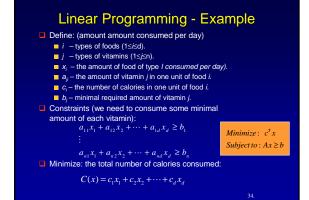


On the Agenda

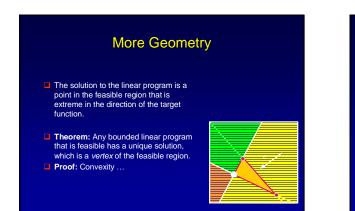
- Linear programming
- Duality
- Smallest enclosing disk

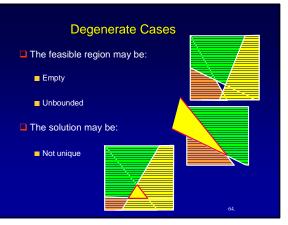


Linear Programming – The Geometry

- Each constraint defines defines a half-space region in *d*-dimensional space.
- The *feasible region* is the (convex) intersection of these half-spaces.
- □ We will treat the case *d* = 2, where each constraint defines a *half-plane*.

24





The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

In R^d , the number of vertices might be $\Theta(n^{\lfloor d2 \rfloor})$.

LP History

- Mid 20th century: Simplex algorithm, time complexity $\Theta(n^{\Box_{d2}\Box})$ in the **worst** case.
- 1980's (Khachiyan) ellipsoid algorithm with time complexity poly(n, d).
- 1980's (Karmakar) interior-point algorithm with time complexity poly(n, d).
- 1984 (Megiddo) parametric search algorithm with time complexity O(C_an) where C_a is a constant dependent only on *d*. E.g. C_a = 2^{an2}.
- The holy grail: An algorithm with complexity independent of *d*.
- In practice the simplex algorithm is used because of its linear expected runtime.

O(n log n) 2D Linear Programming

- Input:
 - n half planes.
 - Cost function that WLOG "points down".
- Algorithm:
 - 1. Partition the *n* half-planes into two groups.
 - 2. Compute, recursively, the feasible region for each group.
 - 3. Compute the intersection of the two feasible regions.
 - 4. Check the cost function on the region vertices.

Divide and Conquer – Complexity Analysis

Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the EQ – O(n).

Stage 4:

Find the minimal cost vertex - O(n).

 $T(n) = 2T(n/2) + O(n) \Rightarrow$ $T(n) = O(n \log n)$

$O(n^2)$ Incremental Algorithm

□ The idea:

- Start by intersecting two halfplanes.
- Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.

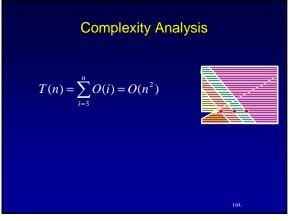
Incremental Algorithm - Symbols

- h_i the *i*th half plane
- I_i the line that defines h_i
- C_i the feasible region after *i* constraints
- v_i the optimal vertex of C_i

Incremental Algorithm Basic Theorem	
Theorem: 1. if $v_{k,1} \in h_{\mu}$ then $v_i = v_{k,1}$. // O(1) check, nothing to do 2. if $v_{k,1} \notin h_{\mu}$ then either $C_i = O$ // terminate or $C_i = C_{k,1} \cap h_i$ and v_i lies on i_i // run 1D LP Proof: 1. Trivial. Otherwise v_i would not have been optimum before.	
	134.

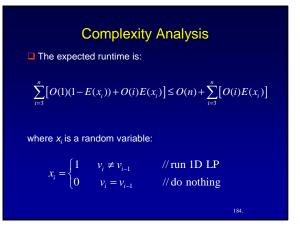
<text><text><text><text><text>





Incremental Algorithm – O(*n*) Randomized Version

- Exactly like the deterministic version, only the order of the lines is random.
- **Theorem:** The expected runtime of the random incremental algorithm (over all *n*! permutations of the input constraints) is O(*n*).



Probability Analysis

Backward analysis

- **Question**: When given a solution after *i* halfplanes, what is the probability that the *last* half-plane affected the solution ?
- Answer: Exactly 2/*i*, because a change can occur only if the last halfplane inserted is one of the two halfplanes thru v_i . (note that videpends on the i half-planes, but not on their order)

Complexity Analysis $E(x_i) = \Pr(v_i \neq v_{i-1}) \approx \frac{2}{2}$

 $O(n) + \sum_{i=2}^{n} O(i)E(x_i) = O(n) + O\left(\sum_{i=3}^{n} i \cdot \frac{2}{i}\right) = O(n)$

Just to Make Sure ...

False Claim:

The probabilistic analysis is for the average input. Hence there exist bad sets of constraints for which the algorithm's expected runtime is *more* than O(n), and there exist good sets of constraints for which the algorithm's expected runtime is *less* than O(*n*).

True Claim:

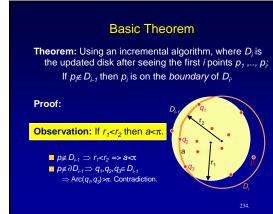
The probabilistic analysis is valid for *all* inputs. The expected complexity is over all permutations of this input.

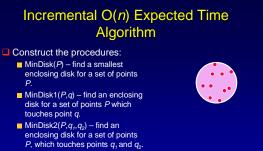
Smallest Enclosing Disk

Input: n points.

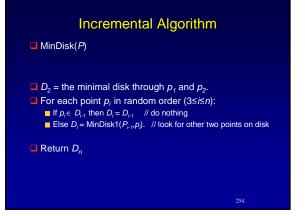
- Output: Disk with minimal radius that contains all the points.
- Theorem: For any finite set of points in general position, the smallest enclosing disk either has at least three points on its boundary, or two points which form a diameter. If there are three points, they subdivide the circle into three arcs of least he more than a coch Provo I length no more than π each. Prove !

This immediately implies a O(n⁴) algorithm (why ?).





Disk (q_1, q_2, q_3) – find a disk thru points $q_1 \cdot q_2$ and q_3 (easy).



Incremental Algorithm

MinDisk1(P,q)

 \square D_1 = the minimal disk through q and p_1 .

□ For each point $p_i(2 \le i \le n)$:

- If $p_i \in D_{i-1}$ then $D_i = D_{i-1}$ // do nothing Else $D_i = MinDisk2(P_{i-1},q_i,p_i)$. // look for other one point on disk

D Return D_n

Incremental Algorithm

$\square MinDisk2(P,q_1,q_2)$

- \Box D_0 = the minimal disk through q_1 and q_2 .
- For each point $p_i(1 \le i \le n)$:
 - If $p_i \in D_{i-1}$ then $D_i = D_{i-1}$ // do nothing Else D_i = Disk(q_1, q_2, p_i). // form disk

Return D_n

Complexity Analysis

- Use backward analysis on point ordering.
- Total time complexity:

$$\sum_{i=1}^{n} O(i) \frac{S}{i} = O(i)$$

Linear expected runtime. □ Worst case: O(n³).

