

Doubly Coninected Edge List - DCEL

DCEL

\square Vertex record:

- Coordinates
- Pointer to one halfedge that has v as its origin
- Pointer to one halfedge on its boundary

\square Half-edge record:

\square Pointer to its origin: origin(e)

- Pointer to its twin half-edge: twin(e)
- Pointer to the face it bounds: IncidentFace(e) (face lies to left of e when traversed from origin to destination)
- Next and previous edge on boundary of IncidentFace(e): next(e), prev (e)

- Walk around the boundary of a given face of a polygon

Access a face from an adjacent one
\square Visit all the edges around a given vertex

\square DCEL

- Geometric structures combined by polygonal faces, edges and vertices
Linear space representation
- Allow easy retrieval of data

DCEL

Obvious algorithm: $\mathrm{O}\left(n^{2}\right)$ - checking all pairs. Line-sweep - $\mathrm{O}(n \log \mathrm{n})$ time determine if there is an intersection.

First check if their boounding boxes of the segments
intersects.
Bounding box-the axis-parallel that has the endpoints of the segment as a pair of diagonal vertices.

A quick operation that does not involve

division.

Leftover firom Datia-stiructures

Given a set S of numbers, a standard balanced search tree supports
insert (x, S), delete (x, S), find (x, S)
Each in $O(\log n)$ time (where $n=|S|)$
It can also support the operation $\operatorname{succ}(x, S)$, defined as finding the smallest element of S which is strictly larger than S.
Examples $S=\{10,20,30\}$;
$\operatorname{succ}(-30, S)=10$,
$\operatorname{succ}(10, S)=\operatorname{succ}(12, S)=20$,
$\operatorname{succ}(30, S)=\operatorname{succ}(40, S)=$ UNDEFINED.

Sweep-line algorithm

Sweep a vertical line from left to right (conceptually replacing x-coordinate with time).
-Maintain the status - a dynamic set S of the segments that intersect the sweep line, ordered (tentatively) by y-coordinate of intersection.
\cdot (so the lowest segment appears first one the list)
-The status is changed only when

- new segment is encountered (left endpoints),
- existing segment finishes (right endpoint)
-Event points are therefore segment endpoints.

The status S is the list of segments that linesweep I intersects (in the order from bottom to top).

Definition: an event happens when / start/stop intersecting a segment.

Right endpoint event

For a right endpoint of segment s :

- Delete segment s from dynamic set S.
- Check for intersection between neighbors s and its neighbors in S.

Example: c is checked for intersection with b.

Theoren: If there is an intersection point, the algorithm finds it.

Proof: Let p be the leftmost intersection point.
Consider the last event before (to the left of) p, at which c or b are born

If they are not neighbors on I, it is because another segment, say a separates between them.

But then either a has a right endpoint to the left of p and then c and b become neighbors.

Or a' intersects b or c at a point to the left of p, contraditction to p be the leftmost point.

Re

Report All intersection (S) -pseudocode Create an empty set T
Sort endpnts of the segments of S and insert into events queue Q.
REPEAT $\{$ find next event p in Q
IF p is the left endpnt of a segment s THEN\{
insert(T, s).
If Above(T, s) intersects s THEN insert new intersection point into Q If Below(T,s) intersects s THEN insert new intersection point into Q \}
ELSE IF p is the right endpnt of s
IF Above(T, s) intersects Below(T, s) THEN insert intersection into Q .

ELSE / , */
Check the two new nboring pairs for intersections and insert into Q \}UNTIL Q is empty

