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12. 22. 

 The DCEL Data Structure"
 Line Segment Intersection"
 Plane Sweep"
 Eulerʼs Formula"

32. 

f1 

f2 f3 

f4 f5 

vertex edge 

face 

42. 

 Record for each face, edge and vertex:"

"   Geometric information"
"   Topological information"
"   Attribute information"

 aka Half-Edge Structure"
"   3 arrays  - Vertices, Edges, Faces, (V,E,F) "
"   Coordinates are stored only at V, "
"   Avoid data duplication "
"   Common operation need to support: Traversing along a line, 

and find its intersections with all edges and faces ) "

52. 

IncidentEdge"coordinate"Vertex"

e2,1 (x1,y1,z1) v1 

e5,1 (x2,y2,z2) v2 

e1,1 (x3,y3,z3) v3 

e7,1 (x4,y4,z4) v4 

e9,1 (x5,y5,z5) v5 

e7,2 (x6,y6,z6) v6 

edge"face"
e1,1 f1 

e5,1 f2 

e4,2 f3 

e8,1 f4 

f1 
f2 

f3 

f4 v1 

v2 

v3 

v4 

v5 

v6 

e1,1 

e6,1 

e4,1 e7,2 e9,1 

e8,1 
e3,2 

e5,1 

e7,1 

e3,1 e2,1 

e4,2 

62. 

prev"next"IncidentFace"twin"origin"Half-edge"

e2,1 e1,1 f1 e3,2 v2 e3,1 

e4,1 e5,1 f2 e3,1 v3 e3,2 

e5,1 e3,2 f2 e4,2 v4 e4,1 

e6,1 e7,1 f3 e4,1 v3 e4,2 

f1 
f2 

f3 

f4 v1 

v2 

v3 

v4 

v5 

v6 

e1,1 

e6,1 

e4,1 e7,2 e9,1 

e8,1 
e3,2 

e5,1 

e7,1 

e3,1 e2,1 

e4,2 
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72. 

  Half-edge record:"
"   Pointer to its origin: origin(e) 
"   Pointer to its twin half-edge: twin(e) 
"   Pointer to the face it bounds: IncidentFace(e) (face lies to left of e 

when traversed from origin to destination)"
"   Next and previous edge on boundary of IncidentFace(e): next(e), prev

(e) 

e 

tw
in

(e)
 

origin(e) 

IncFace(e) 
prev(e) 

next(e) 
  Vertex record:"

"   Coordinates "
"   Pointer to one  half-

edge that has v as its 
origin"

  Face record:"
"   Pointer to one half-

edge on its boundary"

82. 

 Support for:"
"   Walk around boundary of given face"
"   Visit all edges incident to vertex v (how ?)"

 Queries:"
"   Most queries are O(1)"

92. 

  Want to "
"   Walk around the boundary of a given face of a polygon"
"   Access a face from an adjacent one "
"   Visit all the edges around a given vertex"

  DCEL"
"   Geometric structures combined by polygonal faces, edges and 

vertices"
"   Linear space representation"
"   Allow easy retrieval of data"

102. 

  Theorem: Segments (p1,p2) and (p3,p4) 
intersect in their interior iff p1 and p2 are on 
different sides of the line p3p4 and p3 and p4 
are on different sides of the line p1p2."

  This can be checked by computing the 
orientations of four triangles. Which ?"

  Computational robust, but computationally 
costly. "

  Special cases:"

p4 

p2 

p3 

p1 

112. 

q1 

p2 

q2 

p1 

Question: What is the meaning of other  
values of s and t ? 

Solve (2D) linear vector equation for t and s: 

122. 

 Given a polygon P with n sides, and 
a point q, decide whether q∈P."

 Solution A: Count how many times a 
ray r  originating at q intersects P. 
Then q∈P iff this number is odd.  

 Complexity: O(n)"

 Question: Are there special cases ?"

P 

q 

r 
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Given n line segments, two questions arise:  
• does any pair intersect?  (studied in this class)  
• report all intersections 

Obvious algorithm: O(n2) – checking all pairs. 
Line-sweep – O(n log n)  time determine  if there is an 
intersection. 

a 

b 

c 

d 
e 

f 
Need to decide if two components intersect (bug in design) 

Applications: Map overlaying:  
compute all points at which a road crosses a river. 

