
1

14.

Computational GeometryComputational Geometry

Chapter 4Chapter 4

Linear ProgrammingLinear Programming

Slides courtesy of Craig Slides courtesy of Craig GotsmanGotsman
24.

On the AgendaOn the Agenda

� Linear programming
� Duality

� Smallest enclosing disk

34.

Linear Programming Linear Programming -- ExampleExample
� Define: (amount amount consumed per day)

i – types of foods (1≤i≤d).
j – types of vitamins (1≤j≤n).
xi – the amount of food of type I consumed per day).
aji – the amount of vitamin j in one unit of food i.
ci – the number of calories in one unit of food i.
bj – minimal required amount of vitamin j.

� Constraints (we need to consume some minimal
amount of each vitamin):

� Minimize: the total number of calories consumed:

1 1 2 2() d dC x c x c x c x= + + +L

11 1 12 2 1 1

1 1 2 2

d d

n n nd d n

a x a x a x b

a x a x a x b

+ + + ≥

+ + + ≥

L

M

L

:

:

TMinimize c x

Subject to Ax b≥

44.

Linear Programming Linear Programming –– The GeometryThe Geometry

� Each constraint defines defines a half-space
region in d-dimensional space.

� The feasible region is the (convex) intersection
of these half-spaces.

� We will treat the case d = 2, where each
constraint defines a half-plane.

54.

More GeometryMore Geometry

� The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

� Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region.

� Proof: Convexity …
c

64.

Degenerate CasesDegenerate Cases

� The feasible region may be:

Empty

Unbounded

� The solution may be:

Not unique

2

74.

The Simplex AlgorithmThe Simplex Algorithm

� Assume WLOG that the cost function
points “downwards”.

� Construct (some of) the vertices of the
feasible region.

� Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum).

� In Rd, the number of vertices might be Θ
(n d/2).

c

84.

LP HistoryLP History

� Mid 20th century: Simplex algorithm, time complexity
Θ

(n
⌊

d/2
⌊

)
in the worst case.

� 1980’s (Khachiyan) ellipsoid algorithm with time complexity
poly(n,d).

� 1980’s (Karmakar) interior-point algorithm with time complexity
poly(n,d).

� 1984 (Megiddo) – parametric search algorithm with time
complexity O(Cdn) where Cd is a constant dependent only on d.
E.g. Cd = 2d^2.

� The holy grail: An algorithm with complexity independent of d.

� In practice the simplex algorithm is used because of its linear
expected runtime.

94.

O(O(n n log log nn) 2D Linear Programming) 2D Linear Programming

� Input:
n half planes.
Cost function that WLOG “points down”.

� Algorithm:
1. Partition the n half-planes into two groups.
2. Compute, recursively, the feasible region for each group.
3. Compute the intersection of the two feasible regions.
4. Check the cost function on the region vertices.

104.

Divide and Conquer Divide and Conquer –– Complexity Complexity
AnalysisAnalysis

� Stage 3:
Intersection of two convex polygons –
plane sweep algorithm.
No more than four segments are ever in
the SLS and no more than eight events in
the EQ – O(n).

� Stage 4:
Find the minimal cost vertex - O(n).

T(n) = 2T(n/2)+O(n) ⇒
T(n) = O(n log n)

114.

O(O(nn22) Incremental Algorithm) Incremental Algorithm

� The idea:
Start by intersecting two halfplanes.
Add halfplanes one by one and update optimal vertex by
solving one-dimensional LP problem on new line if needed.

124.

Incremental Algorithm Incremental Algorithm -- SymbolsSymbols

the optimal vertex of Civi

the feasible region after i constraintsCi

the line that defines hili

the ith half planehi

h1

l1

C1

l2

h2 C2

v2

v3
l3

h3

C3

3

134.

Incremental Algorithm Incremental Algorithm
Basic TheoremBasic Theorem

� Theorem:
1. if vi-1∈hi, then vi = vi-1. // O(1) check,

nothing to do
2. if vi-1∉hi, then either

Ci=∅ // terminate
or

Ci = Ci-1∩hi and vi lies on li // run 1D LP

� Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

hi

vi-1

hi

hi

vi

144.

Basic Theorem Basic Theorem -- Cont.Cont.

2. Assume that vi is not on li. vi must be in Ci-1

By convexity, also the line vivi-1 is in Ci-1 .

Consider point vj - the intersection of vivi-1

with li. vj is in both Ci-1 and Ci, and is better
than vi.

Contradiction.

hi-1

vi-1

hi

vi
vj

li

154.

Finding Finding vvii given given llii
(one(one--dimensional LP)dimensional LP)

� Intersect each hj (j<i) with li, generating i-1
rays representing (unbounded) intervals.

