Chapter 1 – Introduction

Slides are gratitude of Craig Gotsman

Course notes, D. Mount
Course slides, C. Gotsman

Assessment

- 6 Homework Assignments (65%). Primarily theoretical problems.
 - (7 homework, only the 6 better ones are counted)
- Final Exam (10%)
- Midterm (10%)
- Max(Final, Midterm) (10%)
- Class Participation (5%).

Grads have one more question in each hw.

Syllabus

- Introduction
- Basic techniques
- Basic data structures
- Polygon triangulation
- Linear programming
- Range searching
- Point location
- Voronoi diagrams
- Duality and Arrangements
- Delaunay triangulations
- Computer graphics applications

Lecture Topics

- Sample problems
- Basic concepts
- Convex hull algorithms

Questions?
Nearest Neighbor
- Problem definition:
 - Input: a set of points (sites) P in the plane and a query point q.
 - Output: The point $p \in P$ closest to q among all points in P.

- Rules of the game:
 - One point set, multiple queries

- Applications:
 - Store Locator
 - Cellphones

The Voronoi Diagram
- Problem definition:
 - Input: a set of points (sites) P in the plane.
 - Output: A planar subdivision S into cells. One cell per site. A point q lies in the cell corresponding to a site $p \in P$ if p is the nearest site to q.

Point Location
- Problem definition:
 - Input: A partition S of the plane into cells and a query point p.
 - Output: The cell $C \in S$ containing p.

- Rules of the game:
 - One partition, multiple queries

- Applications:
 - Nearest neighbor
 - State locator

Point in Polygon
- Problem definition:
 - Input: A polygon P in the plane and a query point p.
 - Output: true if $p \in P$, else false.

- Rules of the game:
 - One polygon, multiple queries

Convex Hull
- Problem definition:
 - Input: a set of points S in the plane.
 - Output: Minimal convex polygon containing S.

Shortest Path
- Problem definition:
 - Input: Obstacles locations and query endpoints s and t.
 - Output: the shortest path between s and t that avoids all obstacles.

- Application: Robotics.
Range Searching and Counting

- **Problem definition:**
 - Input: A set of points P in the plane and a query rectangle R.
 - Output: (report) The subset $Q \subseteq P$ contained in R.
 - (count) The size of Q.

- **Rules of the game:**
 - One point set, multiple queries.
 - Application: Urban planning, databases.

Visibility

- **Problem definition:**
 - Input: a polygon P in the plane and a query point p.
 - Output: Polygon $Q \subseteq P$, visible to p.

- **Rules of the game:**
 - One polygon, multiple queries.
 - Applications: Security.

Questions?

Basic Concepts
Complexity (reminder)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>"Nickname"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n) = \mathcal{O}(g(n)))</td>
<td>(\exists N, C \forall n \geq N f(n) \leq Cg(n))</td>
<td>(\leq)</td>
</tr>
<tr>
<td>(f(n) = \mathcal{Ω}(g(n)))</td>
<td>(g(n) = \mathcal{O}(f(n)))</td>
<td>(\geq)</td>
</tr>
</tbody>
</table>

Representing Geometric Elements

- Representation of a line segment by four real numbers:
 - Two endpoints \((p_1, p_2) \)
 - One endpoint \(p_1 \), a slope \(\alpha \), and length \(d \)
 - One endpoint \(p_1 \), vector direction \(v \) and parameter interval length \(t \)
- Parametric form:
 \[
p(t) = p_1 + t(p_2 - p_1) = (1-t)p_1 + tp_2, \quad t \in [0,1]
\]
- Different representations may affect the numeric accuracy of algorithms...

Convex Hull Algorithms

- The convex hull of a set \(S \) is unique.
- The boundary of the convex hull of a point set is a polygon on a subset of the points.
Convex Hull – Naive Algorithm

- **Description:**
 - For each pair of points construct its connecting segment and supporting line.
 - Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains all the other points.
 - Construct the convex hull out of these segments.

