Problem Definition

Computational Geometry Preprocess a planar map S.

Given a query point p, report
the face of S containing p.

S
B
op
Chapter 6 Goal: O(n)-size data structure qb
</

that enables O(log n) query time.

Point Location
Application: Which state is Boston

located in?

Trivial Solution: O(n) query time, where
nis the complexity of the map. Why?

Naive Solufion The Trapezoidal Map

Draw vertical lines through all Construct a bounding box.
the vertices of the subdivision. Assume general position: unique x

coordinates.
Store the x-coordinates of the

vertices in an ordered binary Extend upward and downward the vertical

tree. line from each vertex until it touches another
— segment.

Within each slab, sort the

segments separately along y. This works also for
Query time: O(log n). noncrossing line

a segments.
Problem: Too delicate
subdivision, of size 8(r?) in the
worst case.
(Give such an example!)

Properties Notation

Every trapezoid (triangle) A is defined by
Left(A): The left segment of A
m (actually it is enough (will see later why) only an endpoint
intersecting by the segment.
m ltis either right endpoint or a left endpoint;
\ Right(A): a segment endpoint (right or left);
- Top(A): a segment;

. . Bottom(A): a segment.
Contains triangles & d

and trapezoids. -

Each trapezoid or triangle is determined:
m By two vertices that define vertical sides; and
m By two segments that define nonvertical sides.

A refinement of the original map.




_}.'—

Complexity. Map Data Structure

Theorem (linear complexity):
A trapezoidal map of n segments
contains at most 6n+4 vertices An alternative:
and at most 3n+1 faces. For each trapezoid store:
Proof: The vertices that define its right and
1. Verti . left sides;
SAVEICES: The top and bottom segments;
2n + 4n + 4 = 6n+4 The (up to two) neighboring
1 1 1 trapezoids on right and left;
original extensions box (Optional) The neighboring
. trapezoids from above and below.
2. Faces: Count Left This number might be linear in n, so
(A). only the leftmost of these trapezoids
2n + n + 1 = 3n+1 s stored.

left el.p. righf e.p. bf)x

Possibly by DCEL.

A Directed Acyclic Graph

Has (in our setting) a unique root,
and a path connecting the root to
each node.

White — trapezoids. /Blue — vertical walls. Yellow — original segments
10

06.

DAG Branching Rules

Given a query point g how can we find the trapezoid containing g ?

Assume a search-structure node s is given
(initially the root of the DAG)

Search(q, s):
/* Query point g, search-structure node s. */
If sis a segment-endpoint then
m qgis to the right of s: go right;
m qgis to the left of s: go left;
= /*“No use of the y-coordinates of s */
m Else:
If sis a segment:
m gis below s: go right;
m gis above s: go left;




Consiruction Algorithm (highilevel

description)
Input: A set of segment
Output- the DAG

Find a Bounding Box.

Randomly permute the segments.
Insert the segments one by one
into the map.

Update the map and search
structure in each insertion.

The map is independent of the
order of insertion and its size is ©
(n).

The DAG and its size depends on
the order of insertion.

Updating the Structures

Find in the existing structure the
face that contains the left endpoint of ~ -
the new segment.

Find all other trapezoids intersected
by this segment by moving to the
right.

Update the map M; and the
DAG D,

_g'—

Update D: Simple Case Update M: General Case

The segment is contained entirely
in one trapezoid.

In M;: Split the trapezoid into
four trapezoids.

In D;: The leaf is re1placed by a
subtree.

O(1) time.

_;'i

Updating D

Each inner
trapezoid in D;
is replaced by:

Each outer
trapezoid in D;
is replaced by:

M

The " segment intersects
k>1 trapezoids.

Split trapezoids.
Merge trapezoids that

can be united.
O(k) time.

Updating D: Merge

Leaves are eliminated and
replaced by one common leaf.

O(k;) time.




Size of D: Worsi-Case Analysis

Each segment adds trees of depth
at most 3, so the depth of D;is < 3i.
Query time (depth of D)):

(), ©(j) in the worst case.

The " segment — s;- may intersect
with k; = O(i) trapezoids !

The size of D and its construction
time is in the worst case:

Average-Case Analysis

Compute the expected depth of D:
q: A point, to be searched for in D.

p;i: The probability that a new node was created in
the path leading to g in the i iteration.

Compute p; by backward analysis:
A4M.,): The trapezoid containing q in M.
Since a new node was created, A (M) = A (M,,).
Delete s; from M.,
Prob[A (M) = Ay(M.1)] = 4/i.

Expected Depth of D

X;: The number of nodes created in the
iteration in the path leading to the leaf q.

The expected length of the path leading to g:

Segment/Irapezoid Interaction

One segment may affect
many trapezoids

One trapezoid may affect
at most four segments

Average-Case Analysis

Compute the expected depth of D:
g: A point, to be searched for in D.
p;: The probability that a new node was created in
the path leading to g in the i iteration.

Compute p; by backward analysis:
A4(M.,): The trapezoid containing q in M.
Since a new node was created, A (M) = Ay (M)
Delete s; from M.,
Prob[A (M) = Ay(M.4)] = 4/i.

_g'.i

Theorems

The expected size is O(n)
The expected query time is O(log n )

(The proof from this point are not required, but
we will handwave a bit )




Expected Size of D Expected Size of D (cont.)

k~1: Number of internal nodes created in the " step.
Total size:

Define an indicator

ki: Number of leaves created in the " iteration.
S;: The set of the first / segments. 1 1
Average on s: leaves internal

Expected Consfruction Time of D

Al

Finding The rest of
the first the work in

trapezoid the /" step




