
Software Engineering

Ravi Sethi

The University of Arizona

July 12, 2017

c� 2017 Ravi Sethi.

This working draft is intended for students enrolled in Computer Science 436,
Software Engineering, at the University of Arizona, Fall 2017.

Preface

“Because so much of what is learned will change over a student’s pro-
fessional career and only a small fraction of what could be learned will
be taught and learned at university, it is of paramount importance that
students develop the habit of continually expanding their knowledge.”

— The joint IEEE-ACM curriculum guidelines for undergraduate

programs in software engineering stress the importance of

continued learning.

1

For many computer science majors, an introductory course in software engi-
neering will be their only course on the subject.2 What do they really need to
learn in such a course to be productive today and relevant tomorrow? What
are the principles and practices that will prepare them to adapt and learn as
their careers unfold and software engineering evolves?

Such questions have guided the selection of content for this book. Core
concepts that are needed for iterative and agile development are introduced
early, so the book can be used for courses with a significant team project.
Principles and practices are illustrated by real-world examples and case studies.

Audience: Assume Some Programming Maturity

Software engineering addresses the problems of complexity and scale. The sig-
nificance of these problems may be lost unless students have some programming
maturity. This book assumes that students have had the experience of com-
pleting a medium sized programming project.

At the University of Arizona, the introductory software engineering course
is at the junior-senior level.

i

ii PREFACE

What to Cover? So Much to Choose From

Content selection for an introductory course is a challenge because there is so
much to choose from and only so much time in any course. SWEBOK V3, a
guide to the software engineering body of knowledge, lists fifteen knowledge
areas, together with computing, mathematical, and engineering foundations.3

This book favors iterative and agile development over plan-driven processes.
Hence, a chapter on working with customers and only a mention of software
requirements specifications. The change from plan-driven to iterative and agile
processes ripples through the activities of software development. Planning and
estimation become adaptive and are distributed across iterations. The distinc-
tion between development and testing blurs.

Many of the changes are changes in emphasis, not in the underlying prin-
ciples. For example, architecture and design principles remain relevant—“The
question is not whether or not to design, the question is when to design,” as
Kent Beck notes in Extreme Programming Explained.4 Customer feedback,
goals and metrics, validation and verification are all based on ideas that carry
over.

Alignment With a Team Project

The ACM-IEEE computer science curriculum guidelines recommend that

“the best way to learn to apply software engineering theory and
knowledge is in the practical environment of a [team] project.”5

Software engineering courses with a significant project face the challenge of
aligning classroom lectures with the needs of the project. Without alignment,
a course appears to consist of two loosely coupled tracks: a principles and
practices track and a project track.

The experience at the Rochester Institute of Technology (RIT) is instructive;
RIT was the first university in the United States to o↵er an undergraduate
degree program in software engineering. James R.Vallino of RIT observed in
2013,

“Of all the courses in our software engineering curriculum, our in-
troduction to software engineering course is the one course that we
never feel we have done correctly. ... In the course’s seventeen year
history, we have reworked it seven or eight times.”6

The ordering of topics in this book is informed by experience with a junior-
senior level introductory course at the University of Arizona. The Arizona
course has also gone through several iterations.

PREFACE iii

Use of this Book

The course at Arizona includes a semester-long project. Students form teams of
four, pick their own projects, prepare a project proposal addressing a customer
need, and then iteratively develop a useful system. They are encouraged to
have a real customer, and many do.

The alignment between classroom lectures and the team project is roughly
as follows (project iterations need not coincide with chapter boundaries):

Lectures Project

Chapters 1-2: introduce software en-
gineering and development processes

form teams

Chapters 3-5: iterative and agile pro-
cesses; customer needs; use cases

write project proposal, with a focus
on the customer benefit

Chapters 6-8: estimation; goals and
metrics; architecture

Iteration 1: build a minimal viable
system; submit design

Chapters 9-10: architectural pat-
terns; software quality

Iteration 2: complete most features;
reflect on what went well, what didn’t

Chapters 11-??: testing; additional
topics

Iteration 3: complete project; submit
a comprehensive project report

Even when lectures and project activities are aligned, students may need
help in connecting what they are learning in the classroom with what they
were doing in their projects. Active-learning activities can help bridge the gap.
For example, the Think-Pair-Share technique invites students to briefly think
about a question; explore possible answers with their neighbors or team-mates;
and then share their deliberations with the class.7 The entire activity takes
only a few minutes. Questions can be posed to invite students to reflect on how
the lecture material applies to their their project experience.

Acknowledgements

At Bell Labs, I came to appreciate both the Unix group’s iterative approach to
refining software tools based on user feedback and the Switching product unit’s
disciplined plan-driven approach to developing large 99.999% reliable systems,
with thousands of software engineers.

At Avaya Labs, David Weiss’s Software Technology Research department
worked closely with the business units to “improve the state of software in
Avaya and know it.” I am grateful to David and his department, especially
Randy Hackbarth, Audris Mockus, and John Palframan, for their briefings and
insights. When I joined the University of Arizona in 2014, David generously

iv PREFACE

shared the materials from his software engineering course at Iowa State Uni-
versity.

Ravi Sethi
Tucson, Arizona
July 2017

Notes
1See Guideline 9 in the Software Engineering 2014 Curriculum Guidelines [4, p. 43].
2The opening line borrows from the title of James R. Vallino’s position paper [8]
3The knowledge areas in SWEBOK 3.0, the software engineering body of knowledge,

include requirements, design, construction, testing, maintenance, configuration management,
process, models and methods, quality, professional practice, and economics [3]. See also
the ACM-IEEE 2013 guidelines for undergraduate computer science curricula, which include
software engineering as a knowledge area [1].

4In the second edition of Extreme Programming Explained [2, ch. 7] , Kent Beck notes that
some of the teams misinterpreted the first edition as recommending deferring design until the
last moment—they created brittle poorly designed systems. He recommends deferring until
the last “responsible” moment. The quote is from the same chapter.

5The ACM and IEEE curriculum guidelines for both computer science [1, p. 174] and
software engineering [4, p. 45] strongly recommend a significant team project.

6For reflections on the sophomore-level introductory software engineering course at the
Rochester Institute of Technology, see the 2005 report by Stephanie Ludi, Swaminathan
Natarajan, and Thomas Reichlmayr [5]. See also the 2013 position paper by James R.
Vallino [8] and the retrospective by Michael J. Lutz, Fernando Naveda, and James R.Vallino [6].

7The Think-Pair-Share technique is due to Frank Lyman, Jr. [7].

References

1. ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer Science Curric-
ula 2013. ACM Press and IEEE Computer Society Press (December 2013)
http://dx.doi.org/10.1145/2534860 .

2. Kent Beck, with Cynthia Andres, Extreme Programming Explained: Embrace Change,
2nd Ed. Addison-Wesley, Reading, Mass. (2005).

3. Pierre Borque and Richard E. Fairley (eds) Guide to the Software Engineering Body
of Knowledge (SWEBOK), Version 3.0. IEEE Computer Society (2014)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1265988 .

4. IEEE Computing Society and ACM. Software Engineering 2014: Curriculum Guide-
lines for Undergraduate Degree Programs in Software Engineering.
http://www.acm.org/education/se2014.pdf .

5. Stephanie Ludi, Swaminathan Natarajan, and Thomas Reichlmayr. An introductory
software engineering course that facilitates active learning. ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’05) (February 2005) 302-306.

6. Michael J. Lutz, Fernando Naveda, and James R. Vallino. Undergraduate software
engineering: Addressing the needs of professional software development. ACM Queue
12, 6 (June 2014) 30-39.

7. Frank Lyman, Jr. The responsive classroom discussion: the inclusion of all students.
In Mainstreaming Digest: A Collection of Faculty and Student Papers, Audrey Springs
Anderson (ed.) University of Maryland (1981) 109-113.

PREFACE v

8. James Vallino. What should students learn in their first (and often only) software en-
gineering course? IEEE Conference on Software Engineering Education and Training
(2013) 335-337.

vi PREFACE

Contents

1 What is Software Engineering? 1
1.1 Introduction to Software Engineering 2

1.1.1 Customers: Needs and Requirements 3
1.1.2 Teams: Software Development Processes 3
1.1.3 Technology: Deliver Products Using Tools 3
1.1.4 Context: All Projects Face Constraints 4
1.1.5 Working Definition of Software Engineering 4
1.1.6 Software Engineering is More than Programming 5

1.2 A Software Engineering Success Story 6
1.2.1 Mission to Mars . 6
1.2.2 The Crucial Landing Sequence 7
1.2.3 Overriding Concern: Reliability 7

1.3 Ethics: A Cautionary Tale . 9
1.3.1 Therac-25: Malfunction 54 10
1.3.2 Lessons Learned . 10

1.4 Conclusion . 11
Exercises . 11
Notes . 12
References . 12

2 Introduction to Processes 15
2.1 Software Development Processes 15

2.1.1 Build versus Grow . 16
2.1.2 Examples of Plan-Driven and Iterative Processes 16
2.1.3 The Process Landscape 19

2.2 Early Developments . 20
2.2.1 Waterfall: Seeking Order Amid Chaos 20
2.2.2 Limitations of Waterfall Processes 21

2.3 Plan-Driven Processes in Practice 22
2.3.1 Software Risk Factors . 22
2.3.2 Disposable Prototype Lowers Risk 22
2.3.3 V-Processes: Levels of Specification and Testing 23
2.3.4 Multiple Plan-Driven Releases 25

vii

viii CONTENTS

2.4 Cost of Change Curve . 26

2.4.1 A Proxy for the Cost of a Change 26

2.4.2 Implications . 27

2.5 Conclusion . 27

Exercises . 28

Notes . 28

References . 30

3 Iterative and Agile Processes 31

3.1 Introduction . 32

3.1.1 The Agile Manifesto . 32

3.2 Iterative Processes . 33

3.2.1 Uncertain and Dynamic Requirements 33

3.2.2 Parallel Development of Subsystems 35

3.3 Enabling Practices for Iterative Processes 36

3.3.1 A Troubled Iterative Project 37

3.3.2 Success Factors for Iterative Processes 37

3.4 The Scrum Framework . 39

3.4.1 Scrum Roles . 39

3.4.2 Scrum Events . 40

3.4.3 Scrum Artifacts . 42

3.5 XP: No Longer Extreme . 42

3.5.1 Customer Collaboration: User Stories 43

3.5.2 Responding to Change: Iteration Planning 44

3.5.3 Working Software: The Role of Testing 45

3.5.4 Working Software: Refactoring 46

3.5.5 Individuals and Interactions 46

3.6 User Stories . 47

3.6.1 SMART User Stories . 47

3.6.2 Clarifying the Benefit . 48

3.6.3 Acceptance Tests . 48

3.6.4 Prioritizing User Stories 49

3.6.5 Rough Estimates: Agile Story Points 49

3.6.6 Limitations of User Stories 50

3.7 When to Design? . 51

3.8 Spiral Risk-Reduction Framework 53

3.9 Conclusion . 54

Exercises . 55

Notes . 56

References . 58

CONTENTS ix

4 Working with Customers 61
4.1 A Context for Customer Interactions 63

4.1.1 Iterative Customer Feedback 63
4.1.2 Example: Personal Audio Player 64
4.1.3 Delight the Primary Customer 65

4.2 Levels of Needs . 66
4.2.1 A Model of Customer Needs 66
4.2.2 Accessing Expressed and Observable Needs 66
4.2.3 Listening with Understanding 68

4.3 Customer Satisfiers and Dissatisfiers 69
4.3.1 Background: Job Satisfiers and Dissatisfiers 69
4.3.2 Kano Analysis . 69
4.3.3 Classification of Features 70
4.3.4 Degrees of Su�ciency . 72
4.3.5 Life Cycles of Attractiveness 73

4.4 Scenarios: End-to-End Experience 73
4.4.1 Writing Scenarios . 74
4.4.2 A Checklist for Scenarios 75

4.5 SRS: Software Requirements Specifications 76
4.6 Conclusion . 77
Exercises . 78
Notes . 79
References . 80

5 Use Cases 83
5.1 Elements of Use Cases . 84

5.1.1 Actors Represent Roles 84
5.1.2 Flows Represent Sequences of Actions 85
5.1.3 Extension Points and Alternative Flows 86

5.2 Use-Case Diagrams . 88
5.2.1 A Diagram Provides a Big Picture Summary 88
5.2.2 Use Case Diagrams in Practice 89

5.3 Writing Use Cases . 90
5.3.1 General Guidelines . 90
5.3.2 Conversational Form . 90
5.3.3 User Intentions versus System Interactions 91
5.3.4 A Template for Use Cases 92

5.4 Relationships Between Use Cases 94
5.4.1 Subflows . 94
5.4.2 Inclusion . 94
5.4.3 Extensions . 94

5.5 Conclusion . 95
Exercises . 96
Notes . 97
References . 98

x CONTENTS

6 Estimation 101
6.1 Introduction . 101

6.1.1 Predictive Planning . 102
6.1.2 Adaptive Planning . 102
6.1.3 The Role of Estimation 102

6.2 Planning Constraints . 103
6.2.1 The Iron Triangle . 103
6.2.2 The Adaptive Iron Triangle 105

6.3 Anchoring and Cognitive Bias . 105
6.4 Estimation Uncertainty . 107

6.4.1 Cone of Uncertainty for Predictive Planning 107
6.4.2 Levels of Uncertainty During Adaptive Planning 108
6.4.3 Three-Point Estimation 109

6.5 Collective Judgment . 110
6.5.1 The Original Delphi Method for Group Consensus 110
6.5.2 The Wideband Delphi Method 112

6.6 Empirical Models Based on Historical Data 113
6.6.1 Estimating E↵ort from Size 114
6.6.2 The Cocomo Family of Estimation Models 115
6.6.3 Cocomo II: A Major Redesign 115

6.7 Conclusion . 116
Exercises . 117
Notes . 117
References . 119

7 Goals and Metrics 121
7.1 Introduction to Goals . 122

7.1.1 Soft and Hard Goals . 122
7.1.2 SMART Criteria . 123
7.1.3 A Temporal Classification of Goals 124

7.2 Working with Questions to Clarify Goals 124
7.2.1 Why Questions for Cause and Relevance 125
7.2.2 How Questions for Refining Goals 126
7.2.3 No Substitute for Insight 126

7.3 Working with Goals: Goal Elaboration 127
7.3.1 Goal Hierarchies . 128
7.3.2 Contributing and Conflicting Goals 128
7.3.3 Business-, Software-, and Project-Level Goals 130
7.3.4 When to Stop Goal Elaboration 130

7.4 Working with Metrics . 130
7.4.1 Data Collection . 131
7.4.2 Case Study: Customer Satisfaction 132

7.5 Putting It All Together . 133
7.5.1 Improve Product Quality 133
7.5.2 Improve Field Quality . 134

CONTENTS xi

7.5.3 Improve Days to Resolution 135
7.5.4 Improve Time to First Response 135

Exercises . 135
Notes . 137
References . 137

8 Software Architecture 139
8.1 Role and Benefits of Software Architecture 139

8.1.1 Architecture and Customers 139
8.1.2 Architecture and Teams 140
8.1.3 Architecture and Technology 141
8.1.4 Architecture and Context 141

8.2 What is Software Architecture? 142
8.2.1 Structure . 142
8.2.2 Definition of Software Architecture 144
8.2.3 Views and Structures . 144

8.3 Lessons from Architecture for Buildings 145
8.3.1 Principles from Classical Architecture 146
8.3.2 Architectural Views . 147

8.4 Information Hiding and Modules 147
8.4.1 Coupling and Cohesion 149
8.4.2 Guidelines for Designing Modules 150

8.5 Module Descriptions . 151
8.5.1 Module Hierarchy . 152
8.5.2 Module Guide . 153

8.6 Software Product Lines . 154
8.6.1 Software Architecture and Product Lines 155
8.6.2 Economics of Product-Line Engineering 155

8.7 Summary . 155
Exercises . 157
Notes . 159
References . 160

9 Architectural Patterns 163
9.1 Alexander’s Patterns . 164
9.2 Software Layering . 164

9.2.1 The Layered Pattern . 166
9.2.2 Layered Pattern: Assessment 166

9.3 Dataflow: Pipe and Filter . 167
9.3.1 The Pipe-and-Filter Pattern 168
9.3.2 Unix Pipelines . 169
9.3.3 A Dynamic Variant of Pipelines 169

9.4 User Interfaces: Model-View-Controller 170
9.4.1 Models and Views . 171
9.4.2 The Model-View-Controller Pattern 173

xii CONTENTS

9.4.3 An Intermediate Step: Presentation Model 174
9.4.4 Model-View-Presenter . 175

9.5 Case Study: Unix Portability . 176
9.5.1 Portable C Compiler . 177
9.5.2 Porting Unix . 178

9.6 Summary . 179
9.6.1 The Layered Pattern . 180
9.6.2 The Pipe-and-Filter Pattern 180
9.6.3 The Model-View-Controller Pattern 180

Exercises . 181
Notes . 181
References . 182

10 Software Quality: Reviews 185
10.1 Overview of Software Quality . 185

10.1.1 Views of Software Quality 186
10.1.2 Defects, Faults, and Failures 188

10.2 Validation and Verification . 189
10.2.1 Techniques for Validation and Verification 190

10.3 Architecture Reviews . 191
10.3.1 Guiding Principles for Architecture Reviews 191
10.3.2 Discovery, Deep-Dive, and Retrospective Reviews 193

10.4 Software Inspections . 195
10.4.1 Traditional Inspection . 195
10.4.2 What Makes Inspections Work? 198

10.5 Code Reviews . 199
10.5.1 What has Changed? . 199
10.5.2 Code Reviews Today . 200

10.6 Static Analysis . 201
10.6.1 A Variety of Static Checkers 202
10.6.2 False Positives and False Negatives 205

10.7 Key Concepts and Terms . 206
Exercises . 208
Notes . 208
References . 210

11 Software Quality: Testing 213
11.1 Overview of Testing . 214

11.1.1 Issues During Testing . 215
11.1.2 Test Selection . 216
11.1.3 Test Adequacy: Deciding When to Stop 217
11.1.4 Test Oracles: Evaluating the Response to a Test 218

11.2 Levels of Testing . 219
11.2.1 Unit Testing . 219
11.2.2 Integration Testing . 221

CONTENTS xiii

11.2.3 Functional and System Testing 223
11.2.4 Acceptance Testing . 223
11.2.5 Case Study: Test Early and Often 223

11.3 Testing for Code Coverage . 225
11.3.1 Control-Flow Graphs . 225
11.3.2 Control-Flow Coverage Criteria 227
11.3.3 MC/DC: Modified Condition/Decision Coverage 230
11.3.4 Data-Flow Coverage . 234

11.4 Testing for Input-Domain Coverage 234
11.4.1 Equivalence-Class Coverage 234
11.4.2 Boundary-Value Coverage 236
11.4.3 Combinatorial Testing . 236

11.5 Key Concepts and Terms . 240
Exercises . 240
Notes . 241
References . 243

Appendices, Index 245

A Architecture Review Questions 247
A.1 Customer Needs and Wants . 247

A.1.1 Target Customer . 247
A.1.2 Other Stakeholders . 248

A.2 Problem Definition . 248
A.2.1 Proposed Benefit . 248
A.2.2 Measures of Success . 248

A.3 Technology . 248
A.3.1 System Architecture . 248
A.3.2 Non-Functional Requirements 249
A.3.3 Tools and Plaforms . 249

A.4 Team . 249
A.4.1 Development Process . 249
A.4.2 Skills . 249

A.5 Constraints and Risks . 249
A.5.1 Constraints . 249
A.5.2 Risks . 249

References . 249

xiv CONTENTS

Chapter 1

What is Software
Engineering?

“Today, we tend to go on for years, with tremendous investments to find
that the system, which was not well understood to start with, does not
work as anticipated. We build systems like the Wright brothers built
airplanes—build the whole thing, push it o↵ the cli↵, let it crash, and
start over again.”

— Robert M. Graham on the state of the art around 1968.

1

Software remains invisible when it works as expected. It stands out when it fails
us in some way. Occasionally, software fails in ways that evoke the following:

“The basic problem is that certain classes of systems are placing
demands on us which are beyond our capabilities and our theories
and methods of design and production at this time.”2

This quote is from a 1968 international NATO workshop on the problems of
software development. The organizers chose the title Software Engineering for
the workshop to highlight the need for making software development an engi-
neering discipline based on scientific principles and rigorous practices.

Since then, software engineering has progressed from an aspiration to a field
in its own right. There is a growing body of knowledge, incorporating hard-
won lessons from both successful and unsuccessful projects. The professional
societies, ACM and IEEE, have jointly published curricula for undergraduate

1

2 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

Figure 1.1: A framework for discussing aspects of software engineering.

courses and degree programs. Thousands of books have been published on the
subject.

Still, there continue to be di↵erences of opinion about whether software
engineering has truly matured into an engineering discipline.3 What are its
underlying principles? What are its best practices? What are the concepts
that every software engineer must master?

1.1 Introduction to Software Engineering

Software engineering involves both product and process. Informally, product
refers to what is developed and process refers to who does what by when.
Products are artifacts. Processes deal with how teams and development are
organized.

But, there is more to software engineering than products and processes.
Software is commissioned by customers and is developed for their benefit. Soft-
ware projects live within a context: they are subject to resource constraints as
well as business, legal, and regulatory constraints.

The framework in Fig. 1.1 touches on these four key aspects of software en-
gineering. Customers are at the top. To the right is technology, which includes
both software products and the software tools that are used to build products.
To the left are teams—the framework groups processes under teams, instead of
the other way around, to emphasize that software systems are built by people
in teams. Context is at the base of the framework.

1.1. INTRODUCTION TO SOFTWARE ENGINEERING 3

1.1.1 Customers: Needs and Requirements

At the top of the framework in Fig. 1.1 are customer needs, which drive re-
quirements. Requirements define what a software system must do and what it
must not do. The term customer is to be interpreted broadly: requirements are
based on the needs of stakeholders, where a stakeholder is anyone with a stake
in the system. The stakeholders in a flight-control system include not only the
airline executives who sign the contract for the system, but the pilots who rely
on the system to fly the plane, the technicians who must maintain the system,
not to mention the passengers who are served by the airline.

Di↵erent stakeholders may have di↵erent, perhaps conflicting, ideas about
what they need, ideas that have to be elicited and reconciled into a prioritized
set of requirements.

Knowing the requirements—knowing exactly what to build—can be a chal-
lenge. Furthermore, requirements typically change during the life of a software
project. For the software for the space shuttle, NASA and its contractors made
over 2,000 requirements changes over six years, before the first flight in 1981.4

1.1.2 Teams: Software Development Processes

To the left in Fig. 1.1 are teams and how they are organized for developing and
delivering a system. Development activities include design, coding, testing, and
maintenance. Associated with each activity are goals that motivate the activity
and metrics that measure progress toward the goals.

The rules for organizing activities during software development are called
software development processes, or simply processes. Processes can vary from
project to project, even within the same organization.

The prevailing wisdom about software development in the 1970s was akin
to “measure twice, cut once:” gather detailed requirements and do a careful
design before implementing the system. The problem with this linear process—
gather requirements, do a design, implement, and deliver—is that requirements
changes can result in rework and wasted e↵ort. The 2,000 requirements changes
for the space shuttle software resulted in massive cost over-runs: the project
cost $200 million instead of the planned $20 million.4

Iterative processes are a class of processes for incrementally delivering a sys-
tem a little at a time, starting with a minimal working system with just enough
functionality to get stakeholder feedback. The feedback is then used to make
corrections and to decide what to deliver in the next iteration. Increasingly,
software is delivered using iterative processes.

1.1.3 Technology: Deliver Products Using Tools

To the right in Fig. 1.1 is technology, which takes two forms: products and
tools. Here, product refers broadly to an artifact that results from a develop-
ment activity. For example, architects create designs, developers write code,
testers come up with tests. The designs, code, and tests are artifacts, as is

4 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

the documentation that accompanies an artifact. When talking about software
development, it is convenient to use the familiar term system for any product
delivered by a development team.

A tool is a piece of software that is used to develop artifacts. Tools include
programming environments, languages and compilers, and testing tools. Unlike
artifacts, which are for external delivery to customers, tools are used internally
to facilitate development.

1.1.4 Context: All Projects Face Constraints

At the bottom of Fig. 1.1 is the context for a software project. All projects face
cost and schedule constraints. Most projects face additional constraints. For
example, a company may have enough budget and sta↵ and still face resource
constraints if it does not have enough sta↵ with the right skills, or sta↵ with
the desired skills at a given geographic location. Projects also face regulatory
and legal constraints, such as safety regulations and export controls.

Open source software projects have evolved their own ground rules for or-
ganizing the e↵orts of independent contributors. The ground rules act as con-
straints on contributions.

1.1.5 Working Definition of Software Engineering

Many have tried, but no simple definition has captured all of the aspects of
software engineering. The art and science of software engineering is therefore
shown in the middle of Fig. 1.1, linking customers, teams, technology, and
context. These aspects are strongly connected; they are part of a whole.

Example 1.1 : Consider security and privacy.

Customers. As a rule, the privacy of personal information is a requirement.

Context. Regulations such as the U.S. Health Insurance Portability and
Accountability Act of 1996 (HIPAA) protect individually identifiable health
information.

Teams. Development activities include testing to prevent inadvertent secu-
rity holes in the code. (In 2012, an extra unwanted goto introduced a security
vulnerability that a↵ected hundreds of millions of Apple iOS and Mac OS X
users.5)

Technology. Systems must be deployed and operated to keep hackers out.

Thus, security and privacy touch on customer needs, team activities, the
regulatory context, and delivered technology. 2

The following simple definition touches on the various aspects of software
engineering in Fig. 1.1. It does not pretend to be as complete or as general as
it could be.

1.1. INTRODUCTION TO SOFTWARE ENGINEERING 5

Figure 1.2: Beyond single person programming by a single person for personal
or friendly use.

Software engineering is the art and science of developing reliable
software systems that address customer needs, subject to resource,
business, and societal constraints.6

1.1.6 Software Engineering is More than Programming

A standalone program written for personal or friendly use can be an order
of magnitude less expensive than a software product that has been carefully
designed, cleanly implemented, extensively tested, and properly documented.
Programming is an essential part of software engineering, and there is more to
software engineering than programming.

The following concise characterization identifies some distinctions between
software engineering and programming:

Software engineering is “multi-person development of multi-version
programs.”7

.

Multi-Person

Multi-person implies the need for coordination and communication between
people; see the top-left box in Fig. 1.2. The larger the project, the greater the
need for coordination. For example, in 1995, Microsoft enrolled all 18,000 em-
ployees in a “companywide emergency” to build a web browser. Several teams
worked in parallel in a concerted e↵ort to catch up with Netscape Navigator.8

6 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

Multi-person products benefit from designs that (a) support the distribu-
tion of work to di↵erent team members and (b) the subsequent integration of
individual contributions into a cohesive system.

Multi-Version

Multi-version development can take at least two forms: a family of versions;
and, a sequence of releases. (See the bottom-right box in Fig. 1.2.)

A product family is a set of products designed from the start to (a) take
advantage of what they have in common (their commonalities), and (b) manage
what varies between them (their variablilities). For example, di↵erent versions
of a mobile banking app are needed for iOS and Android. The user features of
the app would be among the commonalities, while the iOS and Android specific
dependencies would be among the variabilities.

Multi-version implies the need to design, code, test, and maintain multiple
versions. Such products benefit from the sharing of designs and components
across versions.

Thus, multi-person and/or multi-version programming goes beyond pro-
gramming for personal or friendly use.

1.2 A Software Engineering Success Story

Each application has its own priorities and concerns. Reliability was an over-
riding concern for the mission to Mars, discussed in this section. The users
of a self-publishing system may be willing to live with an occasional crash, as
long as the finished product looks good. Payment systems, social media, digital
libraries, games, ... all have their own priorities and concerns, be it security,
scale, accessibility, or responsiveness. Since applications vary, so do software
systems and the software engineering approaches used to produce them

For a mission-critical system, such as the software to control a spacecraft,
development activities have to be rigorously organized to ensure the success
of the mission. This section outlines the extraordinary software development
measures that were taken by the team to ensure a successful mission to Mars.

1.2.1 Mission to Mars

After traveling 350 million miles in 274 days, the Mars rover, Curiosity, made a
flawless soft landing on the planet’s surface on August 5, 2012. For perspective
on the distance to Mars, it took 14 minutes for signals about the landing to
reach Earth.

The landing sequence took seven minutes, from entry into the Mars atmo-
sphere to touchdown on the surface. The engineers who designed the sequence
referred to it as “seven minutes of terror” because so many things had to go
right in perfect synchrony for the landing to be successful.9

1.2. A SOFTWARE ENGINEERING SUCCESS STORY 7

Figure 1.3: (a) Preparing for landing on Mars. (b) The sky-crane lowering the
Mars rover. Diagrams adapted from NASA/JPL illustrations.

All functions on the rover and its spacecraft were controlled by software.
The landing sequence was choreographed by 500,000 of the 3 million lines of
code, mostly in the C programming language. The code was the work of a team
of 35 people.

1.2.2 The Crucial Landing Sequence

The Mars atmosphere is 100 times thinner than Earth’s, which posed challenges
for slowing the spacecraft down from 13,200 miles an hour to 0 upon landing.
During entry and descent, the rover was enclosed in a backshell and protected
by a heat shield; see Fig. 1.3(a).; Besides the rover, the backshell contained a
sky crane that handled the final descent.

With less the a minute to go before landing, the heat shield and backshell
had separated. The sky crane took over. It used rockets to slow the descent
and gradually lowered the rover for a soft landing; see Fig. 1.3(b). Finally, the
sky crane disconnected and flew a safe distance away, to avoid crashing on top
of the rover.

1.2.3 Overriding Concern: Reliability

Brief descriptions of the team’s development activities appear in Fig. 1.4. The
activities are grouped under three headings: design, coding, and verification.
Verification refers to activities that ensure that a system is built correctly.

8 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

Design
• Design for fault tolerance

• Document the rationale behind design decisions

Coding
• Practice defensive coding to guard against unforeseen events

• Annotate programs with assertions about expected behavior

Verification

• Peer code reviews for identifying design flaws

• Static checking of source code for compliance with rules

• Rigorous testing (unit and integration)

• Model checking of parallel tasks

Figure 1.4: Selected development activities for the software for the Mars mis-
sion.

Design

The team designed a software architecture that was clean, with well defined
interfaces. The design was fault tolerant, with a redundant backup computer
system. Not only was the hardware redundant to recover from hardware faults,
the software was redundant as well, to recover from software faults. During
the crucial landing sequence, the backup computer ran independently written
control software, so that the backup software did not simply run into the same
fault, if the main computer system failed.

Verification

The emphasis on reliability drove the team’s practices, especially related to
verification; see Fig. 1.4 for a summary. Verification was deeply entwined with
the other development activities.

• Designs and code were reviewed line-by-line by peers, using a formal pro-
cess. All 10,000 comments gathered during 145 peer code reviews were
individually tracked and addressed.

• All code was automatically checked nightly for consistency and compli-
ance with the team’s coding standards. Four di↵erent commercial static
analysis tools were used, since each tool picked up issues that the others
did not.

• The code for the mission was highly parallel, with 120 tasks—parallel
programs are notoriously hard to verify. The team used a powerful veri-
fication technique called logic model checking.

Overall, every precaution was taken to ensure the success of the mission.

1.3. ETHICS: A CAUTIONARY TALE 9

• Public. Software engineers shall act consistently with the public interest.

• Client and Employer. Software engineers shall act in a manner that is in the
best interests of their client and employer consistent with the public interest.

• Product. Software engineers shall ensure that their products and related modi-
fications meet the highest professional standards possible.

• Judgment. Software engineers shall maintain integrity and independence in
their professional judgment.

• Management. Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

• Profession. Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

• Colleagues. Software engineers shall be fair to and supportive of their colleagues.

• Self. Software engineers shall participate in lifelong learning regarding the prac-
tice of their profession and shall promote an ethical approach to the practice of
the profession.

Figure 1.5: Short version of the ACM/IEEE-CS Software Engineering Code of
Ethics and Professional Practice. These aspirations are to be taken with the
examples and details in the full version of the code, since “without the details,
the aspirations can become high sounding but empty.”

The software development practices deployed for the Mars project are almost
all standard. Countless other projects have used them. What distinguishes the
Mars project is not the novelty of the development practices, but the rigor with
which the practices were deployed.

1.3 Ethics: A Cautionary Tale

In 1986, a patient died after radiation treatment by a software-controlled med-
ical device called Therac-25. It was one of six known accidents with the de-
vice. Nancy Leveson and Clark Turner examined information from lawsuits,
correspondence, and regulatory agencies and concluded that basic software en-
gineering principles had apparently been violated during the development of
the software for the medical device.10

The Therac-25 accidents are a cautionary tale of the societal impact of
software projects. The professional societies ACM and IEEE have published a
Code of Ethics; see Fig. 1.5.11 The Code recommends that software engineers
act in the public interest, in the best interests of clients and employers, and
maintain integrity and independence in their professional judgment.

10 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

1.3.1 Therac-25: Malfunction 54

When the patient came to the East Texas Cancer Center for his ninth treatment
on March 21, 1986, more than 500 patients had been treated on the Therac-
25 radiation therapy machine over a period of two years. The planned dose
was 180 rads. Nobody realized that the patient had actually received between
16,500 and 25,000 rads over a concentrated area, in less than 1 second. He died
five months later due to complications from the massive overdose.

On March 21, when the technician pressed the key for treatment, the ma-
chine shut down with an error message: “Malfunction 54,” which was a “dose
input 2” error, according to the only documentation available. The machine’s
monitor showed that a substantial underdose had been delivered, instead of the
actual overdose. The machine was shut down for testing, but no problems were
found and Malfunction 54 could not be reproduced. The machine was put back
in service within a couple of weeks.

Four days after the machine was put back in service, the Therac-25 shut
down again with Malfunction 54 after having delivered an overdose to another
patient, who died three weeks later. An autopsy revealed an acute high-dose
radiation injury.

After the second malfunction, the physicist at the East Texas Cancer Center
took the Therac-25 out of service. Carefully retracing the steps by the tech-
nician in both accidents, the physicist and the technician were eventually able
to reproduce Malfunction 54 at will. If patient treatment data was entered
rapidly enough, the machine malfunctioned and delivered an overdose. With
experience, the technician had become faster at data entry, until she became
fast enough to encounter the malfunction.

The accidents in Texas were later connected with prior accidents with Therac-
25, for a total of six known accidents between 1985 and 1987. After the 1985
accidents, the manufacturer made some improvements and declared the ma-
chine fit to be put back into service. The improvements were unrelated to the
synchronization problems that led to the malfunctions in Texas in 1986. On
January 17, 1987, a di↵erent software problem led to an overdose at the Yakima
Valley Memorial Hospital. The Yakima problem was due to a coding error in
the software.

1.3.2 Lessons Learned

The software for Therac-25 was reused from an earlier machine, called Therac-
20. A related software problem existed with Therac-20, but that earlier machine
had a hardware interlock to prevent an accidental overdose. Therac-25 did not
have a hardware interlock.

The lessons from the Therac-25 accidents include the following:

• System Failures. A system can fail due to interaction between its compo-
nents or between the system and its environment. The failure in Texas

1.4. CONCLUSION 11

was due to an interaction between the technician and the machine. Specif-
ically, the Therac-25 software had concurrent tasks and Malfunction 54
was due to a task synchronization problem.

• Defensive Design. Design for fault tolerance, so a failure in one part of
the system is contained rather than cascaded. Therac-20 had the same
synchronization problem, but it had a hardware interlock to guard against
an overdose.

• Software Engineering Practices. The practices followed for Therac-25
stand in sharp contrast to those followed for the successful Mars mis-
sion; see Fig. 1.4. For Therac-25, the first safety analysis did not include
software. Testing was inadequate. Documentation was lacking.

1.4 Conclusion

Software engineering is a rich subject that encompasses technology and teams,
customer needs and contextual constraints. It is not just about technology
or programming and it is not just about teams or processes. The following
definitions of software engineering from Sections 1.1 and 1.1.6 touch on the
many aspects of the subject (see also the framework in Fig. 1.1):

• Software engineering is the art and science of developing reliable software
systems that address customer needs, subject to resource, business, and
societal constraints.

• Software engineering is multi-person development of multi-version pro-
grams.

The successes of software engineering are all around us. The mission to Mars
described in Section 1.2 is a noteworthy example. Meanwhile, the Therac-25
accidents are a reminder that software engineers need to conduct themselves
ethically and professionally; see Section 1.3.

Exercises for Chapter 1

Exercise 1.1 : Based on a thorough investigation of the Therac-25 accidents,
the following software engineering practices were violated:12

• Specifications and documentation should not be an afterthought

• Establish rigorous software quality assurance practices and standards

• Keep designs simple; avoid dangerous coding practices

• Design audit trails and error detection into the system from the start

• Conduct extensive tests at the module and software level

• System tests are not enough

12 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

• Perform regression tests on all software changes

• Carefully design user interfaces, error messages, and documentation

How would each of these practices have helped avoid the Therac-25 acci-
dents? Provide 2-3 bullet items per practice to convey that you understand the
practice would be su�cient.

Notes for Chapter 1
1Comment by Robert M. Graham during the 1968 NATO workshop [10, p. 17].
2Kenneth W. Kolence, during the 1968 NATO conference [10, p. 16].
3The description of the 2014 IEEE-ACM software engineering curriculum recognizes “that

software engineering, as a discipline, is relatively immature and that common agreement on
the definition of an education body of knowledge is evolving” [6, p. 24]. Note also the com-
ments by Parnas [11]: “For each of the traditional engineering disciplines, there is agreement
on a core body of knowledge, which comprises the skills and knowledge that all of those
licensed to practice in that discipline must have. No such body of knowledge has been iden-
tified for software developers. There are a number of proposals but they do not have the
broad acceptance that the core body of knowledge for disciplines like Civil Engineering has
received.”

4 Lynn Killingbeck interview reported by Tomayko [12, chapter 4, p. 108].
5The security vulnerability was in the Secure Sockets Layer (SSL) code; see Bland [3].
6The working definition of software engineering is close to the following comment from the

2013 ACM-IEEE Curriculum Guidelines [2, p. 172]: “Software engineering is the discipline
concerned with the application of theory, knowledge, and practice to e↵ectively and e�ciently
build reliable software systems that satisfy the requirements of customers and users.”

7Parnas [11, p. 415] attributes “multi-person development of multi-version programs” to
Brian Randell.

8MacCormack [9].
9Holzmann [4, 5] describes software development for the Mars mission.

10The Therac-25 accidents were never o�cially investigated. Leveson and Turner [8] had to
infer information about “the manufacturer’s software development, management, and quality
control” practices.

11The short version of the ACM/IEEE-CS Code of Ethics [1] is reprinted by permission.
c�1999 by the Association for Computing Machinery, Inc. and the Institute for Electrical and
Electronics Engineers, Inc.

12Leveson and Turner [7, 8] conducted an uno�cial investigation of the Therac-25 accidents.

References for Chapter 1

1. ACM/IEEE-CS. Software Engineering Code of Ethics and Professional Practice (1999).
https://www.acm.org/about/se-code .

2. ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer Science Curric-
ula 2013. ACM Press and IEEE Computer Society Press (December 2013)
http://dx.doi.org/10.1145/2534860 .

3. Mike Bland. Finding more than one worm in the apple. Comm. ACM 57, 7 (July
2014) 58-64.

4. Gerard J. Holzmann. Landing a spacecraft on Mars. IEEE Software (March-April
2013) 17-20.

5. Gerard J. Holzmann. Mars code. Comm. ACM 57, 2 (February 2014) 64-73.

REFERENCES FOR CHAPTER 1 13

6. IEEE Computing Society and ACM. Software Engineering 2014: Curriculum Guide-
lines for Undergraduate Degree Programs in Software Engineering.
http://www.acm.org/education/se2014.pdf .

7. Nancy G. Leveson. Medical Devices: The Therac-25. Appendix A of Software: System
Safety and Computers by Nancy Leveson. Addison Wesley, Reading, Mass. (1975)
http://sunnyday.mit.edu/papers/therac.pdf .

8. Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.
IEEE Computer 26, 7 (July 1993) 18-41.
http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.html .

9. Alan D. MacCormack. Product-development processes that work: How Internet com-
panies build software. Sloan Management Review 42, 2 (Winter 2001) 75-84.

10. Peter Naur and Brian Randell (eds). Software Engineering: Report on a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October
1968. (January 1969).
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF .

11. David L. Parnas. Software engineering: multi-person development of multi-version
programs. In Dependable and Historic Computing, C. B. Jones and J. L. Lloyd (eds.),
Lecture Notes in Computer Science 6875 (2011) 413-427.

12. James E. Tomayko. Computers in Spaceflight: The NASA Experience. NASA Con-

tractor Report 182505 (March 1988).

https://archive.org/details/nasa_techdoc_19880069935 .

14 CHAPTER 1. WHAT IS SOFTWARE ENGINEERING?

Chapter 2

Introduction to Processes

“Design and build software, even operating systems, to be tried early,
ideally within weeks. Don’t hesitate to throw away the clumsy parts and
rebuild them.”

— Doug McIlroy, Elliot Pinson, and Berkley Tague from their

1978 introduction to the Unix program development style.

1

A process is a systematic method for meeting the goals of a project by

• defining and organizing development activities,

• determining the roles and skills to do the project, and

• setting criteria and deadlines for progressing from one activity to the next.

Informally, a process guides “who will do what by when and why.”2

The selection of a development process is one of the earliest decisions during
the life of a software project. The selection is strongly influenced by the nature
of the project. A process that works for one project may not be a good fit for
another. The right process can mean the di↵erence between success and failure.

Processes are sometimes called methods, as in “agile method” for a specific
agile process. Classes of processes are sometimes called models, as in “iterative
model” for the class of iterative processes.

2.1 Software Development Processes

This section introduces two broad classes of software development processes,
called plan-driven and iterative. As we shall see, the trend has been away

15

16 CHAPTER 2. INTRODUCTION TO PROCESSES

from plan-driven to various forms of iterative processes, although plan-driven
processes continue to be used for mission-critical projects; e.g., for medical
devices or for flight-control software.

A plan-driven process is characterized by up-front planning, design, and
documentation. Then come coding, testing, and other implementation activi-
ties. Customers are involved during planning, but there is minimal customer
involvement during implementation.

An iterative process has a sequence of steps or iterations that produce in-
creasingly functional versions of a system. The idea is to start with an early
working version that provides just enough functionality for customers to ex-
trapolate what they will get from the finished system. With each iteration,
the software does more of what customers want. Their feedback on previous
iterations guides what gets added or changed in the next iteration.

A characterization of the two classes appears in Fig. 2.1. Early develop-
ments and plan-driven processes are covered in this chapter. Iterative and agile
processes are covered in Chapter 3. Agile processes are are a refinement of it-
erative processes. Agile processes include Scrum, discussed in Section 3.4, and
Extreme Programming (XP), discussed in Section 3.5.

2.1.1 Build versus Grow

Informally, a plan-driven process builds a system, whereas an iterative process
grows a system. The build analogy is with physical buildings. A building goes
through phases: an architect prepares a blueprint; a contractor then builds
according to the blueprint; an inspector finally certifies that the completed
building is fit for occupancy. With each phase, the building takes shape, but
it is not usable until the end. With plan-driven software processes, the system
comes together at the end, when coding is all done.

The grow analogy is with biological organisms. There is a living organism
from the start; its capabilities grow as it evolves. With iterative processes, a
minimal usable system grows in functionality as the project progresses. As Fred
Brooks observed,

“Enthusiasm jumps when there is a running system, even a simple
one. E↵orts redouble when the first picture from a graphics system
appears on the screen, even if it is only a rectangle. One always has,
at every stage in the process, a working system.”3

2.1.2 Examples of Plan-Driven and Iterative Processes

All software development projects share the same broad goals: identify customer
needs; build a system; deliver it or deploy it. The next example describes a
simple plan-driven process that addresses these goals sequentially.

Example 2.1 : The plan-driven process in Fig. 2.2 has four activities, repre-
sented by the boxes in the figure: identify customer needs; plan an app; build

2.1. SOFTWARE DEVELOPMENT PROCESSES 17

Figure 2.1: Characteristics of two classes of processes: plan-driven and iterative.

the app; and submit the app to an app store. The three roles—not shown in
the figure—are customer, product owner, and developer.

The following is a brief description of the process:

1. Identify Customer Needs. The product owner, with the help of the de-
velopment team, works with selected customers to identify their needs.
The discussions with the customers continue until the customers are sat-
isfied that the product owner really understands their needs. The result
of the discussions is a set of requirements for an app that would delight
the customers.

2. Plan an App. Based on the requirements, the development team designs
an app and creates a plan for implementing the design. This activity
continues until the design specification and the implementation plan are
completed.

3. Build the App. According to plan, the development team builds the app.
The development of the app completes when the product owner and the

Figure 2.2: A sequential plan-driven process.

18 CHAPTER 2. INTRODUCTION TO PROCESSES

Figure 2.3: An iterative process.

development team are satisfied that the app correctly implements the
design specification.

4. Submit to an App Store. The development team submits the completed
app to an app store. The submission completes when the app store accepts
the app.

The above description outlines the activities, identifies who does what, and
includes the criteria for progressing from one activity to the next. 2

The next example illustrates an iterative process adapted from Scenario-
Focused Engineering, which has been used within Microsoft.4

Example 2.2 : The process in Fig. 2.3 has four activities, represented by the
boxes in the figure. The arrows represent transitions between activities. The
label on an arrow from activity A to activity B shows the artifact produced by
A and passed to B. For example, the “Identify Needs” activity results in a list
of opportunities that is passed to the “Define a Problem” activity.

This example provides an overview of the process; see also Section ??.

1. Identify Needs. The development team works with selected customers to
identify their needs. The discussion results in a list of opportunities for
addressing customer needs.

2. Define a Product. The development team prioritizes the opportunities
and defines a product that will address some unmet customer needs. The
result of this activity is a set of requirements for a product.

3. Explore Solutions. The development team then explores possible solu-
tions that meet the requirements. The exploration ends with the design
specification for an implementation.

4. Build for Feedback. The team builds a prototype, based on the speci-
fication. The purpose of the prototype is to get customer feedback on

2.1. SOFTWARE DEVELOPMENT PROCESSES 19

Figure 2.4: Rough timeline with examples of successful software projects using
three classes of processes: plan-driven, iterative, and continuous delivery.

the proposed solution. The feedback will be used in the next iteration to
refine or even replace the solution approach. The feedback session may
also uncover additional needs.

The cycle begins anew at the first activity. The development team works with
the selected customers to identify any further needs. The process completes
when the prototype has evolved into a product that delights the customers. 2

2.1.3 The Process Landscape

For perspective on software development processes, consider the timeline in
Fig. 2.4. The successful U.S. SAGE Air Defense system and the flagship AT&T
5ESS Switching System were developed using plan-driven processes. They took
years to develop.

The software for the Space Shuttle and for the Netscape Navigator 3.0 web
browser were delivered incrementally, using iterative processes. Rapid iterations
delivered relatively small increments of software, compared to the complete sys-
tems delivered for SAGE and 5ESS. The iterations for the shuttle took roughly
8 weeks and the ones for the browser took 4 weeks.

Delivery times continue to shrink. Technology companies like Amazon, Face-
book, Google, and Netflix now practice continuous delivery; they deploy pieces
of software multiple times of day, sometimes hundreds of times a day. Each in-
dividual piece may have taken days or weeks to develop, but with many teams
working in parallel, software from some team or the other is deployed every so
many minutes or every so many seconds.

20 CHAPTER 2. INTRODUCTION TO PROCESSES

Figure 2.5: A pure waterfall process.

2.2 Early Developments

In the late 1950s, the computer industry faced a software crisis. Software devel-
opment was a craft that relied on skilled programmers and there was a shortage
of skilled programmers. Ad hoc “code and fix” programming methods were not
meeting the challenge of increasingly complex software projects.

At the time, e�cient use of computing resources was all important. Com-
puters were expensive and bulky and filled large rooms. Computer time was
precious: an hour of computer time was 300 times the cost of an hour of a
programmer’s time.5 Software was written in assembly language. Code clarity
and maintainability were often sacrificed in the name of e�ciency.

2.2.1 Waterfall: Seeking Order Amid Chaos

To manage software development, the computer industry adopted processes
that were similar to the phase-gate processes used by the chemical industry.
In Fig. 2.5, phases are represented by boxes and the flow from one phase to
the next is represented by arrows. “Gate” in phase-gate refers to a review at
the end of a phase. The gates were to decide whether to continue a project by
proceeding to the next gate, or to redirect or even cancel the project.

Waterfall processes are named after diagrams like the one in Fig. 2.5. The
flow of control from phase to phase looks a little like water streaming over a
series of drops in a waterfall.6

A pure waterfall process divides software development into sequential phases,
such as requirements gathering, design, coding, and testing. It is a defining
characteristic of pure waterfall processes that each phase completes before the
next one begins.

Waterfall diagrams are neat and tidy and were viewed as an ideal, to the

2.2. EARLY DEVELOPMENTS 21

point where the Space Shuttle project felt the need to justify the use of an
iterative rather than a waterfall process:7

“From an idealistic viewpoint, software should be developed from
a concise set of requirements that are defined, documented, and
established before implementation begins. The requirements on the
Shuttle program, however, evolved during the software development
process.”

(See Section 3.2 for the iterative process used for the Space Shuttle software.)

2.2.2 Limitations of Waterfall Processes

Thousands of useful software systems were built using variants of the waterfall
model. But, there were also many failures. Many pure waterfall projects failed
to live up to their promise or failed entirely.8

Waterfall processes assume that we can specify what the system must do
before we design it, we can design it before we code it, we can code it before
we test it, and that everything will go according to plan.

The problems with pure waterfall processes are twofold:

• Requirements change. During the months or years between initial re-
quirements gathering and final testing, customer needs may have changed
significantly. Since design and implementation are based on the initial
requirements, it is highly likely that the end result will not meet the
customer’s changed needs.

• Issues surface late in the project’s lifecycle. Integration and testing come
at the end of the development cycle. Design, coding, and performance
issues can therefore lurk undetected until the end. In practice, late dis-
covery of major issues has resulted in replanning and rework, leading to
significant cost and schedule overruns.

These problems were known all along. The 1970 paper that introduced
waterfall diagrams notes that the pure waterfall model is risky and invites
failure. To reduce risk, the paper suggests steps like prototyping, customer
involvement, and early test planning.

Example 2.3 : In 2013, integration and testing came at the tail end of the
rollout of the healthcare.gov website, too late to address usability and per-
formance issues.

The A↵ordable Care Act was the most significant overhaul of the U.S.
healthcare system in decades. The software system to implement the law was
the result of a two-year project, with components built by several contractors.
The system included a website, healthcare.gov, for people to enroll for health
insurance.

The October 1, 2013 launch of the website did not go well. The chairman
of the oversight committee opened a congressional hearing on October 24 with

22 CHAPTER 2. INTRODUCTION TO PROCESSES

“Today the Energy and Commerce Committee continues our ongo-
ing oversight of the healthcare law as we examine the many prob-
lems, crashes, glitches, system failures that have defined open en-
rollment [for health insurance].”

When questioned, one of the contractors admitted that integration testing
for the website began two weeks before launch. Another contractor admitted
that full end-to-end system testing did not occur until “the couple of days
leading up to the launch.”

At the time, $118 million had already been spent on the website alone.9 2

2.3 Plan-Driven Processes in Practice

Given the known limitations of waterfall processes, how did they become—and
remain—the dominant process model for several decades? What made some
software projects successful where others failed?

Some successful projects didn’t use a waterfall process: instead, they used
an iterative process to accommodate changing requirements. But, many did use
a waterfall variant. They were successful because they were good at managing
the risks associated with software development.

2.3.1 Software Risk Factors

In practice, project managers rely on experience and intuition to deal with
the factors that contribute to success or failure. Although risk can be defined
formally by

Risk of outcome = (Probability of outcome) ⇥ (Impact of outcome)

few project managers explicitly estimate probabilities and impacts.
The software risk factors in Fig. 2.6 are adapted from published checklists of

serious risks. A 1998 study asked project managers in three countries to identify
and rank order risk factors. The results were consistent: 7 of the 11 most
serious risks were related to customer requirements. Also on the most serious
list: shortfalls in sta↵ and skills and lack of top management commitment. The
list may be biased by the fact that the project managers in the study tended
to give more weight to risks that were outside their control. They treated
uncontrollable risks as being more severe.10

The case studies in this section illustrate techniques for managing risks
related to customer requirements and system implementation.

