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11. 21. 

!   Computational Geometry!
!de Berg, van Kreveld, Overmars, Schwarzkopf, !

    2nd edition, Springer Verlag, 2000.!

!   Computational Geometry in C!
!OʼRourke,!

    2nd edition, Cambridge Univ. Press, 2000.!

!   Course notes, D. Mount!
!   Course slides, C. Gotsman!

31. 

!   6 Homework Assignments (65%). Primarily theoretical 
problems.!
!   (7 homework, only the 6 better ones are counted)!

!   Final Exam (10%)!
!   Midterm (10%)!
!   Max(Final, Midterm) (10%)!

!   Class Participation (5%).!

Grads have one more question in each hw. !

41. 

  Introduction !
  Basic techniques!
  Basic data structures!
  Polygon triangulation !
  Linear programming !
  Range searching !
  Point location !
  Voronoi diagrams !
  Duality and Arrangements!
  Delaunay triangulations !
  Computer graphics applications!

51. 

Questions ?!

61. 

 Sample problems !
 Basic concepts!
 Convex hull algorithms!
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71. 

 Problem definition:!
!   Input: a set of points (sites) P in the plane 

and a query point q.!
!   Output: The point p∈P closest to q among 

all points in P.!

 Rules of the game:!
!   One point set, multiple queries!

 Applications: !
!   Store Locator!
!   Cellphones!

P 

q p 

81. 

 Problem definition:!
!   Input: a set of points (sites) P in the plane.!

!   Output: A planar subdivision S into cells. One 
cell per site.  A a point q lies in the cell 
corresponding to a site p∈P iff p is the nearest 
site to q.!

S 

p 
q 

91. 

  Problem definition:!
!   Input: A partition S of the plane 

into cells and a query point p.!

!   Output:  The cell C ∈ S containing p.!

  Rules of the game:!
!   One partition, multiple queries!

  Applications: !
!   Nearest neighbor!
!   State locator.!

S 

p 

C 

101. 

P 

 Problem definition:!
!   Input: a polygon P in the plane and a query 

point p.!
!   Output: true if p∈P, else false. ! !!

 Rules of the game:!
!   One polygon, multiple queries!

p 

111. 

CH(S) 

S 

 Problem definition:!
!   Input: a set of points S in the plane.!

!   Output: Minimal convex polygon containing S.
! !!

121. 

  Problem definition:!
!   Input: Obstacles locations and 

query endpoints s and t.!

!   Output: the shortest path 
between s and t that avoids all 
obstacles.!

  Application: Robotics.!
s 

t 
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131. 

P   Problem definition:!
!   Input: A set of points P in the 

plane and a query rectangle R!

!   Output:  (report) The subset Q ⊆ P contained in R.!
                  (count)  The size of Q.!

R 

Q 

  Rules of the game:!
!   One point set, multiple queries.!

  Application: Urban planning, data-
bases!

141. 

P 

 Problem definition:!
!   Input: a polygon P in the plane and a query 

point p.!
!   Output: Polygon Q ⊆ P, visible to p. !

 Rules of the game:!
!   One polygon, multiple queries!

 Applications: Security!

p 
Q 

151. 161. 

171. 

Questions ?!

181. 

Basic Concepts!
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191. 

“Nickname”!Definition!Symbol!

“≤”!∃N,C ∀n>N f(n)/g(n) ≤ C!f(n) = O(g(n))!

“≥”!g(n) = O(f(n))!f(n) = Ω(g(n))!

201. 

  Representation of a line 
segment by four real 
numbers:!
!   Two endpoints (p1 and p2) !
!   One endpoint (p1), a slope 

(α), and length (d)!
!   One endpoint (p1), vector 

direction (v) and parameter 
interval length (t)!

!   Parametric form!

 Different representations may affect the numeric 
accuracy of algorithms…!

p1 

p2 

d 

α 
v 

211. 

  The sign of the area indicates the orientation of the points.!
  Positive area ≡ counterclockwise orientation ≡ left turn.!
  Negative area ≡ clockwise orientation ≡ right turn.!

  Question: How can this be used to determine whether a 
given point is “above” or “below” or “on” a given line 
segment ? Is this numerically stable ?!

(x1,y1) 

(x2,y2) (x3,y3) 

+ 

=1/2 ( x1(y2 –y3)- x2(y1-y3)+x3(y1-y2) ) 

221. 

Convex Hull Algorithms!

231. 

CH(S) 

  A set S is convex if any pair of points p,q ∈ S 
satisfy pq ⊆ S.!

p 

q 

non-convex 

q 

p 

convex 
  The convex hull of a set S is:!