� Intersect the i-1 intervals in O(i) time.

� If the intersection is empty then report no
solution, else report the lowest point.

164.

Complexity AnalysisComplexity Analysis

)()()(2

3

nOiOnT
n

i

==∑
=

174.

Incremental Algorithm Incremental Algorithm –– O(O(nn))
Randomized VersionRandomized Version

� Exactly like the deterministic version, only the order
of the lines is random.

� Theorem: The expected runtime of the random
incremental algorithm (over all n! permutations of the
input constraints) is O(n).

184.

Complexity AnalysisComplexity Analysis

� The expected runtime is:

where xi is a random variable:

[] []
3 3

(1)(1 ()) () () () () ()
n n

i i i
i i

O E x O i E x O n O i E x
= =

− + ≤ +∑ ∑

1

1

1 // run 1D LP

0 // do nothing
i i

i
i i

v v
x

v v
−

−

≠
= =

4

194.

Probability AnalysisProbability Analysis
Backward analysis

� Question: When given a solution after i half-
planes, what is the probability that the last
half-plane affected the solution ?

� Answer: Exactly 2/i, because a change can
occur only if the last halfplane inserted is one
of the two halfplanes thru vi.
(note that vi depends on the i half-planes, but
not on their order)

vi

204.

Complexity AnalysisComplexity Analysis

1

3 3

2
() Pr()

2
() () () () ()

i i i

n n

i
i i

E x v v
i

O n O i E x O n O i O n
i

−

= =

= ≠ ≈

 + = + ⋅ =

∑ ∑

214.

Just to Make Sure Just to Make Sure ……

� False Claim:
The probabilistic analysis is for the average input. Hence
there exist bad sets of constraints for which the algorithm’s
expected runtime is more than O(n), and there exist good
sets of constraints for which the algorithm’s expected
runtime is less than O(n).

� True Claim:
The probabilistic analysis is valid for all inputs. The expected
complexity is over all permutations of this input.

224.

Smallest Enclosing DiskSmallest Enclosing Disk

� Input: n points.
� Output: Disk with minimal radius that

contains all the points.

� Theorem: For any finite set of points in
general position, the smallest enclosing
disk either has at least three points on its
boundary, or two points which form a
diameter. If there are three points, they
subdivide the circle into three arcs of
length no more than π each. Prove !

� This immediately implies a O(n4) algorithm
(why ?).

234.

Basic TheoremBasic Theorem

Theorem: Using an incremental algorithm, where Di is
the updated disk after seeing the first i points p1 ,.., pi:

If pi∉Di-1 then pi is on the boundary of Di.

Proof:

Observation: If r1<r2 then a<π.

pi∉Di-1 ⇒ r1<r2 => a<π
pi∉∂Di-1 ⇒ q1,q2,q3∈Di-1

⇒ Arc(q1,q3)>π. Contradiction.

r1

r2

a

pi

Di

Di-1
q1

q2

q3

244.

Incremental O(Incremental O(nn) Expected Time) Expected Time
AlgorithmAlgorithm

� Construct the procedures:
MinDisk(P) – find a smallest
enclosing disk for a set of points
P.
MinDisk1(P,q) – find an enclosing
disk for a set of points P which
touches point q.
MinDisk2(P,q1,q2) – find an
enclosing disk for a set of points
P, which touches points q1 and q2.
Disk(q1,q2,q3) – find a disk thru
points q1’ q2 and q3 (easy).

5

254.

Incremental AlgorithmIncremental Algorithm

� MinDisk(P)

� D2 = the minimal disk through p1 and p2.
� For each point pi in random order (3 ≤ i ≤ n):

If pi ∈ Di-1 then Di = Di-1 // do nothing
Else Di = MinDisk1(Pi-1,pi). // look for other two points on disk

� Return Dn

264.

Incremental AlgorithmIncremental Algorithm

� MinDisk1(P,q)

� D1 = the minimal disk through q and p1.
� For each point pi (2≤ i ≤ n):

If pi ∈ Di-1 then Di = Di-1 // do nothing
Else Di = MinDisk2(Pi-1,q,pi). // look for other one point on disk

� Return Dn

274.

Incremental AlgorithmIncremental Algorithm

� MinDisk2(P,q1,q2)

� D0 = the minimal disk through q1 and q2.
� For each point pi (1≤ i ≤ n):

If pi ∈ Di-1 then Di = Di-1 // do nothing
Else Di = Disk(q1,q2,pi). // form disk

� Return Dn

284.

Complexity AnalysisComplexity Analysis

� Use backward analysis on point
ordering.

� Total time complexity:

� Linear expected runtime.
� Worst case: O(n3).

)(
3

)(
1

nO
i

iO
n

i

=∑
=