2.3.2 Disposable Prototype Lowers Risk

In the 1950s, the team for the SAGE air defense system used prototyping to
gain a deep understanding of both the problem and of a workable solution. In
other words, they gained a deep understanding of both the requirements and of

2.3. PLAN-DRIVEN PROCESSES IN PRACTICE 23

Figure 2.6: Examples of risks faced by software projects.

a possible implementation. Then, they successfully built SAGE, as described
in the following example.

Example 2.4 : SAGE (Semi-Automated Ground Environment) was an ambi-
tious distributed system that grew to 24 radar-data collection centers and 3
combat centers spread across the United States.

Development of the 100,000 instruction system began with an initial pro-
totyping phase to explore the tradeo↵s between performance, cost, and risk.
Herbert Benington writes,11

“The experimental prototype ... performed all the bare-bones func-
tions of air defense. Twenty people understood in detail the per-
formance of those 35,000 instructions; they knew what each module
would do, they understood the interfaces, and they understood the
performance requirements.”

Having done a realistic prototype, the team was well prepared to build the final
system. 2

The SAGE team also did careful testing to ensure product quality. Their
development process is discussed next.

2.3.3 V-Processes: Levels of Specification and Testing

A V-process consists of a sequence of specification phases followed by coding
and a sequence of testing phases. The specification and testing phases are
paired, like opening and closing parentheses, surrounding the coding phase.
The purpose of each testing phase is to verify that the code implements the
corresponding specification.

24 CHAPTER 2. INTRODUCTION TO PROCESSES

Figure 2.7: Each specification phase has a corresponding verification phase.

Diagrams for V-processes resemble the letter V. As in Fig. 2.7, the specifi-
cation phases are drawn going down and to the right. Coding is at the bottom.
The testing phases are drawn going up and to the right.

Example 2.5 : The process in Fig. 2.7 is inspired by the development process
for the SAGE air defense system.12

The first four phases develop increasingly detailed specifications. The customer-
requirements phase specifies the usage and operation of the system from a user
perspective. The system-specifications phase outlines the behavior of the sys-
tem as a black box. The subsystem-specifications phase organizes the compo-
nents of the system. The components-pecifications phase describes what each
component must do.

The dashed arrows in Fig. 2.7 link a specification phase with its correspond-
ing testing phase. 2

If we think of testing as having two parts, test planning and test execution,
then test planning can be done early. (Modern test-driven development is based
on the idea of starting with tests and then writing the code so it passes the
tests.) Test planning can be done in the down part of the V, before coding
begins. Test execution must follow coding, so test execution is in the up part of
the V. Including relevant tests with a specification strengthens the specification.

V-processes are essentially waterfall processes. Note that the solid arrows
in Fig. 2.7 trace the sequential flow from customer requirements to acceptance

2.3. PLAN-DRIVEN PROCESSES IN PRACTICE 25

Figure 2.8: Data for releases of the 5ESS switching system, 1985-1996.

testing. There may be several testing phases in a V process.

2.3.4 Multiple Plan-Driven Releases

Successful software products have a long life. They evolve: each release includes
enhancements that are based on feedback and experience. Experience with
releases 1 through n can be very helpful in managing the risk of developing
release n+ 1.

Example 2.6 : During the period, 1985-1996, the highly reliable 5ESS Switch-
ing System was a flagship AT&T product. It aimed for and achieved 99.999%
reliability. Using carefully planned releases, many new features were added,
and the underlying technology was refreshed several times. New features were
not added lightly. Product managers stayed in close contact with customers
and maintained a backlog of features and enhancements.

Historical data for multiple releases is summarized in Fig. 2.8.13 Each row
represents a release. Releases D1-D11 were for the U. S. market; releases I1-I15
were for international markets. Each release took roughly two years. Devel-
opment of releases overlapped. The histograms in each row correspond to the
level of e↵ort on that release at each phase of the project.

Each release used a plan-driven process. The requirements for each individ-
ual release were fixed; changes were permitted if they fit the plan. Any changes
that could not be accommodated during a release were deferred to the next

26 CHAPTER 2. INTRODUCTION TO PROCESSES

release. A release might have 3,000 pages of functional requirements, 9,000
pages of high-level design, 40,000 pages of detailed design. The detailed design,
coding, and testing phases overlapped significantly.

5ESS was a large project. It had roughly 10 million lines of code, divided
into 50 subsystems. At any time, there were roughly 3,000 developers working
on the multiple phases of multiple releases.

It takes careful planning to manage such a large e↵ort, 2

2.4 Cost of Change Curve

What is the cost of changing requirements? How hard is it to introduce a
change during a software project? As we shall see when we discuss iterative
processes, such questions have implications for how much to invest in design
and architecture at the start of a project.

2.4.1 A Proxy for the Cost of a Change

Since data for the cost of making a change is not readily available, consider the
data that is available for the cost of fixing a defect. Making a change and fixing
a defect are closely related, since both require an understanding of the code for
a system.

The curves in Fig. 2.9 show changes to the cost of fixing a severe defect as a
plan-driven project progresses. The cost is lowest during the requirements and
design phases. The solid curve is based on a chart published in 1976 by Barry
W. Boehm. The underlying data was from three companies: GTE, IBM, and
TRW. Boehm added data from smaller software projects in a 2006 version of
the chart.14

For large projects, the relative cost of fixing a severe defect rises by a factor
of 100 between the initial requirements and design phases and the phase where
the system has been delivered and put into operation. The cost jumps by a
factor of 10 if the fix is during coding and jumps by another factor of 10 if the
fix is during operation. The dashed curve for smaller projects is much flatter:
the cost of a fix during operation is 7 times the cost a fix during the requirements
phase.

For non-severe defects, the ratio may be 2:1, instead of the 100:1 ratio for
severe defects.

Other companies reported similar ratios during a workshop in 2002 (the
data is for plan-driven processes):15

• A 117:1 increase in e↵ort was observed at IBM Rochester. The increase
was 13:1 between coding and testing, and then a further 9:1 between
testing and operation.

• A 137:1 ratio was observed at Toshiba, for a software factory of 2,600
workers, comparing the time needed to fix a severe defect before and after
shipment.

2.5. CONCLUSION 27

Figure 2.9: For severe defects, the later the fix, the greater the cost. (The
original diagram had a log scale for the relative cost).

• Workshop participants from other organizations reported similar experi-
ences.

2.4.2 Implications

The following table summarizes the above discussion comparing the cost of late
fixes (during operation, after delivery) to the cost of early fixes (during initial
requirements and design):

Project Size Defect Severity Ratio
Large Severe ⇠ 100 : 1
Small Severe ⇠ 7 : 1
Large Non-Severe ⇠ 2 : 1

(The symbol “⇠” stands for “roughly.”)
A high ratio motivates up-front work to catch defects early, thereby avoiding

the high cost of fixing the defects during operation. High ratios have been
cited as a motivation for plan-driven processes: careful up-front planning, if
feasible, can reduce the need for costly late changes. Planning can also allow
for anticipated changes. Their cost will likely be comparable to the cost of
non-severe fixes.

Agile processes embrace change, on the assumption that the cost of change
curve is relatively flat.

2.5 Conclusion

A software development process is a systematic method for meeting the goals
of a project by defining and organizing development activities; determining the

28 CHAPTER 2. INTRODUCTION TO PROCESSES

roles or skills needed to do the project; and setting criteria and deadlines for
progressing from one activity to the next.

Plan-driven processes divide software development into phases; e.g., require-
ments gathering, design, coding, and testing. Phases may have gates or reviews
to decide whether to go on to the next phase.

Waterfall processes are a subclass of plan-driven processes, where the phases
are sequential; that is, one phase completes before the next phase begins. In
the 1970s, waterfall was the dominant process model for software development.
In its pure form, it is now held up as an example of what not to do. The risk
with pure waterfall processes is twofold. First, while the project is underway,
customer requirements will likely have changed. The completed system may
therefore fail to meet changed customer expectations. Second, testing occurs
at the end of the development cycle, so design and performance issues may not
surface until the very end.

V-processes are a variant of waterfall processes, in which test planning and
test execution are separated. Test planning is done early, along with the specifi-
cation and design phases. Test execution has to wait until the system is available
for testing; that is, after coding. Each specification phase has a corresponding
testing phase.

In practice, waterfall and V-processes may be used along with other methods
to manage the risks associated with software development. For example, the
team that built the successful SAGE air-defense system began by thoroughly
investigating the functions of air defense by building a disposable prototype.
Only then did they begin development, using a V-process.

Exercises for Chapter 2

Exercise 2.1 : The process in Fig. 2.10 is a variant of Infosys’s development
process circa 1996.16 Compare the process in Fig. 2.10 with each of the follow-
ing. In each case, discuss the similarities (if any) and di↵erences (if any).

a) Waterfall processes.

b) V-processes.

c) Iterative processes.

Notes for Chapter 2
1The opening quote is from McIlroy, Pinson and Tague’s foreword to a special issue of the

Bell System Technical Journal on Unix [12].
2“Who will do what by when” is a simpler version of Boehm’s [4, p. 76] “Why, What,When,

Who, Where, How, How Much.”
3The grow analogy for iterative processes is due to Fred Brooks [6].
4De Bonte and Fletcher [7] developed a Scenario-Focused Engineering workshop that was

delivered to over 22,000 Microsoft engineers over a six-year period starting in 2008.

EXERCISES FOR CHAPTER 2 29

Figure 2.10: A variant of the Infosys development process circa 1996.

5Boehm [5] writes, “On my first day on the job, my supervisor showed me the GD ERA
1103 computer, which filled a large room. He said, ‘Now listen. We are paying $600 an hour
for this computer and $2 an hour for you, and I want you to act accordingly.’ ”

6The waterfall diagram in Fig. 2.5 is adapted from an influential 1970 paper by Winston
W. Royce [13]. The first published account of a waterfall process, however, is a 1956 paper by
Benington [1] on the development process for the U.S. SAGE air defense system; see Fig. 2.7.

7Madden and Rone [11]
8U.S. government contracts promoted the use of waterfall processes through standards

such as Military Standard MIL-STD-1521B dated June 4, 1985 [16]. A much quoted study
of 1995 Department of Defense (DoD) software spending concluded that 75% of the $35.7B
worth of software was either never used or never delivered [9].

9The committee chairman’s opening remarks are from [17, p. 2]. For the extent of system
and end-to-end testing, see [17, p. 57]. The cost of the website is from [18, p. 19].

10Checklists of top software risks appear in Boehm [3] and Keil at al. [10], among others.
The 1998 study by Keil et al. convened independent panels of project managers in Finland,
Hong Kong, and the United States.

11Herbert Benington’s 1956 paper [1] was reprinted in 1983 with a fresh Foreword by the
author, in which he noted, “I do not mention it in the [1956] paper, but we undertook the
programming only after we had assembled an experimental prototype.”

12The V-shaped process diagram for SAGE in Fig. 2.7 is a redrawing of the original dia-
gram [1]. Paraphrasing Benington [1], a programmer must prove that the program satisfies the
specifications, not that the program will perform as coded. Furthermore, “test specifications
... can be prepared in parallel with coding.”

13Fig. 2.8 is from Siy and Perry [15]. Used courtesy of Harvey P. Siy.
14The chart on the cost of fixing a defect is due to Boehm [5, 2].
15Shul et al. [14].
16Jalote [8, p. 37] describes the Infosys development process. Infosys is known for its highly

mature processes; specifically, at the time, Infosys was a CMM level 5 company.

30 CHAPTER 2. INTRODUCTION TO PROCESSES

References for Chapter 2

1. Herbert D. Benington. Production of large computer programs. Proceedings, Sym-
posium on Advanced Programming Methods for Digital Computers, O�ce of Naval
Research Symposium (June 1956). Reprinted with a Foreword by the author in An-
nals of the History of Computing 5, 4 (October 1983) 350-361.

2. Barry W. Boehm. Software engineering. IEEE Transactions on Computers C-25, 12
(December 1976) 1226-1241.

3. Barry W. Boehm. Software risk management: principles and practices. IEEE Software
(January 1991) 32-41.

4. Barry W. Boehm. Anchoring the software process. IEEE Software (July 1996) 73-82.

5. Barry W. Boehm. A view of 20th and 21st century software engineering. Proceedings
International Conference on Software Engineering (ICSE ?06) (2006) 12-29.

6. Frederick P. Brooks, Jr. No silver bullet—essence and accident in software engineering.
Proceedings of the IFIP Tenth World Computing Conference. Elsevier, Amsterdam
(1986) 1069-1076. Reprinted in The Mythical Man-Month: Essays on Software Engi-
neering, Anniversary Edition by Fred Brooks, Addison-Wesley (1995) 177-203.

7. Austina De Bonte and Drew Fletcher. Scenario-Focused Engineering. Microsoft Press,
Redmond, Wash. (2013).

8. Pankaj Jalote. Software Project Management in Practice. Addison-Wesley, Boston,
Mass. (2002).

9. Stanley J. Jarzombek. Proceedings, 5th Annual Joint Aerospace Weapons Systems
Support, Sensors, and Simulation Symposium (JAWS S3). U.S. Government Printing
O�ce (1999). There are many references to this elusive report. See for example, Theron
R. Leishman and David A. Cook, Requirements risks can drown software projects,
Crosstalk, The Journal of Defense Software Engineering (April 2002).

10. Mark Keil, Paul E. Cule, Kalle Lyytinen, and Roy C. Schmidt. A framework for
identifying software project risks. Comm. ACM 41, 11 (November 1998) 76-83.

11. William A. Madden and Kyle Y. Rone. Design, development, integration: Space
Shuttle primary flight software system. Comm. ACM 27, 9 (1984) 914-925.

12. M. D. McIlroy, E. N. Pinson, and B. A. Tague. Foreword: Unix time-sharing system.
Bell System Technical Journal 57, 6 (July-August 1978) 1899-1904.

13. Winston W. Royce. Managing the development of large software systems. Proceedings
IEEE WESCON (August 1970).

14. Forrest Shul, Vic Basili, Barry Boehm, A. Winsor Brown, Patricia Costa, Mikael Lind-
vall, Dan Port, Ioana Rus, Roseanne Tesoriero, and Marvin Zelkowitz. What have we
learned about fighting defects. Proceedings Eighth IEEE Symposium on Software Met-
rics (METRICS ’02) (2002) 249-258.

15. Harvey P. Siy and Dewayne Perry. Challenges in evolving a large scale software prod-
uct. International Workshop on Principles of Software Evolution (April 1998).

16. U.S. Department of Defense. Military Standard: Technical Reviews and Audits for
Systems, Equipments, and Computer Software MIL-STD-1521B (June 4, 1985).
http://www.dtic.mil/dtic/tr/fulltext/u2/a285777.pdf

17. U.S. House of Representatives. PPACA implementation failures: answers from HHS?
Hearing before the Committee on Energy and Commerce, 113th Congress, Serial
No. 113-87 (October 24, 2013).

18. U.S. House of Representatives. PPACA implementation failures: didn’t know or didn’t
disclose? Hearing before the Committee on Energy and Commerce, 113th Congress,
Serial No. 113-90 (October 30, 2013).

Chapter 3

Iterative and Agile
Processes

“The advice to XP teams is not to minimize design investment over the
short run, but to keep the design investment in proportion to the needs
of the system so far. The question is not whether or not to design, the
question is when to design.”

— Kent Beck, who introduced Extreme Programming (XP).

1

From Section 2.1, an iterative process has a sequence of steps or iterations that
produce increasingly functional versions of a system. Customer feedback at the
end of each iteration helps to keep the project on track. The feedback allows
changes in customer needs and expectations to be accommodated during later
iterations.

This chapter begins with two case studies that illustrate the benefits of it-
erative development. The rest of the chapter concentrates on agile processes.
The term “agile” applies to several classes or processes—classes of processes
are also called process models. Adoption surveys show that Scrum is by far the
most widely used agile model. A hybrid combination of Scrum and Extreme
Programming (XP) is a distant second.2 Section 3.4 covers Scrum and Sec-
tion 3.5 covers XP. Section 3.6 covers user stories, which are closely associated
with XP, but are used together with other agile models as well.

31

32 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

Figure 3.1: The Agile Manifesto.

3.1 Introduction

The roots of iterative and agile processes go back to the “plan-do-study-act”
quality improvement cycles proposed in the 1930s by Walter Shewhart at Bell
Labs. They were applied to software projects in the mid 1950s—they came
through NASA to IBM, a federal contractor.3

Since iterative processes deliver functionality in increments, they are some-
times called iterative and incremental.

Iterative and incremental delivery “within weeks” is a hallmark of the Unix
style of program development. In 1978, McIlroy et al. described the Unix
programming style as follows:4

• “Make each program do one thing well. To do a new job, build fresh
rather than complicate old programs by adding new ‘features.’ ”

• “Design and build software, even operating systems, to be tried early,
ideally within weeks. Don’t hesitate to throw away the clumsy parts and
rebuild them.”

• Software utilities “were continually improved by much trial, error, discus-
sion, and redesign.”

3.1.1 The Agile Manifesto

In February 2001, a group of self-described “independent thinkers about soft-
ware development” met to explore “an alternative to document driven, heavy-
weight processes.” The group included proponents of a range of process models
including Extreme Programming (XP) and Scrum. They found common ground
in the Agile Manifesto in Fig. 3.1.5

We use the term agile method or agile process to refer to any software de-
velopment process that complies with the values in the Agile Manifesto. Based

3.2. ITERATIVE PROCESSES 33

on the Manifesto and the principles that accompanied it, an agile process em-
phasizes

• satisfying customers through collaboration,

• delivering working software frequently (in weeks, not months),

• accommodating changes during development, and

• valuing simplicity and technical excellence.

The distinction between the agile and iterative process models is more about
values and culture than it is about specific techniques and practices. Both
models deliver functionality incrementally, although agile processes tend to have
much shorter iterations. Both involve customer feedback at the end of each
iteration. The agile model is therefore an evolutionary successor of the iterative
model.

Proponents of agile methods speak of “the agile movement” and empha-
size respect and collaboration in the work environment.6 Teams self organize,
developers take responsibility, and communication is ideally face-to-face and
informal.

Software development is a people business. Culture, values, and a supportive
work environment can make a big di↵erence in the productivity and retention
of team members.

3.2 Iterative Processes

Customer feedback at the end of each iteration allows iterative (and agile)
processes to

• handle uncertain or dynamically changing requirements;

• improve design and quality as early users uncover issues; and

• enable parallel development of a software subsystem and the components
that depend on it.

The first case study in this section describes the use of quick iterations to
handle changing requirements. Customer feedback helped improve design and
quality along the way. The second case study describes the use of iterations for
the parallel development the software,the hardware, and the training modules
of a system.

3.2.1 Uncertain and Dynamic Requirements

Uncertainty arises because stakeholders may not know what they need, or be-
cause the development team may not have fully grasped what stakeholders
want. Dynamic changes are often the result of new information, such as a
product announcement by a competitor.

34 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Figure 3.2: A stylized version of the iterative process for the Netscape Navigator
3.0 web browser project.

Uncertainty refers to a known unknown: we know there is a requirement, but
we have yet to converge on exactly what it is. Uncertainty can be anticipated
when proposing a solution or design.

Dynamic change refers to an unknown unknown: we don’t know anything
about the change or even whether there will be a change. Dynamic changes are
unexpected and can lead to a redesign.

Example 3.1 : In the early days of the World-Wide Web, Netscape Navigator
was the dominant web browser, with 70% market share. Microsoft appeared to
have missed the Internet “Tidal Wave” until it unveiled its Internet strategy
on December 7, 1995. It compared itself to a sleeping giant that had been
awakened, and launched an all-out e↵ort to build a competing browser, Internet
Explorer 3.0.7

In the race with Microsoft, time to market was paramount for the Navi-
gator 3.0 project. The development process emphasized quick iterations; see
Fig. 3.2, where the gray boxes represent iterations. There were six beta releases
between the start of the project in January 1996 and the final release of the
product in August.

The project had both uncertain and dynamically changing requirements.

• Uncertain. The initial requirements were based on extensive interactions
with customers; however, there was uncertainty about whether customers
would like the designs and usability of the features.8

• Dynamic. The team carefully monitored beta releases of Microsoft’s Ex-
plorer 3.0, ready to change requirements dynamically to keep Navigator
3.0 competitive with Explorer 3.0.9

3.2. ITERATIVE PROCESSES 35

Figure 3.3: Schedule acceleration through parallel development.

The Navigator 3.0 project began with a prototype that was quickly released
internally within the company as Beta 0. The prototype was followed by quick
design-build-test iterations, each iteration leading to an external beta release,
available for public download. The beta releases of working software elicited
valuable user feedback that guided the content of the next beta version.

Navigator 3.0 and Explorer 3.0 both hit the market in August 1996. 2

3.2.2 Parallel Development of Subsystems

The NASA Space Shuttle project used an iterative process to accelerate the
development of the orbiter hardware, the flight software, and simulators and
training modules. Since the software tracked the hardware, and the training
tracked the software, a sequential process would have imposed the following
ordering (see Fig. 3.3):

1. Develop the shuttle orbiter vehicle.

2. Develop the software for guidance, navigation, and flight control of the
orbiter.

3. Develop the simulators and training that would use the software.

The team at IBM, the software contractor, used an iterative process:10

“This approach was based on incremental releases. ... The first
drop for each release represented a basic set of operational capabil-
ities and provided a structure for adding other capabilities on later
drops.”

Early drops of working software allowed development of the simulators to
start before all the software was completed (again, see Fig. 3.3). Early releases
allowed more extensive verification of the software through testing and use on
simulators. (The flight software and the orbiter hardware were also developed
in parallel.)

36 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Figure 3.4: The first 9 of 17 releases of the flight software for the space shut-
tle.. Rows represent subsystems and vertical lines represent releases. Circles
represent code drops.

Example 3.2 : The first 9 of 17 software releases for the shuttle are illustrated
in Fig. 3.4. The rows are for the subsystems, Entry, Ascent, Orbit, System Man-
agement, and Vehicle Checkout. Ascent was for launch from Earth. Entry was
for re-entry into the Earth’s atmosphere and landing. The black bars represent
the period between the first code drop and the completion of a subsystem.

The first 8 releases included code for one or more subsystems. Circles along
a bar denote inclusion of the subsystem in a given release. The filled circles
denote completion of the functionality for that subsystem. Code drops after
the completion point were to incorporate requirements changes.

The ninth and subsequent releases were for the flight software system as a
whole. In other words, each row of Fig. 3.4 represents an iterative subprocess
for a subsystem. From the ninth release onward, the subsystems were integrated
and an iterative process used for the overall software system.

Parallel development meant that the software requirements changed as the
orbiter changed. Another reason for changes was that, early in development,
it became clear that the software system would exceed the memory and pro-
cessing capacity of the on-board computer. The requirements could not be met
as stated at the time. So, some functions were deleted and the performance
requirements relaxed, resulting in changes to the software architecture and the
detailed design of the system.

NASA and its contractors made almost 2,000 software requirements changes
between 1975 and the first flight of the shuttle on April 12, 1981. 2

3.3 Enabling Practices for Iterative Processes

Iterative processes reduce the risk of changing requirements, but they do not
eliminate it. This section begins with a troubled project. It then describes best

3.3. ENABLING PRACTICES FOR ITERATIVE PROCESSES 37

practices from a study of successful iterative projects.

3.3.1 A Troubled Iterative Project

Netscape successfully used an iterative process for Navigator 3.0 (see Exam-
ple 3.1), but the very next project, Communicator 4.0, using the same process,
produced a poor quality product.

Example 3.3 : The Communicator 4.0 project faced multiple risks.

Customers. With 4.0, Netscape shifted its strategy from focusing on indi-
vidual consumers to selling to enterprises—enterprises include businesses, non-
profits, and government organizations. The senior engineering executive later
described the shift as “a complete right turn to become an airtight software
company.” Enterprises have much higher expectations for product quality.11

The team took on new features, including email and groupware. Well into
the 4.0 project, the requirements for the mailer changed dynamically: the com-
pany changed the competitive benchmark. As the engineering executive put it,
“Now that’s an entire shift!”

The groupware features were unproven and were not embraced by customers.
Three quarters of the way through the project, a major new feature was added.

Communicator 4.0 “was built on the old code base, which was beginning to
run out of steam.”

Technology. The project had technology issues related to both the code for
the system and with the tools to build the system. Communicator 4.0 was built
on the existing code base from Navigator 3.0. The existing code base needed to
be re-architected to accept the new features, but the schedule did not permit a
redesign.

With respect to tools, the team chose to use Java, so the same Java code
would run on Windows, Mac OS, and Unix. Java was relatively new at the
time and did not provide the desired product performance.

Team. The team faced skills shortages. With multiple platforms to support
(Windows, Mac, Unix), the team did not have enough testers.

When Communicator 4.0 was released in June 1997, it faced quality prob-
lems. The iterative development process, with early customer feedback, ad-
dressed some of the risk related to requirements, but there were other risks
that were not addressed, related to the existing code base, the use of Java, and
insu�cient testing. 2

3.3.2 Success Factors for Iterative Processes

Why do some projects succeed, while others fail? What are the best practices
for iterative processes?

Some answers to these questions can be found in a study of 29 completed
projects from 17 companies. The conclusions from the study carry over to

38 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

agile processes, although the study itself was about the encompassing class of
iterative processes. Based on interviews, surveys, and expert panels between
1996 and 1998, the study measured (1) product quality, defined as a combination
of performance, functionality, and reliability; and (2) team productivity.12

The rest of this section discusses the four practices that were found to be
associated with successful projects.

Earlier Customer Feedback

Feedback on less complete versions allows projects to prioritize features that
customers find useful and to benefit from suggestions about new or missing
features. Projects that had as little as 30%-40% of their final functionality at
first beta had better quality than products that had 70% or more of their final
functionality.

Of course, earlier first betas need to have enough of the core functionality
that customers take them seriously.

Rapid Trouble Reports

Projects with overnight or daily trouble reports had higher product quality than
projects where the trouble reports took 30 or more hours. Half of the projects
in the sample used daily builds to incorporate new code and integrate all of the
components into a working version.

Agile methods go further: they combine coding with automated unit testing
and continuous integration—see Section 3.5. Automated tests verify that new
code does not break any existing functionality. Continuous integration builds
a working version several times a day.

Flexible System Architecture

Projects with major investments in system architecture had higher quality.
Architectures that are modular and loosely coupled are more likely to be

flexible than architectures that are optimized for a specific purpose, such as
performance. Iterative processes must balance flexibility and performance.

See also Section 3.7 for a discussion of up-front flexible design versus just-
in-time incremental design.

Developer Experience on Diverse Projects

The traditional measure of experience is years of service. Service experience by
itself did not lead to either higher product quality or higher team productivity.
However, diversity of experience did correlate with higher productivity. Here
diversity of experience means experience on diverse completed projects, where
the system was not simply a derivative of a previous system.

3.4. THE SCRUM FRAMEWORK 39

A broad team, where the developers have seen diverse projects through to
completion, is better positioned to anticipate and respond to changes due to
requirements and technology.

3.4 The Scrum Framework

Scrum is a class of agile software development processes that dates back to
the early 1990s.13 Its originators, Je↵ Sutherland and Ken Schwaber, later
became signatories of the Agile Manifesto. Scrum is a class of processes rather
than a specific process, since scrum teams are free to choose how they organize
themselves and do their work.

Scrum is characterized by rules for three elements: events, roles, and arti-
facts. The relationships between these elements are illustrated in Fig. 3.5. This
section explores the following elements of the Scrum framework:

• Scrum Team. A scrum team consists of a product owner, a development
team, and a scrum master.

• Sprints. Iterations called sprints are at the heart of Scrum.

• Product Backlog. The product owner maintains a product backlog, con-
sisting of a prioritized list of items to be implemented.

• Sprint Backlog. For each sprint, the team picks items from the product
backlog. The picked items form the sprint backlog to be implemented
during the sprint.

• Increments. As with any iterative process, the deliverable from a sprint
is an increment of relevant functionality. The increments grow a working
system that delivers more and more of the functionality that stakeholders
care about.

3.4.1 Scrum Roles

Scrum defines three roles: product owner, developer, and scrum master.

Product Owner

The product owner is responsible for the content of the product. This owner
must be a person; ownership is not to be spread across team members. In all
team meetings, the product owner serves as the voice of the customer, and sets
priorities for what the team implements.

Development Team

The development team has sole responsibility for implementation. They come
up with estimates for the time and e↵ort needed to implement the items in the
product backlog.

40 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Figure 3.5: Elements of Scrum.

Scrum Master

The scrum master acts as coach, facilitator, and moderator. The scrum master
is responsible for arranging all meetings, keeping them focused, and time boxed.
The scrum master does not tell people how to do their jobs. Instead, for each
activity, he or she highlights its purpose and its rules of order.

The scrum master also takes responsibility for removing any external im-
pediments for the team.

3.4.2 Scrum Events

Scrum defines five kinds of time-boxed events: sprints, sprint planning, daily
scrums, sprint reviews, and sprint retrospectives.

Sprints

Sprints last one month or less. The purpose of a sprint is to add an increment
of functionality to a working system. By working system is meant that the
system is in a state where it could potentially be released to stakeholders.

During a sprint, there are no changes to the functionality to be delivered by
the sprint (the sprint goal). Developers may clarify or renegotiate the sprint
goal, but the intent is to have short sprints with fixed goals.

3.4. THE SCRUM FRAMEWORK 41

Sprint Planning

Sprints begin with a planning meeting that lasts 8 hours or less for a one-month
sprint. The purpose of sprint planning is to select items to be implemented
during the sprint. The items, selected from the product backlog, constitute the
sprint backlog.

The selection of items for the sprint backlog is guided by two things: (1) the
product owner’s description of customer priorities and (2) the development
team’s forecasts of what they can implement during the sprint. They are free
to choose the implementation; however, they must be able to articulate how
they intend to implement the sprint backlog.

Daily Scrum

The name Scrum comes from the sport of rugby, where a scrum is called to
regroup and restart play.

During a sprint, a daily scrum is a short 15-minute meeting to keep the
project on track. The purpose of a daily scrum is to regroup and restart the
sprint. Daily scrums are led by the scrum master who ensures that the devel-
opers stay focused on addressing the following three questions:

• What did I do yesterday toward the sprint’s goal?

• What will I do today?

• Are there any impediments to progress?

These questions keep the whole development team informed about the current
status and work that remains to be done in the sprint.

The 15-minute time limit works for small teams. The process can be scaled
to larger teams by grouping the the teams into smaller subteams responsible
for subsystems. The daily scrum for the larger team is then a scrum of scrums,
with representatives from the subteams. The representatives are typically the
scrum masters of the subteams.

Sprint Review

A sprint review is an at most 4-hour meeting at the end of a one-month sprint.
The purpose of the review is to close the current sprint and prepare for the
next. The review includes stakeholders and the whole scrum team.

Closing the current sprint includes a discussion of what was accomplished,
what went well, and what did not go well during the sprint. The development
team describes the implemented increment and possibly gives a demo of the
new functionality.

Preparing for the next sprint is like starting a new project, building on the
current working software. The product owner updates the product backlog
based on the current understanding of customer needs, schedule, budget, and

42 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

progress by the development team. The group revisits the priorities for the
project and explores what to do next.

A sprint review sets the stage for the planning meeting for the next sprint.

Sprint Retrospective

A sprint retrospective is an at most 3-hour meeting for a one-month sprint. In
the spirit of continuous improvement, the purpose of the retrospective is for the
scrum team to reflect on the current sprint and identify improvements that can
be put in place for the next sprint. The improvements may relate to the system
under development, the tools used by the team, the workings of the team within
the rules of Scrum, or the interactions between the team members.

3.4.3 Scrum Artifacts

Scrum deals with three kinds of artifacts: the product backlog, the sprint back-
log, and the increment. The artifacts are visible to all team members to ensure
that everyone has access to all available information.

Product Backlog

The product backlog is a prioritized list of items that evolves as the project
proceeds. At any time, the product backlog reflects the current understanding
of the scope and quality attributes of the product, based on stakeholder needs,
market conditions, and the functionality that has already been implemented.

Sprint Backlog

The sprint backlog is created during sprint planning. It includes items from the
product backlog that the team can implement during the current sprint. The
items are selected to maximize the value provided by the current increment.
The sprint backlog remains fixed for the duration of the sprint. Any changes
due to changing requirements are incorporated in the next sprint.

Increment

The increment is the functionality that will be added during the current sprint.
If we think of the product as a sequence of increasingly functional releases, the
increment is the di↵erence between the previous and the current release.

3.5 XP: No Longer Extreme

Extreme Programming (XP) may have seemed extreme when Kent Beck intro-
duced it around 1996, but its basic premise has long since become mainstream:

3.5. XP: NO LONGER EXTREME 43

Figure 3.6: Software development using XP.

“an always-deployable system to which features, chosen by the cus-
tomer, are added and automatically tested on a fixed heartbeat.”

Beck positioned it as being “about social change” and a “philosophy of software
development.”14

This section provides brief overviews of the key practices of XP. The outer
loop in Fig. 3.6 illustrates how the practices fit together during an iteration.
Starting at the top, an iteration proceeds as follows: review customer needs
and identify what to build; define tests before coding; write just enough code
and integrate it into a working system; and then clean up the design and code
so that it is ready for the next iteration.

This section is organized around the four values in the Agile Manifesto: cus-
tomer collaboration; responding to change; working software; and individuals
and interactions.

3.5.1 Customer Collaboration: User Stories

At the start of a project and after each iteration, the development team engages
users and other stakeholders to review their needs and wants. This engagement
results in a set of stories that embody the project’s goals and requirements.
Such stories have three aspects:

• User Stories. A user story is a brief description of a feature or a piece of
functionality that a stakeholder wants in a system.

• Acceptance Tests. Each user story is accompanied by one or more accep-
tance tests to validate the implementation of the story.

• Estimates. A rough estimate of the development e↵ort for a user story is
essential for cost-benefit tradeo↵s across stories.

A software system of any size may have dozens or perhaps hundreds of user
stories. Stories are written in simple language and are expected to be short

44 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Figure 3.7: A rendering of a user story template created by Connextra in 2001.

enough to fit on an index card. Their purpose is to stimulate and facilitate
conversations about the features they represent. A story is meant to identify
a customer need, not to capture the details of the need. These properties
of user stories are highlighted by the acronym 3C, for Card, Conversation,
and Confirmation: fit on a card; spark a conversation; confirm understanding
through an executable acceptance test.15

A template for writing user stories appears in Fig. 3.7.16 The three main
elements of the template are (1) the role or stakeholder who wants the story to
work; (2) the feature or functionality to be implemented; and (3) the business
value of the feature to the stakeholder.

XP was motivated by a payroll system for Chrysler, so here is a payroll
example:

As a payroll manager
I want to print a simple paycheck
so that the company can pay an employee

Stories get clarified and sharpened during conversations between stakehold-
ers and developers.

See Section 3.6 for further discussion of user stories.

3.5.2 Responding to Change: Iteration Planning

The collaboration between stakeholders and developers extends beyond review-
ing needs and revising the backlog of user stories to be implemented. The
collaboration includes prioritizing the backlog and planning what gets imple-
mented in the next iteration.

Agile iterations are time boxed, which means that the time interval of an
iteration is fixed. A time box constrains what the development team can ac-
complish during an iteration. Any functionality that does fit into a time-boxed
iteration is either dropped or added to the backlog of functionality to be ad-
dressed during a future iteration.

3.5. XP: NO LONGER EXTREME 45

Prioritization of stories for an iteration is done by the stakeholder or the
customer representative. Prioritization is based on a rough cost-benefit analysis,
where the cost is the developers’ estimate of the implementation e↵ort needed
for a story and the benefit is the value of the story to the stakeholder.

A team’s velocity is the sum of the estimates of the stories that a team can
implement during an iteration. Velocity determines how many of the highest
priority stories are selected for the current iteration. Velocity can also be used
to revise estimates as a project proceeds.

Planning of iterations and projects is discussed in Section 3.6.

3.5.3 Working Software: The Role of Testing

With agile processes, the ideal is to have simple working software all the time,
not just at the end of an iteration. Three forms of testing play an essential role
in maintaining a state of clean working software: automated tests; continuous
integration; and test-driven development.

Automated Regression Testing

. With any change to a system, there is a risk that the change will break
something that was working. The risk of breakage can be significantly reduced
by ensuring that the system continues to pass all tests that used to work. This
process of running all tests is called regression testing.

The burden of regression testing can be significantly reduced by automating
it. Automated regression testing provides a safety net while developers are
making changes. The more complete the regression tests, the greater the safety
net provided by automated tests.

Continuous Integration

. The goal of working software applies to the overall system, not just to the
components. Continuous integration means that overall system integration is
done several times a day. Integration every couple of hours is more frequent than
the daily builds that were cited as an enabling practice for iterative processes
in Section 3.2.

System integration includes a complete set of system tests. If a change
causes system tests to fail, then the change is rolled back and reassessed. The
complete set of tests must pass before proceeding.

Test-Driven Development

With test-driven development, each new feature, each new piece of functionality,
begins with a test of what the feature should do. The test should fail, since
the code has not yet been written. Furthermore, the test should fail for the
expected reason. If, however, the test passes, then either the feature already
exists, or the test is inadequate.

46 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

In addition to acceptance tests, developers may write tests that are relevant
to the proposed implementation.

Once the tests are written, the idea is to write just enough code so the
software passes all tests. Regression testing acts as a safety net during test-
driven development, since it runs all tests to verify that the new code did not
break some existing feature.

3.5.4 Working Software: Refactoring

Refactoring consists of a sequence of correctness-preserving changes to clean
up the code. Correctness-preserving means that the external behavior of the
system stays the same. Each change is typically small. After each change, all
tests are run to verify the external behavior of the system.

Without refactoring, the design and code of the system can drift with the
accumulation of incremental changes. The drift can result in a system that is
hard to change, which undermines the goal of working software.

3.5.5 Individuals and Interactions

As Kent Beck himself noted, “The individual practices in XP are not by any
means new.” What distinguishes XP is its social aspect, its emphasis on com-
munity and values and trust and teamwork. In Beck’s words, XP includes a
“philosophy of software development based on the values of communication,
feedback, simplicity, courage and respect.”17

The philosophy of XP is beyond the scope of this section. For now, we
concentrate on one of the social aspects of XP that has been perhaps the most
controversial: pair programming.

Pair programming is the practice of two developers working together on one
task, typically at the same machine. The claimed benefit of pair programming
is that it produces better software more e↵ectively. Two people can share ideas,
discuss design alternatives, review each others’ work, and keep each other on
task. As a side benefit, two people know the code, which helps spread knowledge
within the team. So, if one person leaves or is not available, there is likely
someone else on the team who knows the code.

One of the concerns with pair programming is that having two people work-
ing on the same task could potentially double the cost of development. An early
study with undergraduate students concluded that pair programming added
15% to the cost, not 100%. Further, the 15% added cost was balanced by 15%
fewer defects in the code produced by a pair.18

A decade later the controversy remained:

“We are no longer in the first flush of pair programming, yet the
gulf between enthusiasts and critics seems as wide as ever.”19

3.6. USER STORIES 47

3.6 User Stories

The output of the framing or problem-definition step is a set of requirements for
a solution. With agile processes, requirements are embodied in user stories and
acceptance tests. Other forms of requirements include scenarios (Section 4.4)
and use cases (Chapter 5).

A user story is a brief descriptions of a feature or a piece of functionality.
The following template for writing user stories was introduced in Section 3.5:

As a hrole or stakeholderi
I want to hdo some taski
so that hI can achieve a benefiti

This template identifies not only a want or a need for a feature, it also captures
the benefit or business value of the feature for some stakeholder.

3.6.1 SMART User Stories

Stories benefit both users and developers. They need to be written collabora-
tively so users can relate to them and developers can act on them. The first
attempt to write a user story may not meet both these objectives.

Example 3.4 : Here is a first draft of a user story for a payroll example:

As a payroll manager
I want to print a simple paycheck
so that the company can pay an employee

In this story, what does “simple paycheck” mean? Paychecks can be very
complicated, between various forms of compensation and various deductions for
taxes, savings, medical insurance, ...

The following refinement of the payroll story is specific about compensation
and taxes:

As a payroll manager

I want to print a paycheck that accounts
for monthly wages and federal taxes

so that the company can
pay an employee and withhold federal taxes

While this story can be refined further, it may specific enough to facilitate
meaningful conversations between customers and developers. 2

Good user stories are SMART: Specific, Measurable, Achievable, Relevant,
and Time-bound.

• A story is specific if a developer can implement it.

• It is measurable if acceptance tests can be defined for it.

48 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

• It is achievable if the development team knows how to implement it.

• It is relevant if the feature in the story contributes to the goal in the story,
and the goal provides business value for the stakeholder.

• It is time bound if it can be implemented in one iteration.

If one of these criteria is not met, then the story needs to be refined until it is
SMART. For more on SMART criteria, see Section 7.1.2.

3.6.2 Clarifying the Benefit

The template for user stories contains both a feature (the want) and the benefit
that drives the want.

Clear benefits help to keep a project on track. If the feature in a user
story does not contribute to the stated benefit, then either the feature is not
relevant, or there may be an unstated goal that needs to be clarified. Features
that are not relevant can be dropped and unstated goals can be made explicit.
A mismatch between features and benefits may be a sign that there are missing
stories.

Clear benefits can also help avoid gold plating, which refers to continuing to
work on a project beyond the point of meeting all the stakeholder needs.

When clarifying benefits, ask “Why?” Why does a stakeholder want a fea-
ture? “Why” questions tend to elicit cause and relevance, as we shall see in
Chapter 7. Respectfully continuing to ask “Why?” questions can surface an
underlying need that has higher priority for the user than the starting point.
The “Why” questions may be posed explicitly or they may be something to
keep in mind as you observe or interact with a stakeholder.

3.6.3 Acceptance Tests

User stories are accompanied by acceptance tests for verifying that a story
has been implemented correctly. Acceptance tests are part of the conversation
about stories between customers and developers.

The following template has been found useful for writing acceptance tests:20

Given ha preconditioni
when han event occursi
then hensure some outcomei

The payroll user story might be accompanied by a test of the form:

Given an employee is on the payroll and is single
when the paycheck is printed
then use the federal tax tables for singles to compute the tax

Acceptance tests are written using language that is meaningful to stakehold-
ers. At the same time, the wording needs to be specific enough for a developer
to implement the test. Acceptance tests focus on what the outcome is, not

3.6. USER STORIES 49

Figure 3.8: Prioritizing nice-to-have user stories.

on how the outcome is implemented. For example, when the payroll story is
implemented, it is up to the developer to decide how to access the tax tables
and compute the tax. It is best not to build the tax tables into the story or
into an acceptance scenario, since tax tables change from year to year.

3.6.4 Prioritizing User Stories

With an iterative process, customers (or their representatives) participate in
iteration planning. Customers decide on the value and priority of a story,
balancing benefit and cost. Developers provide feedback in the form of the
estimated cost or e↵ort needed to implement a story. The highest priority
stories are selected for implementation during the next iteration.

Fortunately, rough estimates su�ce for assigning high, medium, or low pri-
ority to stories. Some stories are “must haves;” for example, security-related or
performance related items may be required, even if stakeholders do not specif-
ically ask for them.

The remaining items can be prioritized, as in Fig. 3.8: high priority for
high-value low-e↵ort items; medium priority for high-value high-e↵ort items;
low priority for low-value high-e↵ort items; leaving low-value low-priority items
to be dropped or retained at the discretion of the customer.

3.6.5 Rough Estimates: Agile Story Points

Quick estimates can be made by assigning points to a user story, where a point
is a unit of work. Points are relative: a 1 point story is simpler than a 2 point
story, and so on. Point-based estimation techniques rely on the judgment of
developers. Based on their experience and intuition, the developers agree on
how to assign points to a story. Point systems are specific to a team; a di↵erent
team might assign points di↵erently.

50 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Point Values 1, 2, 3

The simplest point system is a system with point values 1, 2, and 3, corre-
sponding to easy, medium, and hard. For example, the developers might assign
points as follows:

• 1 point for a story that the team knows how to do and could do quickly
(where the team defines quickly).

• 2 points for a story that the team knows how to do, but the implementa-
tion of the story would take some work.

• 3 points for a story that the team would need to figure out how to imple-
ment.

Hard or 3-point stories are candidates for splitting into simpler stories.

Fibonacci Story Points

With experience, as the team gets better at assigning points to stories, they can
go beyond an easy-medium-hard or three-value scale. A Fibonacci scale uses
the point values 1, 2, 3, 5, 8, ... The reason for a Fibonacci, rather than a linear
1, 2, 3, 4, 5, ... scale is that points are rough estimates and it is easier to assign
points if there are some gaps in the scale.

Velocity

With any point scale, a team’s velocity is the number of points of work it can
complete in an iteration.

Example 3.5 : In Fig. 3.9, the team’s estimated velocity was 17, but it only
completed 12 points worth of stories in an iteration. For the next iteration, the
team can adjust its estimated velocity based on its actual velocity from recent
iterations. One possible approach is to use the average velocity for the past
few, say 3, iterations. 2

3.6.6 Limitations of User Stories

Big Picture?

As the number of stories increases, it is easy to lose sight of the “big picture” of
a system, which can be helpful during system design. User stories are detailed;
they are at the level of individual features. Use cases, considered in Chapter 5,
do provide context. As we shall see, user stories and use cases can be used
together.

3.7. WHEN TO DESIGN? 51

Figure 3.9: Estimated and actual velocity for an iteration. The team planned
17 points worth of work, but completed only 12 points worth.

Completeness?

Completeness is another issue with user stories: there is no guarantee that a
collection of user stories describes all aspects of a system.

Customers may have left out something they that take for granted, some-
thing that “everybody knows” in their environment. Furthermore, non-functional
requirements, such as performance and privacy, may not have been discussed
in the conversation between customers and developers.

Deeper Needs?

Conversations, interviews, and surveys are well suited to identifying expressed
needs. The “I want to” phrasing in the user story template is also suited to
expressed needs.

A skilled development team may uncover additional needs through observa-
tions and empathy; however, observations and empathy are not an explicit part
of the user story template. Scenarios, discussed in Sec 4.4, do include a primary
customer’s feelings and emotional state. Without emotions and intuition, latent
needs are likely to remain latent.

3.7 When to Design?

The promise of iterative and agile processes is that they can accommodate
requirements changes while a software project is underway. For the promise to
be realized, the design and architecture must evolve as the system grows. The
following are two approaches to evolving or maintaining a design:

52 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

• Flexible Design. Start with a design that is flexible enough to handle later
changes without major rework.

• Incremental Design. Start with a minimal plausible design, add to it as
needed, and refactor at the end of each iteration to incrementally clean
up the design.

Both approaches involve some up-front design. The di↵erence between them
is in their point of view. Flexible design invests in anticipation of a later need.
Incremental design defers investment until there is a need. The balance between
up-front flexible design and just-in-time incremental design depends on the goals
and risks of the project.

Flexible Design

Flexible design was identified as a success factor in a study of 29 iterative
projects; see Section 3.3. Major initial investments in software design and
architecture correlated with higher quality. All of the projects used iterative
processes with short iterations to cope with uncertain and dynamically changing
requirements. Their short iterations were comparable to those of agile processes.

Flexibility comes at a cost. The challenge with flexible design is that of over-
investment; some of the investment may turn out to have been unnecessary.

Incremental Design

The premise of the incremental design approach is that the overall cost can
be reduced by doing just-in-time design. Agile software teams have a slogan,
yagni, which comes from “you aren’t going to need it.”21 Yagni has come to
mean: don’t anticipate; don’t implement any functionality until you need it.

However, yagni does not mean no design up front. As Kent Beck notes,
“The question is not whether or not to design, the question is when to design.”
He recommends deferring until the last “responsible” moment.22

Automated regression testing and refactoring are essential to incremental
design. Regression testing ensures that the current design is safe, that the
features that used to work continue to work. Refactoring keeps the design
clean, which lowers the cost of making a change.

The argument in favor of incremental design is that for clean code, the cost-
of-change curve is relatively flat.22 The cost of change curve in Section 2.4
plots the cost of fixing a severe defect against the phase in which the defect
is discovered—the later the fix, the greater the cost. With disciplined use of
refactoring, the claim is that the curve does not rise as steeply, which means
that there is less of a penalty for changes as the project proceeds.

The challenge with incremental design is that of running into a dead end
that might have been avoided with some preplanning.

3.8. SPIRAL RISK-REDUCTION FRAMEWORK 53

Figure 3.10: Spiral Risk-Reduction Framework.

3.8 Spiral Risk-Reduction Framework

The spiral framework is an iterative approach to risk reduction during software
development.23 With each iteration, risk shrinks and the system grows. Itera-
tions are called cycles to distinguish them from iterations in iterative processes.

The framework takes its name from diagrams like Fig. 3.10, where cycles
are depicted by the loops of a spiral. The first cycle is at the center. The
widening cycles reflect the increasing levels of investment and commitment to
the project. The greater the risk, the more careful the investment. The level of
e↵ort and investment in a cycle is guided by the risk reduction planned during
the cycle. For example, a first-of-its-kind project might have a prototyping cycle
to investigate whether a proposed approach will work well. Better to invest a
little up front in prototyping than to launch a full implementation, only to have
it fail.

Each cycle corresponds to a pass through the numbered actions in the dia-
gram. (Although the actions are numbered, they are expected to be concurrent,
where possible.) The pass begins with identifying the next level of stakeholders
and proceeds clockwise all the way around to the commitment to proceed with
the next cycle.

The upper half of the diagram relates to the customer problem, the bottom
half to the evolving solution:

• Problem Defintion. Identify the stakeholders and their objectives. Rec-
oncile any conflicts and respect the constraints.

• Solution Progress. Resolve risks through benchmarking, modeling, and/or
prototyping. Build the next increment for the next level of risk-reduction.
Review with stakeholders and get a commitment to proceed.

The framework accommodates any methods or processes for carrying out

54 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

the actions listed in Fig. 3.10. In fact, the reason for calling it a “framework”
rather than a process model is that the framework has been adapted for use
with various process models. For example, risk resolution in Action 4 can be
through analysis, prototyping, or by building an increment to the system. In
Action 5, the process for the next level of system definition and development
can be di↵erent from the process used during the previous cycle.

For a simple project, some of the actions may be combined and the number
of cycles reduced. A small project may have just one cycle. For a complex
project, a more formal approach with more cycles might be helpful.

Example 3.6 : This example illustrates the flexibility of the spiral risk-reduction
framework. It deals with a very large contract for a system to control remotely-
piloted vehicles (drones). The contract had several risk-reduction cycles.

The challenge was to improve productivity by a factor of 8, from each drone
piloted remotely by 2 people to 4 drones controlled by one person.24 In other
words, improve eightfold from a 1:2 ratio to a 4:1 ratio of drones to pilots.

The project started with four competing teams in the first risk-reduction
cycle. Each team was awarded $5M (M is for million). With an additional $5M
for evaluation, the initial investment for the four teams was $25M. The review
at the end of the first cycle concluded that a 4:1 ratio was not realistic, but
that some improvement was possible.

Three competing teams remained in the second risk-reduction cycle. Each
was awarded $20M to build a scaled-down system. With an additional $15M
for evaluation, the incremental investment for the three teams was $75M. The
review at the end of the second cycle concluded that a ratio of 1:1 was possible.

For the final cycle, one team was selected to build a viable system that
achieved a ratio of 1:1, resulting in a twofold productivity improvement.

Each of the competing teams could choose its own process for a given cycle.
2

3.9 Conclusion

Iterative processes and agile processes share the following properties:

• Deep Customer Involvement. Get the insight, guidance, and commitment
of stakeholders early and often.

• Time-Boxed Iterations. Deliver working software frequently to get feed-
back and test hypotheses. Iteration intervals are now measured in weeks
or days rather than months.

• Working Software. During development, maintain the integrity of the
system. Test early and often. After each change, run all tests to have
confidence that the change did not break something.

EXERCISES FOR CHAPTER 3 55

Since projects vary, software development processes vary from project to
project. Consider for example the varying needs of systems for scientific com-
puting, online banking, video streaming, self-driving cars, ... Each such project
benefits from a process tailored to its needs.

If the actual process di↵ers from the intended process, then document the
decisions behind the actual process. The documentation will help the main-
tainers of the system.