Finding the intersection point of two line segments e1  and 
e2 

e2 
Let l1  be the line containing the segment e1.  
Let l2  be the line containing the segment e2.  

 l={(x,y)| y =a x +b}  ,  where  a=(y2-y1)/(x2-x1)  
 l’={(x,y)| y =a’ x +b’}  

1.  Find the intersection point p of the lines (solving a 
linear system with two equations). 

2.  Find if p lies on both segments 

l 
e 

l’ (x2,y2
) 

(x1,y1
) 

(x’1 , y’1) 
(x’2 ,  y’2) 

p 

e2 

First check if their boounding boxes of the segments 
intersects.  

Bounding box-the axis-parallel that has the endpoints 
of the segment as a pair of diagonal vertices.  

  A quick operation that does not involve 
division.  

l 
e 

(x2,y) (x1,y) 

(x’1 , y’1) 
(x’2 ,  y’2) 

p 
Given a set S of numbers, a standard balanced search tree 
supports  

 insert(x,S) , delete(x,S) , find(x,S) 
Each in O(log n) time   (where n=|S|) 
It can also support the operation succ(x,S), defined as finding 
the smallest element of S which is strictly larger than S.  
Examples  S={10,20,30};  

 succ(-30,S)=10,   
 succ(10,S)=succ(12,S)=20,    
 succ(30,S)=succ(40,S)= UNDEFINED. 
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Succ(pNODE p, float x){ 
 p = root;  
 x_tmp= INFINITY ;  /* x_tmp – temporally value */ 
 while( p  ≠ NULL ) {  
  if ( p->key  ≤  x )  p=p->right;  
  else {  
   x_tmp = min(x_tmp, p->key) ;   
   p = p->left  ; 
  } 
 } 
 return x_tmp;  

} 

a 

b 

c 

d 

e 

f 

Planned events (left/right endpoints) 

a 

b 

c 

d 

Sweep a vertical line from left to right 
The line “knows” which segment it intersect 
and at which order (conceptually replacing x-
coordinate with time). 

•  Sweep a vertical line from left to right 
  (conceptually replacing x-coordinate with time). 

• Maintain the status -  a dynamic set S of the segments 
  that intersect the sweep line, ordered 
  (tentatively) by y-coordinate of intersection. 

• (so the lowest segment appears first one the list) 

• The status is changed only when 
•  new segment is encountered (left endpoints), 
•  existing segment finishes (right endpoint) 
• Event points are therefore segment endpoints. 

a 

b 

c 

d 

e 

f 

a 
a 
b b 

c 
a a 

b 
c 

d 

b 

d 
c 

b 

e 
d 

b 

d 
c 

e 

S 

Planned events (left/right endpoints) 

   

a 
b 

c 

d 

e 

S={d,b,a,c,e} 

The status S is the list of segments that linesweep l 
intersects (in the order from bottom to top).  

Definition: an event  happens when l start/stop 
intersecting a segment. 

Note: the status is not changed between events, so     
 l can jump from an event to the next event.  

l •  For a left endpoint of segment s: 
•  Add segment s to the status S. 
•  Check for intersection between s and its 
neighbors in S.  

•  (Will later explain how the  neighbors  are found) 

a 

b 

c 

d 

e 

Example: a is checked for intersection with c and 
intersection with b.  S={d,b,a,c,e} 
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For a right endpoint of segment s: 
•  Delete segment s from dynamic set S. 
•  Check for intersection between neighbors s 
  and its neighbors in S. 

a 

b 

c 

d 

e 
Example: c is checked for 
intersection with b.  

S={d,b,a,c,e} 

Proof:  Let p be the leftmost intersection point. 

Consider the last event before (to the left of)  p, at which c or b 
are born 

If they are not neighbors on l, it is because another segment, 
say a separates between them.  

a 

b 

c 

d 

But then either a has a right 
endpoint to the left of p and then 
c and b become neighbors.  

Or a’  intersects b or c at a point 
to the left of p, contraditction to 
p be the leftmost point. 

a’ 

p 

a 

b 

c 

d 

f 

T  

l 

a 

b 

d 

f 
• We maintain S  - the list of segments that intersect l in 
a sorted search tree T, sorted by the order they appear 
along l.  
• When we insert a new segment g, we compare  y’, the 
y-coordinates of intersections of segments with l.  

• Example: Since d is the root of T, we compute the 
intersection  point of  l with d.  call it dy.  

• We compare y’ and dy  and deduce that g is above d, 
so it should be inserted into the right subtree.  

