
1

14. 24.

! Linear programming"
! Duality "
! Smallest enclosing disk"

34.

!  Define:"
"   i – types of foods (1!i!d). !
"   j – types of vitamins (1!j!n)."
"   xi – the amount of food of type i."
"   aji – the amount of vitamin j in one unit of food i."
"   ci – the number of calories in one unit of food i."
"   bj – minimal required amount of vitamin j."

!  Constraints (we need to consume some minimal
amount of each vitamin):"

!  Minimize: the total number of calories consumed:!

44.

!  Each constraint defines defines a half-space
region in d-dimensional space."

!  The feasible region is the (convex) intersection
of these half-spaces."

!  We will treat the case d = 2, where each
constraint defines a half-plane."

54.

!  The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function."

!  Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region.

!  Proof: Convexity …
c

64.

! The feasible region may be:"

"   Empty"

"   Unbounded"

! The solution may be:"

"   Not unique"

2

74.

!  Assume WLOG that the cost function
points “downwards”."

!  Construct (some of) the vertices of the
feasible region."

!  Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum)."

!  In Rd, the number of vertices might be Θ
(n d/2)." c

84.

!  Mid 20th century: Simplex algorithm, time complexity Θ(n d/2)
in the worst case. "

!  1980ʼs (Khachiyan) ellipsoid algorithm with time complexity
poly(n,d). "

!  1980ʼs (Karmakar) interior-point algorithm with time complexity
poly(n,d)."

!  1984 (Megiddo) – parametric search algorithm with time
complexity O(Cdn) where Cd is a constant dependent only on
d. E.g. Cd = 2d^2."

!  The holy grail: An algorithm with complexity independent of d."

!  In practice the simplex algorithm is used because of its linear
expected runtime."

94.

!  Input: "
"   n half planes."
"   Cost function that WLOG “points down”."

!  Algorithm:"
1.  Partition the n half-planes into two groups."
2.  Compute, recursively, the feasible region for each group."
3.  Compute the intersection of the two feasible regions."
4.  Check the cost function on the region vertices."

104.

! Stage 3:"
"   Intersection of two convex polygons –

plane sweep algorithm."
"   No more than four segments are ever in

the SLS and no more than eight events in
the EQ – O(n)."

! Stage 4:"
"   Find the minimal cost vertex - O(n)."

T(n) = 2T(n/2)+O(n) " "
T(n) = O(n log n)"

114.

! The idea:"
"   Start by intersecting two halfplanes."
"   Add halfplanes one by one and update optimal vertex by

solving one-dimensional LP problem on new line if needed."

124.

the ith half plane"hi!

the line that defines hi"li!

the feasible region after i constraints"Ci!

the optimal vertex of Ci!vi!

h1

l1

C1

l2

h2 C2

v2

v3 l3
h3

C3

3

134.

! Theorem:"
1. if vi-1#hi, then vi = vi-1. // O(1) check,"
" " " " " nothing to do"

2. if vi-1$hi, then either"
 Ci=% " " // terminate"
 or "
 Ci = Ci-1&hi and vi lies on li // run 1D LP"

! Proof:"
1. Trivial. Otherwise vi would not have been

optimum before."

hi-1

hi

vi-1

hi

hi

vi

144.

2. Assume that vi is not on li. vi must be in Ci-1
By convexity, also the line vivi-1 is in Ci-1 . "

"Consider point vj - the intersection of vivi-1
with li. vj is in both Ci-1 and Ci, and is better
than vi. !

"Contradiction. "

hi-1

vi-1

hi
vi

vj
li

154.

!  Intersect each hj (j<i) with li, generating i-1
rays representing (unbounded) intervals."

!  Intersect the i-1 intervals in O(i) time."
!  If the intersection is empty then report no

solution, else report the lowest point."

164.

174.

! Exactly like the deterministic version, only the order
of the lines is random."

! Theorem: The expected runtime of the random
incremental algorithm (over all n! permutations of the
input constraints) is O(n)."

184.

! The expected runtime is:"

where xi is a random variable:"

4

194.

Backward analysis "

!  Question: When given a solution after i half-
planes, what is the probability that the last
half-plane affected the solution ?"

!  Answer: Exactly 2/i, because a change can
occur only if the last halfplane inserted is one
of the two halfplanes thru vi."
"(note that vi depends on the i half-planes, but
not on their order)"

vi

204.

214.

! False Claim:"
"   The probabilistic analysis is for the average input. Hence

there exist bad sets of constraints for which the algorithmʼs
expected runtime is more than O(n), and there exist good
sets of constraints for which the algorithmʼs expected
runtime is less than O(n)."

! True Claim:"
"   The probabilistic analysis is valid for all inputs. The expected

complexity is over all permutations of this input."

224.

!  Input: n points."
!  Output: Disk with minimal radius that

contains all the points."

!  Theorem: For any finite set of points in
general position, the smallest enclosing
disk either has at least three points on its
boundary, or two points which form a
diameter. If there are three points, they
subdivide the circle into three arcs of
length no more than ' each. Prove !

!  This immediately implies a O(n4) algorithm
(why ?).!

234.

Theorem: Using an incremental algorithm, where Di is
the updated disk after seeing the first i points p1 ,.., pi:"
" "If pi$Di-1 then pi is on the boundary of Di.!

Proof:!

Observation: If r1<r2 then a<'."

"   pi$Di-1 " r1<r2 => a<'"
"   pi$(Di-1 " q1,q2,q3#Di-1!

" Arc(q1,q3)>'. Contradiction."

r1

r2

a
pi

Di

Di-1
q1

q2

q3

244.

! Construct the procedures:"
"   MinDisk(P) – find a smallest

enclosing disk for a set of points
P."

"   MinDisk1(P,q) – find an enclosing
disk for a set of points P which
touches point q."

"   MinDisk2(P,q1,q2) – find an
enclosing disk for a set of points
P, which touches points q1 and q2."

"   Disk(q1,q2,q3) – find a disk thru
points q1ʼ q2 and q3 (easy)."

5

254.

! MinDisk(P) "

! D2 = the minimal disk through p1 and p2. "
! For each point pi in random order (3≤i≤n):"

"   If pi # Di-1 then Di = Di-1 // do nothing"
"   Else Di = MinDisk1(Pi-1,pi). // look for other two points on disk"

! Return Dn!

264.

! MinDisk1(P,q) "

! D1 = the minimal disk through q and p1. "
! For each point pi (2≤i≤n):"

"   If pi # Di-1 then Di = Di-1 // do nothing"
"   Else Di = MinDisk2(Pi-1,q,pi). // look for other one point on disk"

! Return Dn!

274.

! MinDisk2(P,q1,q2) "

! D0 = the minimal disk through q1 and q2. "
! For each point pi (1≤i≤n):"

"   If pi # Di-1 then Di = Di-1 // do nothing"
"   Else Di = Disk(q1,q2,pi). // form disk"

! Return Dn!

284.

! Use backward analysis on point
ordering."

! Total time complexity: "

! Linear expected runtime."
! Worst case: O(n3)."