Exercises for Chapter 3

Exercise 3.1 : For each of the following statements, answer whether it is True
or False.

a) Very few projects have been completed using waterfall processes.

b) With a waterfall process, testing comes very late in the process.

c) Plan-driven processes call for careful up-front planning, so there are fewer
errors.

d) A disadvantage of plan-driven processes is that they are ine�cient and
unsuccessful around constantly changing requirements.

e) With an iterative process, each delivery builds on the last.

f) Agile processes began with the Agile Manifesto.

g) With agile processes, project timelines can be hard to predict.

h) Agile processes are great for when you are not sure of the target of a
project.

i) Pair programming doubles the cost of a project.

j) Sprint planning is essentially the same as iteration planning.

Exercise 3.2 : A usage survey identified the following as the top five Agile tech-
niques (percentages refer to the organizations that practiced the technique):25

a) Daily Standup 83%

b) Prioritized Backlogs 82%

c) Short Iterations 79%

d) Retrospectives 74%

e) Iteration Planning 69%

For each technique, describe

• the purpose or role of the technique.

• how the technique is practiced.

56 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Exercise 3.3 : Describe how you would do iterative development of Moo, a
century-old game. When the game begins, the program thinks of a secret
number made up of 4 di↵erent random digits, say 4271. The program then
invites the player to make guesses about the secret number. With each guess,
the program provides feedback about the goodness of the guess. Two of the
digits in the guess 1234 appear in the secret 4271: the digit 2 is in the secret
and is in the right position; the digits 1 and 4 are in the secret, but either one
is in the wrong position.

Call a right digit in the right position a bull and a right digit in the wrong
position a cow. With secret 4271, the game might proceed as follows:

Moo: Decipher the secret number

guess: 1234

1 bull, 2 cows

guess: 5678

1 bull, 0 cows

...

Use more than one iteration. Be explicit about the deliverables at the end of
each iteration.

Exercise 3.4 : Your client is a nation-wide insurance company that prides itself
on its customer responsiveness. Each customer has a designated insurance agent
who is familiar with the customer’s needs and preferences.

The client has engaged you to create an application that routes customer
phone calls and messages to their designated agent. But, there may be times
when the designated agent is not in the o�ce or is busy with someone else If
a customer needs to speak to someone—say, to report an accident—then, as a
backup, the automated application o↵ers to connect them with another agent
at the local branch (preferred) or at the regional support center, which is sta↵ed
24 hours a day, 7 days a week. The regional support center is equipped to take
customer calls, since along with any call, the application provides the answering
agent with the customer’s name and insurance coverage information. At any
choice point, customers can choose to leave a message or request a call-back.

a) Putting yourself in the client’s shoes, write 5 user stories based on the
above description—let these be the 5 user stories that you believe are
the highest priority, where priority is based on your perceived business
value for the client. Make your stories SMART, where SMART stands for
Specific, Measurable, Achievable, Relevant, and Time-bound.

b) For each user story, write Acceptance scenarios, using the Acceptance
Criteria Template. Note that you may need more than one acceptance
test to adequately cover a user story.

EXERCISES FOR CHAPTER 3 57

Notes for Chapter 3
1In the second edition of Extreme Programming Explained [2, chapter 7] , Kent Beck

notes that some of the teams misinterpreted the first edition as recommending deferring
design until the last moment—they created brittle poorly designed systems. He recommends
deferring until the last “responsible” moment. The quote is from the same chapter.

2The Annual State of Agile Report contains usage data about agile practices. [19].
3Larman and Basili [13] trace the history of iterative processes.
4McIlroy, Pinson and Tague [16] describe the Unix program development process in a

foreword to a special issue of the Bell System Technical Journal on Unix.
5Agile Manifesto: c�2001 by Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cock-

burn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Je↵ries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Je↵
Sutherland, Dave Thomas. The Agile Manifesto may be freely copied in any form, but only
in its entirety through this notice. http://agilemanifesto.org/ .

6The Agile Manifesto is accompanied by historical notes that touch on the “deeper theme”
of trust and respect and organizational models that value people. [10].

7The Tidal Wave reference is from the title of an internal Microsoft memo by Gates [9].
The sleeping giant allusion is from Bill Gates’s opening comments at Microsoft’s December
1995 analysts conference [7, p. 109]

8Bill Turpin: “The original way we came up with the product ideas was that Marc An-
dreeson was sort of our product marketing guy. He went out and met with lots of customers.
He would meet with analysts. He would see what other new companies were doing.” [7, p.
251]

9Iansiti and MacCormack [11] note that companies in a wide range of industries “from
computer workstations to banking” had adopted iterative product development to deal with
uncertain and dynamic requirements.

10The discussion of the Space Shuttle software in Section 3.2 is based on the account by
Madden and Rone [15].

11For the risks faced by the Netscape Communicator 4.0 project, see the remarks by Rick
Schell, senior engineering executive [7, p. 187].

12MacCormack [14].
13“Ken Schwaber and Je↵ Sutherland first co-presented Scrum at the OOPSLA conference

in 1995. This presentation essentially documented the learning that Ken and Je↵ gained over
the previous few years applying Scrum.” [18, 17].

14Beck and Andres [2] open with, “Extreme Programming (XP) is about social change.”
The basic premise of XP is from [2, ch. 17].

15The 3C acronym for Card, Conversation, Confirmation is due to Ron Je↵ries [12].
16The user story template is attributed to Connextra, a London startup; see

http://agilecoach.typepad.com/photos/connextra user story 2001/connextrastorycard.html
17Beck [1] briefly describes the roots of XP and provides references. The quote about XP

including a philosophy is from Beck and Andres [2, ch.1].
18Cockburn and Williams [6]
19Wray [20] reviews work on pair programming in a position paper prompted by his own

experience with pair programming.
20Dan North [10] writes, “[Starting with user stories, Chris] Matts and I set about dis-

covering what every agile tester already knows: A story’s behaviour is simply its acceptance
criteria So we created a template to capture a story’s acceptance criteria. ... We started
describing the acceptance criteria in terms of scenarios, which took the ‘Given-when-then’
form.”

21Martin Fowler [8] attributes the acronym yagni to a conversation between Kent Beck and
Chet Hendrickson, in which Hendrickson proposed a series of features to each of which Beck
replied, “you aren’t going to need it.”

22In the second edition of Extreme Programming Explained [2, chapter 7].
23Barry Boehm introduced the spiral framework in the the 1980s [3]. The treatment in

Section 3.8 follows [4]. The framework is not a process model: ,Boehm [4] desribes it as a

58 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

“risk-driven process model generator.”
24Example 3.6 is based on Boehm [5], who compares Total (up-front) and Incremental

(spiral) commitment of funds. The Incremental approach in Example 3.6 achieved twofold
improvement in 42 months for an overall investment of $1B (B for billion). The winning
bidder of a Total commitment project promised eightfold improvement in 40 months for $1B,
but delivered only twofold improvement in 80 months for $3B.

252015 State of Agile Report [19].

References for Chapter 3

1. Kent Beck. Embracing change with Extreme Programming. IEEE Computer (October
1999) 70-77

2. Kent Beck, with Cynthia Andres. Extreme Programming Explained: Embrace Change,
2nd Ed. Addison-Wesley, Reading, Mass. (2005).

3. Barry W. Boehm. A spiral model of software development and enhancement. Com-
puter 21, 5 (May 1988) 61-72,

4. Barry W. Boehm. Spiral Development: Experience, Principles, and Refinements.
Software Engineering Institute Report CMU/SEI-2000-SR-008 (July 2000).

5. Barry W. Boehm. The Incremental Commitment Spiral Model (ICSM): principles and
practices for succesful software systems. ACM Webinar (December 17, 2013).

6. Alistair Cockburn and Laurie Williams. The costs and benefits of pair programming.
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF .

7. Michael A. Cusumano and David B. Yo�e. Competing on Internet Time. The Free
Press, New York (1998).

8. Martin Fowler. Yagni. (May 26, 2015)
https://martinfowler.com/bliki/Yagni.html .

9. William H. Gates, III. The Internet Tidal Wave. Internal Microsoft memo. (May 26,
1995). http://www.justice.gov/atr/cases/exhibits/20.pdf .

10. John Highsmith, for the Agile Alliance. History: The Agile Manifesto.
http://agilemanifesto.org/history.html .

11. Marco Iansiti and Alan D. MacCormack. Developing products on Internet time. Har-
vard Business Review (September-October 1997).

12. Ron Je↵ries. Essential XP: Card, Conversation, Confirmation. (August 30, 2001)
http://ronjeffries.com/xprog/articles/expcardconversationconfirmation/ .

13. Craig Larman and Victor R. Basili. Iterative and incremental development: A brief
history. IEEE Computer 36, 6 (June 2003) 47-56.

14. Alan D. MacCormack. Product-development processes that work: How Internet com-
panies build software. Sloan Management Review 42, 2 (Winter 2001) 75-84.

15. William A. Madden and Kyle Y. Rone. Design, development, integration: Space
Shuttle primary flight software system. Comm. ACM 27, 9 (1984) 914-925.

16. M. D. McIlroy, E. N. Pinson, and B. A. Tague. Foreword: Unix time-sharing system.
Bell System Technical Journal 57, 6 (July-August 1978) 1899-1904.

17. Ken Schwaber. Scrum development process. OOPSLA ’95 Proceedings (1995) 117-134.
In Business Object Design and Implementation, Je↵ Sutherland et al. (eds) Springer
Verlag (1997).

18. Je↵ Sutherland and Ken Schwaber. The Scrum Guide.
http://www.scrumguides.org/ .

REFERENCES FOR CHAPTER 3 59

19. VersionOne. 10th Annual State of Agile Report. (2015)
http://stateofagile.versionone.com/ .

20. Stuart Wray. How pair programming really works. IEEE Software (January-February
2010) 51-55. See also: Responses to “How pair programming really works.” IEEE
Software (March-April 2010) 8-9.

60 CHAPTER 3. ITERATIVE AND AGILE PROCESSES

Chapter 4

Working with Customers

“The hardest single part of building a software system is deciding precisely
what to build. ... the most important function that software builders do
for their clients is the iterative extraction and refinement of the product
requirements. For the truth is clients do not know what they want.”

— Fred Brooks, in a 1986 essay on the inherent versus the

incidental impediments to progress in software production.

1

Faced with a string of product failures in the late 1990s, Scott Cook, the founder
of Intuit

“reembraced a [Proctor & Gamble] fundamental—that new prod-
ucts should be based on actual customer behaviors, not on what
customers said they wanted to do. ... Cook resolved that for future
new product development, Intuit should rely on customer actions,
not words.”2

Identifying what customers need and want is one of the inherent challenges
in software development. This chapter contains techniques for interacting with
customers to identify and prioritize needs. The iterative process in Section 4.1
provides a context for discussing customer interactions. Customers are people,
and people have levels of needs, as we shall see in Section 4.2. Some needs
are conscious, easy to talk about; some are subconscious; some needs they may
not even be aware of. The discussion of customer satisfiers and dissatisfiers in
Section 4.3 is helpful for clarifying what customers find attractive and what
they take for granted. Like user stories (Section 3.6), scenarios (Section 4.4)
are a mechanism for recording customer requirements. What distinguishes sce-
narios is that they include not only customer needs and frustrations, but also
a customer’s emotional state.

61

62 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.1: Great products address needs, wants, and ease of use.

Great Products: Useful, Usable, Desirable

Great products and systems have all of the following properties (see Fig. 4.1):3

• Useful. They serve a need and will be used.

• Usable. They are easy to use and can either be used immediately or can
be readily learned.

• Desirable. Customers want them!

These properties are independent of each other. A system can be useful and
desirable, but not usable; e.g., publishing software that produces great-looking
books, but crashes often. Another example is a system with a complex interface
that is hard to use.

A system can be usable and desirable, but not useful; e.g., fashionable apps
that are dowloaded, but rarely used.

A system can be useful and usable, but not desirable; e.g., an application
that gets treated as a commodity or is not purchased at all. Section 4.3 explores
“must-have” features that are taken for granted if they are implemented, but
cause dissatisfaction if they do not live up to expectations.

Terminology: Requirements and Specifications

For clarity, let the term requirement denote a constraint that must be met, and
let specification denote a complete, precise, verifiable description of a solution
or of some aspect of a solution.

We use the term requirement by itself as an abbreviation for a “customer
requirement” that must be met to solve a customer problem or to achieve a
customer objective. We use the term specification by itself as an abbreviation
for “solution or product specification.”

Traditionally, requirements reflect the development team’s understanding of
customer needs and wants. Requirements define what a system must do and
what it must not do. The term is also used to denote constraints in other

4.1. A CONTEXT FOR CUSTOMER INTERACTIONS 63

contexts; e.g., functional requirements, performance requirements, interface re-
quirements, ...

Functional requirements relate to the job to be done. If the system can be
described in terms of inputs and outputs, its functional requirements define the
mapping from inputs to outputs. Similarly, if the system can be described in
terms of stimuli and responses, its functional requirements define the stimulus-
response behavior of the system.

Non-functional requirements relate to how well the job is done. Properties
of the system such as performance, scale, and reliability are covered by non-
functional requirements. Non-functional requirements are also known as quality
requirements.

In practice, the usage of the term requirements blurs into the use of specifica-
tions. For example, IEEE Standard 830-1984 is a guide for writing a “software
requirements specification,” or “SRS.” For completeness, a brief overview of the
standard appears in Section 4.5.

4.1 A Context for Customer Interactions

4.1.1 Iterative Customer Feedback

Software companies recognize the need to listen to, observe, and empathize
with customers. Intuit’s three-step product design process is called Design for
Delight:4

1. Develop deep empathy with customers through understanding what really
matters to them and what frustrates them.

2. O↵er a broad range of options before settling on a choice.

3. Use working prototypes and rapid iterations to get customer feedback.

The iterative process in Fig. 4.2 is similar. It is adapted from Scenario-
Focused Engineering, which has been used within Microsoft.5 The boxes in
the diagram represent activities and the arrows represent outputs from the
activities. (An overview of this process appears in Section ??.)

An iteration begins at the top left: work with customers to identify their
needs and potential opportunities for addressing unmet needs.

Moving right, the next step is to frame or define a problem by sifting through
the opportunities. For the distinction between identifying needs and framing
the problem, consider the following example:

Customer Need: Listen to music

Problem Definition 1: O↵er songs for purchase and download
Problem Definition 2: O↵er a free streaming service with ads
Problem Definition 3: O↵er paid subscriptions without ads

In general, there are multiple ways of addressing a customer need.

64 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.2: Iterative process for identifying and addressing customer needs.
This figure repeats Fig. 2.3.

The lower half of the diagram represents activities internal to the devel-
opment team: brainstorm possible solutions and then build prototypes to get
customer feedback. As the iterations continue, the prototypes are refined into
a deliverable product.

The quadrants in Fig. 4.3 elaborate on the steps in Fig. 4.2. The upper half
of the figure focuses on the problem to be solved and the bottom half focuses on
the solution. During needs identification and problem definition (the steps in
the upper half), it is important to have implementation-free discussions, using
language that customers can relate to.

4.1.2 Example: Personal Audio Player

The iterative process in Fig. 4.2 and 4.3 can be used for any product, not just
for software. The following example illustrates the development process for the
Sony Walkman personal audio player; see Fig. 4.4.

Example 4.1 : Introduced in 1979, the Sony Walkman was the first personal
audio player. MP3 players and iPods followed in its footsteps.

Identify Customer Needs. Masaru Ibuka, co-founder of Sony, liked to listen
to operas on long trans-Pacific flights. Sony had a high quality audio tape
cassette device, but it was large and expensive. Ibuka wanted a smaller lighter
device for his personal use.6

Define the Problem. The problem was to build a lightweight reliable personal
player with high quality stereo audio. The requirement for high quality stereo
audio follows from the need to listen to operas. Reliability was added as a
requirement by the product team.

Explore Possible Solutions. At the time, audio-cassette devices were mono
and had both record and playback functions; audio output was through a

4.1. A CONTEXT FOR CUSTOMER INTERACTIONS 65

Figure 4.3: Iterative process for identifying and addressing customer needs.

speaker. Given the customer need for music on flights, the team focused on
a stereo playback-only device. Dropping the ability to record saved weight, as
did dropping the speaker and supporting only a headset. (Dropping the abil-
ity to record was controversial. In fact, when the Walkman was introduced,
the press lampooned the inability to record. Retailers did not want to carry a
playback-only device.)

Build in Increments. The initial prototype was created quickly by adapting
an expensive product called Pressman, which was marketed only to the press.
The final product was a sub-$200 device that went on to sell over 300 million
units. 2

4.1.3 Delight the Primary Customer

While the needs of all stakeholders must be considered, it helps to concentrate
on a primary customer set, for two reasons.

First, a solution that delights the primary customers has the potential for
benefiting secondary customers as well. For example, when telephone linesman
jobs opened up to women in the late 1960s, the tools and procedures were
redesigned with women as the primary “customers.” The jobs were strenuous:
linesmen used to climb telephone poles, carrying heavy tools. The redesign
was an opportunity to rethink the tools and procedures. With the redesign,
everybody benefited, women and men. Productivity went up.

Second, a primary customer or user provides a focus for the members of

66 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.4: Development of the Sony Walkman.

the development team. The developers can visualize the user, hear their voice,
and empathize with them. Otherwise, each developer may potentially have a
di↵erent mental image of the users of the system.

4.2 Levels of Needs

4.2.1 A Model of Customer Needs

Words and actions correspond to the top two levels in the model of customer
needs in Fig. 4.5:7

• Expressed Needs relate to what people say and think. They are what
people want us to hear. Listening accesses expressed needs.

• Observable Needs are needs that are displayed or can be inferred from
actions and behaviors. They relate to what people do and use. Direct
observations and usage data access observable needs.

• Tacit Needs are conscious needs that stakeholders cannot readily articu-
late. They relate to what people feel and know. Empathy and trading
places—walking in someone else’s shoes—are needed to access tacit needs.

• Latent Needs are needs that are not conscious or are not recognized. Em-
pathy and intuition can help in making hypotheses about customers’ la-
tent needs.

4.2.2 Accessing Expressed and Observable Needs

Interviews and surveys are techniques for accessing expressed needs. They are
classified in the left column in Fig. 4.6. Interviews are qualitative; that is,
interview findings cannot be readily measured. Surveys, on the other hand, are
quantitative; responses can be measured.

4.2. LEVELS OF NEEDS 67

Figure 4.5: Levels of customer needs and corresponding modes of interaction
for accessing needs.

Observation of customer behavior and analysis of usage logs are techniques
for accessing observable needs; see the right column in Fig. 4.6. Observations
are qualitative; usage logs are quantitative.

The next example illustrates the use of these techniques.8

Example 4.2 : The intended users for Intuit’s QuickBooks app for the iPad
were one-person business owners who spent most of their time out of the o�ce,
serving their customers. The business owners wanted to manage all aspects of
their business while mobile. For example, they wanted to provide professional
estimates and invoices on the spot, at a customer site, rather than waiting until
they got back to the o�ce. Without the ability to manage their business while
mobile, work was piling up and they were spending evenings and weekends
catching up.

Using interviews and observations to understand user needs and goals, the
Intuit team came up with an initial list of requirements, which they evolved
based on user feedback. The requirements were captured as user stories.

Starting with an initial working prototype, the team used an agile process to
implement the stories. The app was instrumented to provide usage data. During
iteration planning, prioritization of stories was based on both observations and
analysis of usage data.

Careful observations guided the design of the user experience. As an exam-
ple, users held their tablets di↵erently while they were mobile and while they
were at home. On the go, they favored portrait mode, while at home they
favored landscape mode. Why? The task mix on the go was di↵erent from
the mix at home. At home, they dealt with more complex transactions and
landscape mode allowed them to display more data on a line. 2

Abstracting from Example 4.2, the needs that are identified in the early
stages of a project are likely to be expressed needs. As the development team

68 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.6: Classification of techniques for identifying expressed and observable
needs.

establishes rapport with stakeholders and as the stakeholders provide feedback
on prototypes, additional needs are likely to surface. In the example, it was
only after the app had been prototyped that the team gained the insight that
customers held their iPads di↵erently in the field and at home.

4.2.3 Listening with Understanding

Listening, really listening, is an essential skill when working with customers. In
a classic paper on the barriers to communication, Carl Rogers wrote,

“there is one main obstacle to communication: people’s tendency to
evaluate. Fortunately, I’ve also discovered that if people can learn
to listen with understanding, they can ... greatly improve their
communication with others.”9

Listening with understanding is easy to state; it takes practice to do well. It
involves not only understanding the content of what the other person is saying,
but sensing how they are feeling about the subject of the communication.

Active listening involves repeating back to the person what they have said in
a way that leaves them feeling that they have been heard. For example, when
a customer asks for a feature, instead of jumping in with a question or losing
the thread of the conversation, begin with something like

“What I heard you say is ...”

These need not be the exact words—it would make for an awkward conversation
if too many sentences began with, “What I heard you say is, ...” The objective
is to establish rapport before going on to a question or changing the direction
of the conversation.

Words and phrases carry nuances that are important to people. When taking
notes, capture the person’s words verbatim. Resist the urge to paraphrase or

4.3. CUSTOMER SATISFIERS AND DISSATISFIERS 69

reword. Marketers use the term Voice of the Customer for a customer need
expressed “in the customer’s own words, of the benefit to be fulfilled by the
product or service.”10

4.3 Customer Satisfiers and Dissatisfiers

What makes one product or feature desirable and another taken for granted
until it malfunctions? An analysis of satisfiers and dissatisfiers is helpful for
addressing such questions. Such analysis can unearth latent needs.

4.3.1 Background: Job Satisfiers and Dissatisfiers

In the late 1950s, Frederick Herzberg and his colleagues discovered that the
factors that lead to job satisfaction are di↵erent from the factors that lead to
job dissatisfaction.11

Job satisfaction is tied to the work, to what people do: “job content, achieve-
ment on a task, recognition for task achievement, the nature of the task, re-
sponsibility for a task and professional advancement.”

Job dissatisfaction is tied to “an entirely di↵erent set of factors.” It is
tied to the situation in which the work is done: supervision, interpersonal
relationships, working conditions, salary. Improving working conditions alone
reduces dissatisfaction, but it does not increase job satisfaction because the
nature of the work does not change. Similarly, improving the nature of the
work alone does not reduce job dissatisfaction, because working conditions and
salary do not change.

4.3.2 Kano Analysis

Noriaki Kano and his colleagues carried the distinction between job satisfiers
and dissatisfiers over to customer satisfiers and dissatisfiers.12 Kano analysis
assesses the significance of product features by considering the e↵ect on cus-
tomer satisfaction of (a) building a feature and (b) not building the feature.
Kano analysis has been applied to user stories and work items in software de-
velopment.13

Paired Questions

Kano et al. used questionnaires about product features that had paired positive
and negative questions of the form

• If the product has this feature ...

• If the product does not have this feature ...

For example, consider the following positive and negative forms of a question:

• If this product can be recycled ...

70 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.7: Classification of features.

• If this product cannot be recycled ...

With each form, positive, and negative, they o↵ered five options:

a) I’d like it

b) I’d expect it

c) I’m neutral

d) I can accept it

e) I’d dislike it

4.3.3 Classification of Features

The results from paired positive and negative questions can be classified using
the nine-box grid in Fig. 4.7. For simplicity, the classification is based on the
following three, instead of five, options:

a) I’d be satisfied

b) I’m neutral

c) I’d be dissatisfied

The rows in the nine-box grid correspond to the cases where a feature is built.
The columns are for the cases where the feature is not built.

Key Features

The top-right box in Fig. 4.7 is for cases where customers are satisfied if the
feature is built and would be dissatisfied if it is not built. These are key features

4.3. CUSTOMER SATISFIERS AND DISSATISFIERS 71

to build; the more the better, subject to the project’s schedule and budget
constraints. For example, with time-boxed iterations, a constraint would be
the number of features that the team can build in an iteration.

Reverse Features

The shaded box to the bottom left is for the case where customers would be
dissatisfied if the feature is built and satisfied if it is not built. The two adjacent
shaded boxes are also marked Reverse. Reverse features are detractors; the
fewer that are built the better.

Example 4.3 : Features that customers do not want are examples of reverse
features. Clippy, an “intelligent” Microsoft O�ce assistant would pop up when
least expected to cheerily ask something like, “I see that you’re writing a letter.
Would you like help?”

Clippy was so unpopular that an anti-Clippy web site got about 22 million
hits in a few months after the launch of the web site.14 2

Attractor Features

The box in the middle of the top row is for cases where customers would be
satisfied if the feature is built and neutral if it is not. This box represents
features that can di↵erentiate a product from its competition. Features that
address latent needs are likely to show up as attractors.

Example 4.4 : Around 2000, mobile phones with web and email access were a
novelty. Kano analysis in Japan revealed that young people, such as students,
were very enthusiastic about the inclusion of the new features, but were neutral
about their exclusion. Web and email access were therefore attractors.

Indeed, phones with web and email access rapidly gained market share. 2

Must-Have Features

The box in the middle of the right column is for cases where customers would
be neutral if the feature is built and dissatisfied if it is not built. Features
customers take for granted fit in this box. Performance, reliability, and quality
are typical attributes that customers take for granted. If a feature does not
meet the performance threshold—that is, if performance is not built in—then
customers would be dissatisfied. But if performance is built in, then customers
may not even notice it.

Indi↵erent Features

The middle box in Fig. 4.7 is for the case where customers would be neither
satisfied nor dissatisfied if the feature were built. Features that customers
consider unimportant would also fit in this box.

72 CHAPTER 4. WORKING WITH CUSTOMERS

Figure 4.8: Conceptual diagram illustrating the increase in customer satisfac-
tion for Attractor and Must-Have features.

4.3.4 Degrees of Su�ciency

The classification of features in Fig. 4.7 is based on a binary choice: either the
feature is built or it is not built. Response time and capacity are examples of
system attributes that are not binary. They potentially improve along a sliding
scale.

The conceptual diagram in Fig. 4.8 illustrates features that have degrees
or levels of su�ciency. The horizontal axis represents degrees of su�ciency, in-
creasing from Insu�cient on the left to Su�cient on the right. The vertical axis
represents degrees of satisfaction, from Dissatisfied at the bottom to Satisfied
at the top.

The top curve is for an attractor. With an attractor, customers are satisfied
if the feature is built, but are neutral if it is not built. In Fig. 4.8 the Attractor
curve rises from roughly Neutral to Satisfied as the degree of the feature increases
from insu�cient to su�cient.

The bottom curve is for a must-have feature. With a must-have feature,
customers are dissatisfied if the feature is not built, but are neutral if it is built.
The Must curve rises from Dissatisfied to roughly Neutral as the degree of the
feature increases from insu�cient to su�cient.

The curves for key, indi↵erent, and reverse features are not shown in Fig. 4.8.
The curve for a key feature would increase diagonally up and to the right; the
curve for an indi↵erent feature would stay at Neutral; and the curve for a reverse
feature would decrease diagonally down and to the right.

4.4. SCENARIOS: END-TO-END EXPERIENCE 73

4.3.5 Life Cycles of Attractiveness

The attractiveness of features can vary over time. Consider again web and email
access features for mobile phones. When these features were first introduced
in Japan in the late 1990s, young people found them to be attractive, but
middle-aged people were indi↵erent—they had not experienced the need for
the features. In the early days of the World Wide Web, people outside the
technical community may have heard the term, but few felt the need for it.
Today, web and email access; have become musts for any new smartphone.

For features, a possible progression is as follows:

1. Indi↵erent. When an entirely new feature is introduced, people may be
indi↵erent because they do not understand its significance.

2. Attractor. As awareness of the new feature grows, it becomes an attractor,
a delight to have, but people who do not have it are neutral.

3. Key. As usage of the feature grows, people come to rely upon it and are
dissatisfied if they do not have it.

4. Must-Have. Eventually, as adoption of the feature grows, it comes to be
taken for granted if it is present and a dissatisfier if it is not present.

The above is not the only progression. A fashionable feature may rise from
indi↵erent to key and fade back to indi↵erent as it goes out of fashion.

4.4 Scenarios: End-to-End Experience

Latent customer needs can be uncovered when members of a project team
empathically immerse themselves in the customer’s end-to-end experience.

A scenario is a personalized narrative of a primary customer’s end-to-end
experience.15 It brings to life the customer, their situation, their delights,
frustrations, and emotional state in the situation. It provides a context for
insights into the customer’s needs and wants.

The scenario identifies

• the primary customer,

• what the customer wants to experience or accomplish,

• the proposed benefit to the customer,

• how the proposed benefit contributes to their overall experience, and

• the customer’s emotional response in the overall experience.

Example 4.5 : Konica was a pioneering Japanese camera manufacturer. In the
1970s, it sought to di↵erentiate its cameras in a crowded competitive market.16

Konica engineers conducted extensive interviews to identify what customers
wanted in a camera. The results from the interviews were disappointing, since

74 CHAPTER 4. WORKING WITH CUSTOMERS

customers wanted more of the same. Their requests were for minor changes to
the existing designs.

The engineers then tried a di↵erent approach. At the time, cameras captured
images on photographic film, which was sent to a photo lab for processing and
printing. The engineers visited photo labs to learn about issues encountered
during processing.

They discovered that the top two reasons for poor photo quality were under-
exposure and blurry out-of-focus images. Underexposure was due to pictures
taken in low light without a flash. Flash units were separate and bulky and
people would either forget them or leave them at home. Blurry images were
due to di�cult manual focus controls.

These insights prompted the engineers to design cameras with a built-in flash
unit and an auto-focus mechanism. For further ease of use, the cameras were
auto loading, to allow the film to be quickly and simply changed. The point-
and-shoot Konica C35 AF, introduced in 1977, was the first mass produced
auto-focus camera.

The insights that led to the point-and-shoot camera were uncovered by a
change in viewpoint, from product features to the end-to-end experience. The
interviews that identified only minor changes asked about camera features. The
visits to the photo lab studied the experience of taking pictures. 2

4.4.1 Writing Scenarios

A scenario is a narrative or a story, not a checklist of items. As a helpful
suggestion, consider the following elements when writing a scenario:

• Title. A descriptive title.

• Introduction. An introduction to the primary customer; their motivation;
what they might be thinking, doing, and feeling; and their emotional
state—that is, whether they are mad, glad, or sad.

• Situation. A brief description of the real-world situation and the need or
opportunity. The description puts the need in the context of an overall
experience.

• Outcome. The outcome for the customer, including success metrics and
what it would take for the solution to delight the customer.

Together, the introduction and situation in a scenario correspond to the current
state. The outcome corresponds to the desired state. What a scenario must not
include is any premature commitment to a potential implementation, to how
to get from the current to the desired state.

The narrative in the next example has two paragraphs, one paragraph for
the introduction and situation and another paragraph for the desired outcome.

Example 4.6 : The fictionalized scenario in this example is based on the case
of the Sony Walkman in Example 4.1.

4.4. SCENARIOS: END-TO-END EXPERIENCE 75

Title. Masaru Ibuka enjoys opera on a long trans-Pacific flight.

Introduction. On long flights across the Pacific, Masaru Ibuka wished
that he could listen to opera, to while away the time. He knew that
Sony made high quality stereo cassette tape recorders, but they were
too bulky to take on a flight. He wanted something convenient and
lightweight that he could carry with him.

Outcome. Ibuka is delighted with the new device that the engineers
have created. The stereo audio quality is excellent; it’s almost as if
he were at a live performance. The device is light enough and small
enough that he can carry it with him, along with the baggage for
his trip. Furthermore, the device can play without power for many
hours, long enough to last the whole flight.

2

4.4.2 A Checklist for Scenarios

The acronym SPICIER provides a checklist for writing a good scenario:

S: tells the beginning and end of a story

P: includes personal details

I : is implementation-free

C: it’s the customer’s story, not a product story

I : reveals deep insight about customer needs

E: includes emotions and environment

R: is based on research

Example 4.7 : Applying the SPICIER checklist to the Masaru Ibuka scenario
in Example 4.6, we get

S: Story. The narrative begins with Masaru Ibuka’s desire to carry his music
with him on long flights. It ends with him being delighted with a small
lightweight device that has excellent stereo audio quality and can power
itself for many hours.

P: Personal. The personal details include his love of opera.

I: Implementation-Free. The scenario focuses on the need to listen to opera
and attributes such as bulk and playing time. It does not say anything
about how the device works or how to implement it. Although it notes the
existence of cassette recorders with the desired audio quality, the scenario
does not say that the device has to be a tape recorder. The Walkman
product line later included CD players and MP3 players, among others.

C: Customer’s Story. The scenario is about the experience of listening to
opera, not about a product feature.

76 CHAPTER 4. WORKING WITH CUSTOMERS

I: Insight. Looking back, there were two key insights that emerged from
“listen to opera” and “on a flight.” At the time, cassette recorders had
both record and playback functions, and playback was through a speaker.
The first insight was that the record function could be dropped; playback
was enough. The second insight was that the need was for personal audio,
since a flight is a public space. The engineers designed for a private
headset rather than a speaker, which could disturb a seat-mate.

E: Emotions and Environment. The scenario is specific about the environ-
ment (a flight). It hints at emotions, but is not explicit about them.
“While away the time” hints at boredom on a long flight. “Too bulky to
take on a flight” hints at unhappiness with bulky cassette recorders.

R: Research. The scenario is based on the primary customer’s needs, it was
not based on further research. In serving the primary customers, the
engineers created a whole new product category: personal audio players.

2

4.5 SRS: Software Requirements Specifications

With plan-driven processes, the next step after gathering customer require-
ments is to write specifications. A specification is a complete, precise, verifiable
description of a system or of an aspect of a system. Developers use specifi-
cations to build a system, testers use them to write system tests, and project
managers use them to estimate the cost and schedule for a project.

IEEE Standard 830-1984 is a guide for writing software specifications. The
standard refers to them as software requirements specifications (SRS). The out-
line of an SRS in Fig. 4.9 is adapted from the standard. According to the
standard a good SRS is17

• Unambiguous. Natural language descriptions can be ambiguous, so care
is needed to ensure that the descriptions in the SRS permit only one
interpretation.

• Complete. For an SRS to be complete, it must cover all requirements and
define the system behavior for both valid and invalid data and events.

• Verifiable. An SRS is verifiable if all requirements can be tested.

• Consistent. An SRS is consistent if no two specifications are inconsis-
tent and occurrences of the same behavior are described using the same
terminology across specifications.

• Modifiable. An SRS is modifiable if the specifications in the SRS can be
easily modified without violating the above properties, such as consistency
and completeness.

• Traceable. An SRS is traceable if every specification can be traced or
connected with a customer requirement (backward traceability) and has

4.6. CONCLUSION 77

Figure 4.9: An outline of a software specification, from IEEE Standard 830-
1984.

a reference to any documents that depend on a specification in the SRS
(forward traceability).

• Usable for Maintenance. The operations and maintenance sta↵ are typi-
cally di↵erent from the development team. The SRS must meet the needs
of the operations and maintenance sta↵.

4.6 Conclusion

The distinction between what people say and what they do has long been rec-
ognized in product development, not just software development. What people
say relates to the top or surface level of a four-level model of customer needs in
Section 4.2.

The four levels are: expressed, observable, tacit, and latent. Expressed
needs relate to what people say and think and want us to hear. Observable
needs can be inferred from what people do and use. Tacit needs relate to what
people feel and know; empathy with the other person is needed to access them.
Latent needs are needs that people are not aware of.

Customer needs and wants are the starting point for the iterative process in
Section 4.1. The steps in the process are: identify needs; define the problem;
explore possible solutions; and grow the system by building an increment. After
each incremental improvement to the system, customer feedback is helpful, not
only for validating that the project is on track, but for surfacing additional
needs. From Example 4.2, observations and analysis of usage data uncovered

78 CHAPTER 4. WORKING WITH CUSTOMERS

further needs, once customers got their hands on prototypes of the QuickBooks
app for the iPad.

Tacit and latent needs require deep insights into the customer’s end-to-
end experience. Scenarios, Section 4.4, are a personalized narrative about a
customer, their situation, and their emotional state in the situation. In Ex-
ample 4.5, Konica engineers were initially disappointed with the results from
customer interviews about camera features: customers suggested minor changes
to existing features. The engineers identified the problems of poor lighting and
blurry images only after they immersed themselves in their customers’ picture-
taking experience.

Kano analysis, Section 4.3, assesses the significance of product features. The
assessment is based on the distinction between customer satisfiers and dissatis-
fiers. Satisfiers are di↵erent from the dissatisfiers. Features that customer find
attractive relate to satisfaction. Features that customers consider must-haves
lead to dissatisfaction if they are missing or malfunction.

With plan-driven processes, requirements are typically written as a list of
features. IEEE Standard 830-1984 is a guide to writing SRS (Software Require-
ments Specifications) documents.

Exercises for Chapter 4

Exercise 4.1 : Come up with your own examples of products that are

a) Useful, but neither usable nor desirable

b) Usable, but neither useful nor desirable

c) Desirable, but neither useful nor usable

d) Useful and usable, but not desirable

e) Useful and desirable, but not usable

f) Usable and desirable, but not useful

g) Useful, usable, and desirable

Your examples need not relate to software.

Exercise 4.2 : Use the 9-box grid in Fig. 4.10 to classify features during Kano
Analysis. Give a one-line explanation for why a given class of features belongs
in one of the boxes in the grid. (Note that the ordering of rows and columns in
Fig. 4.10 is di↵erent from the ordering in Fig. 4.7.)

Exercise 4.3 : Kano analysis classifies features using a nine-box grid (Fig. 4.7).

a) How would you classify features using the four-box grid in Fig. 4.11, in-
stead of the nine-box grid in Fig. 4.7. Explain your answer.

EXERCISES FOR CHAPTER 4 79

Figure 4.10: Classification of features during Kano analysis. The rows and
columns have been scrambled, relative to Fig. 4.7.

Figure 4.11: Classification of features during Kano Analysis.

b) For each box in the four-box grid in Fig. ??, give an example of a specific
feature that belongs in that box. Why does it belong in the box?

Exercise 4.4 : The conceptual diagram in Fig. 4.8 illustrates the increase in
customer satisfaction for Attractor and Must-Have features as the su�ciency
of a feature increases. Draw the corresponding curves for Key, Reverse, and
Indi↵erent features.

Exercise 4.5 : Based on Example 4.5 about Konica cameras,

a) Write a SPICIER scenario.

b) Show how your scenario meets the criteria represented by the SPICIER
checklist.

Notes for Chapter 4
1Fred Brooks [1].

80 CHAPTER 4. WORKING WITH CUSTOMERS

2Before starting Intuit, Scott Cook worked at Proctor & Gamble (P&G), where he “learned
an encyclopedia’s worth of business. ... P&G’s obsession with customers resonated with
Cook.” [16, p. 6]. The quote about basing new products on customer behaviors, not words,
is from [16, p. 221].

3Sanders [14].
4For Intuit’s Design for Delight, see for example Ruberto [13].
5The iterative process in Fig. 4.2 is adapted from the Fast Feedback cycle in De Bonte

and Fletcher [2]. See also the overview of the iterative process in Section ??.
6Hormby [5]
7Sanders [14, 15] uses an inverted pyramid for levels of customer needs. She writes about

a “shift in attitude from designing for users to one of designing with users.”[15]
8Rabinowitz [11].
9Carl Rogers [12] cites “a natural urge to judge, evaluate, and approve (or disapprove)

another person’s statement” as a major barrier to communication.
10Gri�n and Hauser [3] refer to Voice of the Customer as an industry practice.
11Herzberg [4, ch. 6] et al. interviewed 200 engineers and accountants to test the hypothesis

that people have two sets of needs: “the need as an animal to avoid pain” and “the need
as a human to grow psychologically.” They asked about times when the interviewees felt
especially good about their jobs and probed for the reasons behind the good feelings. In
separate interviews, they asked about negative feelings about the job. The results from the
study were that satisfiers were entirely di↵erent from dissatisfiers. Herzberg et al. used
the term “motivators” for job satisfiers and the term “hygiene” for job dissatisfiers. The
corresponding terms in this chapter are attractors and must-haves.

12Kano [7] is the source for the treatment of Kano analysis in Section 4.3. The oft-cited
paper by Kano et al. [8] is in Japanese.

13Kano analysis is included in De Bonte and Fletcher’s [2] description of Scenario Focused
Engineering at Microsoft.

14Clippy was included in Microsoft O�ce for Windows versions 97 through 2003 [18]. A
USA Today article dated February 6, 2002 noted, “The anti-Clippy site has gotten 22 million
hits since launching April 11.” [17].

15For an in-depth treatment of scenarios, see the book on Scenario-Focused Engineering by
De Bonte and Fletcher [2].

16Example 4.5 on Konica cameras is based on the description by Kano [7].
17IEEE Standard 830-1984 [6, p. 11]

References for Chapter 4

1. Frederick P. Brooks, Jr. No silver bullet” essence and accident in software engineer-
ing. Information Processing ’86 (1986) Elsevier, Amsterdam, 1069-1076. Reprinted in
IEEE Computer (April 1987) 10-19.

2. Austina De Bonte and Drew Fletcher. Scenario-Focused Engineering. Microsoft Press,
Redmond, Wash. (2013).

3. Abbie Gri�n and John R. Hauser. The Voice of the Customer. Marketing Science 12,
1 (Winter 1993) 1-27.

4. Frederick Herzberg. Work and the Nature of Man. Cleveland World Publishing Co.
(1966).

5. Tom Hormby. The story behind the Walkman. Low End Mac (August 13, 2013).
http://lowendmac.com/2013/the-story-behind-the-sony-walkman/ .

6. IEEE Guide to Software Requirements Specifications. IEEE Standard 830-1984 (Febru-
ary 10, 1984).

7. Noriaki Kano. Life cycle and creation of attractive quality.
http://huc.edu/ckimages/files/KanoLifeCycleandAQCandfigures.pdf .

REFERENCES FOR CHAPTER 4 81

According to Löfgren and Wittel [9] a paper with this title was presented at the 4th In-
ternational QMOD Quality Management and Organizational Development Conference
at Linköping University (2001).

8. Noriaki Kanoi, Nobuhiko Seraku, Fumio Takahashi, and Shin-ichi Tsuji. Attractive
quality and must-be quality (in Japanese). Journal of the Japanese Society for Quality
Control 14, 2 (1984) 147-156.

9. Martin Löfgren and Lars Wittel. Two decades of using Kano’s theory of attractive
quality: a literature review. The Quality Management Journal 15, 1 (2008) 59-75.

10. Dan North. Behavior modification. Better Software Magazine (March 2006).
See https://dannorth.net/introducing-bdd/ .

11. Dorelle Rabinowitz.
http://www.aiga.org/inhouse-initiative/intuit-quickbooks-ipad-case-study-app-design/ .

12. Carl R. Rogers and F. J. Roethlisberger. Barriers and gateways to communication.
Harvard Business Review (July-August 1952). Reprinted, Harvard Business Review
(November-December 1991).
https://hbr.org/1991/11/barriers-and-gateways-to-communication

13. John Ruberto. Design for Delight applied to software process improvement. Pacific
Northwest Software Quality Conference (October 2011).
http://www.pnsqc.org/design-for-delight-applied-to-software-process-improvement/ .

14. Elizabeth Sanders. Converging perspectives: product development research for the
1990s. Design Management Journal 3, 4 (Fall 1992) 49-54.

15. Elizabeth Sanders. From user-centered to participatory design approaches. In Design
and the Social Sciences, J. Frascara (ed.) Taylor & Francis Books (2002).

16. Suzanne Taylor and Kathy Schroeder. Inside Intuit. Harvard Business School Press,
Boston, Mass. (2003).

17. USA Today. Microsoft banks on anti-Clippy sentiment. (February 6, 2002).
http://usatoday30.usatoday.com/tech/news/2001-05-03-clippy-campaign.htm .

18. Wikipedia. O�ce Assistant. https://en.wikipedia.org/wiki/Office_Assistant .

82 CHAPTER 4. WORKING WITH CUSTOMERS

Chapter 5

Use Cases

“The use cases capture the goals of the system. To understand a use case
we tell stories. ... Use cases provide a way to identify and capture all the
di↵erent but related stories in a simple but comprehensive way.”

— Ivar Jacobson, Ian Spence, and Brian Kerr. Use cases were

introduced by Ivar Jacobson in 1986.

1

A use case models interactions between users and the system, interactions that
result in an observable benefit for some user. Each use case is built around a
sunny-day sequence of actions—“sunny day” means that all goes well and the
system delivers the desired benefit. The sunny day sequences are called basic
flows. Basic flows and the other elements of use cases are defined in Section 5.1.

A well written collection of use cases provides a readable overview of the
expected behaviors of the system. Readability makes use cases suitable for
discussions with customers and users. The initial discussions with customers can
focus on basic flows and their associated benefits. Special cases and exceptions
need not cloud the initial discussions.

Basic flows also provide a starting point for iterative development. Planning
for the first iteration can begin with the basic flow from the most important
use case. Special cases can be handled in later iterations.2

Use case diagrams, Section 5.2, depict collections of related use cases. They
show who or what interacts with the system. In diagrams, a use case is repre-
sented by its associated goal or benefit.

System behaviors correspond to functional requirements. Collections of use
cases give the set of functional requirements for a system. Use cases have
to be supplemented with descriptions of non-functional requirements, such as
performance and availability requirements.

83

84 CHAPTER 5. USE CASES

Actors: Every role, human and automated, in the use case

Basic Flow: Sequence of actions—text, readable by stakeholders

Alternative Flows: Variations on the basic flow

Extension Points: Insertion points in a flow, for additional behavior

Figure 5.1: Key elements of use cases.

5.1 Elements of Use Cases

Use cases were motivated by the problem of modeling telephone calls.3 While
the internal workings of a telephone system can be enormously complex, a
caller’s intentions can be simply stated: connect with a callee. The system’s
response to a caller is outlined in the following example.

Example 5.1 : A telephone caller wants to connect to a callee. The following
sequence of actions is one way of achieving this user goal:

1. The caller enters a number to be called.
2. The system collects the number.
3. The system maps the number to a destination.
4. The system routes the call through the telephony infrastructure.
5. The system rings the callee’s phone.
6. The callee answers.
7. The system starts logging the duration of the call.
8. The caller disconnects.
9. The system records the duration of the call.

10. The system releases the resources for the call.

The above sequence is one of the simplest way of achieving the goal of placing
a telephone call. There are many possible variations of the sequence. 2

The complexity of most systems is due to the many options, special cases,
exceptions, and error conditions that the systems must be prepared to handle.
For the telephone call in Example 5.1, what if the callee does not answer? What
if the destination phone number is no longer in service? What if the callee has
turned on a do-not-disturb feature? There are hundreds of possibilities.

The rest of this section introduces the key elements of use cases; see Fig. 5.4.

5.1.1 Actors Represent Roles

An actor represents a role played by a person or a thing. The same person
may play multiple roles. For example, consider an employee of a company who
manages a team. This person has two roles: employee of the company and

5.1. ELEMENTS OF USE CASES 85

manager of a team. Each of these two roles would be represented by a di↵erent
actor. Same person, two roles.

The purpose of a use case is to provide a benefit for one or more actors. The
benefit is called the goal and the initiator of the use case is called the primary
actor of the use case. The start and end of a use case refer to the start and end
of a sequence of actions that is called the basic flow.

5.1.2 Flows Represent Sequences of Actions

The term flow, by itself, represents a sequence of actions from the start to the
end of a use case. Flows represent interactions between actors and the system;
each action is either initiated by an actor or by the system.

Example 5.2 : The sequence of actions for placing a phone call in Example 5.1
constitutes a flow. A variant of the flow is obtained if, in Action 8, the callee
disconnects, instead of the caller.

The flow involves two actors: the caller and and the callee. The caller is the
primary actor. 2

The basic flow of a use case is a successful sequence of actions that achieves
the goal of the use case. A well written basic flow represents the simplest way
of achieving the goal. Special cases and exceptions are handled separately by
variants of the basic flow.

For the moment, an alternative flow is simply a variant of the basic flow.
(The connection between basic and alternative flows is explored below, in Sec-
tion 5.1.3.)

Alternative flows represent behaviors that are required of a system, but are
not central to an intuitive understanding of the system. For example, many
systems begin by authenticating a user. In a use case, the basic flow would
handle successfully authentication. An alternative flow would handle the case
where authentication fails. The system is required to gracefully handle authen-
tication failures, but their handling does not tell us much about the purpose of
the system.

Example 5.3 : Cash withdrawal from an automated teller machine (ATM) is
a classic example of a use case.4 For simplicity, the actions in the flow are high
level

86 CHAPTER 5. USE CASES

Basic Flow: Withdraw Cash

1. The cardholder inserts a card.
2. The system reads the card and prompts for a passcode.
3. The cardholder enters a passcode.
4. The system authenticates the cardholder.
5. The system displays options for bank services.
6. The cardholder selects Withdraw Standard Amount.
7. The system checks the account for availability of funds.
8. The system dispenses cash and updates the account balance.
9. The system returns the card.

The basic and alternative flows for cash withdrawals correspond to paths
through the graph in Fig. 5.2. The basic flow goes sequentially through the
numbered actions, from the start to the end of the use case. The two alternative
flows in the figure are for handling special situations: authentication fails or
there are insu�cient funds in the account. Many other alternative flows are
possible; for example, the card may get stuck; the ATM may run out of cash;
and so on.

The following alternative flow corresponds to the path for failed authenti-
cation:

Alternative Flow 1: Authentication Failed

1. The cardholder inserts a card.
2. The system reads the card and prompts for a passcode.
3. The cardholder enters a passcode.
4. The system authenticates the cardholder.
50. The system prints an Authentication-Failed message.
9. The system returns the card.

The connections between basic and alternative flows are through extension
points, which are explained below. 2

5.1.3 Extension Points and Alternative Flows

Extension points are named points between actions, just before the first action,
or just after the last action of a flow. The name extension point is motivated
by their use to attach additional behavior that extends the system.

Specific alternative flows attach between two named extension points, thereby
creating alternative paths through the use case. Bounded alternative flows at-
tach anywhere between two named extension points.

The next example illustrates specific alternative flows.

Example 5.4 : The following basic flow was formed by adding four extension
points to the basic flow of Example 5.3. The extension points are between
numbered actions and are in boldface.

5.1. ELEMENTS OF USE CASES 87

Figure 5.2: Basic and alternative flows for cash withdrawals from an ATM.

Basic Flow: Withdraw Cash, Version 2

1. The cardholder inserts a card.
{ Read Card }

2. The system reads the card and prompts for a passcode.
3. The cardholder enters a passcode.
4. The system authenticates the cardholder.

{ Bank Services }
5. The system displays options for bank services.
6. The cardholder selects Withdraw Standard Amount.
7. The system checks the account for availability of funds.

{ Dispense Cash }
8. The system dispenses cash and updates the account balance.

{ Return Card }
9. The system returns the card.

The falternative flow for failed authentication attaches between {Bank Services}
and {Return Card}:

Alternative Flow 1: Authentication Failed

At {Bank Services} if authentication has failed
. Display “Authentication failed.”
Resume the basic flow at {Return Card}

The alternative flow for insu�cient funds attaches between {Dispense Cash}
and {Return Card}:

88 CHAPTER 5. USE CASES

Alternative Flow 2: Insu�cient Funds

At {Dispense Cash} if account has insu�cient funds

. Display “Insu�cient funds in account.”

Resume the basic flow at {Return Card}

The flows in this example correspond to paths through the flow graph in Fig. 5.2.
2

The next example illustrates bounded alternative flows, which attach any-
where between two named extension points.

Example 5.5 : What if the network connection between the ATM and the
server is lost? The loss of a network connection is an external event that can
happen at any time; it is not tied to any specific point in the basic flow.

For simplicity, we assume that the actions in the basic flow are atomic.
In particular, we assume that the action “Dispense cash and update account
balance” is handled properly. A real system would use transaction processing
techniques to ensure that the account balance reflects the cash dispensed.

With the basic flow and extension points from Example 5.3, the following
bounded alternative flow returns the card if the network connection is lost before
cash is dispensed:

Bounded Alternative Flow: Loss of Network Connection

At any point between {Read Card} and {Dispense Cash},
if the network connection is lost

. Display “Sorry, out of service.”

Resume the basic flow at {Return Card}

2

5.2 Use-Case Diagrams

A use case digram summarizes the actors, the use cases, and the interactions
between actors and use cases. As in Fig. 5.3, an actors is represented by a
stick figure. A use case is represented by an ellipses labeled with the goal
of the use case. Interactions are represented by arrows. The direction of an
arrow indicates the initiator of an interaction. Note that an arrow represents
a dialogue that potentially involves an exchange of messages. If there is no
arrowhead, then either party can initiate the interaction.

