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14. 24. 

! Linear programming"
! Duality "
! Smallest enclosing disk"

34. 

!  Define:"
"   i   – types of foods (1!i!d). !
"   j   – types of vitamins (1!j!n)."
"   xi  – the amount of food of type i."
"   aji – the amount of vitamin j in one unit of food i."
"   ci – the number of calories in one unit of food i."
"   bj – minimal required amount of vitamin j."

!  Constraints (we need to consume some minimal 
amount of each vitamin):"

!  Minimize: the total number of calories consumed:!

44. 

!  Each constraint defines defines a half-space 
region in d-dimensional space."

!  The feasible region is the (convex) intersection 
of these half-spaces."

!  We will treat the case d = 2, where each 
constraint defines a half-plane."

54. 

!  The solution to the linear program is a 
point in the feasible region that is 
extreme in the direction of the target 
function."

!  Theorem: Any bounded linear program 
that is feasible has a unique solution, 
which is a vertex of the feasible region. 

!  Proof: Convexity … 
c 

64. 

! The feasible region may be:"

"   Empty"

"   Unbounded"

! The solution may be:"

"   Not unique"
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74. 

!  Assume WLOG that the cost function 
points “downwards”."

!  Construct (some of) the vertices of the 
feasible region."

!  Walk edge by edge downwards until 
reaching a local minimum (which is also 
a global minimum)."

!  In Rd, the number of vertices might be Θ
(n d/2 )." c 

84. 

!  Mid 20th century:  Simplex algorithm, time complexity Θ(n d/2 ) 
in the worst case. "

!  1980ʼs (Khachiyan) ellipsoid algorithm with time complexity 
poly(n,d). "

!  1980ʼs (Karmakar) interior-point algorithm with time complexity 
poly(n,d)."

!  1984 (Megiddo) – parametric search algorithm with time 
complexity O(Cdn) where Cd is a constant dependent only on 
d. E.g. Cd = 2d^2."

!  The holy grail: An algorithm with complexity independent of d."

!  In practice the simplex algorithm is used because of its linear 
expected runtime."

94. 

!  Input: "
"   n half planes."
"   Cost function that WLOG “points down”."

!  Algorithm:"
1.  Partition the n half-planes into two groups."
2.  Compute, recursively, the feasible region for each group."
3.  Compute the intersection of the two feasible regions."
4.  Check the cost function on the region vertices."

104. 

! Stage 3:"
"   Intersection of two convex polygons – 

plane sweep algorithm."
"   No more than four segments are ever in 

the SLS and no more than eight events in 
the EQ – O(n)."

! Stage 4:"
"   Find the minimal cost vertex - O(n)."

T(n) = 2T(n/2)+O(n) " "
T(n) = O(n log n)"

114. 

! The idea:"
"   Start by intersecting two halfplanes."
"   Add halfplanes one by one and update optimal vertex by 

solving one-dimensional LP problem on new line if needed."

124. 

the ith half plane"hi!

the line that defines hi"li!

the feasible region after i constraints"Ci!

the optimal vertex of Ci!vi!

h1 

l1 

C1 

l2 

h2 C2 

v2 

v3 l3 
h3 

C3 
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134. 

! Theorem:"
1. if vi-1#hi, then vi = vi-1.   // O(1) check,"
" " " " " nothing to do"

2. if vi-1$hi, then either"
        Ci=% " "         // terminate"
    or "
        Ci = Ci-1&hi and vi lies on li      // run 1D LP"

! Proof:"
1. Trivial. Otherwise vi would not have been 

optimum before."

hi-1 

hi 

vi-1 

hi 

hi 

vi 

144. 

2. Assume that vi is not on li. vi must be in Ci-1 
By convexity, also the line vivi-1 is in Ci-1 . "

"Consider point vj - the intersection of vivi-1 
with li. vj is in both Ci-1 and Ci, and is better 
than vi. !

"Contradiction. "

hi-1 

vi-1 

hi 
vi 

vj 
li 

154. 

!  Intersect each hj (j<i) with li, generating i-1 
rays representing (unbounded) intervals."

!  Intersect the i-1 intervals in O(i) time."
!  If the intersection is empty then report no 

solution, else report the lowest point."

164. 

174. 

! Exactly like the deterministic version, only the order 
of the lines is random."

! Theorem: The expected runtime of the random 
incremental algorithm (over all n! permutations of the 
input constraints) is O(n)."

184. 

! The expected runtime is:"

where xi is a random variable:"
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194. 

Backward analysis "

!  Question: When given a solution after i half-
planes, what is the probability that the last 
half-plane affected the solution ?"

!  Answer: Exactly 2/i, because a change can 
occur only if the last halfplane inserted is one 
of the two halfplanes thru vi."
"(note that vi depends on the i half-planes, but 
not on their order)"

vi 

204. 

214. 

! False Claim:"
"   The probabilistic analysis is for the average input. Hence 

there exist bad sets of constraints for which the algorithmʼs 
expected runtime is more than O(n), and there exist good 
sets of constraints for which the algorithmʼs expected 
runtime is less than O(n)."

! True Claim:"
"   The probabilistic analysis is valid for all inputs. The expected 

complexity is over all permutations of this input."

224. 

!  Input: n points."
!  Output: Disk with minimal radius that 

contains all the points."

!  Theorem: For any finite set of points in 
general position, the smallest enclosing 
disk either has at least three points on its 
boundary, or two points which form a 
diameter. If there are three points, they 
subdivide the circle into three arcs of 
length no more than ' each. Prove ! 

!  This immediately implies a O(n4) algorithm 
(why ?).!

234. 

Theorem: Using an incremental algorithm, where Di is 
the updated disk after seeing the first i points p1 ,.., pi:"
" "If pi$Di-1 then pi is on the boundary of Di.!

Proof:!

Observation: If r1<r2 then a<'."

"   pi$Di-1  " r1<r2  => a<'"
"   pi$(Di-1 " q1,q2,q3#Di-1!

" Arc(q1,q3)>'. Contradiction."

r1 

r2 

a 
pi 

Di 

Di-1 
q1 

q2 

q3 

244. 

! Construct the procedures:"
"   MinDisk(P) – find a smallest 

enclosing disk for a set of points 
P."

"   MinDisk1(P,q) – find an enclosing 
disk for a set of points P which 
touches point q."

"   MinDisk2(P,q1,q2) – find an 
enclosing disk for a set of points 
P, which touches points q1 and q2."

"   Disk(q1,q2,q3) – find a disk thru 
points q1ʼ q2 and q3 (easy)."
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254. 

! MinDisk(P) "

! D2 = the minimal disk through p1 and p2.  "
! For each point pi  in random order (3≤i≤n):"

"   If pi # Di-1  then Di = Di-1     // do nothing"
"   Else Di = MinDisk1(Pi-1,pi).   // look for other two points on disk"

! Return Dn!

264. 

! MinDisk1(P,q) "

! D1 = the minimal disk through q and p1.  "
! For each point pi (2≤i≤n):"

"   If pi # Di-1  then Di = Di-1   // do nothing"
"   Else Di = MinDisk2(Pi-1,q,pi).  // look for other one point on disk"

! Return Dn!

274. 

! MinDisk2(P,q1,q2) "

! D0 = the minimal disk through q1 and q2.  "
! For each point pi (1≤i≤n):"

"   If pi # Di-1  then Di = Di-1   // do nothing"
"   Else Di = Disk(q1,q2,pi).  // form disk"

! Return Dn!

284. 

! Use backward analysis on point 
ordering."

! Total time complexity: "

! Linear expected runtime."
! Worst case: O(n3)."