!   The minimal convex set that contains S, i.e. any 
convex set C such that S ⊆ C satisfies CH(S) ⊆ C.!

!   The intersection of all convex sets that contain S.!
!   The set of all convex combinations of pi∈S, i.e. all 

points of the form:! S 

p 

q 

non-convex 

q 

p 

convex 

241. 

CH(S) 

  The convex hull of a set is unique.!
  The boundary of the convex hull of a point set is a polygon 

on a subset of the points.!

S 
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251. 

  Description: !
!   For each pair of points construct its 

connecting segment and supporting line.!
!   Find all the segments whose supporting 

lines divide the plane into two halves, such 
that one half plane contains all the other 
points. !

!   Construct the convex hull out of these 
segments. !

  Time complexity: !
!   All pairs: !

!   Check all points for each pair: O(n)!
!   Total: O(n3)!

261. 

  Degenerate cases – e.g. 3 collinear points. 
Might harm the correctness of the algorithm. 
Segments AB, BC and AC will all be included 
in the convex hull.!

  Numerical problems – We might conclude that none of 
the three segments belongs to the convex hull.!

A 

B 

C 

271. 

 Ideas: Sort the points according to their x coordinates. First we 
construct only the upper  CH.!
 Process the points from the leftmost to rightmost.!
 Maintain the upper CH of all points from the leftmost one to the 
currently processed scanned point.  !
 Develop the left-turn critiria for the last 3 processed points: !

 if we need to turn left when traveling along these points, the 
middle one is NOT on the upper CH, and we delete it. !
 Note: After deletion, we have new  3 points to consider. !

281. 

 Sort the points in increasing order of x-coord: !
            p1 ,.., pn.!
!/* Note – this is the only part not done in O(n) time */!

 Push(S,p1); Push(S,p2);!
 For i = 3 to n do!

!   While Size(S) ≥ 2 and  !
!  Orient( pi, top(S),second(S)) ≤ 0     /* left turn */!

!  do  Pop(S);!
!   Push(S,pi);!

 Print(S);!
1 

2 

3 

4 

5 

6 

7 

8 

291. 

  Sorting – O(n log n)!
  If Di is number of points popped on processing pi, !

  Each point is pushed on the stack only once.!
  Once a point is popped – it cannot be popped again.!

  Hence !

  Question: What is actually                          ?!

301. 

 Assume the points are given in 
increasing x-coord order.!

 Time Complexity: O(n log n)!

 Question: What are the pros and 
cons of this algorithm relative to the 
previous ?!
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311. 

 Algorithm:!
!   Find a point with a median x 

coordinate (time: O(n))!
!   Compute the convex hull of each half 

(recursive execution)!
!   Combine the two convex hulls by 

finding common tangents.!
    This can be done in O(n).!

 Complexity: O(n log n)!

321. 

A tangent line – a line cutting the CH at a single point 

Consider a line passing through a vertex v  of HB, How can we 
determine if v is a tangent to HB. !

HB!

v 

a 

v- 

V+ 

u 

u+ 

u- 

331. 

To find lower tangent:!

 Find a - the rightmost point of HA!
 Find b – the leftmost point of HB!

O(n) 

  While ab is not a lower tangent for HA and HB, do:!
  If ab is not a lower tangent to HA do a = a-1!

 /* Move one point clockwise */!

  If ab is not a lower tangent to HB do b = b-1 !
 /* Move one point counterclockwise */!

341. 

HB 
HA 

351. 361. 
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371. 381. 

391. 401. 

411. 421. 
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431. 441. 

451. 461. 

471. 481. 

 Algorithm:!
!   Find a point p1 on the convex hull (e.g. the 

lowest point).!
!   Rotate counterclockwise a line through p1 

until it touches one of the other points (start 
from a horizontal orientation).!
!Question: How is this done ?!

!   Repeat the last step for the new point.!
!   Stop when p1 is reached again.!

 Time Complexity: O(nh), where n is the input size and h is 
the output (hull) size.!

 Best alg in 2D: O(n log h ) !
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491. 

 When designing a geometric algorithm, we first make 
some simplifying assumptions, e.g:!
!   No 3 colinear points.!
!   No two points with the same x coordinate.!
!   etc. !

 Later, we consider the general case: !
!   How should the algorithm react to degenerate cases ?  !
!   Will the correctness be preserved ? !
!   Will the runtime remain the same ?!

501. 

 A reduction from sorting to 
convex hull is: !
!   Given n real values xi, 

generate n 2D points on the 
graph of a convex function, 
e.g. (xi,xi

2).!
!   Compute the (ordered) convex 

hull of the points.!
!   The order of the convex hull 

points is the numerical order of 
the xi.!

 So CH=Ω(nlgn)!