5.2.1 A Diagram Provides a Big Picture Summary

Diagrams are intended for an overall understanding of a system with multiple
use cases. Collectively, the goals of the use cases describe the purpose of the

5.2. USE-CASE DIAGRAMS 89

Figure 5.3: Use case diagram for a salary system.

system. During requirements discussions with stakeholders, diagrams are help-
ful for confirming that all the key stakeholders have been included and that no
major goals have been missed.

Example 5.6 : The diagram in Fig. 5.3 shows the actors and use cases for a
salary system. The two primary actors are employee and manager.

Employees can view their own salaries by initiating the View My Salary
use case. They can also initiate View Salary Statistics for perspective on how
their salaries compare with similar roles both within their company and within
their industry. Information about salaries outside the company is provided by
a benchmarking service, which is shown as a secondary actor (on the right).

Managers can view salary statistics and can administer raises for the people
they manage. The system can initiate the Retrieve Benchmark Info use case to
get industry salary statistics from the Benchmarking Service actor. 2

5.2.2 Use Case Diagrams in Practice

Use case diagrams are supported by UML (Unified Modeling Language), a
standard language for visualizing and specifying software systems.5

Based on empirical studies of UML usage, it appears that use-case diagrams
are not used by themselves. However, the concepts of use cases are widely
used, and diagrams may be used in combination with textual descriptions. The
following quotes are from one of the studies:

“It’s hard to design without something that you could describe as
a use case.”

90 CHAPTER 5. USE CASES

“Many described use cases informally, for example, as: ‘Structure
plus pithy bits of text to describe a functional requirement. Used
to communicate with stakeholders.’ ”6

5.3 Writing Use Cases

In discussions with customers and users, use cases are a tool for identifying
their needs, goals, and requirements. With developers and testers, use cases
guide decisions about what to implement. The right level of detail in a use case
depends on the audience and the situation.

A fully described use case needs to be SMART (specific, measurable, achiev-
able, relevant, time-bound); see Section 3.6.1 for the application of SMART
criteria to user stories.

5.3.1 General Guidelines

The first guideline for writing a use case is: evolve it iteratively. Invest just
enough time and provide just enough detail for the current audience and situ-
ation. An outline may be enough to get started. Add details as needed.

Jacobson and his colleagues lay down “six basic principles [that are] at the
heart of any successful application of use cases.”7 The first three principles are
guidelines for writing use cases:

1. Keep it simple by telling stories. Use simple textual descriptions for flows,
in language that is meaningful to stakeholders. Accompany the descrip-
tions with acceptance tests that ensure the relevance of the use case to
the goal. Acceptance tests are also helpful for resolving ambiguities.

2. Understand the big picture. Use an overall view of the system’s behavior
to align with stakeholder goals and to guide design and implementation
decisions and tradeo↵s. Use-case diagrams accompanied by crisp snippets
of text are helpful for an overall understanding.

3. Focus on value. Structure each use case to emphasize and quantify the
value to the primary actor. Order the basic and alternative flows so that
the simplest way of achieving the goal becomes the basic flow. Use value
and simplicity to prioritize the alternative flows.

5.3.2 Conversational Form

A flow is typically written as a single sequence of actions, where actor actions
and system responses are interleaved; as in the cash-withdrawal examples in
Section 5.1. In conversational form, there is a column for actor actions and
another for system responses:8

Example 5.7 : The following is a conversational form for the cash-withdrawal
example in Section 5.1:

5.3. WRITING USE CASES 91

Actor Action System Response

1. Insert card Prompt for passcode
2. Enter passcode Authenticate cardholder
3. Display Bank Services
4. Select Withdraw Standard Amount Check availability of funds
5. Dispense cash
6. Return Card

2

Conversational form is often used to highlight the most significant usability-
related behaviors. Sequential form is more common; in sequential form, actor
actions and system responses are interleaved. It is easier to use the sequential
form when there is more than one actor. Furthermore, it is easier to add
extension points to the sequential form of a use case.

5.3.3 User Intentions versus System Interactions

For perspective on the right level of detail in a use case, consider the distinc-
tions between the three words intention, interaction, and interface, as in user
intentions, system interactions, and user interfaces.

Intention is technology-free and implementation-free. Consider again a bank
customer wanting to withdraw cash from an ATM. The customer’s intention is
to get cash. Most customers withdraw the same amount most of the time. As
Larry Constantine puts it,

“The bank customer wants to be able to say ‘It’s me. The usual.
Thanks!’ and be o↵.”9

“It’s me” is about the customer’s identity and “The usual” is about withdrawing
the usual amount of cash from the usual account; say, from the checking account.

An essential use case is a use case that is technology-free and implementation-
free: it describes the user’s intentions and the system’s response. This definition
of essential use cases does not specify either conversational or sequential form.
However, essential use cases are closely associated with conversational form.9

Example 5.8 : The following is an essential use case for cash withdrawal in
conversational form:

Customer Intention System Response

1. Identify self Authenticate customer
2. O↵er Bank Services
3. Withdraw usual amount Dispense cash

Exceptions and special cases need not be come up during a discussion about
user intentions, so essential use cases need not have any alternative flows. 2

92 CHAPTER 5. USE CASES

Interactions are implementation-free. Although regular use cases are meant
to be implementation-free, they may have some technology choices built into
them.

Compare the regular use case in Example 5.7 with the essential use case in
Example 5.8. The regular use case begins with, “Insert card” and ends with
“Return card.” The implicit assumption behind these actions is that identity
will be authenticated using a card and a passcode. The essential use case does
not make this assumption. What if identity were authenticated by fingerprint?

The regular use case also includes “Check availability of funds.” This check
is required, so it belongs in the interaction described by the use case. However,
the check is internal to the system, so it need not be spelled out at the level of
user intention.

The distinction between interaction and intention is therefore twofold. First,
an interaction may make some technology assumptions, which an intention does
not. Second, an interaction may include some internal system actions, which
an intention does not.

Interfaces. The description of a user interface includes such design choices
as the layout of buttons, text fields, and graphics, not to mention color schemes
and fonts. Some of these design and implementation choices may creep into a
use case, but by and large, use cases are implementation-free.

To summarize, user intention, system interaction, and user interface reflect
three increasing levels of detail. User intention focuses on what the user wants,
system interaction focuses on the system’s behavior in response to a user’s
actions, and user interface focuses on design and implementation.

The resulting guideline for writing a use case is as follows:

• Start by capturing user intentions, perhaps as an essential use case.

• Once intentions solidify, write a use case that describes system interac-
tions.

• Include user interface dependencies in a use case only as necessary for the
audience and the situation.

5.3.4 A Template for Use Cases

There is no standard format for use cases. In its simplest form, a use case
description may consist only of a goal and a basic flow. Even with more complex
use cases, alternative flows may be represented only by their name or goal. Any
details that are missing can be filled in later, as needed.

Templates for use case do exist, however; a representative template appears
in Fig. 5.4. The first element in the template is a name for the use case.
The name is preferably a short active phrase such “Withdraw Cash” or “Place
Order.” Next, if needed, is a brief description of the goal of the use case. If the
name is descriptive enough, there may be no need to include a goal that says
essentially the same thing.

5.3. WRITING USE CASES 93

Name: Active phrase for what will be achieved for the actor(s)

Goal: Brief description of the purpose of the use case

Actors: Every role, human and automated, in the use case

Basic Flow: Sequence of actions—text, readable by stakeholders

Alternative Flows: Variations on the basic flow

Extension Points: Insertion points in the flow for additional behavior

Preconditions: State of system for the use case to operate correctly

Postconditions: State of the system after the use case completes

Relationships: Possible communication with other use cases

Figure 5.4: A representative template for writing use cases.

Use cases for real systems can have multiple actors, so it is worth listing the
actors, human or automated.

The basic flow is the heart of a use case. It is required. A basic flow begins
with an actor action. The first action typically triggers the use case; that is, it
initiates the use case.

The basic flow is followed by alternative flows. Long use cases are hard to
read, so alternative flows are often identified only by their names or goals. In
the early stages of a project, the only available information about an alternative
flow may be its goal. Since requirements can change, alternative flows need not
be fleshed out until they are needed.

Alternative flows must be about optional, exceptional, or truly alternative
behavior. If the behavior is required, it belongs in the basic flows. Furthermore,
if the behavior is not conditional, it is not alternative behavior and does not
belong in the use case. It may belong in some other use case.

Alternative flows, both specific and bounded, attach to a basic flow at named
extension points. In Section 5.1, the alternative flows for failed authentication
and for insu�cient funds attached at named extension points in the basic flow
for the Withdraw Cash use case.

Preconditions are assertions that must be true for the use case to be initi-
ated. For example, a Cancel Order use case may have a precondition that an
order exists or is in progress. If there is no order, there is nothing to cancel.
Similarly, postconditions are assertions that must be true when the use case
ends. In simple examples, preconditions and postconditions are often omitted.

Relationships between use cases are discussed in the next section.

94 CHAPTER 5. USE CASES

5.4 Relationships Between Use Cases

5.4.1 Subflows

Even for simple systems, the readability of flows can be enhanced by defining
subflows: a subflow is a self-contained subsequence with a well defined purpose.
The logic and alternatives remain tied to the basic flow if subflows are linear,
where all the actions are performed or none of them are.

A subflow is private to a use case if it is invoked only within that use case.

5.4.2 Inclusion

Subsequences, again with a well-defined purpose, that are common to multiple
use cases can be handled by inclusion of one use case within another. The
inclusion appears as an action within a basic flow; that is, the basic flow invokes
the included use case at some point and then resumes at that point.

In the ATM example in Section 5.1, authentication was treated as an action.
In practice, authentication involves subactions such as verifying a passcode and
logging the event. Authentication will likely be required for other use cases
as well; e.g., for transferring money between accounts. The following sequence
includes a use case, Authenticate Cardholder

1. Start the use case when the actor inserts a card
2. Read the card
3. Include the use case Authenticate Cardholder
4. Upon authentication, display options for bank services

5.4.3 Extensions

A use case that is complete by itself can be augmented through a form of
inheritance. Suppose that a use case U has an extension point p within its
basic flow. A use case V can specify that it is to be performed at the point p
in U . The use case V is then called an extension of U .

The purpose of an extension is to support an additional goal for an actor.
The distinction between inclusion and extension is that a basic flow is un-

aware of an extension, but it knows about the inclusion and explicitly calls the
included use case by name. For an extension, the basic flow provides extension
points, however, it does not know the use cases that take advantage of those
extension points. Conversely, an inclusion is unaware that it is being included
in some basic flow, but an extension knows about the basic flow and explicitly
specifies the extension point where it is to be invoked.

For an example of an extension, suppose that the basic flow for a use case
Place Order includes an extension point {Display Products}:

5.5. CONCLUSION 95

Get product category entered by customer
{ Display Products }
Display products and prices

An extension use case, Social Place Order, can specify the extension point
{Display Products}, where it is invoked to add recommendations based on
the product category and friend data from Facebook.

As another example, consider a surveillance system with a basic flow to
monitor an area for intruders. Another use case notifies authorities. Surveil-
lance and notification can be combined by making notification an extension of
the surveillance system. At an extension point {Intruder Detected} in the
surveillance flow, the notification system can be invoked to notify the authorities
that an intruder has been detected.

Most systems can be described by collections of self-contained use cases
without inclusions and extensions.10

5.5 Conclusion

Summary of Use Cases

A well written collection of use cases and their goals provides an overview of
the requirements for the system. Each use case is built around a basic flow,
which is a single successful sequence of actions. The alternative flows in a use
case handle exceptions and special cases.

The full use case does not need to be fleshed out up front. The list of use
cases and their goals are helpful in early discussions with stakeholders to ensure
that no major goal is overlooked. Basic flows provide the next level of detail.
Alternative flows can be developed as needed during the project. They serve
as backup in case stakeholders have detailed questions.

Use Cases and User Stories

Use cases and user stories are complementary; they provide di↵erent perspec-
tives on requirements and can be used together. A user story corresponds to
an individual feature, whereas a use case is closer to a collection of related user
stories. The tradeo↵ is between between use cases and user stories is between
context and weight: use cases provide context for system behaviors and user
stories are lighter weight, which means that they require less e↵ort.11

Use Cases and Iterative Development

Jacobson and his colleagues provide three guidelines for iterative software de-
velopment based on use cases:12

96 CHAPTER 5. USE CASES

• Build the system in slices. Instead of implementing an entire use case all
at once, consider slicing it, where a “slice” is a subset of the flows in the
use case, along with their test cases. Alternatively, a slice corresponds to
a set of paths through a flow graph, such as the one in Fig. 5.2.

• Deliver the system in increments. Use an iterative process, based on
delivering slices of use cases. Begin with the slice or slices that provide
the most value.

• Adapt to meet the team’s needs. Fit the development process to the
project. A small cohesive team in a close collaboration with stakeholders,
might document just the bare essentials of use cases, relying on informal
communication to address any questions along the way. A large team
would likely require documented use cases with key details filled in.

Exercises for Chapter 5

Exercise 5.1 : Write a full use case for the insurance company scenario from
Exercise 3.4.

Exercise 5.2 : Write a use case for the software to control a self-service gaso-
line pump, including handling payments, choice of grade of gas, and a receipt.
In addition, when the screen is not being used otherwise, the system must per-
mit targeted advertising on the screen, where the targeting is based on the
customer’s purchase history with the gas vendor.

Your use case must include the following.

a) A basic flow

b) Extension points

c) At least one specific alternative flow

d) At least one bounded alternative flow

e) Inclusion

In each case, explain how the use case illustrates the relevant concept. For
alternative flows, include the full flow, not just the name of the flow.

Exercise 5.3 : Prior to meeting with the customer, all you have is the following
brief description of a proposed system:

The system will allow users to compare prices on health insurance
plans in their area; to begin enrollment in a chosen plan; and to
simultaneously find out if they qualify for government healthcare
subsidies. Visitors will sign up and create their own specific user
account first, listing some personal information, before receiving de-
tailed information about the plans that are available in their area.13

Write a use case based on this description.

EXERCISES FOR CHAPTER 5 97

Exercise 5.4 : HomeAway allows a user to rent vacation properties across
the world. It has multiple web sites that support user interaction in di↵erent
languages. Write a use case for a renter to select and reserve a vacation property
for specific dates in a given city.

Exercise 5.5 : Write a use case for an airline flight-reservations system. For
cities in the United States, the airline either has nonstop flights or flights with
one stop through its hubs in Chicago and Dallas. Another team is responsible
for the pricing system, which determines the price of a round-trip ticket, based
on the source, destination, departure time, and frequent flier status of the
passenger. Your reservations system is responsible for o↵ering flight options
(there may be several options on a given day), seat selection, method of payment
(choice of credit card or frequent flier miles).

Your use case must include the following.

a) A basic flow

b) Extension points

c) A specific alternative flow

d) A bounded alternative flow

e) Inclusion

In each of the above cases, briefly explain the concept and show the part of the
use case that illustrates the concept. For alternative flows, include the full flow,
not just the name of the flow.

Exercise 5.6 : Write a use case for the software to send a text message between
two mobile phones, as described below.

Each phone has its own Home server, determined by the phone?s
number. The Home server keeps track of the phone?s location,
billing, and communication history. Assume that the source and
destination phones have di↵erent Home servers. The destination
Home server holds messages until they can be delivered. Also as-
sume that the network does not fail; that is, the phones stay con-
nected to the network.

Your use case must include the following.

a) A basic flow

b) Extension points

c) At least one specific alternative flow

d) At least one bounded alternative flow

In each case, explain how the use case illustrates the relevant concept. For
alternative flows, include the full flow, not just the name of the flow.

98 CHAPTER 5. USE CASES

Notes for Chapter 5
1Jacobson, Spence, and Kerr [8] provide guidelines for software development based on use

cases.
2Jacobson, Spence, and Kerr [8] recommend that the system be built incrementally, slice

by slice, where a slice corresponds to the work items for an iteration.
3Use cases were first presented at OOPSLA ’87 [6]. Jacobson [7] provides a retrospective.
4The ATM use case in Example 5.3 is based on a fully worked out use case in Bittner

and Spence [1], which Ivar Jacobson, the inventor of use cases, called “THE book on use
cases” [7].

5Grady Booch, Ivar Jacobson, and James Rumbaugh [2] created UML in the mid 1990s.
It was adopted as a standard by Object Management Group (OMG) in 1997 and by the
International Standards Organization (ISO) in 2005.

6Petre [9, p. 728] conducted “interviews with 50 professional software engineers in 50
companies and found 5 patterns of UML use,” ranging from no use of UML (70%) to selective
use (22%) and wholehearted use (0%). Selective users mentioned informal use of use cases.
Only one of the 50 developers found use case diagrams to be useful.

7Jacobson, Spence, and Kerr [8]
8Rebecca Wirfs-Brock [10] proposed conversational form to “clearly demarcate actor ac-

tions and system responses.
9Larry Constantine and Lucy Lockwood [4] propose that user-interface design be based

on a model of user intentions; specifically, on essential use cases.
10In a chapter entitled “Here There Be Dragon,” Bittner and Spence [1] note that the

behavior of most systems can be specified without inclusions and extensions. They also note,
“If there is one thing that sets teams down the wrong path, it is the misuse of the use-case
relationships.”

11For a discussion of use cases and user stories, see Cockburn [3] and the accompanying
comments.

12Jacobson, Spence, and Kerr [8]
13The description in Exercise 5.3 is adapted from the “Background and functionality”

section of the Wikipedia entry for HealthCare.gov.
https://en.wikipedia.org/wiki/HealthCare.gov . Text used under the Creative Commons
CC-BY-SA 3.0 license.

References for Chapter 5

1. Kurt Bittner and Ian Spence. Use Case Modeling Addison-Wesley Professional (2003).

2. Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User
Guide, 2nd Ed. Addison-Wesley Professional (2005).

3. Alistair Cockburn. Why I still use use cases. (January 9, 2008).
http://alistair.cockburn.us/Why+I+still+use+use+cases .

4. Larry L. Constantine. Essential modeling: use cases for modeling user interfaces. ACM
Interactions 2, 2 (April 1995) 34-46.

5. John Erickson. A decade or more of UML: an overview of UML semantic and structural
issues and UML field use. Journal of Database Management 19, 3 (2008) i-vii.

6. Ivar Jacobson. Object oriented development in an industrial environment. Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(October 1987) 183-191.

7. Ivar Jacobson. Use cases: yesterday, today, and tomorrow. Software and Systems
Modeling (2004) 210-220.

8. Ivar Jacobson, Ian Spence, and Brian Kerr. Use-Case 2.0: The hub of software devel-
opment. ACM Queue 14, 1 (January-February 2016) 94-123.

REFERENCES FOR CHAPTER 5 99

9. Marian Petre. UML in practice. International Conference on Software Engineering
(ICSE ’13). (2013) 722-731.

10. Rebecca Wirfs-Brock. Designing scenarios: making the case for a use case framework.
The Smalltalk Report 3, 3 (November-December 1993).
http://wirfs-brock.com/PDFs/Designing Scenarios.pdf .

100 CHAPTER 5. USE CASES

Chapter 6

Estimation

“Overwhelming evidence documents a tendency toward cost and e↵ort
overruns in software projects. On average, this overrun seems to be
around 30 percent. Furthermore, comparing the estimation accuracy of
the 1980s with that reported in more recent surveys suggests that the
estimation accuracy hasn’t changed much since then.”

— Magne Jørgensen, assessing the state of the art of estimation in

2014. Estimation is a key activity during project planning.

1

During project planning, size and e↵ort estimates guide decisions about sched-
ules, budgets, work assignments, team sizes, required skills, and other resources.

A project is a set of activities with a start, a finish, and deliverables, subject
to schedule and cost constraints. The deliverables from a project can be any-
thing: a product, like a web browser; an event, like landing a rover on Mars; a
service delivered from the cloud; an assessment; ...2

Project management consists of planning, organizing, tracking, and control-
ling a project, from initial concept through final delivery. Project planning
includes the selection of a software development process; work assignment; size,
schedule, and cost estimation; risk assessment; and quality planning.3

6.1 Introduction

The selection of a software-development process is an early decision during
project planning. The development process guides customer interactions, team
coordination, work distribution, progress monitoring, and course corrections.

There are two approaches to project planning: predictive and adaptive.

101

102 CHAPTER 6. ESTIMATION

6.1.1 Predictive Planning

Predictive planning is geared to plan-driven processes. Such planning is up-
front, before design, coding, and testing. In the early stages of a project, there
is great uncertainty about the customer problem and about potential solutions.
Predictive planning therefore goes to great lengths to create the best possible
plans based on the information that is available at the time.

Unfortunately, requirements change. Design and performance issues crop
up. The implemented solution can therefore diverge not only from the planned
functionality, but from the planned schedule and budget.

6.1.2 Adaptive Planning

Adaptive planning is geared to iterative processes, especially agile processes.
Instead of planning the whole project up front, amid great uncertainty, adaptive
planning is spread evenly across the project. For each iteration, there is just
enough planning to cover that iteration. Adaptive plans need not be perfect,
since iterations are short and plans can be adapted at the end of an iteration.

In other words, an agile approach can be applied to planning itself, by doing
it an iteration at a time.

Adaptive planning achieves two goals at the same time: it improves planning
accuracy and reduces planning e↵ort. Plans improve because they adapt as
the project progresses. The plan for the current iteration can benefit from
information from past iterations. The overall planning e↵ort is reduced as
follows. It is easier to plan for the next 2-4 weeks than it is to plan for the
next 12-18 months. With short planning horizons, the sum of the incremental
planning e↵orts adds up to less than the e↵ort for careful up-front predictive
planning.

6.1.3 The Role of Estimation

Planning involves estimation of the size and e↵ort required for a project. Esti-
mation begins with questions like the following: Is the project small, medium,
or large? Does it require special skills? Is there a hard deadline? Has something
like this been done before?

During adaptive planning, estimation is spread across iterations. The selec-
tion of work items for an iteration is based on a combination of (1) value to the
customer and (2) estimated software development e↵ort. Fortunately, rough
estimates su�ce for assigning high, medium, or low priority to work items.

Despite all the attention it has received, estimation remains more art than
science. The state of the art of estimation for software development can be
summarized as follows:4

• Historical data about similar past projects is a good predictor for current
projects.

6.2. PLANNING CONSTRAINTS 103

• Simple models tailored to the local work environment can be at least as
if not more accurate than advanced statistical models.

• Estimation accuracy can be improved by combining independent esti-
mates from a group of experts.

• Most estimation techniques ultimately rely to a lesser or greater extent
on expert judgment.

• There is no one best estimation model or method.

People are better at estimating relative magnitude than they are at esti-
mating absolute magnitude. Given work items A and B, it is easier to estimate
whether A requires more or less e↵ort than B, or whether A is simpler or more
complex than B. It is harder to estimate the number of sta↵-days or the code
size needed to implement either A or B.

6.2 Planning Constraints

The Mythical Man Month, Fred Brooks’s influential series of essays on software
project management, begins with

“In many ways, managing a large computer programming project
is like managing any other large undertaking—in more ways than
most programmers believe. But in many other ways it is di↵erent—
in more ways than most professional managers expect.”5

The similarities between software projects and other large undertakings have
to do with people and organizations. With respect to the framework for software
engineering in Fig. 1.1,

the similarities have to do with team management, customer interactions, and
the organizational context. The di↵erences relate to the nature of the technol-
ogy: software is complex; software appears readily changeable (on the surface).

This section begins with the Iron Triangle, which applies to any project, and
goes on to the Adaptive Iron Triangle, which applies to time-boxed iterative
software projects.

6.2.1 The Iron Triangle

The Project Management Triangle (also known as the Iron Triangle) illustrates
the traditional constraints faced by any project: scope, time, and cost;6 see
Fig. 6.1. Scope refers to two things: (1) the functionality to be delivered or
the customer requirements to be met by the project; and (2) quality attributes

104 CHAPTER 6. ESTIMATION

Figure 6.1: The Project Management Triangle, with constraints at the vertices.
A variant of this diagram attaches the constraints to the edges of the triangle,
instead of the vertices.

such as correctness (few defects), security, performance, and availability. The
two vertices at the base of the triangle represent time or schedule constraints
and cost or budget constraints.

The edges of the triangle represent the connections between the constraints.
For example, if scope increases, then time and or cost are bound to be af-
fected. Similarly, if time or cost are reduced, then scope is bound to be a↵ected.
Schedule overruns have typically been accompanied by cost overruns or scope
reductions.

In practice, there is rarely enough time or budget to deliver the full scope
with quality. The challenge of meeting the triple constraints simultaneously has
led to the quip, “Time. Cost. Scope. Pick any two!” An alternative version is,
“Fast. Cheap. Good. Pick and two!”

Example 6.1 : The challenges represented by the Iron Triangle are illustrated
by the experience of a company that will remain nameless.

In a rush to get new products to market, the executives of Company X
pressed its development teams for a 15% reduction in project schedules, com-
pared to similar past projects. The budget remained the same. The teams
responded by spending fewer days, on average, on every activity: design, cod-
ing, verification.

Once the new products were released, it became evident that scope and
quality had su↵ered. Early customers complained about missing features and
product defects. The company reacted to the trouble reports by issuing up-
grades to improve the products that had already been delivered. Eventually,
the problems with the products did get fixed, but the company’s reputation
had been tarnished.

In a bid to repair its reputation, the company prioritized quality over sched-
ule for its next set of projects. 2

6.3. ANCHORING AND COGNITIVE BIAS 105

Figure 6.2: Project Management Triangles for two development processes.

6.2.2 The Adaptive Iron Triangle

The variants of the Iron Triangle in Fig. 6.2 illustrate two approaches. The
triangle in Fig. 6.2(a) is for a traditional (say, waterfall) process that prioritizes
scope. It fixes the scope and allows the time and cost to vary. Such a project
is run until the full scope can be delivered, even if there are schedule and cost
overruns.

The inverted triangle in Fig. 6.2(b) is for a time-boxed iterative process.
With time-boxed iterations, time and cost are fixed; scope varies. Assuming
that quality is a given, “scope varies” means that functionality varies. Lower
priority features that cannot be completed in an iteration are dropped from
that iteration. The completed scope grows with each iteration.

An inverted triangle that fixes time and cost, as in Fig. 6.2(b), is called an
Adaptive Iron Triangle.

Many variants of the Iron Triangle have been proposed to illustrate di↵erent
project constraints. The double triangle in Fig. 6.3 adds a second triangle with
risk, resources, and quality at its vertices.7 Risk reduction will be discussed in
Section ??. Resources refers to the skills, facilities, and equipment needs of a
project. Sometimes “resources” is used as a euphemism for headcount.

In Fig. 6.3, quality has been separated out from scope. When scope and
quality are separated, scope refers to functionality and quality refers to defects.
Depending on the project, attributes such as security and performance may be
included under either scope or quality.

6.3 Anchoring and Cognitive Bias

Before considering estimation techniques that rely on expert judgment, we
pause to reflect on the nature of human judgment itself.

106 CHAPTER 6. ESTIMATION

Figure 6.3: A variant of the Project Management Triangle.

Amos Tversky and Daniel Kahneman introduced the term cognitive bias for
the human tendency to make systematic errors in judgment under uncertainty.
They defined anchoring as follows:

“In many situations, people make estimates by starting from an
initial value that is adjusted to yield the final answer. ... di↵erent
starting points yield di↵erent estimates, which are biased toward
the initial values. We call this phenomenon anchoring.”8

Anchoring has implications for both predictive and adaptive planning. Sim-
ply stated, avoid anchoring during estimation. In order to get unbiased es-
timates, do not convey customers or management expectations about e↵ort,
schedule, or budget. As the next example indicates, including an anchor point
in customer requirements or developer instructions can lead to estimates that
are very di↵erent from the estimates that would be produced without the an-
chor.

Example 6.2 : Participants in a case study were asked to estimate the time
it would take to deliver a software application.9 Each participant was given a
10-page requirements document and a 3-page “project setting” document. The
project setting document had two kinds of information: (1) a brief description
of the client organization, including quotes from interviews; and (2) background
about the development team that would implement the application, including
the skills, experience, and culture of the developers.

The 23 participants were divided into three groups. The only di↵erence
between the instructions to the three groups was a quote on the second page
of the project setting document; see Fig. 6.4. The quote was supposedly from
a middle manager.

Group 1, the control group, got a quote with no mention of the time it
might take to develop the application. Group 2 got a quote with a low anchor,
2 months. Group 3 got a high anchor, 20 months.

6.4. ESTIMATION UNCERTAINTY 107

• Group 1 was given a quote with no mention of time

– “I admit I have no experience estimating.”

• Group 2 got a quote that mentioned 2 months.

– “I admit I have no experience with software projects, but I guess this
will take about 2 months to finish.”

• Group 3 got a quote that mentioned 20 months.

– “I admit I have no experience with software projects, but I guess this
will take about 20 months to finish.”

Figure 6.4: Case study of the e↵ect of anchoring on software e↵ort estimation.

The results confirmed the phenomenon of anchoring. The mean development-
time estimates from the three groups were 8.3 months for the control group, 6.8
months for the 2-month group, and 17.4 months for the 20-month group. The
mean estimates from the experienced participants in the three groups were 9
months, 7.8 months, and 17.8 months, respectively. The di↵erences between the
low-anchor and high-anchor groups are clear: 7-8 months versus 17-18 months.
Further studies would be needed to explain the small di↵erences between the
control group and the low-anchor group. 2

6.4 Estimation Uncertainty

In the early stages, while a project is still being defined, any estimates can at
best be informed guesses, sometimes called guesstimates. Using historical data
from similar projects, guesstimates can be narrowed by setting upper and lower
bounds for size and e↵ort.

During estimation, the range between a pair of upper and lower bounds is
a measure of uncertainty. Uncertainty takes three main forms:

• customer-related, linked to emerging or changing requirements;

• solution-related, linked to the unfinished design and implementation; and

• team-related, linked to the skills and experience of the development team.

6.4.1 Cone of Uncertainty for Predictive Planning

Estimation uncertainty decreases as a project progresses and more information
becomes available. That is, the range between upper and lower bounds narrows.
This intuition motivates the dashed lines in Fig. 6.5. The range between the
upper and lower dashed lines represents the inherent or unavoidable uncertainty
at a given phase of a waterfall process. In the figure, the range is 0.5x-2.0x at

108 CHAPTER 6. ESTIMATION

Figure 6.5: The Cone of Uncertainty illustrates the intuition that uncertainty
decreases as a plan-driven project progresses.

the end of the Feasibility phase. The range narrows to 0.75x-1.5x at the end of
the Planning & Requirements phase. In other words, the best we can do at the
end of the Planning & Requirements phase is a size estimate that is between
75% and 150% of the size of the eventual completed system.

The diagram in Fig. 6.5 has been dubbed the Cone of Uncertainty, after the
shape enclosed by the dashed lines. The Cone of Uncertainty was introduced
by Barry Boehm as a conceptual diagram. Later, Boehm and his colleagues
provided some supporting data that is represented by the dots in Fig. 6.5.10

The filled dots reflect estimates from completed projects; the estimates were
based on “partially defined specifications.” The spread of the filled dots is from
0.5 to 2.0; that is, these estimates based on partially defined specifications were
accurate to within a factor of 2.

The unfilled dots reflect estimates from proposals submitted to the US Air
Force Electronic Systems Division. The proposals were based on “a fairly thor-
ough specification.”

6.4.2 Levels of Uncertainty During Adaptive Planning

The shorter the planning horizon, the lower the estimation uncertainty. The
ovals in Fig. 6.6 represent levels of uncertainty at various stages during adaptive
planning. The smaller the oval, the lower the uncertainty.11

A project involves one or more releases. Each release is the result of a
sequence of iterations. During each iteration, there is day-to-day planning;

6.4. ESTIMATION UNCERTAINTY 109

Figure 6.6: Levels of uncertainty during adaptive planning.

e.g., see the discussion of daily scrums in Section 3.4. The planning horizon
for a project may be several months, the horizon for a release may be a few
months, and the horizon for an iteration may be 1-4 weeks. The shorter the
planning horizon, the lower the uncertainty.

At the project level, there are likely to be broad goals, such as “build a child-
friendly app for a hospital” or “calculate the solar-power potential of a rooftop,”
accompanied by high-level constraints on the schedule and budget. The child-
friendly app may be needed by a certain date. The project to display solar-
power maps may be abandoned if similar previous projects cost significantly
more than the projected budget.

Planning for agile projects is typically focused on release and iteration plan-
ning. Estimation planning for agile iterations is discussed in Section ??. The
oval for day-to-day planning is dashed, since day-to-day planning consists of
small adjustments within he encompassing plans. Iteration planning on the
other hand creates the plan for the next iteration adaptively, while the project
is underway.

When an inner plan changes, the enclosing plans are adapted to reflect the
change.

6.4.3 Three-Point Estimation

Instead of a single value or a range, three-point estimation involves three values:
b, corresponding to the best case; m corresponding to the most likely case; and
w, corresponding to the worst case. These values are then combined by taking
a weighted average, using the formula

estimate = (b+ 4m+ w)/6

This formula is based on a statistical model developed for time estimates in
conjunction with an operations research technique called PERT. The assump-
tions behind the formula are as follows:12

• Estimates b, m, and w for a work item are independent of the other work
items in the project. For example, if module M uses module N , then the

110 CHAPTER 6. ESTIMATION

estimate for M must be independent of N and any other module.

• Estimates b, m, and w are independent of schedule, budget, resource, or
other project constraints. Furthermore, the estimates are assumed to be
independent of anchoring or cognitive bias.

• Technically, the best case b is assumed to be the 95th percentile case and
the worst case w is assumed to be the 5th percentile case.

In practice, the weighted-average formula is roughly right, even though the
assumptions do not fully hold. Some bias is unavoidable. Estimates are not
exact, so there are no guarantees that the best and worst case estimates corre-
spond to the 95th and 5th percentile cases.

6.5 Collective Judgment

Under the right conditions, the consensus estimate from a group can be more
accurate than individual expert judgment. The notion of group wisdom or
collective judgment dates back to Aristotle:

“the many, of whom each individual is an ordinary person, when
they meet together may very likely be better than the few [experts]
... for some understand one part, and some another, and among
them they understand the whole.”13

Example 6.3 : Consider the experience of Best Buy in estimating the number
of gift cards they would sell around Christmas. The estimates from the internal
experts proved to be 95% accurate. The consensus estimates from 100 randomly
chosen employees proved to be 99.9% accurate. Both groups began with the
actual sales number from the prior year.14 2

Group estimation techniques di↵er in how they address two issues:

• Avoiding cognitive bias. Groups are subject to anchoring and groupthink,
where some members are swayed and adapt to the group rather than
giving their own opinion. Structured estimation techniques begin with
each member independently supplying an initial estimate.

• Converging on a consensus. How are the various estimates by the group
members combined into a consensus estimate? For example, the “con-
sensus” may be a weighted average, the median, or a true consensus that
emerges from structured group interaction.

6.5.1 The Original Delphi Method for Group Consensus

The Delphi method is a technique for reaching group consensus, while avoiding
cognitive bias, as much as possible. Its designers were concerned that simply
bringing a group together for a roundtable discussion

6.5. COLLECTIVE JUDGMENT 111

Figure 6.7: An application of the Delphi method with 5 experts. The same
data appears in both tabular and graphical form.

“induces the hasty formulation of preconceived notions, an inclina-
tion to close one’s mind to novel ideas, a tendency to defend a stand
once taken or, alternatively and sometimes alternately, a predispo-
sition to be swayed by persuasively stated opinions of others.”15

Rounds of Estimates and Feedback

With the original Delphi method, the group members were kept apart and
anonymous. Instead of direct contact with each other, they were provided with
feedback about where their estimate stood, relative to the others.

Consensus was achieved by having several rounds of estimates and feedback.

Example 6.4 : The data in Fig. 6.7 is adapted from a forecasting exercise in
the 1950s. The same data appears in tabular form on the left and in graphical
form on the right. The data is for four rounds of forecasts submitted by a group
of five experts.

The first round forecasts range from a low of 125 to a high of 1,000. The
median forecast for the first round is 200. In the second round, the range of
forecasts narrows from a low of 158 to a high of 525. The ranges for the third
and fourth rounds are close: 166-332 and 167-349, respectively.

Note that the group is converging on a range, not on a single forecast. With
forecasts, it is not unusual for experts to have di↵erences of opinion. 2

Examples of Feedback Between Rounds

in di↵erent forecasting exercises, the designers experimented with di↵erent
forms of feedback.16 For example, the feedback might consist of (1) the me-
dian of the group estimates; (2) a weighted average of the group estimates; (3)
a range of estimates, after dropping outliers (for outliers to be dropped, the
number of estimates has to be large enough).

112 CHAPTER 6. ESTIMATION

In the next example, the feedback consists of the median and a range.

Example 6.5 : In one version of the Delphi method, the feedback consisted of
the median and the range of the middle 50% of the group estimates. In other
words, 25% of the estimates were below the range and 25% were above the
range.

For the next round, a group member who stayed with an estimate that was
outside the middle 50% was asked to provide the reasons for submitting an
estimate that was much higher or much lower than the estimates from the rest
of the group. 2

The Delphi method was also used for planning exercises. The next example
considers the allocation of a fixed budget, based on cost-benefit estimates for
a list of items. Iteration planning can also be thought of as the allocation of a
time budget, based on e↵ort-benefit estimates for user stories or work items.

Example 6.6 : In an application of the Delphi method in the mid-1960s, a
group of educators was given a fixed budget and rough cost estimates for a list
of potential educational innovations. Working individually, each educator did
an intuitive cost-benefit appraisal of each item on the list.

The moderators then synthesized the individual opinions into a summary
and provided the summary as feedback to the group members. Delphi rounds
were then used to reach a group consensus. 2

In practice, a majority of applications of the Delphi method resulted in
group consensus. Even in cases where the rounds were stopped before the
group’s opinions had converged, the method was helpful in clarifying the issues
and highlighting the sources of disagreement, leading to better decisions.17

6.5.2 The Wideband Delphi Method

For software projects, group discussion can lead to valuable insights that can
be useful during design, coding, and testing. Any concerns can be recorded and
addressed, pitfalls avoided. A shortcoming of the original Delphi method is that
it isolates group members so it prevents group discussion. The isolation softens
anchoring and cognitive bias, but, perhaps, the benefits of group discussion
outweigh the risks of bias.

The Wideband Delphi method, outlined in Fig. 6.8, combines anonymous
individual estimates with group discussion between rounds. It has been used
successfully for both predictive planning18 and for adaptive planning.

Planning Poker is a Variant of Wideband Delphi

A variant of the Wideband Delphi method, called Planning Poker has been
applied to estimation for agile projects. In Planning Poker, participants are
given cards marked with Fibonacci story points 1, 2, 3, 5, 8, Each developer

6.6. EMPIRICAL MODELS BASED ON HISTORICAL DATA 113

repeat
Participants anonymously submit individual estimates
if the estimates have converged enough

done
else

The moderator convenes a group meeting to discuss outliers

Figure 6.8: The Wideband Delphi Method.

independently and privately picks a card, representing their estimate for the
story under discussion. All developers then reveal their cards simultaneously.
In the unlikely event that the individual estimates are close to each other, a
consensus has been reached. More likely, there will be some high cards and some
low cards, with the others being in the middle. The developers with the high
and low cards may have good reasons for assigning high or low story points.
Or, it may be that they are missing something.

Following some group discussion, the developers then do a second round of
making independent estimates, which they reveal simultaneously. If a consensus
has not been reached, then the group engages in further discussion and rounds
of making independent estimates.

A moderator captures key comments from the group discussion of a story,
so that the comments can be addressed during implementation and testing.19

6.6 Empirical Models Based on Historical Data

Estimation models rely on historical data to estimate future development e↵ort.
E↵ort estimates are then used to address questions about how long a project
will take and how much it will cost.

The “cost” of a work item can be represented by either the estimated pro-
gram size or the estimated development e↵ort for the item. Size and e↵ort are
related, but they are not the same. As size increases, e↵ort increases, but by
how much?

The challenge is that, for programs of the same size, development e↵ort
can vary widely, depending on factors such as team productivity, problem do-
main, and system architecture. Team productivity can vary by an order of
magnitude.20 Critical applications require more e↵ort than casual ones. E↵ort
increases gradually with a loosely coupled architecture; it rises sharply with
tight coupling.

Project managers can compensate for some of these factors, further compli-
cating the relationship between size and e↵ort. Experienced project managers
can address productivity variations when they form teams; say, by pairing a
novice developer with someone more skilled. Estimation can be improved by

114 CHAPTER 6. ESTIMATION

Figure 6.9: How does e↵ort grow with size?

relying on past data from the same problem domain; for example, smartphone
apps can be compared with smartphone apps, embedded systems with embed-
ded systems, and so on. Design guidelines and reviews can lead to cleaner
architectures, where e↵ort scales gracefully with size.

The relationship between size and e↵ort is therefore context dependent.
Within a given context, however, historical data can be used to make helpful
predictions.

For large projects or with longer planning horizons, it is better to work
with size. Iteration planning, with its short 1-4 week planning horizons, is
often based on e↵ort estimates. The discussion in this section is in terms of
e↵ort—the same estimation techniques work for both size and e↵ort.

6.6.1 Estimating E↵ort from Size

Consider the problem of estimating development e↵ort E from program size S.
In other words, determine a function f such that

E = f(S)

If f is a linear function, then estimated e↵ort E is proportional to size S: if
size doubles, then e↵ort doubles.

E↵ort does indeed increase with size, but not necessarily linearly. Does it
grow faster than size, as in the upper curve in Fig. 6.9? Or does it grow slower
than size, as in the lower curve? The dashed line corresponds to e↵ort growing
linearly with size.

The three curves in Fig. 6.9 were obtained by picking suitable values for the
constants a and b in the equation

E = aSb (6.1)

The curves in Fig. 6.9 correspond to the following cases:

• Case b = 1 (dashed line). The function in Equation (6.1) is then linear.

6.6. EMPIRICAL MODELS BASED ON HISTORICAL DATA 115

• Case b < 1 (lower curve). This case corresponds to there being economies
of scale; for example, if the team becomes more productive as the project
proceeds, or if code from a smaller project can be reused for a larger
project.

• Case b > 1 (upper curve). The more usual case is when b > 1 and
larger projects become increasingly harder, either because of the increased
need for team communication or because of increased interaction between
modules as size increases. In other words, the rate of growth of e↵ort
accelerates with size.

6.6.2 The Cocomo Family of Estimation Models

Equation (6.1), expressing e↵ort as a function of size is from a model called
Cocomo-81. The name Cocomo comes from Constructive Cost Model. The
basic Cocomo model, introduced in 1981, is called Cocomo-81 to distinguish it
from later models in the Cocomo suite.21

For a given project, the constants a and b in Equation (6.1) are estimated
from historical data about similar projects. IBM data from waterfall projects
in the 1970s fits the following (E is e↵ort in sta↵-months and S is in thousands
of lines of code):22

E = 5.2 S0.91 (6.2)

Meanwhile, TRW data from waterfall projects fits the following (the three
equations are for three classes of systems):23

E = 2.4 S1.05 Basic Systems

E = 3.0 S1.12 Intermediate (6.3)

E = 3.6 S1.20 Embedded Systems

The constants in (6.3) can be adjusted to account for factors such as task
complexity and team productivity. For example, for a complex task, the es-
timated e↵ort might be increased by 25% (the actual percentage depends on
historical data about similar projects by the same team). Such adjustments can
be handled by picking suitable values for the constants a and b in the general
equation (6.1).

6.6.3 Cocomo II: A Major Redesign

Cocomo-81 was applied successfully to waterfall projects in the 1980s, but it lost
its predictive value as software development processes changed. As processes
changed, the data relating e↵ort and size changed and the earlier statistical
models no longer fit.

A major redesign in the late 1990s resulted in Cocomo II. The redesign
accounted for various project parameters, such as the desired reliability and

116 CHAPTER 6. ESTIMATION

the use of tools and platforms. With Cocomo II and its many variants, the
relationship between e↵ort E and size S is given by the general form

E = aSb + c (6.4)

Constants a, b, and c are based on past data about similar projects. Factors
like team productivity, problem complexity, desired reliability, and tool usage
are built into the choice of constants a, b, and c.

New estimation models continue to be explored. With each advance in
software engineering, the existing models lose their predictive power.24 Exist-
ing models are designed to fit historical data, and the purpose of advances in
software development is to improve upon (disrupt) the historical relationship
between development e↵ort, program size, and required functionality.

6.7 Conclusion

Project planning takes two forms: predictive for plan-driven processes and
adaptive for iterative agile processes.

Predictive planning is up-front, prior to design. Uncertainty is greatest in
the early stages of a project, so key decisions about team formation, work as-
signments, schedules, and budgets are made in the face of inherent uncertainty.
The decisions may be revisited and refined as the project proceeds, but the
overall direction of the project is set early.

Adaptive planning is ongoing: plans are improved by adjusting them during
iteration planning. The plan for the current iteration benefits from learnings
from prior iterations. Planning accuracy increases across iterations; uncertainty
decreases. Rough estimates su�ce for prioritizing work items during iteration
planning.

During both predictive and adaptive planning, cost-benefit tradeo↵s are
based on estimates of development e↵ort and program size. Expert judgment
and statistical models are the two main approaches to estimation. Both have
strengths and limitations:25

• Expert judgment can be more e↵ective and accurate, but it is time con-
suming, so it cannot be used widely.

• Statistical models may be less e↵ective, but they can run automatically
to complement expert judgment.

Estimates are subject to cognitive bias, the human tendency to make sys-
tematic errors of judgment under uncertainty. Anchoring is the tendency to
make estimates by starting from an initial value that is adjusted to yield the
final answer. The initial value is referred to as an anchor. Di↵erent anchors
lead to di↵erent estimates.

The Wideband Delphi method develops consensus estimates by tapping the
collective judgment of a group of experts. In an attempt to avoid cognitive bias,

EXERCISES FOR CHAPTER 6 117

the experts are asked to create their own independent initial estimates. The
group then meets to discuss the individual estimates. After group discussion
and feedback, the experts independently create another round of estimates. The
process continues through rounds of estimation and feedback until the group
converges on a consensus estimate.

When all is said and done, programmers are optimists. The tendency to
underestimate has prompted quips like the following:

“The first 90 percent of the code accounts for the first 90 percent
of the development time. The remaining 10 percent of the code
accounts for the other 90 percent of the development time.”26

Exercises for Chapter 6

Exercise 6.1 : Are the following statements True or False?

a) The expected overall planning e↵ort is less with predictive planning than
with adaptive planning.

b) The Iron Triangle illustrates connections between time, cost, and scope.

c) The Adaptive Iron Triangle fixes time and scope and lets costs vary.

d) Anchoring is the human tendency to stick to a position, once taken..

e) The shorter the planning horizon, the lower the uncertainty.

f) Anchoring reduces uncertainty during planning.

g) Planning Poker involves successive rounds of individual estimation and
group discussion.

h) Wideband Delphi involves successive rounds of individual estimation and
group discussion.

Exercise 6.2 : In order to clarify the relative merits of formal models and
expert judgment for development e↵ort estimation, Magne Jørgensen and Barry
Boehm engaged in a friendly debate [13].

Summarize their arguments, pro and con, for

a) expert judgment.

b) formal models.

Based on their arguments, when and under what conditions would you recom-
mend estimation methods that reoly on

c) expert judgment.

d) formal models.

118 CHAPTER 6. ESTIMATION

Notes for Chapter 6

1Jørgensen [12] reviews “what we do and don’t know about software development e↵ort
estimation.” See also the friendly debate between Jørgensen and Boehm [13] about expert
judgment versus formal models.

2The Project Management Institute publishes PMBOK, a guide to the project manage-
ment body of knowledge [17].

3The IEEE Software Engineering Body of Knowledge [8] defines project planning to con-
sist of process planning[deliverable planning; e↵ort, schedule, and cost estimation; resource
allocation; risk management, quality planning; plan management. Plan management consists
of managing changes to the plan itself.

4Jørgensen [12].
5The essays in the Mythical Man Month [7] are based on Fred Brooks’s experience as the

project manager for IBM’s Operating System/360, a very large and complex software project.
6Martin Barnes is credited with creating the Iron Triangle for a 1969 course [22]. Trilemmas

have been discussed in religion and philosophy for centuries.
7A Wikipedia article [23] credits the double Iron Triangle to PMBOK 4.0 [17].
8Tversky and Kahneman [20]. Kahneman won the 2002 Nobel Prize in Economic Sciences

for his insights into “human judgment and decision making under uncertainty.”
9Example 6.2 is based on a case study by Aranda and Easterbrook [1].

10Diagrams similar to the Cone of Uncertainty were in use in the 1950s for cost estimation
for chemical manufacturing [16]. Boehm [4, p. 311] introduced the cone as a conceptual
diagram for software estimation. The supporting data in Fig. 6.5 is from a 1995 paper by
Boehm et al. [5].

11Cohn [9, ch. 3] discusses the multiple levels of agile planning. Figure 6.6 is adapted from
the “planning onion” in [9].

12See Moder, Phillips, and Davis [15, ch. 9] for the statistical underpinnings of the weighted-
average formula for three-point estimation. PERT (Program Evaluation and Review Tech-
nique) is a project management tool that was developed for the U.S. Navy in the 1950s.
PERT involves three-point time estimation.

13The quote about group wisdom is from Aristotle [2, Book 3, Part 11].
14Smith and Sidky [19, ch. 14]
15Dalkey and Helmer [10] describe the Delphi method, which was designed at RAND cor-

poration in the 1950s.
16Examples 6.5 and 6.6 are based on Helmer’s [11] retrospective of the Delphi method.
17Helmer [11].
18Barry Boehm [4, p. 335] is credited with the Wideband Delphi method.
19See Cohn [9, ch 6] for Planning Poker.
20Results from numerous studies, going back to the 1960s, support the observation that

there are order of magnitude di↵erences in individual and team productivity. From early
studies by Sackman, Erikson, and Grant [18], “one poor performer can consume as much
time or cost as 5, 10, or 20 good ones.” McConnell [14] outlines the challenges of defining,
much less measuring, software productivity.

21Boehm and Valerdi’s [6] review of the Cocomo family of formal models includes some
historical perspective on models.

22Walston and Felix [21].
23Boehm [4].
24Boehm and Valerdi [6] note that “although Cocomo II does a good job for the 2005

development styles projected in 1995, it doesn’t cover several newer development styles well.
This led us to develop additional Cocomo II-related models.”

25Jørgensen and Boehm [13] debate which is better: formal models or expert judgment.
26Attributed to Tom Cargill by Bentley [3].

REFERENCES FOR CHAPTER 6 119

References for Chapter 6

1. Jorge Aranda and Steve Easterbrook. Anchoring and adjustment in software esti-
mation. Proceedings 10th European Software Engineering Conference and 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (2005)
346-355.

2. Aristotle. Politics. See http://classics.mit.edu/Aristotle/politics.html for the
Benjamin Jowett translation.

3. Jon Bentley. Programming Pearls: bumper-sticker computer science. Comm. ACM
28, 9 (September 1985) 896-901.

4. Barry W. Boehm. Software Engineering Economics (1981).

5. Barry W. Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby. Cost models for future life cycle processes: COCOMO 2.0, Annals of
Software Engineering 1, 1 (1995) 57-94.

6. Barry W. Boehm and Ricardo Valerdi. Achievements and challenges in Cocomo-based
software resource estimation. IEEE Software (September-October 2008) 74-83.

7. Frederick P. Brooks, Jr. The Mythical Man Month: Essays on Software Engineering.
(1975) Addison-Wesley, Reading, Mass. See also the Anniversary Edition (1995) with
four added chapters.

8. Pierre Bourque and Richard E. Farley (eds). SWEBOK Version 3.0: Guide to the
Software Engineering Body of Knowledge. IEEE (2014).

9. Mike Cohn. Agile Estimating and Planning. Prentice Hall (2006).

10. Norman Dalkey and Olaf Helmer. An experimental application of the Delphi method
to the use of experts. Management Science 9, 3 (April 1963) 458-467.

11. Olaf Helmer. Analysis of the Future: The Delphi Method. RAND Corporation, Report
P-3558 (March 1967).

12. Magne Jørgensen. What we do and don’t know about software development e↵ort
estimation. IEEE Software (March-April 2014) 13-16.

13. Magne Jørgensen and Barry Boehm. Software development e↵ort estimation: formal
models or expert judgment? IEEE Software (March-April 2009) 14-19.

