
1

11. 21.

!   Computational Geometry!
!de Berg, van Kreveld, Overmars, Schwarzkopf, !

 2nd edition, Springer Verlag, 2000.!

!   Computational Geometry in C!
!OʼRourke,!

 2nd edition, Cambridge Univ. Press, 2000.!

!   Course notes, D. Mount!
!   Course slides, C. Gotsman!

31.

!   6 Homework Assignments (65%). Primarily theoretical
problems.!
!   (7 homework, only the 6 better ones are counted)!

!   Final Exam (10%)!
!   Midterm (10%)!
!   Max(Final, Midterm) (10%)!

!   Class Participation (5%).!

Grads have one more question in each hw. !

41.

  Introduction !
  Basic techniques!
  Basic data structures!
  Polygon triangulation !
  Linear programming !
  Range searching !
  Point location !
  Voronoi diagrams !
  Duality and Arrangements!
  Delaunay triangulations !
  Computer graphics applications!

51.

Questions ?!

61.

 Sample problems !
 Basic concepts!
 Convex hull algorithms!

2

71.

 Problem definition:!
!   Input: a set of points (sites) P in the plane

and a query point q.!
!   Output: The point p∈P closest to q among

all points in P.!

 Rules of the game:!
!   One point set, multiple queries!

 Applications: !
!   Store Locator!
!   Cellphones!

P

q p

81.

 Problem definition:!
!   Input: a set of points (sites) P in the plane.!

!   Output: A planar subdivision S into cells. One
cell per site. A a point q lies in the cell
corresponding to a site p∈P iff p is the nearest
site to q.!

S

p
q

91.

  Problem definition:!
!   Input: A partition S of the plane

into cells and a query point p.!

!   Output: The cell C ∈ S containing p.!

  Rules of the game:!
!   One partition, multiple queries!

  Applications: !
!   Nearest neighbor!
!   State locator.!

S

p

C

101.

P

 Problem definition:!
!   Input: a polygon P in the plane and a query

point p.!
!   Output: true if p∈P, else false. ! !!

 Rules of the game:!
!   One polygon, multiple queries!

p

111.

CH(S)

S

 Problem definition:!
!   Input: a set of points S in the plane.!

!   Output: Minimal convex polygon containing S.
! !!

121.

  Problem definition:!
!   Input: Obstacles locations and

query endpoints s and t.!

!   Output: the shortest path
between s and t that avoids all
obstacles.!

  Application: Robotics.!
s

t

3

131.

P   Problem definition:!
!   Input: A set of points P in the

plane and a query rectangle R!

!   Output: (report) The subset Q ⊆ P contained in R.!
 (count) The size of Q.!

R

Q

  Rules of the game:!
!   One point set, multiple queries.!

  Application: Urban planning, data-
bases!

141.

P

 Problem definition:!
!   Input: a polygon P in the plane and a query

point p.!
!   Output: Polygon Q ⊆ P, visible to p. !

 Rules of the game:!
!   One polygon, multiple queries!

 Applications: Security!

p
Q

151. 161.

171.

Questions ?!

181.

Basic Concepts!

4

191.

“Nickname”!Definition!Symbol!

“≤”!∃N,C ∀n>N f(n)/g(n) ≤ C!f(n) = O(g(n))!

“≥”!g(n) = O(f(n))!f(n) = Ω(g(n))!

201.

  Representation of a line
segment by four real
numbers:!
!   Two endpoints (p1 and p2) !
!   One endpoint (p1), a slope

(α), and length (d)!
!   One endpoint (p1), vector

direction (v) and parameter
interval length (t)!

!   Parametric form!

 Different representations may affect the numeric
accuracy of algorithms…!

p1

p2

d

α
v

211.

  The sign of the area indicates the orientation of the points.!
  Positive area ≡ counterclockwise orientation ≡ left turn.!
  Negative area ≡ clockwise orientation ≡ right turn.!

  Question: How can this be used to determine whether a
given point is “above” or “below” or “on” a given line
segment ? Is this numerically stable ?!

(x1,y1)

(x2,y2) (x3,y3)

+

=1/2 (x1(y2 –y3)- x2(y1-y3)+x3(y1-y2))

221.

Convex Hull Algorithms!

231.

CH(S)

  A set S is convex if any pair of points p,q ∈ S
satisfy pq ⊆ S.!

p

q

non-convex

q

p

convex
  The convex hull of a set S is:!