- **Time complexity:**
 - All pairs: \(O(n^2) \)
 - Check all points for each pair: \(O(n) \)
 - Total: \(O(n^3) \)

Possible Pitfalls

- Degenerate cases – e.g., 3 collinear points. Might harm the correctness of the algorithm. Segments AB, BC, and AC will all be included in the convex hull.

- Numerical problems – We might conclude that none of the three segments belongs to the convex hull.

Convex Hull – Graham’s Scan

- **Idea:** Sort the points according to their x coordinates. First we construct only the upper CH.
- Process the points from the leftmost to rightmost.
- Maintain the upper CH of all points from the leftmost one to the currently processed scanned point.
- Develop the left-turn criteria for the last 3 processed points:
 - If we need to turn left when traveling along these points, the middle one is NOT on the upper CH, and we delete it.
 - Note: After deletion, we have new 3 points to consider.

The Algorithm

- Sort the points in increasing order of x-coord:
 - \(p_1, \ldots, p_n \)
 - \(^*\) Note – this is the only part not done in \(O(n) \) time \(^*/\)
 - Push(S, \(p_1 \)); Push(S, \(p_2 \));
 - For \(i = 3 \) to \(n \) do
 - While Size(S) \(\geq 2 \) and Orient(\(p_i \), top(S), second(S)) \(\leq 0 \) \(^*\) left turn \(^*/\)
 - Pop(S);
 - Push(S, \(p_i \));
 - Print(S);

Graham’s Scan – Time Complexity

- **Sorting** – \(O(n \log n) \)
- If \(D_i \) is number of points popped on processing \(p_i \)
 - Time \(\sum_{i=1}^{n} (D_i + 1) = n \sum_{i=1}^{n} D_i \)
 - Each point is pushed on the stack only once.
 - Once a point is popped – it cannot be popped again.
 - Hence \(\sum_{i=1}^{n} D_i \leq n \)
 - Question: What is actually \(\sum_{i=1}^{n} D_i \)?

Graham’s Scan – a Variant

- Assume the points are given in increasing x-coord order.
- **Time Complexity:** \(O(n \log n) \)

Question: What are the pros and cons of this algorithm relative to the previous?
Convex Hull - Divide and Conquer

- **Algorithm:**
 - Find a point with a median x coordinate (time: $O(n)$)
 - Compute the convex hull of each half (recursive execution)
 - Combine the two convex hulls by finding common tangents.

- **Complexity:** $O(n \log n)$

\[T(n) = 2T\left(\frac{n}{3}\right) + O(n) \]

Finding Common Tangents

A tangent line - a line cutting the CH at a single point

Consider a line passing through a vertex v' of H_B. How can we determine if v' is a tangent to H_B?

Finding Common Tangents

To find lower tangent:

- Find a - the rightmost point of H_A $O(n)$
- Find b – the leftmost point of H_B
- While ab is not a lower tangent for H_A and H_B, do:
 - If ab is not a lower tangent to H_A, do $a = a-1$
 - Move one point clockwise
 - If ab is not a lower tangent to H_B, do $b = b-1$
 - Move one point counterclockwise

Finding Common Tangents

- H_A
- H_B
Algorithm:
- Find a point p_1 on the convex hull (e.g. the lowest point).
- Rotate counterclockwise a line through p_1 until it touches one of the other points (start from a horizontal orientation).

Question: How is this done?
- Repeat the last step for the new point.
- Stop when p_1 is reached again.

Time Complexity: $O(nh)$, where n is the input size and h is the output (hull) size.
- Best alg in 2D: $O(n \log h)$
When designing a geometric algorithm, we first make some simplifying assumptions, e.g:
- No 3 colinear points.
- No two points with the same x coordinate.
- etc.
Later, we consider the general case:
- How should the algorithm react to degenerate cases?
- Will the correctness be preserved?
- Will the runtime remain the same?

A reduction from sorting to convex hull is:
- Given n real values x_i, generate n 2D points on the graph of a convex function, e.g. (x_i, x_i^2)
- Compute the (ordered) convex hull of the points.
- The order of the convex hull points is the numerical order of the x_i.
- So $CH = \Omega(n \log n)$