14. Steve McConnell. Measuring software productivity. ACM Learning Webinar (January
11, 2016). http://resources.construx.com/wp-content/uploads/2016/02/
Measuring-Software-Development-Productivity.pdf .

15. Joseph J. Moder, Cecil R. Phillips, and Edward D. Davis. Project Management with
CPM, PERT, and Precedence Programming, 3rd ed. Van Nostrand Reinhold, New
York (1983).

16. W. T. Nichols. Capital cost estimating. Industrial and Engineering Chemistry 43, 10
(1951) 2295-2298.

17. Project Management Institute. A Guide to the Project Management Body of Knowl-
edge (PMBOKGuide). Project Management Institute (2008)

18. H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory experimental studies com-
paring online and o✏ine programming performance. Communications of the ACM
11, 1 (January 1968) 3-11.

19. Greg Smith and Ahmed Sidky. Becoming Agile: ... in an imperfect world, Manning
Publications (2009).

20. Amos Tversky and Daniel Kahneman. Judgement under uncertainty: heuristics and
biases. Science 185 (September 27, 1974) 1124-1131.

21. C. E. Walston and C. P. Felix. A method of programming measurement and estimation.
IBM Systems Journal 16, 1 (March 1977) 54-73.

120 CHAPTER 6. ESTIMATION

22. Patrick Weaver. The origins of modern project management. Originally presented at
the Fourth Annual PMI College of Scheduling Conference (2007).
http://www.mosaicprojects.com.au/PDF_Papers/P050_Origins_of_Modern_PM.pdf

23. Wikipedia. Project Management Triangle.
https://en.wikipedia.org/wiki/Project_management_triangle

Chapter 7

Goals and Metrics

“I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
express it in numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of science, whatever the matter
may be.”

— William Thomson, Lord Kelvin.

1

Goals and metrics are essential for making informed decisions during software
development. Questions abound. The following are just some of the top ques-
tions collected during one study:2

• “How do users typically use my application?

• “What parts of a software product are most used and/or loved by cus-
tomers?

• “How e↵ective are the quality gates we run at checkin?”

• “What is the impact of a code change or requirements change to the
project and tests?”

Behind each such question is a goal. Why is the questions being asked?
What would be the benefit if the question were answered? In other words,
what is the goal behind the question?

This chapter deals with goals: their nature; how to clarify them; how to act
on them; and how to measure progress toward achieving them.

121

122 CHAPTER 7. GOALS AND METRICS

Figure 7.1: High level activities and their associated goals and metrics.

7.1 Introduction to Goals

With any activity, we can associate goals that provide context and metrics
that define success for the activity. Sample goals and metrics associated with
software development activities appear in Fig. 7.1.

In the user-stories template from Fig. 3.7,

As a hstakeholderi I want to hdo some taski
so that hI can achieve some benefiti

the benefit corresponds to a goal and the task corresponds to an activity to
achieve the goal.

Goals can be used to make decisions and keep a project on track. When a
user request for convenient authentication conflicts with an IT sta↵ requirement
for tight security, goals can be used to resolve and prioritize these conflicting
requirements. During development, goals can help prioritize between function-
ality, schedule, and budget.

This chapter deals with a goal-directed approach to identifying actions and
metrics for a project. The approach is as follows:

• Set initial goals that represent business value.

• Use questions to refine the goals until they can be turned into actions.

• Identify actions and metrics based on the refined goals.

7.1.1 Soft and Hard Goals

Initial goals may be expressed as aspirations, such as “Increase customer sat-
isfaction” or “Reduce costs.” A goal without success or satisfaction criteria is
called a soft goal. A goal with a success criterion is hard goal.

The “so that” part of the following user story is a soft goal:

7.1. INTRODUCTION TO GOALS 123

As a manager I want to have timely sales information
so that I can manage inventories

The soft goal, “manage inventories,” can be refined:

reorder items with low inventory

Further refinement yields a hard goal that can be tested:

reorder items that will be out of stock in less than a week

This goal appears in the following revised version of the user story

As a manager I want to have daily sales and stock information
so that I can reorder items that will be out of stock in less than a week

This user story is specific about the kind of data (sales and inventory),
about when the data is needed (daily), and about the benefit (keeping items in
stock). From sales data about the rate at which items are selling and current
inventory levels, the manager can project when an item will go out of stock.
The story assumes that reordered items can be delivered within a week. It can
be rewritten to allow for di↵erent delivery intervals for di↵erent items.

7.1.2 SMART Criteria

The acronym SMART stands for Specific, Measurable, Achievable, Relevant,
and Time-bound. SMART criteria can be applied to goals, questions, and
actions; they were applied to user stories in Section 3.6.1.

SMART goals are hard goals. From SMART goals, we can identify actions
that result in progress toward the goal and metrics to assess whether the goal
is satisfied.

Specific. A specific goal identifies what needs to be accomplished: an achieve
or cease goal identifies the desired state; a maintain or avoid goal identifies the
invariant property to be maintained or avoided; an optimize goal identifies what
needs to be optimized.

Measurable. A measurable goal is accompanied by a criteria for its attain-
ment. For example, consider the goal of reducing costs by 15%. Costs can be
measured. The 15% is the criterion for determining if the cost reduction goal
has been attained.

Achievable. A goal that cannot be attained is not very helpful. Achievability
is often relative to other constraints, such as time, skills, and resources, since
the goal must be achievable within the onstraints.

Relevant. A goal is relevant if attaining the goal will produce business value.

Time-Bound. The goal is achievable within the time bound.

SMART criteria originated in a business setting; they are attributed to Peter
Drucker’s management by objectives. Drucker wrote about setting relevant

124 CHAPTER 7. GOALS AND METRICS

goals that reflect “the objective needs of the business rather than what the
individual manager wants,” and of the need to measure results against the
goal. His advice on measurements is relevant to software development:

“Those measurements need not be rigidly quantitative: nor need
they be exact. But they have to be clear, simple and rational.
They have to be relevant and direct attention and e↵orts where
they should go.”3

7.1.3 A Temporal Classification of Goals

Frequently occurring classes of goals include the following:4

• Achieve/Cease goals eventually get to a desired state; e. g., land a rover
on Mars.

• Maintain/Avoid goals keep a property invariant; e.g., the shopping site is
up 24 hours a day, 7 days a week.

• Optimize goals involve a comparison between the current state and the
desired state; e.g., reduce costs by 15%.

7.2 Working with Questions to Clarify Goals

High level goals, such as “Increase customer satisfaction,” are simple to state
and easy to link to the business value of a project. Such soft high level goals
can then be refined into hard SMART goals. Even more specific goals, such as
“Reduce costs by 15%” may need to be refined further before they can be acted
on. Actions to reduce costs may not be obvious until we dig into how costs can
be reduced.

This section deals with the following simple kinds of questions that are
helpful for identifying and refining goals:5

• Why. Questions of the form “Why are we doing x?” explore the context
for activity x. They are useful for establishing the relevance of x to a
goal, or for eliciting the goal behind activity x. They are also useful for
eliciting higher goals from lower subgoals.

• Why Not. Questions of the form “Why not do x?” explore constraints or
conditions on doing x. The phrasing of the question can be changed; e.g.,
a related form of the question is “What stops us from doing x?”

• How. Questions of the form “How can we accomplish x?” explore poten-
tial subgoals. “How else ... ,” questions bring out alternatives.

• How Much. Questions of the form “How will we know whether x” explore
criteria for goal x. “How many ...?” or “How much ...?” questions bring
out possible metrics.

7.2. WORKING WITH QUESTIONS TO CLARIFY GOALS 125

7.2.1 Why Questions for Cause and Relevance

Repeated Why questions can be applied to test the relevance of a goal. In the
following example, the starting goal is “Add sta↵:”

Why do we want to add sta↵?

To improve the time it takes to respond to complaints.

Why do we want to improve response time?

Because it is very e↵ective for improving customer satisfaction.

The questions brought out the goals of improving response time and customer
satisfaction. (Improving time to first response is perhaps more important for
customer satisfaction than the time it takes to actually fix the problem.)

Five Why’s

Five Why’s is a technique for identifying the root causes of a problem:6

1. Given a problem, respectfully ask “Why?” Why did the problem occur?

2. Identify the possible causes of the problem.

3. For each possible cause, keep asking Why questions to uncover successive
causes. Often, five levels of Why questions are enough to uncover a root
cause.

4. Backtrack to explore another line of reasoning to uncover other root
causes—there may be more than one.

Example 7.1 : On January 15, 1990, the AT&T Long Distance Network crashed.
It took nine hours to track down the causes and restore service.

No single technique can do justice to such a complex problem, so the fol-
lowing is an oversimplified account. Nevertheless, it will serve to illustrate how
repeated Why questions can quickly dig deep into a problem.

All circuits are busy.

Why? The switches are not accepting calls.

Why? Their control software is busy doing a reset.

Why? The recovery code keeps reinitializing the switch.

Why? A signal about an incoming call triggers the recovery code.

Why? The software has a defect and can’t handle the incoming call.

The defect was introduced by a software upgrade in mid-December 1989.
The software behaved normally until a hardware malfunction on January 15,
1990 uncovered the defect.7 2

126 CHAPTER 7. GOALS AND METRICS

7.2.2 How Questions for Refining Goals

How and How-else questions elicit potential subgoals that contribute to the
satisfaction of a higher goal. They bring out potential solution approaches.

Consider the following questions, based on the high level goal, “Reduce
costs:”

How can we reduce costs?
Reduce travel expenses.

How else can we reduce costs?
Reduce sta↵.

How else can we reduce costs?
Reduce service and repair costs after the system is delivered.

The questions elicited three alternative approaches to reducing costs.

“How will we know?” explores criteria for accomplishing a goal. For exam-
ple,

How will we know whether we have designed and built
what customers want?

When the system passes the acceptance tests.

“How many?” and “How much?” elicit metrics:

How many of the acceptance tests must the system pass?

It must pass 100% of them.

7.2.3 No Substitute for Insight

The Why and How questions in this section are helpful for getting started. They
are not a substitute for insightful inquiry.

Where do insights come from? While insights can come from anybody, the
people who set the goals and who act upon them are in the best position to
supply the insights. They have the expertise. They know their context, what’s
possible and what’s not possible.

Example 7.2 : Consider the starting goal: Track changes during software de-
velopment. Why questions bring out higher or unstated goals; e.g.,

Why track changes?
To identify risky files.

Why identify risky files?
To improve product quality.

The connection between product quality and risky files is not obvious, so we
can follow up with a How question:

7.3. WORKING WITH GOALS: GOAL ELABORATION 127

Figure 7.2: A goal hierarchy.

How can identifying risky files help improve product quality?
Risky files tend to have many more defects.

The underlying insight—risky files tend to have many more defects—is based
on knowledge of and experience with software development.8

The following question probes the connection between changes and risky
files:

How can tracking changes help with identifying risky files?

Files that have been changed by many developers are riskier
than files that have been changed by a single developer.

In general, there is no set order in which to ask Why and How questions: the
order depends on the flow of the conversation. The above conversation would
have taken a very di↵erent turn, depending on the answers to the questions.
For example, the answer to the first question may easily have been di↵erent:

Why track changes?
To do software development more e�ciently.

It is left as an exercise to the reader to develop this line of inquiry into
e�cient software development. 2

7.3 Working with Goals: Goal Elaboration

As the number of goals increases, it is helpful to organize them into a hierarchy
that links goals and subgoals. The hierarchy in Fig. 7.2 is a tree, but, in general,
a subgoal may be shared by multiple higher goals. For example, “Improve
product quality” can be a subgoal of both “Improve customer satisfaction” and
“Reduce the cost of support after delivery.”

128 CHAPTER 7. GOALS AND METRICS

Figure 7.3: Examples of and and or nodes in a goal hierarchy.

7.3.1 Goal Hierarchies

A goal hierarchy has nodes representing goals and edges representing relation-
ships between goals. The nodes in the hierarchy are of two kinds:

• An and node represents a goal G with subgoals G1, G2, ..., Gk, where every
one of G1, G2, ..., Gk must be satisfied for G to be satisfied. For example,
the goal in Fig. 7.3(a) of beating a competitor is satisfied only if both of
the following are satisfied: release the product by August; and deliver a
superior product.

• An or node represents a goal G with subgoals G1, G2, ..., Gk, where G can
be satisfied by satisfying any one of G1, G2, ..., Gk. For example, the goal
in Fig. 7.3(b) of reducing costs can be satisfied by doing any one or any
combination of the following: reduce travel costs; reduce sta↵; or reduce
the cost of service after delivery.

Or nodes will be identified by a double arc connecting the edges between
the goal node and the nodes for the subgoals.

Example 7.3 : The goal hierarchy in Fig. 7.2 has two initial goals. In general,
a project can have multiple initial goals.

In Fig. 7.2, there is only one goal with more than one subgoal: “Deliver
superior product.” This goal has an and node, so its three subgoals must all be
satisfied for this goal to be satisfied.

This example is motivated by the browser wars between Netscape and Mi-
crosoft in the 1990s; see Section 3.2. Netscape’s strategy was to deliver a
browser that ran on multiple operating systems; Microsoft’s browser ran only
on Windows, at the time. Netscape also closely monitored the beta releases
from Microsoft to ensure that their browser would be competitive. 2

7.3.2 Contributing and Conflicting Goals

A goal such as “Deliver a quality product” contributes strongly to the higher
goal, “Deliver a superior product.” Monitoring a competitor’s beta releases does

7.3. WORKING WITH GOALS: GOAL ELABORATION 129

Figure 7.4: Examples of contributing and conflicting goals.

contribute to delivering a superior product, but not as strongly. Meanwhile,
there can be conflicting goals: it is not unusual to see “Improve quality” with
the potentially conflicting goal “Reduce sta↵.”

Goal G1 conflicts with goal G2 if satisfaction of G1 hinders the satisfaction
of G2. For example, “Add testers” conflicts with “Reduce sta↵.” If we add
testers, we are adding, not reducing sta↵. Conversely, if we reduce sta↵, we are
potentially hindering the addition of testers—potentially, since the reductions
could be elsewhere.

Goal G1 contributes to goal G2 if satisfaction of G1 aids the satisfaction of
G2. For example, “Add testers” contributes to “Improve product quality.”

The conflicts and contributes relationships will be represented by directed
graphs with goals for nodes. An edge is marked ++ for a strong contribution, +
for a weak contribution, -- for a strong conflict, and - for a weak conflict. For
clarity, edges representing weak contributions or conflicts will be dashed.

Example 7.4 : The graph in Fig. 7.4 shows the contributes and conflicts rela-
tions for the goals in Example 7.3.

Since subgoals contribute to higher goals, there are edges from subgoals to
higher goals. Two of the edges are for strong contributions. The third edge is
for a weak contribution from “Monitor competitor’s betas.”

There are two conflicts edges, both to “Test throughly.” At Netscape, the
number of testers was fixed, so more platforms (operating systems) to test
meant more work for the same testers. Furthermore, every beta release had to
be fully tested, so more frequent beta also meant additional work for the same
testers. Hence the conflicts edges from “Frequent beta releases” and “Run on
multiple platforms” to “Test thoroughly.” 2

130 CHAPTER 7. GOALS AND METRICS

7.3.3 Business-, Software-, and Project-Level Goals

In practice, it can be helpful to group goals as follows:9

• Business goals are tied to organizational objectives, such as “Reduce
costs” and “Increase revenues.” They are independent of specific strate-
gies for achieving the goal.

• Software goals are tied to the system to be developed. Software goals can
be obtained from business goals by asking How questions. For example,
“Increase revenues” might lead to a software goal: “Deliver a cloud service
to do x,” where x relates to the organization’s business.

• Project goals are tied to the implementation of the system. They can
be refined from software goals by asking How questions. For example,
project goals might be tied to project deliverables or team training.

For each one of these categories—business, software, project—there can be
multiple levels. The same elaboration and refinement approaches apply at all
levels.

7.3.4 When to Stop Goal Elaboration

Goal refinement can stop when the subgoals become SMART, since actions can
be based on SMART goals. For example, consider the following refinement of
“Run on multiple platforms:”

How many platforms does the browser need to run on?
Windows, Mac OS, and Unix.

No further refinement is needed, since the development team knows which op-
erating systems the browser must work on.

7.4 Working with Metrics

A metric quantifies progress towards a goal. If the goal is to pass all acceptance
tests, then the percentage of successful tests is a metric for quantifying progress
toward the goal.

A criterion is a specific value of a metric that serves as a reference for deter-
mining whether a goal has been achieved. In the above example of acceptance
tests, the criterion is 100%. For the goal to be reached, 100% of the tests must
pass.

Bowing to popular usage, we make little distinction between the terms “met-
ric” and “measure.” Careful readers will note that measure corresponds to a
class and a specific metric corresponds to an instance, as in the following:

measure: length
metrics: miles, kilometers

7.4. WORKING WITH METRICS 131

7.4.1 Data Collection

Metrics require data. A metric such as the number of changes by a developer
by week requires data about changes made by developers.

Ideally, metrics would come first and, from the metrics, we would know what
data to collect. In practice, the data that is available constrains the metrics that
can be used. The reasons are twofold. First, for metrics that require historical
data, we have no choice but to rely on the available historical data. Second,
measurement is often an added activity that gets low priority, compared to
design, coding, and testing. Most projects therefore rely on the data collected
unobtrusively by the tools that they use for software development.

The main sources of data include the following:

• Version control systems that track changes to code and documents.

• Personnel directories that track information about team members, such
as work location and dates of service.

• Trouble ticket systems that track customer service requests.

• Customer information systems that track information about systems in-
stalled at customer sites.

Systems like the above include a wealth of data, although the raw data may
not be in a form that is readily usable.

Example 7.5 : In a large organization, with software developers in multiple
countries, consider the problem of finding relevant expertise.

The change history of a piece of code identifies the people who touched the
code, including the original developers, the people who fixed customer found
defects, and the people who made enhancements. By looking at the pattern of
changes made by a person, we can infer their experience with the code. Anyone
who made significant changes to a given file presumably knows that file. Anyone
who made changes in multiple places must have broad knowledge of that set of
files.

The expertise browser illustrated in Fig. 7.5 brings together change infor-
mation from version control system, organizational information from personnel
directories, and modification requests for trouble ticket systems.10 The panes
for Developers, Organizations, and Folders are linked, so a selection in one pane
triggers changes to the contents in the other panes. Personnel information is
needed, since the original developers of a file may have moved on to other
projects or may have left the company entirely. 2

A key challenge with data collection is that even if the data is available,
the desired data may be spread over multiple systems from di↵erent vendors.
Accuracy is another issue: even if the data was initially correct when entered,
it may not be up to date, and hence inaccurate.

In summary, data collection is a major issue.

132 CHAPTER 7. GOALS AND METRICS

Figure 7.5: A rendering of an expertise browser due to Audris Mockus.

7.4.2 Case Study: Customer Satisfaction

Sometimes, the relevant metrics are evident from a goal, as in the example of
acceptance tests at the beginning of this section.

In general, finding the right subgoal and then the right metric can be a
challenge. For example, the authors of an IBM study noted that “you are likely
to get two conflicting answers” if you ask which of the following has a greater
impact on customer satisfaction:11

• the number of problems on a product, or

• service call response time.

The IBM study was based on three years of actual data from service centers
that handled customer calls. It examined 15 di↵erent metrics, for an operat-
ing systems product. The metrics related to customer found defects and to
customer service requests; see Fig. 7.6.

The study examined the correlation between the 15 metrics and customer
satisfaction surveys. It found the greatest correlation between the following two
factors and satisfaction surveys”

1. Number of defects found in previous “fixes” to code or documentation

2. Total number of customer service requests that were closed

The next two factors were much less significant than the first two:

3. Total number of fixed customer-found defects in code or documentation

4. Number of days to resolution for requests handled by Level 2

7.5. PUTTING IT ALL TOGETHER 133

• Total number of fixed customer-found defects in code or documentation

• Number that were dubbed ?genuine? and reported for the first time

• Number that were rejected by the Level 3 support personnel

• Number of pointers to components touched by a first-time genuine defect

• Number of defects found in previous ?fixes?

• Number of defects in code or documentation that were received

• Backlog of defects in code or documentation

• Total number of customer service requests that were closed

• Number that were for preventive service

• Number that were for installation planning

• Number that were for code or documentation; e.g., 2nd+ defect reports

• Number that were not related to IBM code or documentation

• Number of customer service requests handled by Level 2 support

• Number of days to resolution for requests handled by Level 2

• Number of users, a measure of the size of the installed base

Figure 7.6: Which of these customer-service metrics has the most e↵ect on
customer satisfaction? All 15 were managed and tracked.

7.5 Putting It All Together

The extended example in this section is for support services for systems deliv-
ered and installed at a customer site. The example starts with two top level
goals:

• Customer Quality. Improve customer perceptions of the quality of the
installed system.

• Service Experience. Improve the service experience when customers report
troubles with the installed system.

The goal hierarchy in Fig. 7.7 provides a roadmap for the extended example.

7.5.1 Improve Product Quality

The first approach to improving customer quality is to improve the quality of
the delivered product. For simplicity, we consider just one way of improving
product quality: improve system testing so that there will be fewer defects in
the systems that are delivered to customers. A metric associated with improved
system testing is the total number of system tests.

• Improve quality as perceived by customers.

134 CHAPTER 7. GOALS AND METRICS

Figure 7.7: A goal hierarchy.

– How? Improve the quality of the delivered product.

⇤ How? Improve system testing.
Metric: Number of system tests.

· How? Add testers to do more product testing.
Metric: Total number of testers.

Improved system testing has a further subgoal: add testers.

7.5.2 Improve Field Quality

Improving customer quality has an alternative subgoal: improve quality during
operations in the field. For clarity, the top level goal of improving customer
quality is repeated in the following:

• Improve quality as perceived by customers.

– How else? Improve quality during operations in the field.

⇤ How? Improve installation.
Metric: Percentage of systems that fail in the first month.

⇤ How else? Reduce the number of defective “fixes.”
Metric: Percentage of defective fixes.

Installation issues tend to show up early, so the percentage of failures in the
first month should go down if installations go well. From the IBM study in
Section 7.4, reducing the number of defective “fixes” is strongly correlated with
customer satisfaction.

EXERCISES FOR CHAPTER 7 135

7.5.3 Improve Days to Resolution

The second top-level goal is to improve the service experience. The first alter-
native for this goal—improve field quality—has already been considered. The
second alternative is to reduce the number of days it takes to resolve a customer
problem. Here, the approach is to add service support sta↵ for faster resolution
of problems. The metrics are the median number of days to resolution and the
number of support sta↵ added.

• Improve the service experience for customers.

– How? Improve quality during operations in the field.

Considered above.

– How else? Improve days to resolution of a customer problem.

⇤ How? Add service support sta↵.
Metric: Total number of service support sta↵.
Metric: Median days to resolution.

7.5.4 Improve Time to First Response

Finally, the third alternative for improving the service experience:

• Improve the service experience for customers.

– How else? Improve time to first response to customer service request

Add service sta↵

See above.

Metric: Median time to first response.

Exercises for Chapter 7

Exercise 7.1 : The goals for the San Francisco Bay Area Rapid Transit System
(BART) included the following:12

• Serve more passengers

• Minimize costs

• Improve safety

Apply the Goals and Metrics approach to create an action plan.

a) Show the questions that you use for goal elaboration. Explain the ratio-
nale for each question.

b) Draw the goal hierarchy.

c) Identify the supporting and conflicting goals

136 CHAPTER 7. GOALS AND METRICS

d) Show the metrics. For each metric, explain why it is a good metric.

Exercise 7.2 : Consider the soft goals

• Take products to market quickly

• Create products e�ciently

Apply the Goals-Activities-Metrics approach to create an action plan.

a) Show the questions you used to elaborate the goals. Be sure to consider
alternatives during goal elaboration.

b) Show the resulting goal hierarchy. Distinguish between and-nodes and
or-nodes.

c) Does any goal contribute to a goal in another subtree? Are there any
conflicting goals?

d) Associate metrics with each goal in the hierarchy.

e) Create an action plan based on your hierarchy.

f) Assess the e↵ectiveness of the action plan derived using this approach. In
your opinion, will the action plan achieve the initial soft goals? Explain
your answer.

Exercise 7.3 : From a State of Agile Report, two of the top reasons for adopt-
ing agile software development processes are as follows:

• Accelerate product delivery, 62%

• Improve productivity, 55%

Starting with these goals, apply the Goals and Metrics approach to create sub-
goals and an action plan. Include sub-subgoals (that is, second-level subgoals)
if at all possible.

a) Show the questions that you use for goal elaboration.

b) Draw the goal hierarchy.

c) Show the metrics. For each metric, explain why it is a good metric.

Exercise 7.4 : The following are among the top-rated questions from a 2014
study of questions related to software development.

1. How e↵ective are the code reviews prior to code check-in?

2. What parts of a software product are most used and/or loved by cus-
tomers?

3. How can we improve collaboration and sharing between teams?

4. What is the impact of tools on productivity?

REFERENCES FOR CHAPTER 7 137

For each question

a) Identify higher-level goals related to the questions.

b) Refine the higher-level goal to come up with actions. Show your work.

c) Associate metrics with each goal.

Notes for Chapter 7
1Lord Kelvin began a lecture on May 3, 1883 with, “In physical science a first essential

step in the direction of learning any subject is to find principles of numerical reckoning and
practicable methods for measuring some quality connected with it. ! often say ...” [15, p.79-
80].

2These questions ranked number 1, 2, 3, and 6 of 145 in Begel and Zimmermann’s [3]
survey of “questions that software engineers would like data scientists to investigate about
software.”

3Peter Drucker’s advice on goals and measurements is from [7, ch. 8], an excerpt from his
1954 book, The Principles of Management. The acronym SMART is attributed to George
T. Doran [6].

4The temporal classification of goals is from Dardenne, Lamsweerde, and Fickas [5].
5“Lamsweerde, Darimont, and Massonet [10] write, “why questions allow higher-level goals

to be acquired from goals that contribute positively to them. ... how questions allow lower
level goals to be acquired as sub-goals that contribute positively to the goal considered.”

6The Five Whys technique was developed at Toyota to identify root causes. [16]. Repeated
Why questions are used in many contexts to elicit higher goals, values, and root causes. Fi-
nancial planner Carl Richards: “The question I like to start with is ‘Why is money important
to you?’ [14].”

7A hardware malfunction—a link connected to the New York switch failed—set o↵ a chain
of events that crashed the entire AT&T network in 1990. [13].

8For risky files and their role in quality improvement, see [8, 11].
9Basili et al. [1] describe an approach that they call GQM+Strategies, which extends the

Goals-Questions-Metrics approach of Basili and Weiss [2]. GQM+Strategies starts with high-
level goals that are refined into what they call “measurement” or “GQM” goals. The approach
of [2] is then applied to the measurement goals.

10Mockus and Herbsleb [12] describe an expertise browser.
11Buckley and Chillarege [4]
12Axel van Lamsweerde [9] uses BART as a case study: “This case study is appealing for

a number of reasons: it is a real system; it is a complex real-time safety-critical system; the
initial document was provided by an independent source involved in the development.”

References for Chapter 7

1. Victor Basili, Mikael Lindvall, Myrna Regardie, Carolyn Seaman, Jens Heidrich, Jürgen
Münch, Dieter Rombach, and Adam Trendowicz. Linking software development and
business strategy through measurement. IEEE Computer 43, 4 (April 2010) 57-65.

2. Victor R. Basili and David M. Weiss. A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering SE-10, 6 (November
1984) 728-738.

3. Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for data scien-
tists in software engineering. 36th International Conference on Software Engineering
(ICSE) (2014) 12-23.

138 CHAPTER 7. GOALS AND METRICS

4. Michael Buckley and Ram Chillarege. Discovering relationships between service and
customer satisfaction. Proceedings IEEE Intl. Conf. Software Maintenance (ICSM
’95) (1995) 192-201.

5. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming 20 (1993) 3-50.

6. George T. Doran. There’s a S.M.A.R.T. way to write management’s goals and objec-
tives, Management Review 70, 11 (1981) 35-36.

7. Peter F. Drucker. The Essential Drucker. Harper Business, New York (2001).

8. Randy Hackbarth, Audris Mockus, John D. Palframan, and Ravi Sethi. Improving
software quality as customers perceive it. IEEE Software (July/August 2016) 40-45.

9. Axel van Lamsweerde. Requirements engineering in the year 00: A research perspec-
tive. International Conference on Software Engineering (ICSE). (2000) 5-19.

10. Axel van Lamsweerde, Robert Darimont, and Philippe Massonet. Goal-directed elab-
oration of requirements for a meeting scheduler: problems and lessons learnt. Second
IEEE International Symposium on Reliability Engineering. (1995) 194-203

11. Audris Mockus, Randy Hackbarth, and John D. Palframan. Risky files: an approach to
focus quality improvement e↵ort. European Conference on Software Engineering and
ACM SIGSOFT Symposium on Foundations of Software Engineering (ECSE/FSE
?13). ACM Press, New York, NY (2013) 691-694.

12. Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative approach
to identifying expertise. International Conference on Software Engineering (ICSE).
(2002) 503-512.

13. Peter G. Neumann. Cause of AT&T network failure. Risks Digest 9, 62 (January 26,
1990). http://catless.ncl.ac.uk/Risks/9/62#subj2 .

14. Carl Richards (interviewed by Charles Rotblut). Creating and following a financial
plan. AAII Journal 37, 8 (August 2015) 29-32.

15. William Thomson (Lord Kelvin). Popular Lectures and Addresses, Volume I, 2nd
Edition MacMillan (1891).

16. Wikipedia. 5 Whys. https://en.wikipedia.org/wiki/5_Whys .

Chapter 8

Software Architecture

“In practice, the terms ‘architecture,’ ‘design,’ and ‘implementation’ ap-
pear to connote varying degrees of abstraction in the continuum between
complete details (‘implementation’), few details (‘design’), and the high-
est form of abstraction (‘architecture’).”

— Rick Kazman and Amnon Eden, in a news publication from

the Software Engineering Institute.

1

Informally, a software architecture is a description of the parts of a software
system, together with how the parts fit to form the system. There are di↵erent
descriptions for di↵erent purposes, hence the reference to “an architecture,” not
“the architecture,” of a system. A formal definition of architecture appears in
Section 8.2.

8.1 Role and Benefits of Software Architecture

Software architecture touches all aspects of a project. Examples of the role and
benefits of software architecture appear in Fig. 8.1. Each of the categories in
the figure—customers, teams, technology, context—is considered below.

8.1.1 Architecture and Customers

In the early stages of a project, a proposed architecture can help address ques-
tions such as the following: Will this solution approach meet customer needs
and goals? Will it satisfy all stakeholders?

139

140 CHAPTER 8. SOFTWARE ARCHITECTURE

Figure 8.1: Examples of the role and benefits of software architecture.

A proposed architecture can be used to get early feedback on design deci-
sions. It can also be used to explore the range of possibilities for requirements.
Requirements that might change are referred to as variabilities. Design de-
cisions related to variabilities can be isolated, so the e↵ect of a requirements
change is confined to one part of a system, with minimal ripple-through e↵ect
on the rest of the system.

8.1.2 Architecture and Teams

Project managers can use an architecture to identify the skills and resources
needed for a project. They can then assemble a team with the right skills
and assign work to team members. When new members join the team, the
architectural descripton can be used to train them on the goals and design
decisions for the project.

Example 8.1 : Microsoft used a modular architecture to catch up with Netscape
during their browser wars of the mid 1990s. As noted in Section 3.2, Microsoft
appeared to have missed the Internet disruption until it launched a company-
wide e↵ort to build its own web browser. A team member observed,

“If someone asked what the most successful aspect of [Internet Ex-
plorer 3.0] was, I would say it was the job we did in ‘componentizing’
the product.”2

A modular architecture meant that the components were relatively independent
of each other, so they could be developed in parallel by di↵erent subteams. Work

8.1. ROLE AND BENEFITS OF SOFTWARE ARCHITECTURE 141

assignment for parallel development allowed the browser to be delivered sooner,
compared to sequential development of the components. 2

8.1.3 Architecture and Technology

Software architecture can be used to

• Guide system development. An architecture describes the parts of the
system and how the parts come together. It can therefore be used to
guide assembly and integration of the code for the parts. During iterative
development, architecture can be used for release and iteration planning.

• Model system properties. Properties such as scale, performance, availabil-
ity, and security can be modeled and studied in terms of the architecture
of the system; see also Example 8.2, below.

• Provide a foundation for system evolution. As noted in Section 3.2, un-
certainty during requirements gathering relates to changes that can be
anticipated, whereas dynamic changes are unexpected. The architecture
of a system can be designed to handle system evolution based on antici-
pated changes.

Example 8.2 : In 2012, Apple banned all apps from Qihoo as being potential
security risks. The decision was based on the high level architecture of the apps.

Apps on Apple iOS devices have two main parts: (a) the application-specific
code for the app; and (b) the features provided by the underlying iOS system
through iOS Application Programming Interfaces (APIs).

Some of the iOS APIs are for Apple’s own use and are referred to as private
APIs. Misuse of private APIs can pose security risks, so third-party apps are not
permitted to use them. The Qihoo ban was because the company distributed
apps that used private APIs.3

Thus, Apple cited architecture (specifically, the use of private APIs) to reach
a conclusion about a system property (specifically, potential security risk). 2

8.1.4 Architecture and Context

Project managers use an architecture to estimate the cost and schedule for a
project. Estimation is done by decomposing a problem into simpler subprob-
lems. The subproblems may themselves by decomposed further, until they
becomes simple enough to permit work items to be defined and estimates to be
made. Estimates for the subproblems are then combined to create estimates
for the overall problem.

Non-technical considerations exert an influence on architecture. Organiza-
tion structure influences system structure—this observed phenomenon is known
as Conway’s Law..

142 CHAPTER 8. SOFTWARE ARCHITECTURE

Conway’s Law

Sociological or organizational context can exert a powerful influence on software
architecture. In 1968, Melvin Conway observed

“Any organization that designs a system [defined broadly] will in-
evitably produce a design whose structure is a copy of the organi-
zation’s communication structure.”4

The premise for this sociological observation is that two software modules A
and B cannot interface correctly with each other unless the designer of A com-
municates with the designer of B. Thus, the interface structure of the system
necessarily reflects the social structure of the organization that produces it.

8.2 What is Software Architecture?

There is no shortage of definitions of the term “software architecture.” The
Software Engineering Institute (SEI) has collected over two hundred definitions
from visitors to its web site.5

Why is software architecture so hard to define?
The reason is that the appropriate description of a software architecture

varies with the intended audience and purpose. A descriptions that is geared
to a specific application is called a “view” of the architecture. A view that is
suitable for discussions with customers and users may not be suitable for model-
ing system properties like performance. The analogy with building architecture
is that electricians and plumbers focus on di↵erent elements. An electrician
focuses on electrical outlets and circuits, while a plumber focuses on taps and
drains.

With software, there is an additional distinction, between static and dy-
namic description of the system. Descriptions of the static program elements in
the source text are potentially quite di↵erent from descriptions of the dynamic
object or process elements that are created at run time.

8.2.1 Structure

Common to the many definitions of software architecture is the notion of struc-
ture: given a complex task, break it down into smaller more manageable ele-
ments. Formally, a structure consists of a set of elements and a binary relation
on the elements.

Structures are often represented by box-and-line diagrams (see Fig. 8.2), in
which boxes represent elements and directed lines (arrows) represent a binary
relation on the elements. The direction of the arrows is significant.

Example 8.3 : The two structures for a compiler in Fig. 8.2 (a) and (b) look
very similar. Both structures are on the same five elements, represented by the

8.2. WHAT IS SOFTWARE ARCHITECTURE? 143

Figure 8.2: Two structures for a compiler. While the diagrams in (a) and (b)
look very similar, the directions of the arrows are di↵erent in the two diagrams,
since the arrows represent di↵erent binary relations on the same five elements.

five boxes in (a) and (b). The di↵erences between the two diagrams lie in the
directions of the arrows.

The arrows in Fig. 8.2(a) represent the flow of data between the five ele-
ments. The Data-Flow structure includes the following relation:

From To
Lexical Analyzer Syntax Analyzer
Syntax Analyzer Optimizer
Optimizer Code Generator
Lexical Analyzer Symbol Table
Syntax Analyzer Symbol Table
Optimizer Symbol Table
Code Generator Symbol Table
Symbol Table Lexical Analyzer
Symbol Table Syntax Analyzer
Symbol Table Optimizer
Synbol Table Code Generator

The arrows in Fig. 8.2(b) represent “who calls who” or “who uses who.”
Note that while data flows in and out of the symbol table, the calling relation
is one sided: the other elements call the symbol table; the symbol table itself
does not call the others. Hence there are arrows from the other elements to the
symbol table in Fig. 8.2(b), but not in the other direction.

The Call structure includes the following relation:

144 CHAPTER 8. SOFTWARE ARCHITECTURE

Code Generator calls Optimizer
Optimizer calls Syntax Analyzer
Syntax Analyzer calls Lexical Analyzer
Lexical Analyzer calls Symbol Table
Syntax Analyzer calls Symbol Table
Optimizer calls Symbol Table
Code Generator calls Symbol Table

2

8.2.2 Definition of Software Architecture

The potential for multiple structures leads to the following definition:6

“The software architecture of a system is the set of structures needed
to reason about the system, which comprise software elements, re-
lations among them, and properties of both.”

Architecture deals with the externally visible software elements and their
relationships; see Fig. 8.3. The design of a system covers both the internal and
external structure of the system. Architecture is therefore a subset of design.7

Figure 8.3: Architecture is a subset of design.

8.2.3 Views and Structures

An architectural view is a representation of an architectural structure. Thus,
structures and views are related: a structure is a binary relation, which is a
mathematical abstraction; a view is a concrete form of the abstraction.

A view focuses on some aspect of a given architecture. Typically, a view
focuses on a problem and outlines how the architecture solves that problem.
Other aspects of the system that are not relevant to the solution are suppressed.
No one view (or structure) captures everything about an architecture.

8.3. LESSONS FROM ARCHITECTURE FOR BUILDINGS 145

Figure 8.4: The 4+1 grouping of architectural views.

The concept of views has been incorporated into international standards for
architectural descriptions.8

The 4+1 grouping of views is as follows (see Fig. 8.4):9

• Logical Views focus on structures that support requirements and end-
user functionality. With an object-oriented approach, logical views would
depict the objects and classes that are relevant to the application domain.

• Development Views focus on modules in the static source code. Modules
are discussed in Section 8.4.

• Process Views focus on dynamic or run-time processes. Process views are
relevant for distributed or concurrent systems. The concerns addressed
by process views include synchronization and fault tolerance.

• Physical Views focus on the configuration and physical distribution of
the system. For example, the allocation of processes to servers would be
addressed by a physical view.

The “+1” in “4+1” refers to selected scenarios or use cases, which span the
four views: logical, development, process, and physical.

8.3 Lessons from Architecture for Buildings

The centuries old tradition of building architecture has valuable lessons to o↵er
for software architecture:

• Principles. What makes for a good architecture? The classical principles
of utility, strength, and beauty carry over to software.

• Views. Since buildings are tangible, they are convenient for illustrating
the role of di↵erent views of an architecture.

• Patterns. A pattern provides the core of a solution to a recurring problem.
Patterns are discussed in Chapter 9.

146 CHAPTER 8. SOFTWARE ARCHITECTURE

The analogy between buildings and software is not perfect. Buildings are
static; software has both static (source code) and dynamic (run-time) struc-
ture. Buildings are tangible: they can be seen and touched and visualized.
Software is intangible. Buildings do not readily change, although buildings do
get remodeled from time to time. Software is seemingly easy to change, and
refactor.

Despite the di↵erences, there are enough similarities that software architects
have drawn inspiration from building architecture.

8.3.1 Principles from Classical Architecture

In the first century BC, the Roman architect Vitruvius laid out three principles
that are still applied to buildings.10 These principles can be interpreted as
follows:

• Utility. Does the building conveniently serve its intended purpose?

Software Equivalent: Does the system meet its requirements?

• Strength. Will the building stand? Are the foundations solid and have
the materials been wisely selected?

Software Equivalent: Is the system robust? Will it scale and perform? Is
the technology appropriate?

• Beauty. Is the appearance of the building pleasing and in good taste? Are
the elements of the building in due proportion?

Software Equivalent: Is the implementation of the system elegant? Is it
easy to understand and modify?

Example 8.4 : Inaugurated in 537 AD, the Hagia Sophia in Istanbul was the
largest cathedral in the world for a thousand years; see Fig. 8.5.11 Converted
to a mosque in 1453, elements of its architecture were replicated in many other
mosques in the Ottoman empire. The Hagia Sophia became a museum in
1931.12

By any standards, the Hagia Sophia is an exceptional building.

Utility. It fulfills Emperor Justinian I’s wish for a majestic church, grander
and more imposing than all its predecessors. For centuries, it reigned as the
greatest cathedral ever built. As a mosque, it showed the way for many others
to come.

Strength. The Hagia Sophia stands tall, almost 1500 years after it was built.
The main dome was re-architected, but that was in 562 AD.

Beauty. The beauty of the Hagia Sophia is intrinsic to its architecture and
proportions. The main dome soars 182 feet from the floor. The vast open well-
lit interior was richly decorated with mosaics and marble pillars. As a museum,
it attracts millions of visitors every year. 2

8.4. INFORMATION HIDING AND MODULES 147

Figure 8.5: Cross section of the Hagia Sophia, built 1500 years ago..

8.3.2 Architectural Views

Utility, strength, and beauty are di↵erent perspectives on the same architecture.
A functional (utility) view of the Hagia Sophia includes the galleries and interior
spaces and the functions that they serve. An aesthetic (beauty) view includes
the external and internal appearance. The next example takes a structural
(strength) view of how the walls support the load of the domes.

Example 8.5 : The cross-section of the Hagia Sophia in Fig. 8.5 is a view of
its proportions and spaces. A key aspect of the architecture is the relationship
between the round main dome and the square base provided by the supporting
walls.

The load from the round dome is distributed to the square base by an
innovative part called a pendentive; see Fig. 8.6.13 The original dome collapsed
during the earthquake of 558. The rebuilt dome is 30 feet higher to better
distribute its weight to the supporting walls. 2

8.4 Information Hiding and Modules

Information hiding is the principle of isolating design decisions to make soft-
ware easier to change and understand. The design decisions are grouped and
assigned to program units called modules. Modules are implemented using re-
lated collections of classes, methods, values, types, and other program elements.

The term design decisions refers to the decisions that guide an implementa-
tion of some task, including the choice of data representation, algorithms, and
program organization.

148 CHAPTER 8. SOFTWARE ARCHITECTURE

Figure 8.6: (a) The geometry of a pendentive (shaded). (b) The use of a
pendentive.

A module contains a related collection of program elements that embody
design decisions. A subset of the set of program elements is declared to be
the interface of the module; the remaining program elements are said to be
private to the module. The interface defines the functionality of the module:
what the module does, and the interactions between this module and the other
modules. The functionality is also called the behavior of the module. The
private elements are referred to as the implementation of the module. The
design decisions embodied in the implementation of a module are said to be
hidden in the module.

Hidden design decisions are referred to as a module’s secrets.

Example 8.6 : A store wants counts of the items that it sells, so it can manage
its inventory and in-store displays.

How are the counts represented?
Where are they stored?
How is the top-selling item identified?

These questions relate to design decisions.
Information about how the counts are implemented can be hidden in a

module M that is responsible for maintaining the counts. In other words, the
specific representation of counts in M can be hidden from a module U that uses
the counts to manage the store’s inventory and displays. The using module U
does not need to know which database system M uses to store the counts.
Nor does U need to know whether the counts are stored locally in the store or
remotely at a data center.

The using module U interacts with the implementing module M by asking
questions such as the following:

8.4. INFORMATION HIDING AND MODULES 149

What is the count for item i?
What is the item with the highest count?

The hidden implementation of the counts is the secret of module M .
Later, if the store wants real-time counts, as opposed to, say, day-old data,

then the hidden implementation can be changed to meet the additional require-
ment, without perturbing the rest of the modules. 2

Information hiding is more about conceiving and thinking of programs than
it is about specific programming languages or constructs. Such constructs vary
from language to language, and might be called modules or packages. Informa-
tion hiding is also applicable to classes, although the examples in this chapter
deal with collections of related classes.

8.4.1 Coupling and Cohesion

Information hiding results in systems with loose coupling and high cohesion,
where coupling between modules is the degree to which they are inter-related,
and cohesion within a module is the degree to which the elements of a module
belong together.

Coupling. Two modules are loosely coupled if they interact only through their
interfaces; they are tightly coupled if the implementation of one module depends
on the implementation of the other. The following list progresses from looser
(better) coupling to tighter (worse) coupling:

• Message Coupling. Modules pass messages through their interfaces.

• Subclass Coupling. A subclass inherits methods and data from a super-
class.

• Global Coupling. Two modules share the same global data.

• Content Coupling. One module relies on the implementation of another.

Depending on the language, there may be other possible forms of coupling. For
example, in a language with pointers, module A can pass module B a pointer
that allows B to change private data in A.

Cohesion. A module has high cohesion if the module has one secret and all its
elements relate to that secret; it has low cohesion if its elements are unrelated.
The Unix philosophy of having each tool do one thing well leads to tools with
high cohesion.14 The following forms of cohesion reflect di↵erent approaches
to grouping program elements into modules. The list progresses from higher
(better) cohesion to lower worse cohesion:

• Functional Cohesion. Group elements based on a single well defined de-
cision or functionality.

150 CHAPTER 8. SOFTWARE ARCHITECTURE

1. Understanding the rationale behind a piece of code 66%

2. Having to switch tasks often because of ... teammates or manager 62%

3. Being aware of changes to code elsewhere that impact my code 61%

4. Finding all the places code has been duplicated 59%

5. Understanding code that someone else wrote 56%

6. Understanding the impact of changes I make on code elsewhere 55%

7. Understanding the history of a piece of code 51%

8. Understanding who “owns” a piece of code 50%

Figure 8.7: Percentage of Microsoft developers agreeing that the statement
represented a “serious problem for me.” The results are from a 2005 survey.

• Sequential Cohesion. Group based on processing steps. The phases of a
compiler—lexical analysis, syntax analysis, optimization, code generation—
represent processing steps. A module with sequential cohesion can po-
tentially be split into submodules, where the output of one submodule
becomes the input to the next.

• Informational Cohesion. Group based on the data that is being manipu-
lated. Such a module can potentially be split by grouping based on the
purpose of the manipulations.

• Temporal Cohesion. Group based on the order in which events occur; e.g.,
grouping initializations or grouping housekeeping events that occur at the
same time. Redesign modules based on object-oriented design principles.

• Coincidental Cohesion. The elements of a module have little to do with
each other. Redesign.

8.4.2 Guidelines for Designing Modules

Although the concepts of information hiding, coupling/cohesion, and object-
oriented design date back to the 1970s, software developers still face problems
like the following:

“Being aware of changes to code elsewhere that impact my code”
“Understanding the impact of changes I make on code elsewhere”

These quotes are from a 2005 Microsoft survey of software architects, develop-
ers, and testers.15 Of the top eight problems that emerged from the survey,
seven relate to the modular structure of systems; see Fig. 8.7.

The following guidelines represent best practices for module design:16

• Begin with a list of significant design decisions or decisions that are likely
to change. Then put each such design decision into a separate module

8.5. MODULE DESCRIPTIONS 151

so that it can be changed independently of the other decisions. Di↵erent
design decisions belong in di↵erent modules.

• Keep each module simple enough to be understood fully.

• Minimize the number of widely used modules.

• Hide implementations, so that the implementation of one module can be
changed without a↵ecting the behavior and implementation of the other
modules.

• Plan for change, so that likely changes do not a↵ect module interfaces;
less likely changes do not a↵ect the interfaces of widely used modules; and
only unlikely changes a↵ect the modular structure of the system.

• Allow any combination of old and new implementations of modules to be
tested, provided the interfaces stay the same.

8.5 Module Descriptions

Beyond a dozen or so modules, it becomes increasingly di�cult to find relevant
modules. This di�culty can be addressed by describing the rationale for the
design of the modules in addition to detailed specifications of module interfaces.

The principle of information hiding was explored by David Parnas in the
early 1970s.17 As a demonstration of its applicability, Parnas and his colleagues
built a modular system that duplicated the functionality of the flight software
for a military aircraft, the A-7E.18 The modular system had to meet all of
the requirements of the existing flight software, including all of the real-time
constraints. In addition, it had to be structured so that the overall behavior of
the system could be inferred from the behavior of the modules, without looking
at their implementations.

The modular system had hundreds of modules, many of them small ones.
Finding relevant modules was a challenge. This challenge was addressed by

• organizing the modules into a hierarchy, and

• providing a guide to the modules, written in plain English.

Module hierarchies and module guides help with many of the problems iden-
tified in the Microsoft survey (see Fig. 8.7), including the following:

“Understanding the rationale behind a piece of code”
“Understanding code that someone else wrote”

Finding Relevant Modules. Someone new to the system can use the guide to
navigate through the module hierarchy and find the modules that are relevant
to a proposed change. Someone familiar with the system can use the guide to
convince themselves that any change is propagated to all the modules that are
a↵ected by the change.

152 CHAPTER 8. SOFTWARE ARCHITECTURE

Figure 8.8: A partial module hierarchy for the A7-E flight software.

Validating the Design. The preparation of a hierarchy and a guide can be a
useful exercise, for systems large and small. In the process of preparing them,
a developer must think about and describe the design of each of the modules
in the system, so the exercise serves as a validation of the design.

8.5.1 Module Hierarchy

Amodule hierarchy is formed by grouping related modules into a tree-structured
hierarchy, where a parent module is composed from its child modules. By
design, the secret of a child module is a subsecret of the secret of its parent
module. One branch of the hierarchy can therefore be studied with minimal
knowledge about modules that belong to unrelated branches.

Example 8.7 : For the A-7E flight software, the module hierarchy was grouped
under three top-level modules:

• Hardware-Hiding Module, which implemented a virtual machine that was
used by the rest of the software.

• Behavior-Hiding Module, which hid decisions related to the user require-
ments. The purpose of this module was to isolate the impact of external
requirements changes.

• Software-Decision Modules, which hid implementation decisions, say, for
algorithms and data structures.

A partial module hierarchy for the A7-E flight software appears in Fig. 8.8.
The partial hierarchy shows only the top-level modules and their sub-modules.
Furthermore, the names of the six sub-modules of the Software-Decision Module
are not shown. 2

8.5. MODULE DESCRIPTIONS 153

Figure 8.9: Template for a Module Guide.

8.5.2 Module Guide

A module guide is a description of a module hierarchy in plain English. A plain
English guide is intended to supplement, not replace, a specification of module
interfaces. The purpose of a guide is threefold:

• provide an overview of the system;

• bring out the context and assumptions behind the design approach; and

• describe the responsibilities and behavior of the modules.

The template in Fig. 8.9 touches on the main points about a module that
need to be covered by a guide. The template begins with the name and a
plain English textual description of the module. The description includes the
responsibility of the module and an overview of the design decisions that are
hidden by the module. Any notes to the reader can also be included as part of
the description.

The subsection on the module’s service helps the reader find relevant mod-
ules. From the service, readers can decide whether the module is relevant to the
aspect of the system that is of interest to them. If the module seems relevant,
they can consult a module interface specification for more information.

The guide includes the module’s secret, but not the implementation of the
secret. Recall that the purpose of the guide is to allow the overall behavior
of the system to be inferred, without looking at the implementation. In some
cases, it is helpful to include secondary secrets that are uncovered during the
implementation of the primary secret.

154 CHAPTER 8. SOFTWARE ARCHITECTURE

8.6 Software Product Lines

The term family originally meant a set of programs where it was worth

• first studying the common properties of the set and

• then determining the special properties of the individual family mem-
bers.19

The term program family or software product line now refers to a set of programs
that are specifically designed and implemented as a family. Each program or
system in a family is a complete product in its own right.

The common properties of the family or product line are called common-
alities and the special properties of the individual family members are called
variabilities.

The annual Software Product Lines Conference has a Hall of Fame that
lists about 20 organizations that have been honored for commercially successful
product lines. The application areas for their product lines include automo-
tive software, avionics, financial services, firmware, medical systems, property
rentals, telecommunications, television sets, and training,20

Product lines arise because products come in di↵erent shapes, sizes, perfor-
mance levels. and price points, all available at the same time. Without a family
approach, each version would need to be developed and maintained separately.
A family approach can lead to an order of magnitude reduction in the cost of
fielding the members of the family.

