Sampling

Remove Moiré patterns 
http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg 

Random Sampling Could Miss 
Regions Without Enough Sampling

? 

? 

? 



Stratified (Jittered) Sampling Problem: Exposure Time

Real Sensors Take Time to Acquire

Problem: Exposure Time

Real Sensors Take Time to Acquire

http://www.matkovic.com/anto/3dl-test-balls-01.jpg 

Randomly sample positions 

Shading on surfaces
• In practice, we have colors given either to each pixel (texture), or 

color for each vertex. The discussion below is only about shading


• For simplicity, assume surface has uniform color 


• Problem: How could we produce the shading ? Shedding 
requires normal for each pixels


• If we are happy with a polyhedra surface - just compute for each 
face the normal. 


• If on  the other hand, the surface interpolates a smooth surface 
(e.g. a sphere), we should think about other alternative 
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Shading on Surfaces

• In practice, we have colors given either to each pixel (texture), or color for each 
vertex. The discussion below is only about shading


• For simplicity, assume surface has uniform color 

• Problem: How could we produce the shading ? Shedding requires normal for each 

pixels

• If we are happy with a polyhedra surface - just compute for each face the normal. 

• If on  the other hand, the surface interpolates a smooth surface (e.g. a sphere), we 

should think about other alternative 
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Results of Gouraud Shading 
Pipeline

• Slightly idea. For every vertex v, compute the approximated normal.

• Compute the (shaded) color in each vertex

• Inside each triangle, use barycentric coordinates to interpolate the color. 

• When interpolating inside a rectangle (billboard) use the values of  as 

discussed in hw3
α, β

Problems w/ Gouraud 
Shading

• While you can use any shading model on the vertices 
(Gouraud shading is just an interpolation method!), 
typically using only diffuse color works best.


• Results tend to be poor with rapidly-varying models like 
specular color


• In particular, when triangles are large relative to how 
quickly color is changing

Better shading (but slower):  
Phong Interpolation Shading

• Think about a triangle with vertices  or a billboard with corners 
, compute the normals at the corners. 


• For each pixel p on this triangle or billboard,  express p as the convex 
combination of this corners (needs to compute the weights) 


• (for a triangle)      (barycentric coordinates) 

• (for a recitingle) 




• Compute its interpolated normals  

• Normalize its length  

• Use this normal (for each pixel) to compute its shading, as if it is the real normal 

• See formula on whiteboard

• Caution: interpolated normals must be of unit length

• Caution: Don’t confuse with Phong Specular Shading 


• (same person, two different concept)


v1, v2, v3
pLL, pUL, pLR, pUR

p = α1p1 + α2p2 + α3p3

p = αβ ⋅ PUL + (1 − α)β ⋅ PUR + α(1 − β)PLL + (1 − α)(1 − β)PLR

⃗n = α1 ⃗n 1 + α2 ⃗n 2 + α3 ⃗n 3
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Results of Gouraud Shading 
Pipeline
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Results of Phong Shading 
Pipeline