• Continue recursively.  

c 

g 

g 

dy 

a 

b 

c 

d 

f 

T  l 

a 

b 

d 

f 

Insert(T,s) - Insert the segment s into the Tree  T.  
Delete(T,s)   

Above(T,s)  - Find the segment  just below s.  
 Example Above(T,b) = c.  

    (successor oprtaion in T) 
Below(T,s)– Analogous operation  

 (predecessor) 

c 

g 
g 

Create an empty set T 
Sort endpnts of the segments in S from left to right. 
FOR each endpnt p in the sorted list of end points do { 
 IF p is the left endpnt of a segment s then Insert(T,s); 
 IF {Above(T,s) exist and intersects s} or                                         

     {Below(T,s) exists and intersects s}  Then  
    Return TRUE /*found intersection*/  
  }   
  ELESE {/* p is the right endpnt of s */ 
     IF both Above(T,s) and Below(T,s) exist  then   

      IFAbove(T,s) intersects Below(T,s) then return TRUE 
    Delete(T,s) 
  } 
 Return ”no two segments interesct”  

Create an empty set T 
Sort endpnts of the segments of S and insert into events queue Q. 
REPEAT { find next event p in Q  
 IF p is the left endpnt of a segment s THEN{  
 insert(T,s). 
 If Above(T,s) intersects s THEN insert new intersection point into Q 
 If Below(T,s) intersects s THEN insert new intersection point into Q 

}   
  ELSE IF  p is the right endpnt of s  
     IF Above(T,s) intersects Below(T,s) THEN  
    insert intersection into Q.       

  ELSE /*  p is an intersection point of  s,s’ */  
     Check the two new nboring pairs for intersections and insert into Q 
}UNTIL Q is empty /*reached rightmost endpoint */ 
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• There are 2n endpoints – O(n log n) time for sorting 
• Each left endpoint event involved 

• Insertion into the tree O(log n) 
• Finding successor/predecessor O(log n) 
• Checking intersection with Above/Below – O(1)  

• Each right endpoint event involved 
• Deletion from the tree O(log n). 
• Finding successor/predecessor O(log n). 
• Checking intersection between Above/Below – O(1) 

• Total – O( n log n) 

322. 

G = <V,E> 
V = vertices = 
{A,B,C,D,E,F,G,H,I,J,K,L} 
E = edges = {(A,B),(B,C),(C,D),(D,E),
(E,F),(F,G), 
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F), 
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K), 
(J,L),(J,K),(K,L),(L,I)}      

Vertex degree (valence) = number of edges incident on vertex. 
deg(J) = 4, deg(H) = 2 

k-regular graph = graph whose vertices all have degree k 

A face of a graph is a cycle of vertices/edges which cannot be shortened. 
F = faces =  
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I), 
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)} 

332. 

A graph is connected if there is a path of edges 
connecting every two vertices. 

A graph is k-connected if between every two 
vertices  there are k edge-disjoint paths. 

A graph G’=<V’,E’> is a subgraph of a graph  
G=<V,E> if V’ is a subset of V and E’ is the subset 
of E incident on V’.  

A connected component of a graph is a maximal 
connected subgraph. 

A subset V’ of V is an independent set in  
G if the subgraph it induces does not contain  
any edges of E. 

342. 

A graph is embedded in Rd if each vertex is 
assigned a position in Rd. 

Embedding in R2 Embedding in R3 

352. 

Planar Graph Plane Graph 

Straight Line Plane Graph 

  A planar graph is a graph  
  whose vertices and edges can    
  be embedded in R2 such that  
  its edges do not intersect. 

Every planar graph can be drawn  
as a straight-line plane graph. 

362. 

A triangulation is a straight line plane  
graph whose faces are all triangles. 

A Delaunay triangulation of a set of 
points is the unique set of triangles 
such that such that the circumcircle of 
any triangle does not contain any other  
point. 

The Delaunay triangulation avoids long  
and skinny triangles. 
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372. 

Euler Formula 

For a connected planar graph: 

 v+f-e = 2 
    

v = # vertices. 
f  = # faces            
e = # edges 

v =12 
f = 14 
e = 25 

382. 

Theorem: In a triangulation: 
1.  e = f = O(v) 
2.  The average vertex degree is ~6. 

Proof: In such a mesh, f = 2e/3.  
By Euler’s formula: v+2e/3-e = 2 
hence e = 3(v-2) and f = 2(v-2). 

So Average(deg) = 2e/v = 6(v-2)/v  
                                       ~ 6 for large v.  