Example 8.8 : HomeAway, a startup in the web-based vacation home rental
market, grew quickly through acquisitions. Each acquired company retained
the look and feel of its website.21

HomeAway’s first implementation approach was to lump the systems for the
various web sites together, with conditionals to guide the flow of control. This
umbrella approach proved unwieldy and unworkable due to the various websites
having di↵erent content management, layouts, databases, and data formats.

The second approach was to merge the various systems onto a common
platform, while still retaining the distinct look and feel of the di↵erent websites.
This approach had its limits:

“A thorough code inspection eventually revealed that over time 29
separate mechanisms had been introduced for managing variation
among the di↵erent sites.”

“Testing ... impoverished though it was, discovered 30 new defects
every week—week after week—with no guarantee that fixing one
defect didn’t introduce new ones.”

The company then turned to a software-product line apprach. Within weeks,
the product-line approach paid for itself. The software footprint went down,
quality went up, deployment times went down. Modularity meant that changes
to one site no longer a↵ected all the other sites. 2

8.7. SUMMARY 155

8.6.1 Software Architecture and Product Lines

Software architecture plays a key role in product-line engineering. To the guide-
lines for defining modules in Section 8.4 we can add:

• Address commonalities before variabilities, when designing modules.

• Hide each implementation decision about variabilities in a separate mod-
ule. Related decisions can be grouped in a module hierarchy.

One of HomeAway’s goals for a product line approach (see Example 8.8) was
to make the cost of implementing a variation proportional to that variation, as
opposed to the previous approaches, where the cost was proportional to the
number of variations.

Support for the significance of architecture in product-line-engineering comes
from SEI’s experience with helping companies implement product lines:

“The lack of either an architecture focus or architecture talent can
kill an otherwise promising product line e↵ort.”22

8.6.2 Economics of Product-Line Engineering

Product-line engineering requires an initial investment. Here are some areas
for investment: identify commonalities and variabilities; build a business case
that encompasses multiple products; design a modular architecture that hides
variabilities; create test plans that span products; and train developers and
managers. One of the keys to the success of product-line engineering at Bell
Labs was a small dedicated group that worked with development groups on
their projects.

Management support is therefore essential. Product-line engineering projects
that have lacked management support or initial investment have failed to deliver
the promised improvements in productivity, quality, cost, and time to market.

The schematic in Fig. 8.10 illustrates the economic tradeo↵s.23 With the
traditional approach, each family member is of built separately, so costs rise in
proportion to the number and complexity of the family members. For simplicity,
the schematic shows costs rising linearly with the number of family members.

With product-line engineering, there is an initial investment, which adds to
the cost of the first product. The payo↵ begins as more products are delivered,
since the incremental cost of adding a product is lower. Based on the Bell Labs
experience, the crossover point is between 2 and 3 family members. The greater
the number of family members, the greater the savings, past the crossover point.

8.7 Summary

Software architecture touches all aspects of a project. For customers, an archi-
tecture is helpful for confirming the project’s direction. For development teams,

156 CHAPTER 8. SOFTWARE ARCHITECTURE

Figure 8.10: Schematic of the economics of software product lines.

it is helpful for assembling skills and resources and for assigning work to devel-
opers. For system architects, it is helpful for modeling system properties such
as performance, security, and availability. For project managers, it is helpful
for estimating budgets and schedules.

These many uses of architecture lead to multiple views of an architecture,
where a view focuses on some aspect of the system or on the solution to some
specific problem. The 4+1 grouping of views further illustrates the many roles
for software architecture:

• Logical Views focus on end-user functionality and the problem domain.

• Development Views focus on program structure and the source text.

• Process Views focus on run-time objects and processes.

• Physical Views focus on system configurations and deployment.

These views are accompanied by scenarios or use cases, which span the four
views.

Technically, a view is a structure, where a structure consists of a set of
components and a binary relation on the components. Just as there are multiple
views, there are multiple structure; e.g., the modular or component structure
of the system and the calling or the “who calls who” structure for components.

No one view or structure defines an architecture. Hence the following defi-
nition (see Section 8.2.:

“The software architecture of a system is the set of structures needed
to reason about the system, which comprise software elements, re-
lations among them, and properties of both.”

The main principle for creating an architecture is information hiding: isolate
design decisions into program units called modules, so individual decisions can
be changed without a↵ecting the rest of the system. A module is a collection of
related program elements, like classes, that implement design decisions.

EXERCISES FOR CHAPTER 8 157

The following guidelines for designing modules are from Sections 8.4 and 8.6:

• Isolate each significant design decisions into a separate module.

• Keep each module simple enough to be understood fully.

• Minimize the number of widely used modules.

• Hide implementations, so that they can be changed independently.

• Plan for change, so that likely changes are easy and only unlikely changes
result in a redesign.

• Allow any combination of old and new implementations of modules to be
tested, provided the interfaces stay the same.

• For a product family, design for commonalities before variabilities.

• Hide implementation decisions about variabilities in separate modules.

A product family or product line is a set of related programs that is specif-
ically designed to be implemented together. The common properties of the
family are called commonalities and the special properties of individual family
members are called variabilities. Versions of a program can be treated as a
family, as can successive working versions that are implemented during an it-
erative development process. Thus, the family approach is helpful for planning
iterations of the same system.

Beyond a dozen or so modules, it is helpful to create a module hierarchy, a
tree-structured grouping of related modules that share a secret; the secret of a
submodule is a subsecret of its parents’ secret. The secret of a module refers to
the design decisions that are hidden in the module. In e↵ect, the secret is the
implementation of the behavior of the module.

Someone tasked with maintaining or changing a system would benefit greatly
from a module guide. A module guide is a plain English description of the
module hierarchy that provides an overview of the modules and includes the
rationale for the design decisions that are relevant to a module.

A module guide is highly recommended for even a small system. For a large
system with tens or hundreds of modules, it is invaluable.

Exercises for Chapter 8

Exercise 8.1 : Modules are a key concept in software architecture and design.

• What is Information Hiding? Define it, explain it, and give an example.

• What is a Module Guide? List its main elements and their purpose or
roles.

Exercise 8.2 : Are the following statements True or False?

a) The Information Hiding Principle refers to hiding the design decisions in
a module.

158 CHAPTER 8. SOFTWARE ARCHITECTURE

b) A Module Guide describes the implementation of each module.

c) A module with a secret cannot be changed.

d) A Module Interface Specification specifies the services provided and the
services needed by modules.

e) With the XP focus on the simplest thing that could possibly work and on
refactoring to clean up the design as new code is added, there is no need
for architecture.

f) A system that obeys the Information Hiding principle is secure.

g) If module A uses module B, then A and B must have an ancestor-
descendant relation in the module hierarchy.

h) If module A uses module B, then B must be present and satisfy its spec-
ification for A to satisfy its specification.

i) A Development View of an architecture specifies the internal structure of
components.

j) Conway’s “law” implies that the architecture of a system reflects the social
structure of the producing organization.

Exercise 8.3 : A video-streaming service wants to track the most-frequently
requested movies. They have asked your company to bid on a system that will
accept a stream of movie orders and incrementally maintain the top 10 most
popular movies so far. Orders contain other information besides the item name;
e.g., the movie’s price, its category (e.g., Historical, Comedy, Action).

Exercise 8.4 : Coupling is the degree to which modules are inter-related.
Forms of coupling include:

a) Message: pass messages through their interfaces.

b) Subclass: inherit methods and data from a superclass.

c) Global: two or more modules share the same global data.

d) Content: one module relies on the implementation of another.

For each of the above cases, suppose modules A and B have that kind of cou-
pling. How would you refactor A and B into modules M1,M2, · · · that comply
with Information Hiding and provide the same services as A and B. That is,
for each public function A.f() or B.f() in the interfaces of A and B, there is
an equivalent function Mi.f(), for some refactored module Mi.

a) Using Information Hiding, give a high-level design. Include each module’s
secret.

b) Change your design to track both the top 10 movies and the top 10
categories; e.g., to settle whether Comedy movies are more popular than
Action moves.

NOTES FOR CHAPTER 8 159

Exercise 8.5 : For the system in Exercise 8.3, you decide to treat the system as
a product family because you recognize that the same approach can be applied
to track top selling items for a retailer or the top most emailed items for a news
company.

a) What do product family members have in common?

b) What are the variabilities; that is, how do product family members di↵er?

Exercise 8.6 : KWIC is an acronym for Key Word in Context. A KWIC
index is formed by sorting and aligning all the “significant” words in a title.
For simplicity, assume that capitalized words are the only significant words. As
an example, the title Wikipedia the Free Encyclopedia has three significant
words, Wikipedia, Free, and Encyclopedia. For the two titles

KWIC is an Acronym for Keyword in Context

Wikipedia the Free Encyclopedia

the KWIC index is as follows:

KWIC is an Acronym for Keyword in Conte

is an Acronym for Keyword in Context

Wikipedia the Free Encyclopedia

Wikipedia the Free Encyclopedia

KWIC is an Acronym for Keyword in Context

KWIC is an Acronym for Keywo

Wikipedia the Free Encyclope

Design an architecture for KWIC indexes that hides the representation of titles
in a module.

a) Give brief descriptions of the modules in your architecture

b) For each module, list the messages to the module and the corresponding
responses from the module.

c) Give a module hierarchy

d) Describe the secret of each module

Notes for Chapter 8
1Kazman and Eden [8] propose the following distinction between architecture and design:

architecture is non-local and design is local, where non-local means that the specification
applies “to all parts of the system (as opposed to being limited to some part thereof).”

2The quote about the architecture of Internet Explorer 3.0 is from MacCormack [14, p.
77].

3Zheng et al. [26].
4This version of Conway’s law [5] is from his web site

http://www.melconway.com/Home/Conways Law.html .

160 CHAPTER 8. SOFTWARE ARCHITECTURE

5See http://www.sei.cmu.edu/architecture/start/glossary/community.cfm for defini-
tions of software architecture contributed by visitors to the site.

6Rather than add to the proliferation of definitions of software architecture, we follow
Bass, Clements, and Kazman [2]. The authors were all at the Software Engineering Institute
when they published the first two editions of their book.

7The notion of architecture as a subset of design follows Klein and Weiss [9].
8Views have been incorporated into the standards IEEE 1471 and ISO/IEC/IEEE 42010.
9The 4+1 grouping of architectural views is due to Kruchten [11].

10From Vitruvius’s de Architectura, Book 1, Chapter 3, Verse 2: “All these should possess
strength, utility, and beauty. Strength arises from carrying down the foundations to a good
solid bottom, and from making a proper choice of materials without parsimony. Utility arises
from a judicious distribution of the parts, so that their purposes be duly answered, and that
each have its proper situation. Beauty is produced by the pleasing appearance and good taste
of the whole, and by the dimensions of all the parts being duly proportioned to each other.”
http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Vitruvius/1*.html

11The cross section of the Hagia Sophia in Fig. 8.5 is from Lübke and Semrau [13]; see
https://commons.wikimedia.org/wiki/File:Hagia-Sophia-Laengsschnitt.jpg .

12https://en.wikipedia.org/wiki/Hagia Sophia
13The diagrams of the pendentives in Fig. 8.6 are adapted from Viollet-le-Duc [23]; see

https://commons.wikimedia.org/wiki/Category:Pendentives .
14McIlroy and Pinson [15] note “a number of maxims [that] explain and promote” Unix

style.
15LaToza, Venolia, and DeLine [12].
16The first guideline for module design is from Parnas [17]. The remaining guidelines are

based on Britton and Parnas [4, p. 1-2].
17Parnas [17].
18Parnas, Clements, Weiss [19].
19The definition of program family is due to Parnas [18]. David Parnas credits the idea of

program family to Dijkstra [6], who referred in passing to “a program as part of a family or
‘in many (potential) versions.’ ”

20See http://splc.net/fame.html for the Software Product Line Conferences Hall of Fame.
21The HomeAway example is based on Kreuger, Churchett, and Buhrdorf [10].
22Northrop [16].
23See Weiss and Lai [25] for the economics of product-line engineering at Bell Labs. David

Weiss led a group in Bell Labs Research that worked closely with a small dedicated group
in the business unit to support product-line engineering across the parent company, Lucent
Technologies.

References for Chapter 8

1. Mark A. Ardis and Janel A. Green. Successful introduction of domain engineering into
software development. Bell Labs Technical Journal 3, 3 (July-September 1998) 10-20.

2. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice (3rd
ed.). Addison-Wesley (2013).

3. Kent Beck. Embracing change with Extreme Programming. IEEE Computer (October
1999) 70-77.

4. Kathryn H. Britton and David L. Parnas. A-7E Software Module Guide. Naval Re-
search Laboratory Memorandum 4702 (December 1981).

5. Melvin E. Conway. How do committees invent? Datamation (April 1968) 28-31.

6. Edsger W. Dijkstra. Structured programming. In Software Engineering Techniques,
J. N. Buxton and B. Randell (eds.) NATO Science Committee (April 1970) 84-88.
Report on the NATO Software Engineering Conference in Rome (October 1969).

REFERENCES FOR CHAPTER 8 161

7. Birgit Geppert and Frank Roessler. Multi-Conferencing Capability United States
Patent 8,204,195 (June 19, 2012).

8. Rick Kazman and Amnon Eden. Defining the terms architecture, design, and imple-
mentation, news@sei 6, 1 (First Quarter 2003).

9. John Klein and David Weiss, What is architecture? (2009) [21, p. 3-24].

10. Charles W. Kreuger, Dale Churchett, and Ross Buhrdorf. HomeAway’s transition
to software product line practice: engineering and business results in 60 days. 12th
International Software Product Line Conference (SPLC ’08). IEEE (September 2008)
297-306.

11. Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software (November
1995) 42-50.

12. Thomas LaToza, Gina Venolia, and Rob DeLine. Maintaining mental models: a study
of developer work habits. 28th International Conference on Software Engineering
(ICSE ’06). ACM, New York (2006) 492-501.

13. Wilhelm Lübke and Max Semrau. Grundriß der Kunstgeschichte. 14. Auflage. Paul
Ne↵ Verlag, Esslingen (1908).

14. Alan D. MacCormack. Product-development processes that work: How Internet com-
panies build software. Sloan Management Review 42, 2 (Winter 2001) 75-84.

15. M. D. McIlroy, E. N. Pinson, and B. A. Tague. Foreword: Unix time-sharing system.
Bell System Technical Journal 57, 6 (July-August 1978) 1899-1904.

16. Linda M. Northrop. SEI’s software product line tenets. IEEE Software (July-August 2002)
32-40.

17. David L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM 15, 12 (December 1972) 1053-1058.

18. David L. Parnas. On the design and development of program families. IEEE Trans-
actions on Software Engineering SE-2, 1 (March 1976) 1-9.

19. David L. Parnas, Paul C. Clements, and David M. Weiss. The modular structure of
complex systems. IEEE Trans. Software Engineering SE-11, 3 (March 1985) 259-266.

20. Mary Shaw. Patterns for software architectures. First Annual Conference on Pattern
Languages of Programming. (1994) 453-462.

21. Diomidis Spinellis and Georgios Gousios (eds.). Beautiful Architecture. O?Reilly Me-
dia, Sebastopol, Calif. (2009).

22. W. P. Stevens, G. J. Meyers, and L. L. Constantine. Structured design. IBM Systems
J. 13, 2 (June 1974) 115-138.

23. Eugène Viollet-le-Duc. Dictionary of French Architecture from 11th to 16th Century.
(1856).

24. Marcus Vitruvius Polilo. de Architectura. (circa 15 BC). See
http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Vitruvius/1*.html for the Joseph
Gwilt English translation (1826), maintained by Bill Thayer.

25. David M. Weiss and Chi Tau Robert Lai. Software Product Line Engineering: A
Family-Based Software Development Process Addison-Wesley, Reading Mass. (1999).

26. Min Zheng, Hui Xue, Yolong Zhang, Tao Wei, and John C. S. Lui. Enpublic apps:
security threats using iOS enterprise and developer certificates. 10th ACM Symposium
on Information, Computer and Communications Security (Asia CCS ’15). ACM, New
York (April 2015) 463-474.

162 CHAPTER 8. SOFTWARE ARCHITECTURE

Chapter 9

Architectural Patterns

“Because patterns are (by definition) found in practice, one does not
invent them; one discovers them. ... there will never be a complete list
of patterns: patterns spontaneously emerge in reaction to environmental
conditions, and as long as those conditions change, new patterns will
emerge.”

— Len Bass, Paul Clements, and Rick Kazman.

1

Rather than start each design from scratch, architects tend to adapt earlier
successful designs for similar problems. Certain problems, such as the design
of a graphical user interface or the design of a compiler, have been addressed
over and over again in practice. The design of another graphical user interface
is likely to have much in common with previous designs for graphical interfaces.
Similarly, the design of another compiler is likely to have much in common with
a previous design for a compiler.

An architectural pattern consists of a set of design decisions that address a
recurring problem. These design decisions outline the components of a software
solution, the behavior of the components, and the connections or relationships
between the components. Since architecture is a subset of design, architectural
patterns are a subset of design patterns.

There were early attempts to classify patterns in terms of the nature of
their components and connectors. However, given the diversity of problems
that occur in practice, any catalog of patterns is likely to be incomplete.

This chapter introduces some frequently occurring architectural patterns.

163

164 CHAPTER 9. ARCHITECTURAL PATTERNS

9.1 Alexander’s Patterns

The above definition of architectural patterns builds on the work of the architect
and urban planner, Christopher Alexander, who introduced the term pattern
for a problem that occurs over and over again, together with a “the core of the
solution to that problem.”2

This notion of patterns has inspired object-oriented design patterns, soft-
ware architecture patterns, and the Pattern Languages of Programming confer-
ences. Extreme Programming was influenced by Alexander’s work, especially
the belief that the occupiers of a building should design it.3

Alexander’s patterns range from large scale to small scale, from patterns
for communities, to buildings, to rooms. The description of each pattern has
three main parts: context, problem, solution. Let us consider them in the order
problem, solution, context.

Problem. The problem addressed by a pattern is some fundamental aspect of
a design, such as

• the design of the main entrance to a building, or

• the design of roofs for a cluster of buildings, or

• the design of the ceiling height of a room.

The Hagia Sophia consists of a cluster of buildings, with a high central building
surrounded by lower wings with smaller rooms; see Fig. 8.5.

Solution. The “core” of a solution consists of guidance for designing a specific
structure. For example, the pattern for ceiling heights includes the following
guidance: “make ceilings high in rooms which are public or meant for large
gatherings (10 to 12 feet), lower in rooms for smaller gatherings (7 to 9 feet),
and very low in rooms or alcoves for one or two people (6 to 7 feet).”4

Context. Each pattern fits within a context, both larger and smaller.5 For
the larger context, consider that a roof completes a room, a room fits within a
building, a building is part of a community. For the smaller context, consider
the ceiling heights in a room or the positioning of windows in a room.

9.2 Software Layering

Layered architectures have been used for applications ranging from virtual ma-
chines to network protocols to enterprise applications to apps on mobile phones.
Both Android and iOS have layered architectures. Apps running on a mobile
phone have a top layer with application logic, middle layers providing media
and platform services, and a bottom layer for the operating system.6

Informally, the modules in a layered architecture can be grouped into layers,
where the layers are one on top of the other, as in a cake. They are depicted by

9.2. SOFTWARE LAYERING 165

Figure 9.1: Layers of the Internet Protocol Suite.

vertical diagrams, such as Fig. 9.1. Each layer is cohesive; it has a responsibility.
Together, the modules in the layer carry out that responsibility.

The modules in a given layer use services provided by modules in the layer(s)
below. The term “use” has a precise meaning: a module A uses module B if
B must be present and satisfy its specification for A to satisfy its specification.
In other words, A relies on B and B must work for A to work.

If A uses B and B uses A, then A and B belong in the same layer.

Example 9.1 : Internet Protocol (IP) and Transport Control Protocol (TCP)
are the main protocols of the Internet. TCP is layered over IP. More precisely,
TCP uses IP.7 Their responsibilities di↵er:

• TCP supports reliable delivery, but packets might be delayed. TCP is
connection oriented: it delivers packets between a source and a destina-
tion.

• IP supports timely delivery, but packets might be dropped. IP is con-
nectionless: it forwards packets toward a destination. Successive packets
may take di↵erent routes to get to the destination.

TCP and IP belong to the middle two layers of the Internet Protocol Suite;
see Fig. 9.1. The layers describe software that runs in endpoints connected to
the Internet. Starting at the top, applications such as web browsing and email
in the Application layer use the Transport layer to deliver packets to another
endpoint. The Application layer is not concerned with how the packets get to
the other endpoint.

The TCP protocol in the Transport layer deals with end-to-end issues such
as ensuring that packets are delivered reliably and in order; if a packet is missing,
TCP requests retransmission of the packet through the Internet layer. TCP is
not concerned with the topology or the connectivity of switches in the network.

166 CHAPTER 9. ARCHITECTURAL PATTERNS

The IP protocol in the Internet layer routes packets through the network and
provides best e↵ort service. Best e↵ort means that there is no guarantee that
packets will get to the other end. The network consists of switches connected by
links that use various wired and wireless technologies. The Link layer isolates
IP from the specifics of the network technology that is used to carry packets
over a given link.

Originally, the roles of TCP and IP were performed by a single protocol. IP
was separated from TCP, however, because a single protocol could not ensure
both reliable and timely delivery of packets.8

Applications like email require reliable delivery; delay is acceptable, but
packet loss (due to dropped packets) is not. Voice conferencing, on the other
hand, requires timely delivery of speech packets; some packet loss can be
smoothed over and tolerated, but delay is not acceptable.

Strict layering, where each layer uses only the layer just below it, has served
the Internet well. For example, HTTP, an Application layer protocol for web
browsing, was added in 1991, without touching the other layers. HTTP was
added long after TCP and IP were designed in the 1970s. 2

9.2.1 The Layered Pattern

Context. The objects that are relevant to an application are often quite dif-
ferent from the objects in an underlying implementation. A web browser is
concerned with the retrieval and presentation of content. The browser uses a
network, but does not know or care if the links in the network are wired or
wireless. A payroll system is concerned with salaries and tax laws. The payroll
system may use a database, but it need not know how the data is represented
or stored.

Problem. Design a system where application concerns are separated from
implementation concerns.

Core of a Solution. Partition the system into layers, where each layer consists
of a cohesive set of modules. The layers are ordered and are depicted vertically,
one on top of the other. The modules in a layer use only the modules in the
layer below, unless explicitly stated otherwise. Design the layers, so that each
layer has a specific responsibility.

For example, consider an application that runs on a virtual machine that
runs on an underlying operating system. The application uses the services of
the virtual machine, and the virtual machine uses the services of the underlying
operating system.

9.2.2 Layered Pattern: Assessment

Strict layering, where each layer uses only the layer below, has proven enor-
mously successful in settings such as the Internet, virtual machines, and mobile

9.3. DATAFLOW: PIPE AND FILTER 167

apps. Layers can be replaced and new layers added, without touching the other
layers, as long as the interfaces are unchanged. With the Internet, the web-
browsing protocol HTTP was added in 1991 by layering it over TCP. HTTP
was added without touching the worldwide infrastructure of the Internet.

Strict layering favors clarity for the user over ease for the designer. The de-
signer of an enhancement to a layered architecture must partition the enhance-
ment to fit into the layers. The simple case, of course, is when the enhancement
fits entirely within a layer.

Performance Tradeo↵. Strict layering can result in a performance penalty.
Consider Internet packets from a source to a destination. At the source, going
down the protocol stack, each layer adds identifying and routing information
in the form of a header. At the destination, going up the protocol stack, the
headers are stripped to recover the payload between the source and the desti-
nation. With the Internet protocols the flexibility provided by layering is worth
the overhead of transmitting and processing the headers.

The compromise between strictness of layering and performance depends on
the setting. As we shall see in Section 9.5, the Portable C compiler compromised
strictness to gain performance.

9.3 Dataflow: Pipe and Filter

A dataflow network consists of independent processes connected by unbounded
queues. The concept was introduced by Melvin Conway, who called the pro-
cesses coroutines. The motivating application for coroutines was the design
of a compiler.9 Google Dataflow provides flexible constructs for dealing with
streams of data between processes. For example, advertisers can use it to set
up dataflow networks to calculate “the time and length of each video viewing,
who viewed it, and with which ad or content it was paired.”10

A pipeline is a dataflow network in which the processes are connected in
a line. Pipelines are named after the Unix pipe operator “|”: if p and q are
processes, then p | q connects the output of p with the input of q. For the
pipeline p | q to work, the tools p and q must be written so that q can read what
p writes.

Example 9.2 : The pipeline in Fig. 9.2 has four processes, represented by
boxes. The arrows represent queues; the first arrow represents an input queue
and the last arrow represents an output queue.

The processes in the pipeline transform the lines in a document into a sorted
list of words, one per line. Suppose that a document has two lines:

Omit needless words!

Omit needless words!

The first process converts the document into a list of words, each word on
a separate line. It does so by translating all non-alphabetic characters into

168 CHAPTER 9. ARCHITECTURAL PATTERNS

Figure 9.2: Pipeline for making a list of words in a document.

newline characters. Thus, the translation of each blank starts a new line, and
so does the translation of each exclamation point, “!”. The resulting 8-lines
are shown between the first box and the second.

The second process translates uppercase letters into lowercase. The two
instances of Omit are therefore each translated into omit. The third process in
the pipeline sorts the lines. The last process removes adjacent duplicate lines.

The output of the last process in Fig. 9.2 is a sorted list of words, preceded
by a blank line. We could another process to remove the blank line. 2

9.3.1 The Pipe-and-Filter Pattern

Context. A large class of applications, from data mining to text processing,
can be thought of in terms of sequences of operations on streams of data.

Problem. Assemble software applications from independent components that
can be mixed and matched and used as building blocks.11

Core of a Solution. Connect the components so they form a pipeline, where
the output of one component becomes the input to the next component in the
pipeline. The components are referred to as filters since they transform or filter
the data as it progresses through the pipeline.

This pipe and filter architecture pattern carries over to other configurations
where the output of one component goes to several components or where a
component has several inputs. Note that this pattern can be used for any data
objects, not just text files.

A pipe and filter architecture where components can have multiple outputs
or multiple inputs can be implemented on Windows using named pipes: “Named
pipes are used to transfer data between processes that are not related processes
and between processes on di↵erent computers.”12 Windows pipes can also be
used to set up two-way communication between processes.

9.3. DATAFLOW: PIPE AND FILTER 169

9.3.2 Unix Pipelines

The Unix pipe construct “|” leads to linear pipelines, where one tool follows
the next in sequence. This linearity is for readability and for ease of use. The
underlying implementation can support duplication of streams, so the output
of one tool can become the input for more than one tool.

Example 9.3 : For completeness, here is the Unix implementation of the
pipeline in Fig. 9.2 for converting a document into a sorted list of words in
the document:

tr -C a-zA-Z ’\n’ | tr A-Z a-z | sort | uniq

The Into Words box in Fig. 9.2 is implemented by using the tr (short for
“translate”) command, with appropriate parameters:

tr -C a-zA-Z ’\n’

The flag -C represents “complement’,” so the command translates any character
that is not a lowercase or an uppercase letter, represented by a-zA-Z, into a
newline character, represented by ’\n’:

The translation from uppercase to lowercase letters (the second box in
Fig. 9.2) is done by

tr A-Z a-z

To complete the explanation of Fig. 9.2, the sort command sorts its input
and uniq removes adjacent duplicate lines from its input. 2

9.3.3 A Dynamic Variant of Pipelines

There is more to dataflow networks than static linear pipelines, as the following
example illustrates. The filters in the example are created dynamically and
inserted into the pipeline at run time. 13

Example 9.4 : The Greek philosopher Eratosthenes is credited with the sieve
method for computing prime numbers. The idea is that n is a prime if it is not
a multiple of any prime smaller than n. Thus, 3 is a prime because it is not a
multiple of 2. And, 5 is a prime because it is not a multiple of 2 and it is not a
multiple of 3.

The dataflow network for generating prime numbers has three kinds of pro-
cesses:

• Process count enumerates the integers, 2, 3,

• Processes called filter(p), for p = 2, 3, 5, ..., where filter(p) removes multi-
ples of p.

• Process spawn, which reconfigures itself by creating filter(p) whenever an
integer p reaches it.

170 CHAPTER 9. ARCHITECTURAL PATTERNS

Figure 9.3: A reconfigurable dataflow network for generating prime numbers.

The dataflow network starts out with two processes, count and spawn; see
the pipeline at the top of Fig. 9.3. When 2 reaches spawn, it creates filter(2)
and inserts it to its left, as in the the second pipeline from the top. Since 3 is
not a multiple of 2, it passes through filter(2) and reaches spawn, which creates
and inserts filter(3), as shown in the third pipeline from the top of the figure.

The next integer from count is 4. It is a multiple of 2, so it is removed by
filter(2).

The next integer from count, 5, is neither a multiple of 2 nor is it a multiple
of 3, so it reaches spawn, which inserts filter(5) into the pipeline, as shown in
the last snapshot of the pipeline in the figure.

Since any integer p reaching spawn is not a multiple of any integer smaller
than p, it must be a prime. 2

9.4 User Interfaces: Model-View-Controller

Variants of the model-view-controller pattern have been used for interactive user
interfaces ever since the pattern was introduced in 1979 for Smalltalk-80.14 The
terms model, view, and controller refer to logical components of an interface; a
very simple interface may have a single module that performs all these logical
functions.

This section begins with the distinction between a model and its views. The
roles of models and views have remained essentially the same across the many
variants of the architectural pattern. A model is a collection of related decisions
and objects that implement an application. A view component manages a por-
tion of the display. Let screen view refer to what a view component displays on
a screen. When the context is clear, both view components and screen views

9.4. USER INTERFACES: MODEL-VIEW-CONTROLLER 171

Figure 9.4: Two views of a photo object.

will be referred to simply as views.
A controller links a model and one or more views. The role of a controller has

evolved from the original Smalltalk-80 version, to the point where some of the
variants have a di↵erent name: model-view-presenter. Complex user interfaces
may require decisions and computations that are view specific, decisions that
do not fit the role of the model. A presenter handles view-specific decisions and
computations. This section has a sequence of examples that illustrate the roles
of controllers and presenters.

9.4.1 Models and Views

The popular saying, “The map is not the territory,” distinguishes between a
collection of related objects (the territory) and a view of the objects (the map).
There can be many maps for the same territory; for example, consider a satel-
lite map, a street map, or a topological map. Even for the same map, say a
street map, the level of information depends on the scale and size of the map.
Additional details may appear on the screen as we zoom in from state to city
to neighborhood.

Example 9.5 : For the distinction between a model and its views, consider the
two views of a photo in Fig. 9.4. This example also illustrates that a view can
have subviews.

The image view on the left displays the photo as it might appear on a screen.
The dialog view on the right shows numeric values for the photo’s height and
width. The height and width are in both inches and in pixels; the values in
inches are accompanied by the resolution in pixels per inch. For this example,
assume that the proportions of the photo are fixed. That is, the ratio of height
to width is fixed: if the height changes, the width changes accordingly, and vice
versa.

Changes to the size of the photo through user interaction with one view
trigger corresponding changes in other views. When the size in the image view

172 CHAPTER 9. ARCHITECTURAL PATTERNS

Figure 9.5: Handling input in the original Smalltalk-80 Model-View-Controller.

is changed by dragging a corner of the image, the heights and widths in the
dialog view change accordingly. Similarly, if the numeric values in the dialog
view are edited, then there are corresponding changes in the image view.

The dialog view is a composite: it is made up of subviews that display the
dimensions of the photo in inches and in pixels. The view and its subviews are
composed from four kinds of elements: text labels like “Height:” and “pixels”;
text fields for values that can be edited by the user; dialog buttons for “Cancel”
and “OK”; and a bitmap for the background. 2

The distinction between models and views is one of the fundamental contri-
butions of Smalltalk-80.

Example 9.6 : Based loosely on the original Smalltalk-80 model-view-controller,
this example illustrates architectural decisions. The architecture may not be
appropriate for practical use today.

The architecture in Fig. 9.5 separates the model from its views. The dashed
lines separate the figure into three columns. The left column is for the real-world
application domain, which is implemented by the model. The right column is
for user interaction through a display for output to the user and through a
mouse and keyboard for input from the user. The middle column, labeled
Presentations, is for the components that handle user interaction.

The two main roles of the presentations are the handling of input and out-
put. In this example, input and output are handled by controllers and views,
respectively. There is a view-controller pair for an overall screen view and for
each view element. For the two views of a photo object in Fig. 9.4, there is a
view-controller pair for the image view on the left, and another view-controller
pair for the dialog view on the right. There is also a view-controller pair for each
of the elements in the dialog view. Each text field has its own view-controller
pair; so does each button.

9.4. USER INTERFACES: MODEL-VIEW-CONTROLLER 173

Views get their data from the model. In the dialog view in Fig. 9.4, suppose
that the user increases the height from 450 to 600 pixels. This change in one
field in the dialog view triggers changes in both the image view and the other
fields in the dialog view itself.

In the image view, the representation of the photo must grow to reflect
the increase in height. From Example 9.5, photo proportions are fixed, so the
increase in height triggers a corresponding increase in width.

In the dialog view, the displayed dimensions in inches and pixels must all
change. The width in pixels must change from 300 to 400. The height and
width in inches must change from 1.00 and 1.50 inches to 1.33 and 2.00 inches,
respectively.

How is a change in one field communicated to the other fields? The view-
controller pairs are unaware of each other. How do they communicate?

The numbered arrows Fig. 9.5 illustrate how a view gets its data.

1. The change from 450 to 600 is interpreted by the controller for the height
in pixels. The controller sends a message to the model with the value 600
pixels.

2. The model updates its state to change the height of the photo to 600
pixels and adjusts the width accordingly to 400 pixels. The model then
sends out notifications of the changes, which are observed by the views.

3. The observing view components respond to the notifications by retrieving
state information from the Model and updating their part of the display.

View-specific decisions are handled by Views. The views in this example are
simple enough that decisions related to the views can be handled by the views
themselves. Specifically, conversions from pixels to inches or vice versa can be
done by the views. 2

9.4.2 The Model-View-Controller Pattern

subsubContext User interaction with computers is predominantly through graph-
ical and touch interfaces.

Problem. Given an application, design a user interface that supports user
interaction through one or more views.

Core of a Solution. Partition the user interface into logical components called
model, view, controller, and presenter. As we shall see, for complex views, a
presenter handles view-specific decisions and computations.

Model. Recall that a model implements an application by a collection of
related objects. The values of these objects represent the state of the model.
For example, the model would hold the actual photo displayed in Fig. 9.4 and
keep track of the photo’s dimensions and resolution.

174 CHAPTER 9. ARCHITECTURAL PATTERNS

The other components are layered on top of the model. Thus, the other
components use the model, but the model is unaware of them. In other words,
the implementation of the model is independent of the implementations of the
other components. Layering allows multiple views to use the same model.

Changes to the state are communicated to the other components through
a list of observers maintained by the model. When the state changes, the
observers are notified, and can retrieve state information from the model, as
needed. The model is unaware of the identity of its observers.

View. Recall that a view manages a portion of the display. The information
displayed by a view comes from the model. When a view is created, it puts
itself on the model’s list of observers to be notified of changes.

Controller. A controller links a model with one or more views. In the original
Smalltalk-80 implementation, the controller was responsible for interpreting
user input through a mouse and a keyboard. Based on the input, the controller
sent updates to the model, as appropriate. For example, changes through either
the image view or the dialog view in Fig. 9.4 would have gone through the
controller to the model, so the model could update the dimensions of the photo.

As operating systems have taken over more and more of the role of inter-
preting user gestures, the role of the controller has diminished, to the point
where the controller is combined with the view. The view then handles both
input and output.

Presenter. For complex views, an optional presenter handles view-specific
decisions and computations. Instead of observing a model directly, a view may
interact indirectly, through a presenter.

A complex view may be more than a passive display of values from the
model; it may involve some decisions and computations. For example, in a
network map, should an overloaded link be highlighted by changing its color
or by flashing it, or both. The decision that the link is overloaded belongs to
the application; the decision about how to highlight the link belongs to the
presentation of the link.

The rest of this section considers the evolution of the model-view-controller.
We get a model-view-controller when the presenter is not needed, or when

its role is simple enough to be merged into the view or the controller. We get
a model-view-presenter if the controller is not needed, or when its role is simple
enough to be merged into the view or the presenter.

9.4.3 An Intermediate Step: Presentation Model

A presentation is passive if it simply displays information that it is provided,
without additional decisions or computations. With passive presentations, the
model-view-controller separation in Fig. 9.5 is clean. All values are computed
by the model, and the computations are presentation independent.

But, what about complex presentations, which do involve logic that is spe-
cific to the presentation? As noted earlier, the decision about how to display an

9.4. USER INTERFACES: MODEL-VIEW-CONTROLLER 175

Figure 9.6: Isolate presentation decisions in the Presentation Model.

overloaded link is related to the presentation. Whether the link is overloaded
is an application or domain decision. How the overloaded link is highlighted
(change its color? animate it?) is a presentation decision. As another example
of a complex presentation, consider a 3D rendering of a human brain. When
a user interacts with the rendering by rotating it in 3D, the underlying data
about the brain does not change. All that changes is the perspective on that
data. The underlying data belongs with the application; the rendering belongs
with the presentation.

Presentation logic does not fit cleanly into the original model-view-controller
separation in Fig. 9.5. Where does it belong?

An early variant of Smalltalk-80 put presentation logic into an additional
component shown as Presentation Model in Fig. 9.6.15 The Presentation Model
acts as a mediator between the Model and the View-Controller pair. Theoreti-
cally, the pair interacts with the Presentation Model is it did with the Model.
The View continues to be responsible for the display of information and the
Controller continues to be responsible for interpreting user gestures. In prac-
tice, the Presentation Model was often more tightly coupled with the View.

9.4.4 Model-View-Presenter

In the model-view-presenter architecture of Fig. 9.7, the roles of the view and
the controller are combined. In the original Smalltalk-80 implementation, the
operating system provided little support, so the controller had to do all the
work of interpreting user gestures. When the operating system does more of the
interpreting, the controller has less to do. It therefore makes sense to combine
the view and controller, and let the view handle both input and output.16

Complex presentations are handled by putting presentation logic in the com-
ponent called the Presenter in Fig. 9.7. The Presenter is therefore a variant of
the Presentation Model in Fig. 9.6. The Presenter and the View work together,
with the view doin

176 CHAPTER 9. ARCHITECTURAL PATTERNS

Figure 9.7: The view in a model-view-presenter architecture, handles both input
and output. For clarity, the

Testing User Interfaces

The problem with testing user interfaces is that it is hard to compare a display
with the an expected snapshot of the display.

A passive view makes it easier to do automated testing of user interfaces. A
passive view that simply displays values without need for decisions or compu-
tations. These values can be intercepted and compared during automated unit
tests. The values are generated by the presenter. Messages from the presenter
to the view can be intercepted for unit testing.

9.5 Case Study: Unix Portability

For a practical example of architectural principles and design tradeo↵s, consider
the Unix portability project. The project illustrates layering, information hid-
ing, dataflow pipelines, and product families. It also illustrates design tradeo↵s,
since the designers were willing to trade some architectural purity for perfor-
mance.

Unix is a portable operating system that has spawned numerous derivatives,
including Linux. This family of operating systems runs on a range of devices,
from smartphones to servers in data centers. Apple’s iOS is a descendant of
Unix; Android uses the Linux kernel.

The Unix operating system forms a machine-independent layer that insu-
lates software applications from the underlying hardware. For example, see
Fig. 9.8. The application can be ported or moved, essentially unchanged, to
any other machine running Unix.

Unix was created around 1970 for the PDP-11, a minicomputer. In 1977,
the Unix system kernel and much of its software were ported from the PDP-11
to a very di↵erent machine, the Interdata 8/32. Prior to the 1977 port of Unix,
operating systems were closely tied to the machine: di↵erent machine, di↵erent
operating system.

9.5. CASE STUDY: UNIX PORTABILITY 177

Figure 9.8: The Unix layer insulates an application from the underlying ma-
chine.

Steve Johnson and Dennis Ritchie’s account of the Unix portability project
describes both architectural principles and e�ciency tradeo↵s.17 The project
had three goals

• Write a portable C Compiler “that could be changed without grave di�-
culty to generate code for a variety of machines.”

• Refine and extend the C language itself for portability.

• Port Unix by rewriting it in portable C, “detecting and isolating machine
dependencies.”

9.5.1 Portable C Compiler

The Portable C Compiler began as a product line with two members: the
compilers for the PDP-11 and the Interdata 8/32. The family members shared
the module hierarchy in Fig. 9.9. The compilers had a front end that hid
language dependencies and a back end that hid machine dependencies. The
modules at the leaves of the hierarchy formed a pipeline: lexical analysis, syntax
analysis, expression tree matching, register allocation, and code generation.

The front end translated C programs into an intermediate representation
consisting mostly of expression trees and stylized code for procedure entry and
exit. The intermediate representation was independent of C. Thus, the secret
of the front end was the source language, C.

The back end translated the intermediate representation into machine code.
Thus, the secret of the back end was the machine.

Ideally, with strict information hiding, all machine dependencies would be
hidden in the back end. The front end would then be 100% machine indepen-
dent. In fact, the compiler traded some portability for e�ciency, so 4,000 (87%)
of the 4,600 lines in the front end were machine independent. Recall that the
goal was a compiler that could be ported from one machine to another “without
grave di�culty,” as opposed to ported unchanged.

178 CHAPTER 9. ARCHITECTURAL PATTERNS

Figure 9.9: Module Hierarchy for a member of the Portable C Compiler family.
The data about the proportion of machine-specific and machine independent
lines of code is for the Interdata version.

The portable C compiler therefore contained rather than hid the underlying
machine. Containment carried over to the implementation of the back end.
The back end generated code for the underlying machine, so it was inherently
machine dependent. Surprisingly, only 1,000 (29%) of the lines in the back end
were machine dependent. Even in the machine dependent routines, only a third
to half of the lines varied across machines.

Within months, the Portable C Compiler was running on a multitude of
machines. In the machine independent portions, a bug could be fixed in all
versions “almost mechanically.”

As further validation of the design, a family of Fortran 77 compilers for the
PDP-11 and Interdata 8/32 were soon created by reusing the back ends.

9.5.2 Porting Unix

Unix has a layered architecture, as illustrated in Fig. 9.10. The lowest layer,
just above the machine, is the hardware/software interface, written in machine-
specific assembly language. Most of the bugs appeared in the assembly language
routines. The next layer consists of device drivers for handling interrupts,
input/output, and errors.

The operating system proper is shown straddling the two machines, since
this layer is essentially machine independent; on the Interdata, only 350 out
of the 7,000 lines di↵ered from the PDP-11 version. Finally, the top layer in
Fig. 9.10 is for utilities such as assemblers, compilers, loaders, and debuggers,
which are not part of the Unix kernel. (The hardware/software interface, the
device drivers, and the operating system proper are part of the kernel.)

9.6. SUMMARY 179

Figure 9.10: Unix as a program family, running on two machines, the PDP-11
and the Interdata 8/32.

Overall, a high degree of portability was achieved, since the operating system
proper (not including the hadware/software interface and the device drivers)
was 95% the same on the two machines.

With user-level utilities, we need to distinguish between three times;

• Compiler-Creation Time. The time when the compiler itself is translated.

• Compile Time. The time when the compiler translates a source program
in C into target code for a machine.

• Run Time. The time when the target code is run on the target machine.

The compiler is inherently machine-aware, since it has to generate target code
at compile time.

Once the Unix kernel was ported to the Interdata, user-level utilities were
ported (at compiler-creation time). The utilities included debuggers and as-
semblers, which had to be modified to work with Interdata code. Despite being
machine-aware, user-level utilities were 75%-80% the same on the PDP-11 and
the Interdata 8/32.

9.6 Summary

An architectural pattern consists of a set of design decisions that outline a
solution to a recurring problem. Patterns are distilled from practical experience;
they represent best practices for software architecture. This chapter considers
some frequently occurring patterns.

180 CHAPTER 9. ARCHITECTURAL PATTERNS

9.6.1 The Layered Pattern

Context. The modules that are relevant to an application are often quite
di↵erent from the objects in an underlying implementation. The application and
implementation may themselves be addressing concerns that can be separated.

Problem. Design a system where application concerns are separated from
implementation concerns.

Core of a Solution. Partition the system into layers, where each layer consists
of a cohesive set of modules. The layers are ordered and are depicted vertically,
one on top of the other. The modules in a layer use only the modules in the
layer below, unless explicitly stated otherwise. Design the layers, so that each
layer has a specific responsibility.

The term “use” has a precise meaning: a module A uses module B if B
must be present and satisfy its specification for A to satisfy its specification. In
other words, A relies on B and B must work for A to work.

9.6.2 The Pipe-and-Filter Pattern

Context. A large class of applications from data mining to text processing can
be thought of in terms of sequences of operations on streams of data.

Problem. Assemble software applications from independent components that
can be mixed and matched and used as building blocks.

Core of a Solution. Connect the components in a pipeline, where the output
of one component becomes the input to the next component in the pipeline.
The components are referred to as filters since they transform or filter the data
as it progresses through the pipeline.

9.6.3 The Model-View-Controller Pattern

Context. User interaction with computers is predominantly through graphical
and touch interfaces.

Problem. Given an application, design a user interface that supports user
interaction through one or more views.

Core of a Solution. Partition the user interface into the following logical
components:

EXERCISES FOR CHAPTER 9 181

• The model hides decisions related to the application domain. The model
maintains a list of observers to be notified of changes to its state. It is
unaware of the identity of its observers. Its implementation is independent
of the other components.

• A view manages a portion of the display. Typically, views put themselves
on the model’s list of observers. They change the display when the model
changes.

• A controller links a model with one or more of its views.

• For complex views, an optional presenter handles view-specific decisions
and computations. Instead of observing a model directly, a view may
interact indirectly, through a presenter.

We get a model-view-controller when the presenter is not needed, or its role is
simple enough to be merged into the view or the controller. We get a model-
view-presenter if the controller is not needed, or its role is simple enough to be
merged into the view or the presenter.

Exercises for Chapter 9

Exercise 9.1 : Relate the following excerpt about beds and tables from Plato’s
The Republic (circa 380 B.C.)18 to patterns:

“ there are beds and tables in the world—plenty of them, are there not?

“Yes.

“But there are only two ideas or forms of them—one the idea of a bed,
the other of a table.

“True.

“And the maker of either of them makes a bed or he makes a table for

our use, in accordance with the idea”

Notes for Chapter 9
1Bass, Clements, and Kazman concluded that “there will never be a complete list of

patterns” [5, ch. 13]. Earlier, the authors had explored the classification of patterns in terms
of temporal and static features [15].

2Alexander et al. [2] describe a sequence of 253 patterns. For the definition of patterns,
see [2, p. x]. See pattern 116, Cascade of Roofs, for roofs for a building cluster and pattern
190, Ceiling Height Variety, for ceiling heights.

3Gamma et al. note that “The Alexandrian point of view has helped us focus on design
trade-o↵s—the di↵erent ‘forces that help shape a design.” [12, p. 356]. Shaw [20] writes,
“[Alexander’s patterns] helped shape my views on software architecture.” Beck [3] acknowl-
edges the influence of Alexander’s writings on Extreme Programming, For the history of the
Patterns of Programming Languages conferences, see
http://www.c2.com/cgi/wiki?HistoryOfPatterns .

4Alexander et al. [2, p. 881].

182 CHAPTER 9. ARCHITECTURAL PATTERNS

5Alexander et al. [2, p. xiii]: “In short, no pattern is an isolated entity. Each pattern can
exist in the world, only to the extent that is supported by other patterns: the larger patterns
in which it is embedded, the patterns of the same size that surround it, and the smaller
patterns that are embedded in it.”

6For the architecture of apps on mobile phones, see the overviews of Android [3] and
iOS [4].

7The communication layers of Internet Protocol Suite are described in RFC 1122 [7].
8The separation of TCP and IP was motivated by applications such as conferencing and

debugging. The cross-Internet debugger, XNET, needed access to all available information
when dealing with stress or failure in the network; it mattered if packets were dropped or out
of order. Dave Clark [9] traces the evolution of the design philosophy of TCP and IP. The
original design of TCP was due to Robert Kahn and Vinton Cerf [8]. Dave Clark “joined the
project in the mid 1970s and took over architectural responsibility for TCP/IP in 1981.” [9].

9Conway [10] partitioned programs so that the output of one module becomes the input
to another and “the entire program can be laid out so that ... all information items flowing
between modules have a component of motion to the right.”

Note that a dataflow network defines a relation on the set of modules, where a pair (p, q)
is in the relation if the output of module p becomes the input of module q.

10Akidau et al. [1] describe the processing model of Google Cloud Dataflow. See
https://cloud.google.com/dataflow/examples/wordcount-example for a word-count pipeline,
similar to the pipeline in Example 9.2. Accessed November 7, 2015.

11Doug McIlroy [16] envisioned a catalog of standard components that could be coupled
“like garden hose—screw in another segment when it becomes necessary to massage data in
another way.”

12For named pipes on Windows, see
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365574%28v=vs.85%29.aspx
Accessed July 13, 2015.

13Doug McIlroy “cooked up” the prime-number sieve in Example 9.3.3 for a 1968 talk on
coroutines [17].

14Trygve Reenskaug’a original May 1979 proposal for the Smalltalk user interface is en-
titled Thing-Model-View-Editor [19]. Thing referred to the application, “something that is
of interest to the user,” model to the objects that represent the thing, view to a “pictorial
representation” of the model, and editor to “an interface between the user and one or more
views.” “After long discussions,” the editor was renamed controller.

15Fowler notes that the VisualWorks variant of Smalltalk put presentation logic into a
component called Application Model. Following Fowler, the component is called Presentation
Model in Fig. 9.6.

16Potel and Bower and McGlashan.
17Johnson and Ritchie [14] describe the Unix portability project in 1977. At the time,

“Transportation of an operating system and its software between non-trivially di↵erent ma-
chines [was] rare, but not unprecedented.”

18Plato’s theory of Forms or theory of Ideas appears in many of the dialogues, including
The Republic. The excerpt about beds and tables is from Book X.

References for Chapter 9

1. Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernáncez-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt,
and Sam Whittle. The Dataflow Model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment 8, 12 (2015) 1792-1803.

2. Christopher Alexander, Sara Ishikawa, Murray Silverstein, with Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
New York (1977).

REFERENCES FOR CHAPTER 9 183

3. Android Open Source Project. Android interfaces and architecture.
https://source.android.com/devices/ .

4. Apple Inc. iOS Technology Overview (September 17, 2014)
https://developer.apple.com/library/ios/documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/iOSTechOverview.pdf .

5. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice (3rd
ed.). Addison-Wesley (2013).

6. Andy Bower and Blair McGlashan. Twisting the triad. European Smalltalk User
Group (ESUG) (2000).

7. R. Braden (ed). Requirements for Internet Hosts: Communication Layers Internet
Engineering Task Force RFC-1122 (October 1989).

8. Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercommunica-
tion. IEEE Transactions on Communications COM-22, 5 (May 1974) 637-648.

9. David D. Clark. The design philosophy of the DARPA Internet Protocols. Computer
Communications Review 18,4 (August 1988) 106-114.

10. Melvin E. Conway. Design of a separable transition-diagram compiler. Comm. ACM
6, 7 (July 1963) 396-408.

11. Martin Fowler. GUI architectures (July 18 2006).
http://martinfowler.com/eaaDev/uiArchs.html .

12. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. Reading, Mass.
(1995).

13. Derek Greer. Interactive application and architecture patterns. (August 25 2007).
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/ .

14. Stephen C. Johnson and Dennis M. Ritchie. Portability of C programs and the UNIX
system. Bell System Technical Journal 57, 6 (July-August 1978) 2021-2048.

15. Rick Kazman, Paul Clements, Len Bass, and Gregory Abowd. Classifying architectural
elements as a foundation for mechanism matching. Computer Software and Applica-
tions Conference (COMPSAC ’97) (August 1997) 14-17.

16. M. Douglas McIlroy. Typescript (October 11, 1964).
http://doc.cat-v.org/unix/pipes/ .

17. M. Douglas McIlroy. Coroutine prime number sieve. (May 6, 2015).
http://www.cs.dartmouth.edu/~doug/sieve/ .

18. Mike Potel. MVP: Model-View-Presenter (1996).
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf .

19. Trygve Reenskaug. The original MVC reports (February 12, 2007).
http://folk.uio.no/trygver/2007/MVC_Originals.pdf .

184 CHAPTER 9. ARCHITECTURAL PATTERNS

Chapter 10

Software Quality: Reviews

“When we analyze our conception of quality, we find that the term is
used in several di↵erent ways.”