!   The minimal convex set that contains S, i.e. any
convex set C such that S ⊆ C satisfies CH(S) ⊆ C.!

!   The intersection of all convex sets that contain S.!
!   The set of all convex combinations of pi∈S, i.e. all

points of the form:! S

p

q

non-convex

q

p

convex

241.

CH(S)

  The convex hull of a set is unique.!
  The boundary of the convex hull of a point set is a polygon

on a subset of the points.!

S

5

251.

  Description: !
!   For each pair of points construct its

connecting segment and supporting line.!
!   Find all the segments whose supporting

lines divide the plane into two halves, such
that one half plane contains all the other
points. !

!   Construct the convex hull out of these
segments. !

  Time complexity: !
!   All pairs: !

!   Check all points for each pair: O(n)!
!   Total: O(n3)!

261.

  Degenerate cases – e.g. 3 collinear points.
Might harm the correctness of the algorithm.
Segments AB, BC and AC will all be included
in the convex hull.!

  Numerical problems – We might conclude that none of
the three segments belongs to the convex hull.!

A

B

C

271.

 Ideas: Sort the points according to their x coordinates. First we
construct only the upper CH.!
 Process the points from the leftmost to rightmost.!
 Maintain the upper CH of all points from the leftmost one to the
currently processed scanned point. !
 Develop the left-turn critiria for the last 3 processed points: !

 if we need to turn left when traveling along these points, the
middle one is NOT on the upper CH, and we delete it. !
 Note: After deletion, we have new 3 points to consider. !

281.

 Sort the points in increasing order of x-coord: !
 p1 ,.., pn.!
!/* Note – this is the only part not done in O(n) time */!

 Push(S,p1); Push(S,p2);!
 For i = 3 to n do!

!   While Size(S) ≥ 2 and !
!  Orient(pi, top(S),second(S)) ≤ 0 /* left turn */!

!  do Pop(S);!
!   Push(S,pi);!

 Print(S);!
1

2

3

4

5

6

7

8

291.

  Sorting – O(n log n)!
  If Di is number of points popped on processing pi, !

  Each point is pushed on the stack only once.!
  Once a point is popped – it cannot be popped again.!

  Hence !

  Question: What is actually ?!

301.

 Assume the points are given in
increasing x-coord order.!

 Time Complexity: O(n log n)!

 Question: What are the pros and
cons of this algorithm relative to the
previous ?!

6

311.

 Algorithm:!
!   Find a point with a median x

coordinate (time: O(n))!
!   Compute the convex hull of each half

(recursive execution)!
!   Combine the two convex hulls by

finding common tangents.!
 This can be done in O(n).!

 Complexity: O(n log n)!

321.

A tangent line – a line cutting the CH at a single point

Consider a line passing through a vertex v of HB, How can we
determine if v is a tangent to HB. !

HB!

v

a

v-

V+

u

u+

u-

331.

To find lower tangent:!

 Find a - the rightmost point of HA!
 Find b – the leftmost point of HB!

O(n)

  While ab is not a lower tangent for HA and HB, do:!
  If ab is not a lower tangent to HA do a = a-1!

 /* Move one point clockwise */!

  If ab is not a lower tangent to HB do b = b-1 !
 /* Move one point counterclockwise */!

341.

HB
HA

351. 361.

7

371. 381.

391. 401.

411. 421.

8

431. 441.

451. 461.

471. 481.

 Algorithm:!
!   Find a point p1 on the convex hull (e.g. the

lowest point).!
!   Rotate counterclockwise a line through p1

until it touches one of the other points (start
from a horizontal orientation).!
!Question: How is this done ?!

!   Repeat the last step for the new point.!
!   Stop when p1 is reached again.!

 Time Complexity: O(nh), where n is the input size and h is
the output (hull) size.!

 Best alg in 2D: O(n log h) !

9

491.

 When designing a geometric algorithm, we first make
some simplifying assumptions, e.g:!
!   No 3 colinear points.!
!   No two points with the same x coordinate.!
!   etc. !

 Later, we consider the general case: !
!   How should the algorithm react to degenerate cases ? !
!   Will the correctness be preserved ? !
!   Will the runtime remain the same ?!

501.

 A reduction from sorting to
convex hull is: !
!   Given n real values xi,

generate n 2D points on the
graph of a convex function,
e.g. (xi,xi

2).!
!   Compute the (ordered) convex

hull of the points.!
!   The order of the convex hull

points is the numerical order of
the xi.!

 So CH=Ω(nlgn)!