— Walter A. Shewhart’s 1931 classic book on manufacturing quality

distinguishes between quality as it relates to customer wants, to

manufacturing processes, and to inherent product properties. The

software equivalents of these three forms of quality are functional,

process, and product quality, respectively.

1

There are severe limitations on the number of chunks of information that people
can “receive, process, and remember.” We can keep track of about seven chunks,
be they bits, words, colors, tones, or tastes. Beyond about seven, confusion and
errors set in.2

No wonder software has defects! Software is complex. Even with a short
seven-line program, it is easy to make a mistake. Large software systems can
have thousands of unresolved defects, despite the best e↵orts of their developers.

Section 10.1 sets the stage for the discussion of software quality in this book.
This chapter deals with static properties of systems—a static property can be
analyzed without executing the program. By contrast, a dynamic property is a
run-time property of the behavior of a program.

10.1 Overview of Software Quality

Terms like quality are inherently di�cult to define since di↵erent stakeholders
view quality di↵erently. Users may focus on whether a product does what they
want, whether it works reliably, and whether it is worth the price. Developers

185

186 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Figure 10.1: A model for software quality.

may focus on the product’s code: whether it meets its specification, whether it
is free of defects, and whether it is clean or sloppy. Thus, while users focus on
what the code code does for them, developers focus on the quality of the code
itself.

It is therefore more appropriate to talk about “qualities” (plural) than it is
to talk about “quality” (singular).

10.1.1 Views of Software Quality

For our purposes, the term software quality is a general term for any of the six
forms of quality illustrated in Fig. 10.1.3

Functional Quality

Functional quality is the degree to which a software system does what the user
wants. Specifically, it is the degree to which the system meets user requirements
for functionality. For example, functional quality might be measured in terms
of how well the system supports the use cases or scenarios for the system.

Process Quality

Process quality has two possible interpretations:

• E↵ectiveness. With the e↵ectiveness interpretation, process quality refers
to the e↵ectiveness of a process in organizing software development activ-
ities and teams.

• Compliance. With the compliance interpretation, process quality is the
degree to which a process conforms to or follows the documented process
model. This notion of process quality is motivated by manufacturing,
where manufacturing processes are controlled to ensure consistency of
output:

10.1. OVERVIEW OF SOFTWARE QUALITY 187

We shall take the e↵ectiveness interpretation: process quality refers to pro-
cess e↵ectiveness. For example, iterative processes tend to be more e↵ective
than waterfall processes at delivering the right product on time and within
budget. Note that process quality is relatively independent of the product be-
ing developed. Consider the process decision that all code must be reviewed
before it becomes part of the code base. This decision is independent of the
product.

Product and Operational Quality

Product quality refers to inherent properties of a product that cannot be altered
without altering the product itself.4 For example, the number of known defects
in a system is a measure of product quality.

Operational quality refers to a customer’s operational experience after the
product is delivered. If a product does not work correctly or if it fails during
operation, the customer’s operational experience will su↵er and the product
will be said to have poor operational quality.

Example 10.1 : This example illustrates the distinction between product and
operational quality. It mentions testing and code coverage, which will be dis-
cussed in Chapter 11. Hopefully, the following description is self-explanatory.

A team at Nortel spent months improving product quality:5

“We spent almost 6 months in test between manual and automated
testing. Then we went to the customer base, with [a code coverage]
tool turned on ... what we found was that we only tested 1/10 of
1% of what they use. And of course it was a bad release in the
customers’ eyes.”

In other words, the team spent 6 months improving product quality as measured
by the number of defects in the source code. However, the defects they fixed
through testing were largely in portions of the code that were not reached during
operation. Enough defects remained in the portions of the code that customers
did use that the operational quality of the product was poor.

For the next release the team focused on improving operational quality:

“We changed the automation tools and manual testing to test what
the customer used, about 1% of the code ... and the next release
was a fantastic release in the customers’ eyes.

“Through this tool we also learned that the customer base rarely
(aka almost never) used new features. It was all about everything
that they currently use still working in the new release.”

The conclusion is that customers care about operational quality, not product
quality. (Developers typically focus on product quality.) The defects that mat-
ter to customers are the defects that they encounter when they use a product.
2

188 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Transcendental and Operational Quality

The remaining two forms of quality are included for completeness. Transcen-
dental quality refers to the indefinable “I’ll know it when I see it” goodness
of a product. It refers to perceptions and aesthetics and cannot be measured.
Finally, the value notion of quality refers to a customer’s willingness to pay for
a system.

10.1.2 Defects, Faults, and Failures

When discussing software quality, software engineers use a variety of terms,
including anomaly, bug, defect, failure, fault, and error. Two of these terms—
fault and failure—are widely used and have generally accepted meanings.

Distinction Between Faults and Failures

A fault is a flaw in a system. The flaw could be in the source code, the design,
the documentation, or some other artifact related to the system. The term
fault also applies to any deviations from programming style guidelines. Faults
are a static property of a system. The number of faults is a measure of product
quality.

A failure occurs when the behavior of an implementation is incorrect; that is,
the behavior does not match the specification. Failures are a dynamic property
of a system; they occur when the system is run. The number of failures is a
measure of operational quality.

The following example explores the distinction between faults and failures.6

Example 10.2 : There had been 300 successful trial runs of the airborne guid-
ance system for NASA’s Atlas rockets. The system relied on signals from the
ground to keep an Atlas vehicle on course during flight. Then, an Atlas Agena
rocket was launched, carrying Mariner I, an unmanned probe to the planet
Venus.

Shortly after launch, signal contact with the ground was lost. The devel-
opers had planned for such an eventuality. The airborne guidance system was
supposed to behave as follows:

if not in contact with the ground then
ignore course correction

But, due to a programming error, the not was missing. The guidance system
blindly steered the rocket o↵ course: hard left, nose down. At 293 seconds after
launch, the rocket and its payload were destroyed by the safety o�cer.

The missing not was a fault in the source code. This fault lay undetected
through 300 successful trial runs. During these trials, the fault did not trigger
a failure.

The failure occurred when contact with the ground was lost and control
reached the fault in the code. 2

10.2. VALIDATION AND VERIFICATION 189

Severity of Defects

When precision is needed, we shall on the terms fault and failure. For conve-
nience, the terms defect and error will be used as follows:

• A defect is a fault or an omission from a software artifact.

• An error is a fault, a failure, or an omission. The reason for this broad
interpretation is that the term error has multiple meanings, including:
(1) a fault in a software artifact; (2) the di↵erence between actual and
expected behavior (e.g., 10% sampling error); (3) a human action that
results in a failure; (4) an undesirable system state, potentially leading to
a failure.

All defects are not equal: some are critical; some are harmless. There is
general agreement on the following four levels of severity of defects:

1. Critical. Total stoppage. Customers cannot get any work done.

2. High. Major error. Some required functionality is unavailable and there
is no workaround.

3. Medium. Minor error. There is a problem, but there is a workaround, so
the problem is an inconvenience rather than a roadblock.

4. Low. Cosmetic error. All functionality is available.

The lower the number, the more severe the defect. Companies tend not to ship
a product with known critical or high severity defects.

10.2 Validation and Verification

Errors have to be found before they can be fixed. Error detection takes two
forms:7

Validation: “Am I building the right product?”
Verification: “Am I building the product right?”

Validation refers to checking that a software artifact meets customer needs
and requirements. With an iterative process, the development team relies on
customer feedback to validate that it is building the right product. Customer
acceptance testing is also a form of validation.

Verification refers to checking that an implementation is correct. Check-
ing for correctness implies that there is a specification of what the system is
supposed to do.

In terms of overall e↵ort, verification is a much bigger problem than valida-
tion.8

190 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Figure 10.2: Selected techniques for verification and validation.

10.2.1 Techniques for Validation and Verification

Validation and verification techniques overlap, as illustrated in Fig. 10.2. The
techniques are defined here and discussed in later sections.

• A review is a process or meeting for examining a software artifact for
“comment or approval,” according to IEEE Standard 1028-2008.9 An in-
spection is a formal review by a carefully selected group of independent
experts, with the purpose of finding “anomalies, including errors and de-
viations from standards and specifications.”

• Static analysis examines a program without running it. The purpose of
static analysis is to find potential defects. Note that the term defect ap-
plies to both flaws and to deviations from guidelines about programming
practices.

• Testing is the process of running a program or component in a controlled
environment to check whether the program behaves as expected. Often,
testing produces output that is compared with the expected output.

• Modeling is beyond the scope of this book. It consists of building a
theoretical or software model of a system or some aspect of a system to
predict some properties or behavior of the system.

The following example illustrates verification techniques.

Example 10.3 : As discussed in Example 10.2, Mariner 1 was lost because
of a programming error, a missing not. During a congressional hearing a few
days after the loss, the committee members had di�culty understanding why
such a simple error had not been uncovered before the launch. As one of the
committee members put it (remarks edited):10

Mr. Fulton. ... a loss up to $18 to $20 million, plus the time, plus
the loss of prestige ... Doesn’t any outside inspector check that the
computers are correctly programmed?

The Mariner 1 loss touches on the following techniques:

10.3. ARCHITECTURE REVIEWS 191

• Reviews. During the congressional hearing, Mr. Fulton asked, “Doesn’t
any outside inspector check ...?” Formal reviews (inspections) are a cost-
e↵ective technique for error detection.

• Static Analysis. A missing not in a conditional can result in unreachable
code. Unreachable code can be detected by static analysis. Such code
can be a symptom of an underlying programming error.

• Testing. 300 trials failed to uncover the programming error. Testing
cannot prove the absence of errors. 2

The focus of architecture and design reviews in Section 10.3 is on valida-
tion: will the architecture meet customer needs? The focus of code reviews in
Section 10.5 is on verification: does the code have errors? The description of
software inspections (formal reviews) in Section 10.4 is relevant for both val-
idation and verification; specifically, for both architecture and code reviews.
Reviews are useful for finding flaws in any software-related artifacts, including
designs, code, and documentation.

Static analysis, which is essentially an automated review, is covered in Sec-
tion 10.6. Testing, in Chapter 11, spans validation and verification. As we shall
see, there are several forms of testing,

10.3 Architecture Reviews

The primary purpose of an architecture review is to

a) clarify the goals of the proposed architecture and

b) confirm that a solution based on the architecture will meet those goals.

The goals of an architecture follow from customer needs, so architecture reviews
are a validation technique; they improve functional quality.

Far too often, either the architecture does not adequately address the goals
or the goals are not completely or clearly defined.11 In addition a review may
uncover other issues related to the project, such as the lack of management
support or the inadequacy of the team’s tools and domain knowledge.

10.3.1 Guiding Principles for Architecture Reviews

This section explores the guiding principles for reviews in Fig. 10.3.12 A discus-
sion of how to conduct a review will be deferred until Section 10.4, since similar
review processes are used for both architecture and code reviews (Section 10.5).

The full benefits of reviews are realized when they follow a formal process.
The guiding principles are also helpful for informal peer reviews, where devel-
opers go over each other’s work.

192 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Figure 10.3: Guiding principles for architecture reviews.

The Review is For the Project Team’s Benefit

The purpose of a review is to provide a project team with objective feedback.
It is then up to the project team and its management to decide what to do with
the feedback. The decision may be to continue the project with minor changes,
to change the project’s direction, or even to cancel the project.

Reviews have been found to be cost e↵ective for both projects that are doing
well and for projects that need help. They are not meant to be an audit on
behalf of the project’s management. They are not for finding fault or assigning
blame.

Since the project team will be the one to act on reviewer feedback, members
of the development team have to participate in the review. The team’s par-
ticipation also helps to build trust between the team and the reviewers, which
increases the likelihood that the team will act on the feedback from the review.

The Expert Reviewers are Independent

For the review to be objective, the reviewers need to be independent of the
project and its immediate management. For the review to be credible, the
reviewers need to be respected subject-matter experts.

The independent experts may be either from outside the company or from
other parts of the company. A side benefit of drawing reviewers from other
parts of the company is that (a) they spread best practices to other projects
and (b) the company builds up a stable of experienced reviewers.

The Project has a Clear Problem Definition

As discussed in Section 4.1.1, there may be multiple ways of addressing a cus-
tomer need. For example, consider the following need and options for a problem

10.3. ARCHITECTURE REVIEWS 193

definition:

Customer Need: Listen to music

Option 1: O↵er songs for purchase and download
Option 2: O↵er a free streaming service with ads

During an architecture review, the independent experts respectfully provide
feedback on the clarity and completeness of the problem definition.

Issues can arise with the problem definition if there are multiple stakeholders
with conflicting needs or goals. For example, one stakeholder may be fanatical
about keeping costs low, while another is equally passionate about maximizing
performance. As another example, conflicts can arise when balancing conve-
nience and security.

The Architecture Fits the Problem

The reviewers confirm that the architecture will provide a reasonable solution
to the problem. Developers often focus on what the system is supposed to do;
that is, they focus on the functional requirements for the system. They tend
to pay less attention to non-functional goals, such as performance, security,
and reliability. Reviewers therefore pay particular attention to non-functional
requirements. Early reviews help because non-functional requirements such as
performance and security need to be planned in from the start. Otherwise, they
can lead to redesign and rework later in the project.

For example, with iterative and agile processes, early iterations focus on
a minimal viable system, in order to get early customer feedback on the ba-
sic functionality. Special cases, alternative flows, and error handling get lower
priority and are slated for later iterations. Concerns about non-functional re-
quirements may not surface until late in the project. An early architecture
review can prevent redesign and rework late in the project.

The Project has a System Architect

Projects that are important enough to merit a formal architecture review are
important enough to have a system architect. The “architect” may be a person
or a small team.

The reviewers rely on the architect to describe the architecture and provide
the rationale for the design decisions. The reviewers also assess the team’s
skills. Does anyone on the team have prior experience with such a system? Are
the tools new or known to the team?

10.3.2 Discovery, Deep-Dive, and Retrospective Reviews

The focus of a review varies from project to project and, for a given project, from
stage to stage in the life of a project. The following three kinds of reviews are
appropriate during the early, middle, and late stages of a project, respectively:

194 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Problem Definition

• How will the customer benefit?

• What is the rationale for choosing
this opportunity?

System Architecture

• What are the prioritized require-
ments?

• What are the main components of
the system? How do they support
the basic scenario?

• What is the desired performance?
Scale? Availability?

Team

• Has the team built something like
this before?

• Is the team co-located or distributed?

Constraints and Risks

• Are there any business constraints?
Time to market?

• Are there any ethical, social, or legal
constraints?

• What are the risks associated with
the external technology and services?

Figure 10.4: A short checklist for an architecture review.

• A discovery review for early feedback.

• A deep dive for an evaluation of a specific aspect of the architecture.

• A retrospective for lessons learned.

An architectural discovery review assesses whether an architectural approach
promises a suitable solution. A discovery review can begin as soon as prelimi-
nary design decisions are made, before an architecture fully exists. The review-
ers focus on the problem definition, the feasibility of the emerging design, and
the estimated costs and schedule. A short checklist of questions for a discovery
review appears in Fig. 10.4; a somewhat longer list appears in Appendix A.

The benefit to the project team of an early discovery review is that design
issues are uncovered early. The earlier a design issue is uncovered, the easier it
is to address.

An architectural deep dive evaluates the requirements, the architecture, and
high-level design of either the entire project, or of some aspect of the project.
The project team may identify specific areas for feedback. The following is a
small sample of focus areas from actual architecture reviews:13

user experience performance interoperability
user interface security software upgrades
disability access reliability deployment

Deep dives are conducted during the planning phase, before implementation
begins.

An architectural retrospective is a debriefing to identify lessons learned that
could help other projects. The reviewers ask what went especially well and
what didn’t. Retrospectives are useful for sharing best practices and recom-
mendations for problems that other projects might encounter.

10.4. SOFTWARE INSPECTIONS 195

10.4 Software Inspections

An inspection is a formal review by a carefully selected group of independent ex-
perts. Software inspections have been widely deployed since Michael E. Fagan’s
influential 1976 paper. He wrote,

“Substantial net improvements in programming quality and pro-
ductivity have been obtained [at IBM] through the use of formal
inspections of designs and of code.”14

The Mars mission described in Section 1.2 had 145 software inspections, which
surfaced 10,000 comments that were individually tracked and addressed by the
project team.

Inspections are especially useful for non-executable artifacts, such as archi-
tecture descriptions, designs, test plans, and documentation. They are also
good for identifying omissions, such as missing cases. In e↵ect, inspections are
a form of human testing.

For code, there are additional verification techniques, since code can be
compiled, analyzed, and executed. Code reviews are discussed in Section 10.5,
static program analysis in Section 10.6.

This section describes traditional inspections à la Fagan, before considering
enhancements and variations.

10.4.1 Traditional Inspection

An inspection has four main phases (see Fig. 10.5): planning for an inspection;
individual preparation by reviewers; a moderated examination of the review
materials; and subsequent rework by the project team to address significant
issues and findings. These phases are represented by the boxes in Fig. 10.5.
To the left of the boxes are the goals of each phase in a traditional Fagan
inspection. To the right of the boxes are some questions from empirical studies
of the inspection process.

In a traditional inspection à la Fagan, the main event is a group meeting to
detect and collect defects. The group meeting corresponds to the moderated ex-
amination phase in Fig. 10.5. The earlier phases—planning and preparation—
are simply to prepare the review team, so they will be e↵ective in the moderated
group meeting.15

The basic flow of a traditional inspection appears in Fig. 10.6. The phases
of the flow are explored below.

Screening Projects for Inspection

Since the purpose of an inspection is to provide the project team with objective
feedback, the request for an inspection must come from the project team. Tthey
are the ones to benefit from and act on the findings. As part of the request,
the project team may indicate specific areas of focus for the inspection; e.g.,
usability, security, or reliability.

196 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Figure 10.5: Phases of a software inspection. Goals from a traditional inspection
are on the left. The questions on the right are based on empirical studies.

The inspection is not for assessing performance or for assigning blame. If
the project team is pressured into having an inspection or is resistant to acting
on the findings, the inspection could turn out to be a waste of everyone’s time.

Companies typically have a screening process to prioritize requests for in-
spections. Inspections have a cost: they require a time commitment by the
reviewers and the project team. Screening is based on the perceived cost e↵ec-
tiveness of an inspection.

Roles in a Traditional Inspection

The main roles associated with an inspection are as follows:

• Moderator. The moderator organizes the inspection and facilitates group
interactions to maximize e↵ectiveness. Moderators need special training;
they need to be objective. Hence they must be independent of the project
and its immediate management.

• Author. The author may be a person or a small team. The author prepares
the materials for review and answers questions about the project.

• Reviewer. Reviewers need to be independent, so they can be objective.
They can be drawn from other projects within the same company. See
also the comments about reviewers in Section 10.3.1.

10.4. SOFTWARE INSPECTIONS 197

Planning
A project team requests an inspection.
The moderator assembles a team of independent reviewers.
The moderator confirms that the materials meet entry criteria.

Overview and Preparation
The moderator spells out the objectives.
The author provides an overview of the materials.
The reviewers study the intent and logic individually.

Group Meeting
The moderator facilitates and sets the pace.
The reviewers examine the materials for defects.
The reviewers conclude with preliminary findings.

Rework and Follow Up
The reviewers compile a report with significant findings.
The author reworks the materials to fix defects.
The moderator verifies that that issues are addressed.

Figure 10.6: The basic flow of a traditional software inspection.

The moderator role can be split into two: organizer of the inspection and
moderator of the group interactions. Similarly, the author role can be split
into two: author of the artifact and reader who paraphrases the content to be
reviewed during group meetings.

The Planning Phase

The moderator assembles a team of independent reviewers. The moderator also
ensures that the project team provides clear objectives and adequate materials
for inspection. For example, for an architecture review, the project must pro-
vide a suitable architectural description. For a code inspection, the code must
compile without syntax errors.

Overview and Individual Preparation

Individual preparation by the reviewers may optionally be preceded by a briefing
session to orient the reviewers. During the briefing, the project team provides
an overview of the project, drawing attention to the areas of focus for the
inspection.

The reviewers then work on their own to prepare for the group meeting.
While they may discover defects during preparation, this emphasis on this phase
of a traditional review is on understanding—the group meeting is for defect
detection and collection.

198 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

The Group Meeting

Ideally, the group meeting is face-to-face. The moderator sets the pace and
keeps the meeting on track. The entire review team goes over the materials
line-by-line to find defects. The detected defects are recorded: the meeting is
for finding defects, not for fixing them. At the end of the review, the reviewers
may confer privately and provide preliminary feedback to the project team.

Inspection meetings are taxing, so the recommended length of a meeting is
two hours. Meetings for complex projects may take multiple day.

Rework and Follow Up

After the group meeting, the reviewers prepare a report with significant findings.
The report classifies issues by severity: major issues must be addressed for
the project to be successful; minor issues are for consideration by the project
team. Finally, the moderator follows up to verify that the reported issues get
addressed. The issues identified by the reviewers may include false positives—a
false positive is an reported defect that turns out not to be a defect on further
examination. The author must respond to all issues, even if it is to note that
no rework is needed.

10.4.2 What Makes Inspections Work?

Software inspections have been studied extensively since they were introduced
several decades ago. The cost of an inspection rises with the number of re-
viewers: how many are enough? A group meeting causes delays: is a meeting
necessary? The rest of this section considers some questions about the process
for conducting inspections.

How Many Reviewers?

The number of reviewers depends on the nature of the inspection: with too
few, the review team may not have the required breadth of expertise; with too
many, the inspection becomes ine�cient. The fewer reviewers the better, not
only for the cost of the reviewers’ time, but because it takes longer to coordinate
schedules and collect comments from the reviewers.

A typical inspection may have three to six reviewers. For code inspections,
there is evidence that two reviewers find as many defects as four.16

Is a Group Meeting Really Necessary?

The group meeting is the main event of a traditional inspection. Reviewers are
instructed to study the materials prior to the meeting. The meeting is where
defect detection is expected to take place.

Experiments at Bell Labs in the 1990s questioned the necessity of a group
meeting. In one study, 90% of the defects were found during individual prepa-
ration; the remaining 10% were found during the group meeting.17 This data

10.5. CODE REVIEWS 199

argues against group meetings. Such meetings are expensive. Schedule coordi-
nation alone can take up a third of the time interval for an inspection.18

How Should Reviewers Prepare?

Reviewers are often given checklists or scenarios to guide their individual prepa-
ration. Such guidance is to avoid two problems: duplication of e↵ort and gaps
in coverage. Duplication of e↵ort occurs when multiple reviewers find the same
defects. Gaps in coverage occur if defects remain undiscovered: no reviewer
finds them.

In one study, reviewers who used scenarios or use cases were more e↵ective
and finding defects than reviewers who used checklists.19

10.5 Code Reviews

Code reviews have changed along with the tools and methods of software devel-
opment. Instead of checking for defects, the primary motivation has changed
to checking for intent—to checking that the code is readable and that it can be
trusted to do what it is intended to do.20

Code reviews remain relevant, however. People are better than automated
tools at getting to the root cause of a problem and in making judgements about
design and style.

10.5.1 What has Changed?

Many of the consistency checks that were once done by human inspectors have
been automated. Changes in programming languages and compilers have elim-
inated the need for questions like21

“Have all variables been explicitly declared?”

“Are there any comparisons between variables having inconsistent
data types (e.g., comparing a character string to an address)?”

Static program analysis (see Section 10.6) eliminates the need for

“Is a variable referenced whose value is unset or uninitialized?”

Run-time checking can address questions like

“When indexing into a string, are the limits of the string exceeded?”

Design and style questions, however, still require human review and may
never be automated. For example, consider

“Will every loop eventually terminate? Devise an informal proof or
argument showing that each loop will terminate.”

200 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Traditional Open-Source
Inspections Code Reviews

Frequency per Phase per Commit

Code Size Tens of lines Hundreds of lines

Reviewers Independent (3-6) Invested (1-3)

Goal of the Review Detect defects Detect and Fix defects

Meet Face-to-Face Asynchronously

Elapsed Time Days Hours

Figure 10.7: Di↵erences between traditional inspections and open-source code
reviews.

10.5.2 Code Reviews Today

The di↵erences between traditional code inspections and modern code reviews
touch every aspect of a review. For concreteness the comparison in Fig. 10.7
is with open-source code reviews. Similar comments apply to companies like
Google. Note that there may be exceptions to the general observations in
Fig. 10.7.22

Invested Expert Reviewers

Open-source projects have hundreds of contributors, who are geographically
dispersed.23 A trusted group of core developers is responsible for the integrity
of the code base.

Contributions are broadcast to a developer mailing list for review. Reviewers
self select, based on their expertise and interests. They respond with comments
and suggested fixes. While the number of reviewers for each contribution is
small, 1-3, a larger community of developers is aware of the review.24

At Google, the main code repository is organized into subtrees with owners
for each subtree.

“All changes to the main source code repository MUST be reviewed
by at least one other engineer.”25

The author of a change chooses reviewers; however, anyone on the relevant
mailing is free to respond to any change. All changes to a subtree must be
approved by the owner of the subtree.

In general, self-selected reviewers have considerable expertise.

10.6. STATIC ANALYSIS 201

Figure 10.8: The Review-then-Commit and the Commit-then-Review processes.

Review Early and Often

It is a good practice to review all code before it is committed; that is, before
it goes live in a production setting. Major companies, like Google, require a
review before a commit. Open-source software projects require code from new
contributors to be reviewed before it is committed.

Projects that review all code have frequent reviews of small pieces of code:
tens of lines, say 30-50, instead of the hundreds of line in a traditional inspection.
Code for review is self-contained, so reviewers see not only the change, but the
context for the change.

The Review-then-Commit process is illustrated in Fig. 10.8(a). A contrib-
utor submits code for review. The reviewers examine the code for defects and
suggest fixes. The contributor reworks the code and resubmits. Once the re-
viewers have no further comments, the code is committed and become part of
the production code base. The dashed line indicates that rework is conditional
on reviewers have comments that need to be addressed.

An alternative review process is followed if a change is urgent or if the con-
tributor is known and trusted. The Commit-then-Review process is illustrated
in Fig. 10.8(b). A contributor commits the code and notifies potential review-
ers, who examine the change. Based on their comments, the commit either
holds or the the change is rolled back and reworked. The dashed line represents
the case in which the change is reworked until it is approved by the reviewers.

Asynchronous Rapid Responses

With self-selected geographically-distributed reviewers, code reviews are asyn-
chronous: there is no group meeting. Reviewer comments are collected by email
or though an online tool. Reviewers respond within hours.

10.6 Static Analysis

Static analysis examines a program without running it. The purpose of static
analysis is to find anomalies, be they potential defects or deviations from guide-

202 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

lines about programming practices. Static analysis is e↵ective enough that it
has become an essential verification technique, along with reviews and testing.

What static analysis cannot do is to prove significant properties of a pro-
gram, such as correctness, or predict the value of a variable at run time. The
problem of proving such properties is equivalent to solving the famous “halting
problem,” which is known to be undecidable.

For example, we cannot predict whether the value of x will be 0 or 1 at the
end of the following program fragment:

x = 0;

if(f()) x = 1;

There can be no general algorithm to decide whether an arbitrary computation
f() will halt, so we cannot predict whether control will get to the assignment
x = 1.

What static analysis can do is to handle special cases. It can identify spe-
cific kinds of questionable program constructions. For example, by examining
execution paths through a program, a static analyzer might identify lines of
code that cannot be reached at run time. As another example, for some loops,
a static analyzer might determine whether the loop is infinite—by examining
the boolean expressions in the loop, the static analyzer might deduce that once
control enters the loop, it can never leave.

In practice, static analyzers can exhaustively identify questionable construc-
tions in millions of lines of code. A complete scan of the source code allows
static analyzers to find defects that reviews and testing might miss. With the
heightened interest in security, there is renewed interest in exhaustive static
checking.

In short, some static analyzers can detect enough of the defects all of the
time.

A drawback of static analysis, is that it can raise false alarms, along with
flagging critical defects. In the past, the volume of false alarms was a barrier to
adoption. Now, static analyzers use heuristics and deeper analysis to hold down
the number of false alarms. They also prioritize their warnings: the higher the
priority, the more critical the defect.

10.6.1 A Variety of Static Checkers

Automated static analysis tools consist of a set of checkers or detectors, where
each checker looks for specific questionable constructions in the source code.
Questionable constructions include the following:

• A variable is used before it is defined.

• A piece of code is unreachable (such code is also known as dead code).

• A resource leaks; that is, the resource is allocated but not released.

• A loop never terminates; e.g., its control variable is never updated.

10.6. STATIC ANALYSIS 203

This list of constructions is far from complete. New checkers continue to be
defined, inspired by real problems in real code. The examples in this section
are drawn from real problems in production code.

Static analyzers rely on compiler techniques to trace the flow of control and
data through a program. Control-flow analysis traces execution paths through
a program. Data-flow analysis traces the connections between the points in a
program where the value of a variable is defined and where that value could
potentially be used. The two are related, since data-flow analysis can help with
control-flow analysis and vice versa.

Checking for Infinite Loops

The general problem of detecting infinite loops is undecidable, as noted earlier
in this section. Many loops have a simple structure, however, where the value
of a variable, called a control variable, determines when control exits the loop.
Simple deductions may su�ce for deciding whether such a loop is infinite.

Example 10.4 : The following code fragment is adapted from a commercial
product:

for (j = 0; j < length; j--) {

... // j is not touched in the body of the loop
}

If the value of length is positive, j < length will remain true as j takes on
successively larger negative values.

An infinite loop is probably not what the programmer intended. 2

Checking for Unreachable Code

Control-flow analysis is needed for detecting unreachable code. Such code is
typically a sign of a bug in the program.

Example 10.5 : For 17 months, between September 2012 and February 2014,
a security vulnerability lay undetected in code running on hundreds of millions
of devices. The code had been open sourced, available for all to see.

The vulnerability was in the Secure Sockets Layer (SSL) code for the oper-
ating systems for iPhones and iPads (iOS), and Macs (OS X). The vulnerability
was significant, since it left the door open for an attacker to intercept commu-
nication with websites for applications such as secure browsing and credit-card
transactions.

The vulnerability was due to a bug, in the form of an extra unwanted goto;
see Fig. 10.9. The indentation of the second circled goto on line 9 is deceptive.
Lines 7-11 have the following form:

204 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Figure 10.9: A bug in the form of an extra “goto fail;” introduced a vulner-
ability into an implementation of SSL.

7) if(condition1)

8) goto fail;

9) goto fail; // bug: unwanted goto

10) if(condition2)

11) goto fail;

Note that the unwanted goto on line 9 prevents control from reaching the con-
ditional on line 10.

A static analyzer would have detected the unreachable code on lines 10-11.
2

Checking for Null-Dereference Failures

Null is a special value, reserved for denoting the absence of an object. A null-
dereference failure occurs at run time when there is an attempt to use a null
value. Static analysis can detect potential null deferences.

The following Java program fragment assigns the value null to variable
logger of class Logger and then promptly proceeds to use null value:

Logger logger = null;

... // code that does not change the value of logger
logger.log(message);

Using data-flow analysis, we can deduce that the value of logger will be null
when control reaches the last line of the above program fragment. At that
point, a failure will occur: there will be no object for logger to point to, so the
method call log(message) will fail.

10.6. STATIC ANALYSIS 205

1) Logger logger = null;

2) if (container != null)

3) logger = container.getLogger();

4) if (logger != null)

5) logger.log(... + container.getName() + ...);
6) else

7) System.out.println(... + container.getName() + ...);

Figure 10.10: A program fragment from the open-source Apache Tomcat Server
with a null-dereference bug.

Before reading the next example, can you find the potential null dereferences
in Fig. 10.10?

Example 10.6 : The real code fragment in Fig. 10.10, avoids a null dereference
for logger, but it introduces a null dereference for container.

Data-flow analysis would discover that logger in Fig. 10.10 is defined in
two places and used in two places. The two definitions are on lines 1 and 3.
The two uses are on lines 4 and 5. As for container, there are no definitions;
there are four uses, on lines 2, 3, 5, and 7.

A null-dereference failure will occur if container is null when line 1 is
reached. Control then flows from the decision on line 2 to line 4, leaving logger
unchanged at null. From the decision on line 4, control therefore flows to line
7, which has a use of container. But container is null, so we have a null-
dereference failure.

There is no null dereference if container is non-null when line 1 is reached,
even if container.getLogger() returns null. 2

The open-source static analyzer FindBugs would warn about two potential
null dereferences for the uses of container on lines 5 and 7.26 From Exam-
ple 10.6 only the null dereference on line 7 is possible. The FindBugs warning
about the use of container on line 5 is therefore a false alarm. Such false
alarms are called false positives.

10.6.2 False Positives and False Negatives

A warning from a static analyzer about a piece of code is called a false positive
if the code does not in fact have a defect. False positives arise when a static
analyzer errs on the side of safety and flags a piece of code that might harbor a
defect. If the piece of code does not in fact have a defect, then the warning is
a false positive.

A false negative is a defect that is not detected by static analysis.

206 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Static analysis tools choose to hold down the number of false positives at
the expense of introducing some false negatives. The designers of a commercial
static analyzer, Coverity, observe

“In our experience, more than 30% [false positives] easily cause prob-
lems. People ignore the tool. ... We aim for below 20% for ‘stable’
checkers. When forced to choose between more bugs or fewer false
positives we typically choose the latter.”27

From the above quote, the designers of Coverity choose fewer false positives
over fewer false negatives. More false negatives means more bugs missed. Other
static analysis tools make the same choice.

10.7 Key Concepts and Terms

• A static property of a program can be analyzed without executing the
program. By contrast, a dynamic property is a run-time property of the
behavior of a program.

• Software quality is a general term for any of the following forms of quality:

– functional quality is the degree to which a system meets user require-
ments for functionality;

– process quality refers to the e↵ectiveness of a process in organizing
software development activities and teams;

– product quality refers to inherent properties of a product that cannot
be altered without altering the product itself;

– operational quality refers to a customer’s operational experience after
the product is delivered;

– transcendental quality refers to the indefinable goodness of a product;

– the value notion of quality refers to a customer’s willingness to pay
for a product.

• A fault is a flaw in the source code, the design, the documentation, or
some other software artifact. A failure occurs when the behavior of an
implementation does not match the specification. Faults are a measure of
product quality. Failures are a measure of operational quality.

• A defect is a fault or an omission from a software artifact. Error is a
broad term for a fault, a failure, or an omission.

• The severity levels of defects are as follows (the lower the number, the
more severe the defect):

1. critical for total stoppage;

2. high for major error that cripples some functionality;

3. medium if there is a problem, but there is a workaround; and

10.7. KEY CONCEPTS AND TERMS 207

4. low for a cosmetic error.

• Validation refers to checking that a software artifact meets customer re-
quirements; or, “Am I building the right product?” Verification refers
to checking that an implementation is correct; or, “Am I building the
product right?” In terms of overall e↵ort, verification is a much bigger
problem than validation.

• A review is a process or meeting for examining a software artifact for com-
ment or approval. An inspection is a formal review by a carefully selected
group of independent experts, with the purpose of finding “anomalies,
including errors and deviations from standards and specifications.”

• The primary purpose of an architecture review is to clarify the goals of
the proposed architecture and confirm that a solution based on the ar-
chitecture will meet those goals. The guiding principles for architecture
reviews are:

– The review is for the project team’s benefit.

– The expert reviewers are independent.

– The project has a clear problem definition.

– The architecture fits the problem.

– The project has a system architect.

• In a traditional or Fagan inspection, a group of 3-6 independent experts
prepare in advance for a group meeting to detect and collect defects in
a software artifact. Subsequent studies have shown that two committed
expert reviewers may be enough and that a group meeting is not necessary.
Instead, reviewer comments can be collected asynchronously by email or
through an online tool.

• The primary motivation for code reviews has changed from checking for
defects to checking for whether the code is clean and whether it can be
trusted. It is a good practice to review all code before it is committed;
that is, before it goes live in a production setting. Asynchronous code
reviews are conducted using email and online tools. Small, say 30-50 line,
contributions are examined by either named reviewers or by self-selected
reviewers, based on their expertise and interest.

– With a Review-then-Commit process, a contribution must be ap-
proved before it is committed.

– If a change is urgent or if a reviewer is trusted, the Commit-then-
Review process allows a contribution to be committed first and then
reworked, if needed.

• Static analysis examines a program for defects without running the pro-
gram. Static analysis is essentially an automated review.

208 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

• Automated static analysis tools consist of a set of checkers or detectors,
where each checker looks for specific questionable constructions in the
source code. For example, there are checkers for undefined variables,
unreachable code, null-dereferences, and infinite loops.

• A warning from a static analyzer about a piece of code is a false positive
if the code does not in fact have a defect. A false negative is a defect
that is not detected by static analysis. Developers ignore static analyzers
that produce too many false positives, so static analyzers hold down false
positives at the risk of missing some defects; that is, at the risk of having
some false negatives.

Exercises for Chapter 10

Exercise 10.1 : Explain the distinction between the following pairs of con-
cepts:

a) failure and fault

b) process quality and product quality

c) validation and verification

d) a traditional inspection and an open-source code review

Exercise 10.2 : For each of the following words,

a) anomaly b) bug c) defect d) flaw e) failure
f) fault g) error h) glitch i) omission j) problem

• Look up the word in a dictionary and write down its dictionary meaning.

• Classify the dictionary meaning as being closer to that of fault; closer
to that of failure; or not a fit with either fault or failure. Explain your
answer.

Exercise 10.3 : For each of the following forms of software quality, associate
two metrics to measure quality relative to that view: functional, process, prod-
uct, and operational.

Exercise 10.4 : For a deep-dive architecture review, come up with 10 separate
security-related questions.

Exercise 10.5 : For a deep-dive architecture review, come up with 10 separate
performance-related questions.

EXERCISES FOR CHAPTER 10 209

Notes for Chapter 10
1in the 1920s, Walter A. Shewhart explored “the various definitions of quality ... to examine

the basic requirements of e↵ective specifications of quality.” [25, p. 37].
2Miller [19] notes that “the accuracy with which we can identify absolutely the magnitude

of a unidimensional stimulus variable ... is usually somewhere in the neighborhood of seven.”
Unidimensional refers to like chunks of information, such as bits, words, colors, and tones.
Faces and objects di↵er from one another along multiple dimensions, hence we can accurately
distinguish hundreds of faces and thousands of objects.

3Garvin [9] synthesized the varying definitions of product quality into five approaches: “(1)
the transcendental approach of philosophy; (2) the product-based approach of economics; (3)
the user-based approach of economics, marketing, and operations management; and (4) the
manufacturing based and (5) value-based approach of operations management.” Kitchenham
and Lawrence Pfleeger [16] applied Garvin’s model to software. The model in Fig. 10.1 splits
the user-based approach into two: functional and operational.

4The definition of product quality in terms of properties that cannot be altered without
altering the system is from Shewhart [25, p. 38].

5Example 10.1 is based on email from Gilman Stevens to Audris Mockus, May 14, 2014.
6Example 10.2 is based on a congressional hearing into the loss of Mariner 1 [27. 100-101].
7The right-product/product-right characterization of validation and verification is due to

Boehm [5].
8Humphrey [12, p. 123] writes, “While the classical definition of product quality must

focus on customer needs ... removing software defects consumes such a large proportion of
our e↵orts that it overwhelms everything else.”

9IEEE Standard 10-28-2008 defines five kinds of reviews: management reviews, technical
reviews, inspections, walk-throughs, and audits [13].

10The edited account in Example 10.3 of the congressional hearing into the loss of Mariner 1
is based on the following exchange [27. 99-103]:

“Mr. Fulton. Does NASA check to see that the computers are correctly fed the equa-
tions? Doesn’t any outside inspector check ...

“Dr. Morrison. This is a minute detail of the equations, which I agree should be checked.
However, in good management practices, if we followed every detail to this point, we would
have a tremendous sta↵.

“Mr. Fulton. ... the loss of up to $18 or $20 million, plus the time, plus the loss of
prestige in the race with the Russians.”

11Maranzano et al. [18] conducted over 700 architecture reviews between 1988 and 2005. Of
the issues uncovered during the reviews, 29%-49% of the design issues could be categorized
under “The proposed solution doesn’t adequately solve the problem,” and 10%-18% under
“The problem isn’t completely or clearly defined.”

12The guiding principles for architecture reviews are adapted from Maranzano et al. [18].
They “estimate that projects of 100,000 non-commentary source lines of code have saved an
average of US$1 million each by identifying and resolving problems early”. This estimate is
based on reviews at companies that share a Bell Labs heritage.

13John Palframan, personal communication, September 2014.
14See Fagan [7] and his subsequent paper on software inspections [8]. See also the sur-

veys [17, 2].
15Fagan’s 1976 paper [7] had five phases: overview, preparation, inspection, rework, and

follow-up. Based on experience with “hundreds of inspections involving thousands of pro-
grammers,” his 1986 paper [8] added an initial planning phase and noted that “Omitting or
combining [phases] led to degraded inspection e�ciency that outweighed the apparent short-
term benefits. Overview is the only [phase] that under certain conditions can be omitted with
slight risk.”

16Porter, Siy, Toman, and Votta found that there “was no di↵erence between two- and
four-person inspections, but both performed better than one-person inspections.” [22, p. 338]

17Eick et al. [6, p. 64] found that 90% of defects were found during individual preparation.
This data was collected as part of a study to estimate residual faults; that is, faults that

210 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

remain in a completed system.
18Votta [28] suggests two alternatives to group meetings: (a) “collect faults by deposition

(small face-to-face meetings of two or three persons), or (b) collect faults using verbal or
written media (telephone, electronic mail, or notes).”

19Porter and Votta [23] report on a study that found reviewers who used checklists were no
more e↵ective at finding defects than reviewers who used ad hoc techniques. Reviewers who
used scenarios were more e↵ective at finding defects.

20In a mid-1990s study of code inspections, Siy and Votta [26] found that 60% of all issues
related to readability and maintainability, not to behavior or failure.

21The checklist questions in Section 10.5.1 are from a seminal book on testing by My-
ers [21, p. 22-32].

22Rigby et al. [24] review the “policies of 25 [open-source] projects and study the archival
records of six large, mature, successful [open-source] projects”. The six are Apache httpd
server, Subversion, Linux, FreeBSD, KDE, and Gnome.

23Mockus, Fielding, and Herbsleb found that 458 people contributed to the Apache server
code and documentation [20, p. 311]; 486 people contributed code and 412 people contributed
fixes to Mozilla [20, p. 333].

24Rigby et al. [24, p. 35:11-35:13] counted a median of two reviewers for Review-then-
Commit and one reviewer for Commit-then-Review.

25Henderson [10].
26David Hovemeyer “developed FindBugs as part of his PhD research “in conjunction with

his thesis advisor William Pugh.” [1] Example 10.6 is based on [11].
27Bessey et al. [3] describe the challenges in commercializing the static analyzer, Coverity.

References for Chapter 10

1. Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John
Penix. Using static analysis to find bugs. IEEE Software 25, 5 (September-October
2008) 22-29.

2. Aybuke Aurum, H̊akan Petersson, and Claes Wohlin. State-of-the-art: software inspec-
tions after 25 years. Software Testing, Verification and Reliability 12 (2002) 133-154.

3. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines fo
code later: using static analysis to find bugs in the real world. Comm. ACM 53, 2
(February 2010) 66-75.

4. Mike Bland. Finding more than one worm in the apple. Comm. ACM 57, 7 (July
2014) 58-64.

5. Barry W. Boehm. Verifying and validating software requirements and design specifi-
cations. IEEE Software (January 1984) 75-88. A 1979 version is available as technical
report USC-79-501
http://csse.usc.edu/TECHRPTS/1979/usccse79-501/usccse79-501.pdf .

6. Stephen G. Eick, Clive R. Loader, M. David Long, Lawrence G. Votta, and Scott
Vander Wiel. Estimating software fault content before coding. 14th International
Conference on Software Engineering (ICSE) (May 1992) 59-65.

7. Michael E. Fagan. Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal 15, 3 (1876) 258-287.

8. Michael E. Fagan. Advances in software inspections. IEEE Transactions on Software
Engineering SE12, 7 (July 1986) 744-751

9. David A. Garvin. What does “product quality” really mean? Sloan Management
Review 26, 1 (Fall 1984) 25-43.

10. Fergus Henderson. Software engineering at Google. (January 31, 2017).
https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf .

REFERENCES FOR CHAPTER 10 211

11. David Hovenmeyer and William Pugh. Finding more null pointer bugs, but not too
many. 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering. ACM, New York (June 2007) 9-14.

12. Watts S. Humphrey. The Watts New? Collection: Columns by SEI’s Watts Humphrey.
Software Engineering Institute CMU/SEI-2009-SR-024 (November 2009).
http://resources.sei.cmu.edu/asset_files/SpecialReport/2009_003_001_15035.pdf .

13. IEEE Standard 1028-2008. IEEE Standard for Software Reviews and Audits (August
2008).

14. Philip M. Johnson and Danu Tjahjono. Does every inspection really need a meeting?
Empirical Software Engineering 3, 1 (1998) 9-35.

15. Stephen C. Johnson. Lint, a C Program Checker. Computing Science Technical Report
65, Bell Laboratories (July 26, 1978).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1841 .

16. Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: the elusive target.
IEEE Software (January 1996) 12-21.

17. Olivier Laitenberger and Jean-Marc DeBaud. An encompassing life cycle centric survey
of software inspection. Journal of Systems and Software 50, 1 (2000) 5-31.

18. Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman, Guy W. Warnken, Pa-
tricia E. Wirth, and David M. Weiss. Architecture Reviews: Practice and Experience.
IEEE Software (March-April 2005) 34-43.

19. George A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review 101, 2 (1955) 343-352.

20. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology 11, 3 (July 2002) 309?346.

21. Glenford J. Myers. The Art of Software Testing. John Wiley (1979).

22. Adam Porter, Harvey P. Siy, Carol A. Toman, and Lawrence G. Votta. An experiment
to assess the cost-benefits of code inspections in large scale software development.
IEEE Transactions on Software Engineering 23, 6 (June 1997) 329-346.

23. Adam Porter and Lawrence G. Votta, Jr. What makes inspections work? IEEE
Software 14, 6 (November-December 1997)

24. Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey. Peer
review on open- source software projects: Parameters, statistical models, and theory.
ACM Transactions on Software Engineering and Methodology 23, 4 (August 2014)
35:1-35:33.

25. Walter A. Shewhart. Economic Control of Quality of Manufactured Product. D.
Van Nostrand, New York (1931). Reprinted by American Society for Quality Control
(1980).

26. Harvey Siy and Lawrence G. Votta. Does the modern code inspection have value?
IEEE International Conference on Software Maintenance (2001) 281-289

27. U.S. House of Representatives. Hearing before the Committee on Science and Astro-
nautics: Ways and Means of E↵ecting Economies in the National Space Program.
Eighty-Seventh Congress, Second Session (July 31, 1962).

28. Lawrence G. Votta, Jr. Does every inspection need a meeting? 1st ACM SIGSOFT
Symposium on Foundations of Software Engineering (SIGSOFT ’93). Distributed as
Software Engineering Notes 18, 5 (December 1993) 107-114.

212 CHAPTER 10. SOFTWARE QUALITY: REVIEWS

Chapter 11

Software Quality: Testing

“... we have as many testers as we have developers. And testers spend
all their time testing, and developers spend half their time testing. We’re
more of a testing, a quality software organization than we’re a software
organization.”

— Bill Gates, chairman and chief software architect of Microsoft,

during an interview in 2002.

1

Software testing is the process of running a program in a controlled environment
to check whether the program behaves as expected. The purpose of testing is to
improve software quality. If a test fails—that is, the program does not behave
as expected—there must be a fault, either in the program or in the specification
of expected behavior. Either way, the test has provided feedback that can be
used to remove the fault and improve quality.

At one time, coding and testing were distinct phases of software develop-
ment. Testing accounted for half of the time and cost of development.2 Coding
was done by developers; testing was done by testers. Testers prided themselves
on their ability to trigger failures and track down faults. Defects were more
likely to be in the code for special or edge cases, since developers tended to pay
more attention to the basic functionality.

Since then, test automation has blurred the distinction between coding and
testing. Batteries of tests can be run automatically every time a change is
made. Developers can thereby produce code of su�cient quality that the code
can go straight from development to deployment. Automated tests are run as
part of the deployment process to ensure that applications that used to work
continue to work.

213

214 CHAPTER 11. SOFTWARE QUALITY: TESTING

1) year = ORIGINYEAR; /* = 1980 */

2) while (days > 365)

3) {

4) if (IsLeapYear(year))

5) {

6) if (days > 366)

7) {

8) days -= 366;

9) year += 1;

10) }

11) }

12) else

13) {

14) days -= 365;

15) year += 1;

16) }

17) }

Figure 11.1: Where is the fault?

Although when and how tests are run may have changed, testing remains
a significant part of software development. The principal techniques for defect
detection and removal have remained the same. They are reviews, static analy-
sis, and testing. Reviews and static analysis were covered in Chapter 10. This
chapter explores the process of testing.

11.1 Overview of Testing

The code in Fig. 11.1 is from a digital music and video player. On December
31, 2008, owners of the player awoke to find that it froze on startup. On the
last day of a leap year, the code in Fig. 11.1 loops forever.3

What went wrong?

Example 11.1 : Suppose that the code in Fig. 11.1 is reached with variable
days representing the current date as an integer. January 1, 1980 is represented
by the integer 1; December 31, 1980 by 366 since 1980 was a leap year; and so
on.

Variable year is initialized to 1980 on line 1. On exit from the while loop
on lines 2-17, variable year represents the current year. The body of the loop
computes the current year by repeatedly subtracting 366 for a leap year (line 8)
or 365 for a non-leap year (line 14). Each subtraction is followed by a line that
increments year (lines 9 and 15). In other words, the body of the loop counts
down the days and counts up the years.

11.1. OVERVIEW OF TESTING 215

Figure 11.2: Software can be tested by applying an input stimulus and evalu-
ating the output response.

On the 366th day of 2008, a leap year, line 6 is eventually reached with
value 366 for days. Control therefore loops back from line 6 to line 2 with days

unchanged. Ad infinitum. 2

How is it that “simple” bugs escape detection until there is an embarrassing
product failure? The rest of this section explores the process of testing and its
strengths and limitations.

11.1.1 Issues During Testing

The issues that arise during testing relate to the four main elements in Fig. 11.2:

• Software Under Test. The software under test can be a code fragment, a
component, a subsystem, a self-contained program, or a complete hardware-
software system.

• Input Domain. A tester selects an element of some input domain and uses
it as test input.

• Output Domain. The output domain is the set of possible output re-
sponses or observable behaviors by the software under test. Examples
of behaviors include producing integer outputs, as in Example 11.1, and
displaying a web page.

• Environment. Typically, the software under test is not be self contained,
so an environment is needed to provide the context for running the soft-
ware.

If the software under test is a program fragment, the environment handles
dependencies on the rest of the program. The environment also includes the
operating system, libraries, and external services that may be running either
locally or in the cloud. In the early stages of development, external services
can be simulated by dummy or mock modules with controllable behavior. For
example, an external database can be simulated by a module that uses a local
table seeded with known values.

216 CHAPTER 11. SOFTWARE QUALITY: TESTING

Example 11.2 : Suppose that the software under test is the code on lines 1-17
in Fig. 11.1. The input domain is the set of possible initial integer values for
the variable days. The output domain is the set of possible final integer values
for the variables year and days.

The code in Fig. 11.1 cannot be run as is, because it needs a definition for
ORIGNYEAR and an implementation for function IsLeapYear(). These things
must be provided by the environment. (We are treating the initial value of
variable days as an input, so the environment does not need to provide a value
for days.) 2

The following questions capture the main issues that arise during testing:4

• How to stabilize the environment to make tests repeatable?

• How to select test inputs?

• How to evaluate the response to a test input?

• How to decide whether to continue testing?

11.1.2 Test Selection

The judicious selection of test inputs is a key problem during testing. For-
tunately, reliable software can be developed without exhaustive testing on all
possible inputs—exhaustive testing is infeasible.

The Input Domain

The term test input is interpreted broadly to include any form of input; e.g., a
value such as an integer; a gesture; a combination of values and gestures; or an
input sequence, such as a sequence of mouse clicks. In short, a test input can
be any stimulus that produces a response from the software under test.

A set of tests is also known as a test suite.
The input domain is the set of all possible test inputs. For all practical

purposes, the input domain is typically infinite. Variable days in Fig. 11.1 can
be initialized to any integer value and, machine limitations aside, there is an
infinite supply of integers.

Some faults are triggered by a mistimed sequence of input events. Therac-
25 delivered a radiation overdose only when the technician entered patient-
treatment data fast enough to trigger a fault; see Section 1.3. Other faults are
triggered by an unfortunate combination of values. Avionics software is tested
for interactions between multiple inputs; e.g., a decision may be based on data
from a variety of sensors and a failure occurs only when the pressure crosses a
threshold and the temperature is in a certain range.

It is important to test on both valid and invalid inputs, for the software
must work as expected or valid inputs and do something sensible on invalid
inputs. Crashing on invalid input is not sensible behavior.

Input domains can therefore consist a single values, (b) combinations of
values, or (c) scenarios consisting of sequences of values.

11.1. OVERVIEW OF TESTING 217

Black-Box and White-Box Testing

During test selection, we can either treat the software under test as a black box
or we can look inside the box at the source code. Testing that depends only on
the software’s interface is called black-box or functional testing. Testing that is
based on knowledge of the source code is called white-box or structural testing.
As we shall see in Section 11.2, white-box testing is used for smaller units of
software and black-box testing is used for larger subsystems that are built up
from the units.

Test design and selection is a theme that runs through this chapter.

11.1.3 Test Adequacy: Deciding When to Stop

Ideally, testing would continue until the desired level of software quality is
reached. Unfortunately, there is no way of knowing when the desired level
of quality is reached because, at any time during testing, there is no way of
knowing how many more defects remain undetected. If a test fails—that is, the
output does not match the expected response—the tester has discovered that
there is a defect somewhere.

But, if the test passes, all the tester has learned is that the software works
as expected on that particular test input. The software could potentially fail
on some other input. As Edsger Dijkstra put it,

“Testing shows the presence, not the absence of bugs.”5

Stopping or Test-Adequacy Criteria

A test adequacy criterion is a measure of progress during testing. Adequacy cri-
teria support statements of the form, “Testing is x% complete.” Test adequacy
criteria are typically based on three kinds of information: code coverage, input
coverage, and defect-discovery data.

• Code coverage is the degree to which a construct in the source code is
touched during testing. For example, statement coverage is the proportion
of statements that are executed at least once during a set of tests. Code
coverage is discussed in Section 11.3 on white-box testing.

• Input coverage is the degree to which a set of test inputs is representative
of the whole input domain. For example, in Section 11.4 on black-box
testing, the input domain will be partitioned into equivalence classes.
Equivalence-class coverage is the proportion of equivalence classes that
are represented in a test set.

• Defect-discovery data includes data about the number and severity of the
defects discovered in a given time interval. When combined with historical
data from similar projects, the rate of defect discovery is sometimes used
to make predictions about product quality.

218 CHAPTER 11. SOFTWARE QUALITY: TESTING

Test adequacy criteria based on coverage and defect-discovery data are much
better than arbitrary criteria such as stopping when time runs out or when a
certain number of defects have been found. They cannot, however, guarantee
the absence of bugs.

While testing alone is not enough, it can be a key component of an overall
quality-improvement based on reviews, static analysis, and testing.6

11.1.4 Test Oracles: Evaluating the Response to a Test

Implicit in the above discussion is the assumption that we can readily tell
whether an output is “correct;” that is, we can readily decide whether the
output response to an input stimulus matches the expected output. This as-
sumption is called the oracle assumption.

The oracle assumption has two parts:

1. There is a specification that defines the correct response to a test input.

2. There is a mechanism to decide whether or not a response is correct. Such
a mechanism is called an oracle.

Most of the time, there is an oracle, human or automated. For values such as
integers and characters, all an oracle may need to do is to compare the output
with the expected value. An oracles based on a known comparison can be easily
automated.

Graphical and audio/video interfaces may require a human oracle. For ex-
ample, how do you evaluate a text-to-speech system? It may require a human
to decide whether the spoken output sounds natural to a native speaker.

Questioning the Oracle Assumption

The oracle assumption does not always hold. A test oracle may not be readily
available, or may be nontrivial to construct.

Example 11.3 : Elaine Weyuker gives the example of a major oil company’s ac-
counting software, which “had been running without apparent error for years.”7

One month, it reported $300 for the company’s assets, an obviously incorrect
output response. This is an example of knowing that a response is incorrect,
without knowing the right response.

There was no test oracle for the accounting software. Even an expert could
not tell whether “$1,134,906.43 is correct and $1,135,627.85 is incorrect.” 2

Example 11.4 : Consider a program that takes as input an integer n and
produces as output the nth prime number. On input 1 the program produces
2, the first prime number; on 2 it produces 3; on 3 it produces 5; and so on.
On input 1000, it produces 7919 as output.

Is 7919 the 1000th prime? (Yes, it is.)
It is nontrivial to create an oracle to decide if a number p is the nth prime

number.8 2

11.2. LEVELS OF TESTING 219

Figure 11.3: Levels of testing. Functional tests may be merged into system
tests; hence the dashed box.

11.2 Levels of Testing

Testing becomes more manageable if the problem is partitioned: bugs are easier
to find and fix if components are debugged before they are assembled into a
larger system. A components-before-systems approach motivates the levels of
testing in Fig. 11.3. Testing proceeds from bottom to top; the size of the
software under test increases from bottom to top.

Each level of testing plays a di↵erent role. The terms “verify” and “validate”
were introduced as follows in Section 10.2:

Validation: “Am I building the right product?”
Verification: “Am I building the product right?”

The top two levels in Fig. 11.3 validate that customer needs and require-
ments are met. The lower levels verify the implementation. System and func-
tional testing may be combined into a single level that tests the behavior of the
system; hence the dashed box for functional tests. The number of levels varies
from project to project, depending on the complexity of the software and the
importance of the application.9

Based on data from hundreds of companies, each level catches about one in
three defects.10

11.2.1 Unit Testing

A unit of software is a logically separate component that can be tested by itself.
It may be a module or part of a module. Unit testing verifies a unit in isolation
from the rest of the system. With respect to the overview of testing in Fig. 11.2,
the environment simulates just enough of the rest of the system to allow the
unit to be run and tested.

220 CHAPTER 11. SOFTWARE QUALITY: TESTING

Figure 11.4: A JUnit test.

Unit testing is primarily white box testing, where test selection is informed
by the source code of the unit. White-box testing is discussed in Section 11.3.

xUnit: Automated Unit Testing

Convenient automated unit testing profoundly changes software development.
A full suite of tests can be run automatically at any time to verify the code.
Changes can be made with reasonable assurance that the changes will not break
any existing functionality. Code and tests can be developed together; new tests
can be added as development proceeds. In fact, automated tests enable test-
first or test-driven development, where tests are written first and then code is
written to pass the tests.

Convenience was the number one goal for JUnit, a framework for automated
testing of Java programs. Kent Beck and Erich Gamma wanted to make it so
convenient that “we have some glimmer of hope that developers will actually
write tests.”11

JUnit quickly spread. It inspired unit testing frameworks for other lan-
guages, including CUnit for C, CPPUnit for C++, PyUnit for Python, JSUnit
for JavaScript, and so on. This family of testing frameworks is called xUnit.

An xUnit test proceeds as follows:

set up the environment;
run test;
tear down the environment;

From Section 11.1, the environment includes the context that is needed to run
the software under test. For a Java program, the context includes values of
variables and simulations of any constructs that the software relies on.

Example 11.5 : The pseudo-code in Fig. 11.4(a) shows a class Date with a
method getYear(). The body of getYear() is not shown—think of it as im-
plementing the year calculation in Fig. 11.1.

The code in Fig. 11.4(b) sets up a single JUnit test for getYear(). The an-
notation @Test marks the beginning of a test. The name of the test is test365.

11.2. LEVELS OF TESTING 221

A descriptive name is recommended, for readability of messages about failed
tests. Simple tests are recommended to make it easier to identify faults.

The test creates object date and calls getYear(365), where 365 represents
December 31, 1980. JUnit supports a range of assert methods; assertEquals()
is an example. If the computed value year does not equal 1980, the test fails,
and JUnit will issue a descriptive message.

For more information about JUnit, visit junit.org . 2

11.2.2 Integration Testing

Integration testing verifies interactions between the components of a subsystem.
Integration testing is typically black-box testing.

Prior unit testing increases the likelihood that a failure during integration
testing is due to interactions between components instead of being due to a
fault within some component.

With big bang integration testing, the whole system is assembled all at once
from individually unit tested components. Incremental integration testing is
a better approach: interactions are verified as components are added, one or
more at a time, to a previously tested set of components.

Dependencies Between Modules

Incremental integration testing must deal with dependencies between modules.

Example 11.6 : In a model-view-controller architecture, the view displays in-
formation that it gets from the model. The view depends on the model, but
not the other way around.

The model in Example 9.5 held information about a picture of the Mona
Lisa, including a digital photo and the height, width, and resolution of the
photo. There were two views: one displayed the digital photo; the other dis-
played the height, width, and resolution of the photo.

Both views got their information from the model, so they depended on the
model. The model, however, was not dependent on the views. 2

Dependencies between modules can be defined in terms of a uses relation-
ship: module M uses module N , if N must be present and satisfy its specifi-
cation for M to satisfy its specification.12 Note that the used module need not
be a subcomponent of the using module. In Example 11.6, the views used the
model, but the model was not a subcomponent of either view.

During incremental integration, suppose module M uses module N . Then,
either M must be added after N or there must be a “stub” that can be used
instead of N for testing purposes. More precisely, module N 0 is a stub for N if
N 0 has the same interface and enough of the functionality of N to allow testing
of modules that use N .

222 CHAPTER 11. SOFTWARE QUALITY: TESTING

Figure 11.5: Modules to be integrated. The horizontal line between F and G
means that they use each other.

Example 11.7 : The edges and paths in Fig. 11.5 represent the uses relation
between the modules in a system. Module A uses all the modules below it. A
uses B and C directly; it uses the other modules indirectly.

A uses B, so B must be present and work for A to work. But, B uses D
and E, so D and E must also be present and work for A to work. 2

Top-Down Integration Testing

With stubs, integration testing can proceed top down. Testing of module A in
Fig. 11.5 can begin with stubs for B and C. Then, testing of A and B together
can begin with stubs for C, D, and E. Alternatively, testing A and C together
can begin with stubs for B, F , and G.

A disadvantage with top-down integration testing is that stubs need to pro-
vide enough functionality for the using modules to be tested. Glenford J. Myers
cautions that

“Stub modules are often more complicated than they first appear
to be.”13

Bottom-Up Integration Testing

With bottom-up integration testing, a module is integrated before any using
module needs it; that is, if M uses N , then M is integrated after N . If two
modules use each other, then they are added together.

Bottom-up integration testing requires drivers: a driver module sets up the
environment for the software under test. Automated testing tools like the xUnit
family set up the environment, so there is no need for separate drivers.

Example 11.8 : Consider the modules in Fig. 11.5. Any ordering that adds a
child node before a parent node can serve for incremental integration testing,
except for modules F and G, which use each other. They must be added
together.

Here are two possible ordering for bottom-up testing:

11.2. LEVELS OF TESTING 223

H, D, I, E, B, J , F and G, C, A
J , I, F and G, C, H, E, D, B, A

2

11.2.3 Functional and System Testing

Functional testing verifies that the overall system meets its design specifica-
tions. System testing validates the system as a whole with respect to customer
requirements, both functional and non-functional. The overall system may in-
clude hardware and third-party software components.

Functional testing may be merged into system testing. If the two are merged,
then system testing performs a combination of verification and validation.

System testing is a major activity. Non-functional requirements include
performance, security, usability, reliability, scalability, serviceability, documen-
tation, among others. These are end-to-end properties that can be tested only
after the overall system is available.

Testing for properties like security, usability, and performance are impor-
tant enough that they may be split o↵ from system testing and conducted by
dedicated specialized teams.

11.2.4 Acceptance Testing

Acceptance testing di↵ers from the other levels of testing since it is performed
by the customer organization. Mission-critical systems are usually installed in
a lab at a customer site and subjected to rigorous acceptance testing before
they are put into production. Acceptance tests based on usage scenarios ensure
that the system will support the customer organization’s business goals.

11.2.5 Case Study: Test Early and Often

Testing of a component can begin as soon as the component is coded, while
other components are still in an earlier stage of development.

The following example is motivated by the development process for a highly
reliable communications product. The development team for the product was
made up of small subteams that worked independently on separate components
called features. The code for the features was then integrated to form the
product. Testing was a priority. The development process called for extensive
unit, functional, system, and performance testing.

Example 11.9 : The process in Fig 11.6 focuses on the building phase of a
project. The process does not show the initial activities to identify customer
needs and opportunities and to define a product.

The process in Fig. 11.6 begins with system design. During system design,
the components of the system are designed and plans are drawn to develop the

224 CHAPTER 11. SOFTWARE QUALITY: TESTING

Figure 11.6: Simplified version of a plan-driven process with an emphasis on
testing.

components independently. Between initial system design and final system in-
tegration are two parallel subprocesses for developing the components, referred
to as Feature 1 and Feature 2.

The development of the two features is staggered in time: coding for Fea-
ture 1 overlaps with the detailed design of Feature 2; functional testing of
Feature 1 overlaps with the coding of Feature 2.

The roles for the process in Fig. 11.6 are project manager, designer, coder,
and tester. Parallel development of features allows the same designers and
coders to work on both features. After the initial system design, the designers
work first on the detailed design for Feature 1 and then on the detailed design
for Feature 2. Similarly, the coders work sequentially on coding for Feature 1
and Feature 2. Functional testing of Feature 1 begins as soon as the code for
the feature is available.

Once both features have been coded, the testers begin system integration
and testing. Functional testing of Feature 2 is combined with system integra-
tion. Another group of testers begins performance testing once the first feature
has been coded.

The project manager is responsible for assembling the team and coordinating
the work of designers, coders, and testers. 2

Instead of two features, the product that motivated Example 11.9 had mul-
tiple features. Overall planning and system design were done up front, before
detailed design, coding, and testing.. Careful planning ensured that the in-
dependently developed components came together as designed during system
integration. Not only did the project meet its functionality, reliability, and
performance goals, it was on time and under budget.

11.3. TESTING FOR CODE COVERAGE 225

11.3 Testing for Code Coverage

Since program testing cannot prove the absence of bugs it is unrealistic to
expect that testing must continue until all defects have been found. The test-
adequacy criteria in this section are based on code coverage, which is the degree
to which a construct in the source code is executed during testing. In practice,
the adequacy of test sets is measured relative to coverage targets.

Code coverage is closely, but not exclusively, associated with white-box test-
ing, where test selection is based on knowledge of the source code.

11.3.1 Control-Flow Graphs

A control-flow graph, or simply flow graph, represents the flow of control between
the statements in a program. Flow graphs have two kinds of nodes:

• basic nodes with one incoming and one outgoing edge; and

• decision nodes with one incoming and two or more outgoing edges.

Basic nodes represent assignments and procedure calls. Decision nodes result
from Boolean expressions, such as those in conditional and while statements.
The two outgoing edges from a decision node are called branches and labeled T
for true and F for false. If the Boolean expression in the decision node evaluates
to true control flows through the T branch; otherwise, control flows through the
F branch.

For convenience, a sequences of one or more basic nodes may be merged to
form a node called a basic block. As a further convenience, assume that a flow
graph has a single entry node with no incoming edges and a single exit node
with no outgoing edges.

Example 11.10 : The flow graph in Fig. 11.7 represents the flow of control
between the statements in Fig. 11.1. The flow graph has three basic blocks,
B1-B3, and three decision nodes, D1-D3. Basic block B1 has one assignment,
which initializes year. (We take the liberty of initializing year to 1980, instead
of ORIGINYEAR.) B2 has two assignments:

days -= 365;

year += 1;

Decision node D1 corresponds to the decision in the while statement

while (days > 365) { ... }

D2 corresponds to the decision in the conditional statement

if (IsLeapYear(year)) { ... } else {...}

2

226 CHAPTER 11. SOFTWARE QUALITY: TESTING

Figure 11.7: Control-flow graph for the code fragment in Fig. 11.1.

The flow graph for a program can be constructed by applying rules like the
ones in Fig. 11.8. The rules are for a simple language that supports assignments,
conditionals, while loops, and sequences of statements. Variables E and S
represent expressions and statements, respectively. The rules can be applied
recursively to construct the flow graph for a statement. It is left to the reader
to extend the rules to handle conditionals with both then and else parts.

Figure 11.8: Rules for constructing a conrrol-flow graph.

11.3. TESTING FOR CODE COVERAGE 227

Paths Through a Flow Graph

A test corresponds to a path through a flow graph. Testing is done by running
a program, so a test corresponds to an execution of the program. Each execu-
tion corresponds to a path through the flow graph for a program. Hence the
statement that a test corresponds to a path through a flowgraph.

More precisely, a path through a flow graph is a sequence of contiguous edges
from the entry node to the exit node. Two edges are contiguous if the end node
of the first edge is the start node of the second edge. A path can be written
as a sequence of nodes n1, n2, ..., where there is an edge from node ni to node
ni+1, for all i.

A simple path is a path with no repeated edges. A simple path through
a loop corresponds to a single execution of the loop. If there was a second
execution, one or more of the edges in the loop would repeat.

Example 11.11 : This example relates tests of the code in Fig. 11.1 with paths
through the flow graph in Fig. 11.7. A test of the code consists of an execution,
where the test input is an initial value for variable days.

Consider the test 365; that is, the initial value of days is 365. The Boolean
expression days > 365 evaluates to false, so control skips the body of the while-
loop. This execution corresponds to the simple path

Entry, B1, D1,Exit

With test 367, control goes once through the body of the while loop, before
exiting. Variable year is initialized to 1980, a leap year, so this test traces the
simple path

Entry, B1, D1, D2, D3, B3, D1,Exit

Although node D1 appears twice, this path is simple because no edge is re-
peated. 2

11.3.2 Control-Flow Coverage Criteria

The correspondence between tests and paths is one-to-one. Each test of a
program corresponds to a path through the program’s flow graph, and vice
versa. Code-coverage criteria can be therefore be expressed either in terms of
program constructs like statements, decisions, and executions or in terms of
nodes, branches, and paths, respectively.

Coverage tracking is a job best done by automated tools that build flow
graphs and keep track of coverage information as tests are run. Given the close
correspondence between flow graphs and the source code, the tools display
coverage information by annotating the source code. For example, statement
coverage is typically displayed by showing the number of times each line of code
is executed by a test set. The tools also produce reports that summarize the
coverage achieved by a test set.

228 CHAPTER 11. SOFTWARE QUALITY: TESTING

All-Paths Coverage: Strong But Unrealistic

With all-paths coverage, each path is traced at least once.
The set of all paths through a flow graph corresponds to the set of all

possible executions of the program. All paths coverage therefore corresponds
to exhaustive testing. Exhaustive testing is the strongest possible test-adequacy
criterion: if a program passes exhaustive testing, then we know that the program
will work for all inputs.

Exhaustive testing is also infeasible. A flow graph with loops has an infinite
number of paths: given any path that goes through a loop, we can construct
another longer path by going one more time through the loop.

Since all-paths coverage is an unattainable ideal, many more or less restric-
tive coverage criteria have been proposed. The rest of the this section considers
some widely used code coverage criteria.

Node or Statement Coverage

Node coverage, also known as statement coverage, requires a set of paths (tests)
that touch each node at least once. Node coverage is the weakest of the com-
monly used coverage criteria.

Example 11.12 : For the flow graph in Fig. 11.7, 100% node coverage can be
achieved without triggering the known leap-year bug: on the last day of a leap
year the code loops forever.

From Example 11.11, the paths traced by the test inputs 365 and 367 are
as follows (for readability, the entry and exit nodes are omitted):

Test Input Path
365 B1, D1

367 B1, D1, D2, D3, B3, D1

The test set {365, 367} covers the nodes

B1, B3, D1, D2, D3

Note that node B2 is not yet covered. For B2 to be covered, control must take
the F branch of decision node D2 in Fig. 11.7. The first time through D2,
control will take the T branch, since the initial value of year is 1980, a leap
year.

The path for test 732 takes the F branch to B2 the second time the path
reaches D2, The path is

B1, D1, D2, D3, B3, D1, D2, B2, D1

The singleton test set {732} happens to covers all nodes in Fig. 11.7. In
general, multiple tests are needed to achieve the desired level of node coverage.
2

11.3. TESTING FOR CODE COVERAGE 229

While 100% node coverage is a desirable goal, it may not be achievable. If
the software under test has dead code, by definition, the dead code cannot be
reached during any execution. No test can therefore reach it. While dead code
can be removed by refactoring, legacy systems are touched only as needed.

In practice, companies set stricter node coverage thresholds for new than
for legacy code.

Branch Coverage is Stronger than Node Coverage

Branch coverage, also known as decision coverage, requires a set of paths (tests)
that touch both the true and false branches out of each decision node. Branch
coverage is a stronger criterion than node coverage. (As we shall see, branch
coverage does uncover the leap-year bug in Fig. 11.7.)

Specifically, branch coverage subsumes node coverage, which means that any
test set that achieves 100% branch coverage also achieves 100% node coverage.
The converse is false, as the next example demonstrates.

Example 11.13 : From Example 11.12, the tests 365, 367, and 732 correspond
to the following paths

Test Input Path
365 B1, D1

367 B1, D1, D2, D3, B3, D1

732 B1, D1, D2, D3, B3, D1, D2, B2, D1

The branch coverage of these tests is as follows:

Test Input D1 D2 D3

365 F
367 T, F T T
732 T, F T, F T

These tests achieve 100% node coverage, but they do not achieve 100%
branch coverage because they do not cover the F branch from D3 to D1. (In
fact, test 732 alone covers all branches covered by the other tests.)

This F branch out of D3 is covered only when the code is in an infinite loop.
Here’s why. For the branch (D3, D1) to be taken, the following must hold:

days > 365 true at node D1

IsLeapYear(year) true at node D2

days > 366 false at node D3

Together, these observations imply that, when the branch (D3, D1) is taken,
days must have value 366 and year must represent a leap year. With these
values for days and year, the program loops forever.

Thus, a test suite designed to achieve 100% branch coverage would uncover
the leap-year bug.

The smallest test input that triggers the infinite loop is the value 366 for
days—the corresponding date is December 31, 1980. 2

230 CHAPTER 11. SOFTWARE QUALITY: TESTING

Other Control-Flow Coverage Criteria

In practice, node and branch coverage are the most popular control-flow-based
adequacy criteria. Branch coverage subsumes node coverage: any test set that
achieves 100% branch coverage also achieves 100% node coverage. A number
of other control-flow-based criteria have ben proposed; e.g.,14

• Loop count coverage: exercise each loop up to k times, where k is a pa-
rameter.

• Length-n path coverage: cover all subpaths of length n.

11.3.3 MC/DC: Modified Condition/Decision Coverage

Branch coverage is adequate for the vast majority of decisions. Branch coverage
is not enough, however, for decisions involving complex Boolean expressions
containing operators such as & (logical and) and | (logical or) For example,
suppose the value of the following decision is false:

(pressure > 32) & (temperature <= LIMIT)

Is it false because pressure is less than or equal to 32 or is it false because
temperature is greater than LIMIT?

In discussing Boolean expressions, it is helpful to distinguish between atomic
expressions which do not contain Boolean operators and general expressions
which could. A condition is an atomic Boolean expression; e.g., days > 365 or
IsLeapYear(year). A decision is a Boolean expression formed by applying
Boolean operators to one or more conditions.

Branch coverage is adequate for decisions involving a single condition, as in

while (days > 365) { ... }

One study found that almost 85% of the decisions in a collection of software
tools were based on just one “condition.”15

For system safety and security, however, it is not enough for a coverage crite-
rion to be adequate 85% of the time. All a hacker needs is one security vulnera-
bility. One flaw may be enough to jeopardize a mission-critical system. Avionics
software can have complex Boolean expressions with multiple conditions. The
same study found that 17% of the decisions in a flight-instrumentation system
had two or more conditions; over 5% had three or more conditions.15

For avionics software, the US Federal Aviation Administration recognizes
a criterion called MC/DC, which is stronger than branch coverage.16 MC/DC
has also been recommended for detecting security backdoors.17

Condition and Decision Coverage are Independent

Let T and F denote the Boolean truth values, true and false, respectively. Let
the lowercase letters a, b, c, ... denote conditions; e.g.,

11.3. TESTING FOR CODE COVERAGE 231

Condition a: pressure > 32

Condition b : temperature <= LIMIT

The expression a & b is a decision, representing

(pressure > 32) & (temperature <= LIMIT)

Condition coverage requires that each condition in a decision take on both
truth values, T and F . Decision coverage requires each decision to take on
both truth values. As we shall see, condition coverage does not ensure decision
coverage, and vice versa.

While discussing condition and decision coverage, it is convenient to sum-
marize tests by writing tables like the following for decision a|b:

Test a b a|b

1 T T T
2 T F T
3 F T T
4 F F F

Each row of this table represents a test. The columns represent the values of
the conditions a and b and the decision a|b. In test 2, a is T and b is F , so a|b
is T .

Example 11.14 : Tests 2 and 3 above provide condition coverage, but not
decision coverage. Condition coverage follows from the observation that in
tests 2 and 3, a is T and F , respectively; b is F and T , respectively. But, the
two tests do not provide decision coverage, since a|b is T in both tests.

Tests 2 and 4 provide decision coverage, but not condition coverage. While
the value of a|b flips from T to F in these tests, b is not covered, since b is F
in tests 2 and 4. 2

MC/DC Pairs of Tests

MC/DC is a stronger criterion than condition and decision coverage put to-
gether. The following two tests provide both condition and decision coverage:

Test a b a|b

1 T T T
4 F F F

The limitation of these tests is that both a and b vary together: they both flip
from T to F together.

Modified Condition/Decision Coverage (MC/DC) requires each condition to
independently a↵ect the outcome of the decision. Independently means that tor
each condition x, there is a pair of tests such that

• the outcome of the decision flips from T to F , or vice versa,

232 CHAPTER 11. SOFTWARE QUALITY: TESTING

Figure 11.9: Pairs tables for decisions a|b and a & b.

• the value of condition x also flips, and

• the values of the remaining conditions stay the same.

Such a pair of tests is called an MC/DC pair of tests for x.

Example 11.15 : For decision a|b, the following tests form a pair for a:

Test a b a|b

2 T F T
4 F F F

The following tests form a pair for b:

Test a b a|b

3 F T T
4 F F F

2

A pairs table for a decision succinctly identifies the MC/DC pairs for the
conditions in the decision. The pairs tables for a|b and a & b appear in Fig. 11.9.
A pairs table is an extension of a truth table for the decision. A truth table has a
column for each condition and a column for the decision. The rows of the truth
table show all combinations of values for the conditions and the corresponding
value for the decision. A pairs table adds a column for each condition x. If
(i, j) is a pair for x, then the added column for x has j in row i and i in row j.

Example 11.16 : The pairs table for the decision (a & b)|c appears in Fig. 11.10.
There is only one MC/DC pair for a: it is (2, 6). Since (2, 6) is a pair, there

is a 6 in row 2 and a 2 in row 6. In the other pairs for a the outcome of the
decision does not flip. The decision remains T for the pairs (1, 5) and (3, 7); it
remains F for the pair (4, 8).

The only pair for b is (2, 4). There are three pairs for c: they are (3, 4),
(5, 6) and (7, 8). 2

11.3. TESTING FOR CODE COVERAGE 233

Test a b c (a & b)|c a b c

1 T T T T
2 T T F T 6 4
3 T F T T 4
4 T F F F 2 3
5 F T T T 6
6 F T F F 2 5
7 F F T T 8
8 F F F F 7

Figure 11.10: Pairs tables for the decision (a & b) | c.

MC/DC Tests

The MC/DC tests for a decision can be deduced from its pairs table. The fewer
the tests the better.

A direct approach is

for each condition x, pick a pair for x, any pair.

The resulting number of tests is at most twice the number of conditions. The
actual number may be smaller, since some tests may appear in more than
one pair. With the direct approach, the number of tests grows linearly with
conditions, since each condition adds at most two tests. The number of possible
tests grows exponentially, however, since the number of possible tests doubles
with each condition.

Fewer tests result from the following approach

for each condition with only one pair, pick that pair;
for the remaining conditions x,

pick the pair that adds the fewest tests;

Example 11.17 : For the decision (a & b)|c in Fig. 11.10, (2, 6) is the only pair
for a and (2, 4) is the only pair for b, so they must be picked. Of the three
pairs for c, either (3, 4) or (5, 6) would be a better choice than (7, 8), since they
overlap with the tests needed for a and b. Choosing the pair (3, 4) for c, we get
four tests:

Test a b c (a & b)|c

2 T T F T
3 T F T T
4 T F F F
6 F T F F

2

234 CHAPTER 11. SOFTWARE QUALITY: TESTING

11.3.4 Data-Flow Coverage

11.4 Testing for Input-Domain Coverage

From the overview of testing in Section 11.1, testing proceeds roughly as follows:

• Select a test input for the software under test.

• Evaluate the software’s response to the input.

• Decide whether to continue testing.

Test inputs are drawn from a set called the input domain. The input domain
can be infinite. If not infinite, if is typically so large that exhaustive testing
of all possible inputs is infeasible. Test selection is therefore based on some
criterion for sampling the input domain.

The selection criteria in this section are closely, but not exclusively, asso-
ciated with black-box testing, which treats the software under test as a black
box that hides the source code. Test selection is based on the software’s speci-
fication.

11.4.1 Equivalence-Class Coverage

Equivalence partitioning is a heuristic technique for partitioning the input do-
main into subdomains with inputs that are equivalent for testing purposes. The
subdomains are called equivalence classes. If two test inputs are in the same
equivalence class, we expect them to provide the same information about a
program’s behavior: they either both catch a fault or they both miss the fault.

A test suite provides equivalence-class coverage if the set includes a test from
each equivalence class.

There are no hard and fast rules for defining equivalence classes—just guide-
lines. The following example sets the stage for considering some guidelines.

Example 11.18 : Consider a program that determines whether a year between
1800 and 2100 represents a leap year. Strictly speaking, the input domain of
this program is the range 1800-2100, but let us take the input domain to be the
integers, since the program might be called with any integer. Integers between
1800 and 2100 will be referred to as valid inputs; all other integers will be
referred to as invalid inputs.

As a first approximation, we might partition the input domain into two
equivalence classes, corresponding to valid and invalid integer inputs. For test-
ing, however, it is convenient to start with three equivalence classes: integers
up to 1799; 1800 through 2100; and 2101 and higher.

These equivalence classes can be refined, however, since some years are leap
years and some years are not. The specification of leap years is as follows:

“Every year that is exactly divisible by four is a leap year, except
for years that are exactly divisible by 100, but these centurial years
are leap years if they are exactly divisible by 400.”18

11.4. TESTING FOR INPUT-DOMAIN COVERAGE 235

Figure 11.11: Equivalence classes for a leap-year program. The two shaded
regions are for invalid test inputs.

This specification distinguishes between years divisible by 4, 100, 400, and all
other years. These distinctions motivate the following equivalence classes (see
Fig. 11.11):

• Integers less than or equal to 1799,

• Integers between 1800 and 2100 that are not divisible by 4.

• integers between 1800 and 2100 that are divisible by 4, but not by 100.

• The integers 1800, 1900, and 2100, which are divisible by 100, but not by
400.

• The integer 2000, which is divisible by 400.

• Integers that are greater than or equal to 2101.

The leap-year program can now be tested by selecting representatives from
each equivalence class. 2

Equivalence classes are designed. Two people working from the same spec-
ification could potentially come up with di↵erent designs. The following are
some guidelines for getting started with equivalence partitioning:19

• If the inputs to a program are from a range of integers m-n, then start
with three equivalence classes. The first class contains invalid inputs that
are less then or equal to m � 1; the second contains the valid inputs
m,m� 1, ..., n; the third contains the invalid inputs greater than or equal
to m + 1. This guideline can be generalized from integers to other data
types.

• If an equivalence class has two or more inputs that produce di↵erent
outputs, then split the equivalence class into subclasses, where all of the
inputs in a subclass produce the same output.

236 CHAPTER 11. SOFTWARE QUALITY: TESTING

• If the specification singles out one or more test inputs for similar treat-
ment, then put all inputs that get the same “same” treatment into an
equivalence class.

• For each class of valid inputs, define corresponding classes of invalid in-
puts.

Once equivalence classes are designed, tests can selected to cover them; that
is, select a test input from each equivalence class.

11.4.2 Boundary-Value Coverage

Suppose that the input domain is ordered; that is, for two inputs i and j, it
makes sense to talk of i being less than or before j, written i < j. Then, a value
is a boundary value if it is either the first or the last—alternatively, the least or
the greatest—with respect to the ordering.

Based on experience, errors are often found at boundary values. For exam-
ple, the date-calculation code in Fig, 11.1 fails on December 31st of a leap year,
a boundary value.

Boundary-value testing leverages the equivalence classes defined during equiv-
alence partitioning.

Example 11.19 : In Fig. 11.11, consider the equivalence classes for valid and
invalid inputs. The valid inputs are the years between 1800 and 2100. The
boundaries of this equivalence class are 1800 and 2100. There are two classes
for invalid inputs: the smaller class of years less than 1800 and the bigger class
of years greater than 2100. The upper boundary for the smaller class is 1799,
but there is no lower boundary, since there are an infinite number of integers
smaller than 1800. Similarly, the lower boundary for the bigger class is 2101
and there is no upper boundary.

For the equivalence class of years between 1800 and 2100 that are not mul-
tiples of 4, lower boundary is 1801 and the upper boundary is 2099. 2

A test suite provides boundary value coverage if it includes the upper and
lower boundaries of each of the equivalence classes. For an equivalence class
with one element, the lower and upper boundaries are the same. In Fig. 11.11,
the year 2000 is in a class by itself.

11.4.3 Combinatorial Testing

Combinatorial testing is an e�cient technique for detecting failures that result
from a combination of factors—a factor is a quantity that can be controlled
during testing. At the unit level, failures can result from complex decisions
involving multiple conditions. Two factors, pressure and temperature, are in-
volved in the following pseudo-code:

11.4. TESTING FOR INPUT-DOMAIN COVERAGE 237

if (pressure > 32 & temperature > LIMIT) {

// faulty code

} else {

// good code

}

The faulty code is reached at specific combinations of pressure and temperature.
At the system level, failures can result from combinations of components,

as in the following example.

Example 11.20 : Consider the problem of testing a software product that must
support multiple browsers (Chrome, Safari, Explorer, Firefox), run on multiple
platforms (Linux, Windows, MacOS), and interface with multiple databases
(MongoDB, Oracle, MySQL).

With 4 browsers, 3 platforms, and 3 databases, the number of combinations
is 4⇥ 3⇥ 3 = 36. That’s 36 test sets, not tests, since the full test set must be
run for each combination. The problem gets worse if the product must support
not only the current version of a browser, but previous versions as well. 2

A software failure that results from a specific combination of factors is called
an interaction failure. A 2-way interaction involves two factors; a 3-way inter-
action involves three factors; and so on. An empirical study found that roughly
60% of web-server failures involved two or more factors. Incidentally, web-server
and browser failures involved more complex interactions than either medical de-
vices or a NASA application.20.

Combinatorial testing is based on the empirical observation that

“most failures are triggered by one or two factors, and progressively
fewer by three, four, or more factors, and the maximum interaction
degree is small.”21

Pairwise Interactions

Pairwise testing addresses 2-way interactions. The idea is to test all combina-
tions of values for each pair of factors. For the system in Example 11.20 the
pairs of factors are

(browser, platform), (browser, database), (platform, database)

Some conventions will be helpful in organizing sets of tests. Let the letters
A,B,C, ... represent factors; e.g, A represents browser, B represents platform,
and C represents database. Let the integers 0, 1, 2, ... represent factor values;
e.g., for factor B (platform), 0 represents Linux, 1 represents Windows, and 2
represents MacOS. Let two-letter combinations AB,AC,BC, ... represent the
pairs of factors (A,B), (A,C), (B,C), ..., respectively.

Consider tests involving two factors A and B, each of which can take on
the two values 0 and 1. With two factors and two values, there are four pos-
sible combinations of values for the two factors. A test consists of a specific

238 CHAPTER 11. SOFTWARE QUALITY: TESTING

Test A B C

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Test A B C

2 0 0 1
3 0 1 0
5 1 0 0
8 1 1 1

(a) All combinations (b) A 2-way covering array

Figure 11.12: Tables for three factors, each of which can have two possible
values. See Example 11.21.

combination of values. The following table represents an exhaustive set of tests
involving the two factors:

Test A B

1 0 0
2 0 1
3 1 0
4 1 1

In such tables, columns represent factors, rows represent tests, and table entries
represent values for the factors.

A set of tests is a 2-way covering array if the tests include all possible
combinations for each pair of factors. The next two examples illustrate covering
arrays.

Example 11.21 : Consider a simplified version of Example 11.20, where each
factor can have one of two values. Factor A (browser) can take on the two
values 0 and 1 (Chrome and Safari); factor B (platform) the values 0 and 1
(Linux and Windows); and factor C (database) the values 0 and 1 (MongoDB
and Oracle).

The table in Fig. 11.12(a) shows all possible combinations for three factors,
where each factor can have one of two values. Tests 1-8 therefore constitute an
exhaustive test set for three factors.

The four tests in Fig. 11.12(b) constitute a covering array for pairwise testing
of three factors. The three pairs of factors are AB, AC, and BC.

Let us verify that the four tests cover all combinations of values for each of
these pairs. Consider the pair AC. All possible combinations of values for AC
are 00, 01, 10, and 11. These combinations are covered by tests 3, 2, 5, and 8,
respectively. Test 3 has the form 0x0, where both A and C have value 0. The

11.4. TESTING FOR INPUT-DOMAIN COVERAGE 239

A B

0 0
0 1
0 2
1 0
1 1
1 2

A C

0 0
0 1
1 0
1 1

B C

0 0
0 1
1 0
1 1
2 0
2 1

Test A B C

1 0 0 1
2 0 1 0
3 0 2 1
4 1 0 0
5 1 1 1
6 1 2 0

Figure 11.13: All combinations for pairs AB, AC, and BC, and a covering
array. See Example 11.22.

value of B is ignored for now, since we are focusing on the pair AC. Tests 2, 5,
and 8 have the form 0x1, 1x0, and 1x1, respectively.

The combinations of values for the pair AB, are covered by the tests 2, 3,
5, and 8. For the pair BC, consider the tests 5, 2, 3, and 8. 2

Example 11.22 : Now, suppose that factor B can take on three values 0, 1,
and 2 (for Linux, Windows, and MacOS), and that factors A and C can have
two values, as in Example 11.21. The total number of combinations for the
three factors are 2⇥ 3⇥ 2 = 12.

For pairwise testing, 6 tests are enough. All combinations for the pairs AB,
AC, and BC appear in Fig. 11.13, along with a covering array with 6 tests. For
pair AB, tests 1-6, in that order, correspond to the rows in the combinations-
table for AB. For pair AC, see tests 2-5, in that order. For pair BC, tests 4,
1, 2, 5, 6, and 3, correspond to the rows in the combinations-table for BC. 2

Multiway Covering Arrays

The discussion of 2-way interactions generalizes directly to the interaction of
three or more factors. More factors need to be considered since 2-way testing
finds between 50% and 90% of faults, depending on the application. For critical
applications, 90% is not good enough. Three-way testing raises the lower bound
from 50% to over 85%.

The benefits of combinatorial testing become more dramatic as the size
of the testing problem increases. The number of possible combinations grows
exponentially with the number of factors. By contrast, for fixed t, the size of
a t-way covering array grows logarithmically with the number of factors.22 For
example, there are 210 = 1024 combinations of 10 factors, with each factor
having two values. There is a 3-way covering array, however, that has only 13
tests; see Fig. 11.14.23

Algorithms and tools are available for finding covering arrays. The general
problem of finding covering arrays is believed to be a hard problem. A naive
heuristic approach is to build up a covering array by adding columns for the

240 CHAPTER 11. SOFTWARE QUALITY: TESTING

Test A B C D E F G H I J

1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 1 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1
10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Figure 11.14: 3-way covering array for 10 factors.

factors, one at a time. Entries in the new column can be filled in by extending
an existing test, or by adding a row for a new test.

start with an empty array;
for each factor F :

add a column for F ;
mark F ;
for each 3-way interaction XY F , where X and Y are marked:

for each combination in the combinations table for XY F :
if possible:

fill in a blank in an existing row to cover the combination.
else:

add a row with entries in the columns for X, Y , and F ;
comment: leave all other entries in the row blank

11.5 Key Concepts and Terms

Exercises for Chapter 11

Exercise 11.1 : The diagram in Fig. 11.15 represents the development process
for the SAGE air-defense system. The dashed arrows go from specification
phases to the testing phases. What is the best fit between the testing phases
and unit, functional, integration, system, and acceptance testing? Explain your
answer.

Here are brief descriptions of the testing phases:

EXERCISES FOR CHAPTER 11 241

Figure 11.15: The development process for the SAGE air-defense system.

• Parameter Testing. Test each component by itself guided by the coding
specification.

• Assembly Testing. As parameter testing completes, the system is gradu-
ally assembled and tested using first simulated inputs and then live data.

• Shakedown. The completed system is tested in its operational environ-
ment.

• System Evaluation. After assembly, the system is ready for operation and
evaluation.

Exercise 11.2 : For each of the following, define a minimal set of MC/DC
(Modified Condition/Decision Coverage) tests. Why is your answer a minimal
set?

a) (!a)|(!b)|c

Exercise 11.3 : Suppose that there are 4 possible e↵ects for text formatting
and that you want to test all two-way interactions.

a) Create no more than 6 tests to test all 2-way interactions. Explain why
your solution works.

b) Find a solution that requires no more than 5 tests.

242 CHAPTER 11. SOFTWARE QUALITY: TESTING

Notes for Chapter 11
1Bill Gates interview with Information Week [8].
2In his 2002 interview [8], Bill Gates noted, “When we do a new release of [Microsoft]

Windows, which is, say, a billion-dollar e↵ort, over half that is going into the quality.” The
classic 1979 book on software testing by Glenford J. Myers [15, p. vii] begins with, “It has
been known for some time that, in a typical programming project, approximately 50% of the
elapsed time and over 50% of the cost are expended in testing the program or system being
developed.”

3The defective code in Fig. 11.1 is from the clock driver for the Freescale MC 13783
processor used by the Microsoft Zune 30 and Toshiba Gigabeat S media players [21]. The
root cause of the failure on December 31, 2008 was isolated by “itsnotabigtruck” [11].

4For more on the issues that arise during testing, see the “practice tutorial” by James
A.Whittaker [19].

5This version of Edsger W. Dijkstra’s famous quote about testing is from the 1969 NATO
Software Engineering Techniques conference [5, p. 16].

6Capers Jones provides empirical data on the “defect removal e�ciency” of various combi-
nations of reviews, static, analysis, and testing. Hackbarth, Mockus, Palframan, and Sethi [9]
describe a software-quality improvement program based on reviews, static analysis, and test-
ing that led to improvements in post-delivery operational experience.

7Weyuker [18].
8Primality testing is the problem of deciding whether a number n is a prime number. In

2002, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena showed that there is a deterministic
polynomial algorithm for primality testing [1].

9SWEBOK 3.0 merges system and functional testing into a single level [4, page 4-5.]. The
levels of testing in Section 11.2 assign the validation and verification roles to system and
functional testing, respectively. The classic text on testing by Glenford J. Myers separates
system and functional testing [15].

10Capers Jones has published summary data from 600 client companies [13]: “Many test
stages such as unit test, function test, regression test, etc. are only about 35% e�cient in
finding code bugs, or find one bug out of three. This explains why 6 to 10 separate kinds of
testing are needed.”

11The xUnit family began with Kent Beck’s automated testing frameworks for Smalltalk.
In 1997, Smalltalk usage was on the decline and Java usage was on the rise, so Kent Beck
and Erich Gamma created JUnit for Java. They had three goals for JUnit: make it natural
enough that developers would actually use it; enable tests that retain their value over time;
and leverage existing tests in creating new ones [2].

12David L. Parnas [16] introduced the “uses” relation as an aid for designing systems “so
that subsets and extensions are more easily obtained.” Incremental bottom-up integration
corresponds to building a system by extension.

13Myers [15, p. 99-100] notes that a comparison between top-down and bottom-up integra-
tion testing “seems to give the bottom-up strategy the edge.”

14Zhu, Hall, and May survey test coverage and adequacy criteria [22].
15Chilensky and Miller 1994
16MC/DC is included in RTCA document DO-178C [20]. FAA Advisory Circular 20-115C,

dated July 19, 2013, recognizes DO-178C as an “acceptable means, but not the only means,
for showing compliance with the applicable airworthiness regulations for the software aspects
of airborne systems.”

17While discussing industry trends in 2017, Ebert and Shankar [??] recommend MC/DC
for detecting security backdoors.

18The leap-year specification is from the US Naval Observatory]17].
19Myers [15, p. 46-47] provides heuristic guidelines for equivalence partitioning.
20hagar-2015-testing
21Kuhn 2014 keynote
22Cohen, Dalal, Fredman, Patton [6].
23Kuhn keynote. It’s also in the Hagar paper.

REFERENCES FOR CHAPTER 11 243

References for Chapter 11

1. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P . Annals of
Mathematics, Second Series 160, 2 (September 2004) 781-793.

2. Kent Beck and Erich Gamma. JUnit: a cook’s tour. (circa 1998).
http://junit.sourceforge.net/doc/cookstour/cookstour.htm .

3. Barry W. Boehm. Verifying and validating software requirements and design specifica-
tions. IEEE Software (January 1984) 75-88. A 1979 version is available as a technical
report USC-79-501
http://csse.usc.edu/TECHRPTS/1979/usccse79-501/usccse79-501.pdf

4. Pierre Borque and Richard E. Fairley (eds) Guide to the Software Engineering Body
of Knowledge (SWEBOK), Version 3.0. IEEE Computer Society (2014)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1265988 .

5. John N. Buxton and Brian Randell (eds), Software Engineering Techniques: Report
on a Conference Sponsored by the NATO Science Committee, Rome, Italy, October
1969. (published April 1970).
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

6. David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
The AETG system: an approach to testing based on combinatorial designs. IEEE
Transactions on Software Engineering 23, 7 (July 1997) 437-444.

7. Christof Ebert and Kris Shankar. Industry trends 2017. IEEE Software (March-April
2017) 112-116.

8. Gates, Bill. Q&A: Trustworthy Computing. Information Week (May 16, 2002).
http://www.informationweek.com/qanda-bill-gates-on-trustworthy-computing/d/d-id/1015083?

9. Randy Hackbarth, Audris Mockus, John Palframan, and Ravi Sethi. Improving soft-
ware quality as customers perceive it. IEEE Software (July-August 2016) 40-45.
https://www.computer.org/cms/Computer.org/ComputingNow/issues/2016/08/mso2016040040.pdf

10. Jon D. Hagar, Thomas L. Wissink, D. Richard Kuhn, and Raghu N. Kacker. Intro-
ducing combinatorial testing in a large organization. IEEE Computer (April 2015)
64-72.

11. itsnotabigtruck. Cause of Zune 30 leapyear problem ISOLATED!
http://www.zuneboards.com/forums/showthread.php?t=38143

12. Capers Jones. Software Quality in 2013: A Survey of the State of the Art. 35th Annual
Pacific NW Software Quality Conference (October 2013). The following website has
a link to his video keynote:
https://www.pnsqc.org/software-quality-in-2013-survey-of-the-state-of-the-art/ .

13. Capers Jones. Achieving software excellence. Crosstalk (July-August 2014) 19-25.

14. D. Richard Kuhn. Combinatorial testing: rationale and impact. Keynote at IEEE
Seventh International Conference on Software Testing, Verification, and Validation
(April 2, 2014) Presentation available at
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-icst-14.pdf

15. Glenford J. Myers. The Art of Software Testing. John Wiley (1979).

16. David L. Parnas. Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering SE-5, 2 (March 1979) 128-138.

17. US Naval Observatory. Introduction to Calendars.
http://aa.usno.navy.mil/faq/docs/calendars.php .

18. Elaine J. Weyuker. On testing non-testable programs. The Computer Journal 25, 4
(1982) 465-470.

19. Whittaker, James A. What is software tesing? And why is it so hard? IEEE Software
(January-February 2000) 70-79.

244 CHAPTER 11. SOFTWARE QUALITY: TESTING

20. Wikipedia. Modified condition/decision coverage.
https://en.wikipedia.org/wiki/Modified_condition/decision_coverage .

21. Wikipedia. Zune 30. https://en.wikipedia.org/wiki/Zune_30 .

22. Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys 29, 4 (December 1997) 366-427.

Appendices

Index

245

Appendix A

Architecture Reviews:
Sample Questions

The questions in this appendix are representative of questions that may arise
during an architecture discovery review. System architects can prepare answers
to such questions ahead of time. The list appears long, but it should not take
the architects too long to fill out.

Variants of this appendix have been classroom tested for project proposals.
Students form teams of four and prepare a proposal for a semester-long project
of their own choosing. The proposal is a narrative—not bullet points—with an
introduction and sections that mirror the sections of this appendix. A typical
proposal has half a dozen pages or less.

Architecture reviews that focus on specific areas of an architecture may
benefit from additional questions that dig deeper into that area. For example,
a review that focuses on security might include questions about the privacy of
customer information, authentication, and on the information flows between
components in the architecture. What does each component really need to
know?

See also the lists of questions can in the references.

A.1 Customer Needs and Wants

A.1.1 Target Customer

• Who is the target customer for this project?

• What does the customer want and why?

• What is their desired overall experience?

• Based on the overall experience, what are their unmet needs?

247

248 APPENDIX A. ARCHITECTURE REVIEW QUESTIONS

A.1.2 Other Stakeholders

• Who are the additional stakeholders?

• What is their desired experience?

A.2 Problem Definition

A.2.1 Proposed Benefit

• What customer opportunities have you chosen to address?

• In implementation-free terms, how will the customer benefit?

• Will they be able to do something new?

• Or, will their experience be much better, faster, ...?

• What are some enhancements that stakeholders would want?

• What alternative customer opportunities did you consider?

• What is the rationale for the chosen opportunity?

A.2.2 Measures of Success

• Who have you tested the idea on?

• How will you know that the customer got the proposed benefit?

• What are your customer-centric measures of success?

A.3 Technology

A.3.1 System Architecture

• What is the prioritized list of requirements?

• Do you have a high-level block diagram of the architecture?

• What are the message flows for providing the basic functionality?

• Do you have a module guide for the main components and what they do?

• What is a minimal system that will have some value for the customer?

• What future enhancements could the architecture handle?

• How will your system fit into its environment? The major interfaces?

A.4. TEAM 249

A.3.2 Non-Functional Requirements

• How will the architecture handle performance and scalability?

• How will it handle security?

• Reliability and availability?

• How will the components handle unexpected input/stimuli?

• Can the system crash if the user makes a mistake?

• How will the system be deployed?

• How will it be maintained?

A.3.3 Tools and Plaforms

• What will you use to build your system?

• Are there available platforms, services, or components you can leverage?

A.4 Team

A.4.1 Development Process

• What is your planned development process?

• Does the team have a system architect or team of architects?

• Is the team co-located or distributed?

• Does the team have the right resources in the right places?

A.4.2 Skills

• Has the team built something like this before?

• Is the technology known to the team? To someone on the team?

A.5 Constraints and Risks

A.5.1 Constraints

• Are there any business constraints? Time to market? Budget?

• Are there any social, ethical, policy, or legal constraints?

A.5.2 Risks

• Are there risks associated with external technology or services?

• Any other risks?

%addcontentslinetocsectionNotes

250 APPENDIX A. ARCHITECTURE REVIEW QUESTIONS

References for Appendix A

1. James Cusick. Architecture and Production Readiness Reviews in Practice (December
2014) https://arxiv.org/abs/1305.2402 .

2. Mikael Lindvall and Roseanne Tesoriero Tvedt. Software Architecture Inspection
Checklist Fraunhofer Center for Experimental Software Engineering, College Park,
Maryland (2003)
http://www.fc-md.umd.edu/sites/default/files/EBS/INSPECTIONS/checklists/common/4_2_Arch.pdf .

3. Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman, Guy W. Warnken,
Patricia E. Wirth, and David M. Weiss. Architecture reviews: practice and experience.
IEEE Software (March-April 2005) 34-43.

