
1

16. 26.

 Preprocess a planar map S.
Given a query point p, report
the face of S containing p.!

 Goal: O(n)-size data structure
that enables O(log n) query time."

 Application: Which state is Boston
located in?"

 Trivial Solution: O(n) query time, where
n is the complexity of the map. Why? "

S

p

A

D

E

G

F

C

B

36.

 Draw vertical lines through all
the vertices of the subdivision."

 Store the x-coordinates of the
vertices in an ordered binary
tree."

 Within each slab, sort the
segments separately along y."

 Query time: O(log n)."
 Problem: Too delicate

subdivision, of size Θ(n2) in the
worst case."
"(Give such an example!)"

46.

  Construct a bounding box."
  Assume general position: unique x

coordinates."

  Extend upward and downward the vertical
line from each vertex until it touches another
segment."

  This works also for
noncrossing line
segments."

56.

 Contains triangles
and trapezoids."

 Each trapezoid or triangle is determined:"
"   By two vertices that define vertical sides; and"
"   By two segments that define nonvertical sides."

 A refinement of the original map."
66.

"Every trapezoid (triangle) Δ is defined by"
  Left(Δ): "The left segment of Δ "

"   (actually it is enough (will see later why) only an endpoint
intersecting by the segment. "

"   It is either right endpoint or a left endpoint;"
  Right(Δ): "a segment endpoint (right or left);"
  Top(Δ): "a segment;"
  Bottom(Δ): "a segment."

2

76. 86.

  Possibly by DCEL."

An alternative:"
For each trapezoid store:"
  The vertices that define its right and

left sides;"
  The top and bottom segments;"
  The (up to two) neighboring

trapezoids on right and left;"
  (Optional) The neighboring

trapezoids from above and below.
This number might be linear in n, so
only the leftmost of these trapezoids
is stored."

96.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

106.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

B
A

C

D

E

F

H

G

J
K

P1
P2

P3

Q1

Q2

Q3

S1

S3

S2

116.

Given a query point q how can we find the trapezoid containing q ? !

Assume a search-structure node s is given ""
"(initially the root of the DAG)"

Search(q, s): "
  /* Query point q, search-structure node s. */!
  If s is a segment-endpoint then"

"   q is to the right of s: go right;"
"   q is to the left of s: go left;"
"   /*No use of the y-coordinates of s */ !
"   Else: "

  If s is a segment:"
"   q is below s: go right;"
"   q is above s: go left;"

126.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

B
A

C

D

E

F

H

G

J
K

P1
P2

P3

Q1

Q2

Q3

S1

S3

S2

3

136.

  Find a Bounding Box."
  Randomly permute the segments."
  Insert the segments one by one

into the map. "
  Update the map and search

structure in each insertion. "
  The map is independent of the

order of insertion and its size is Θ
(n). "

  The DAG and its size depends on
the order of insertion."

146.

  Find in the existing structure the
face that contains the left endpoint of
the new segment. "

  Find all other trapezoids intersected
by this segment by moving to the
right. "

  Update the map Mi and the
DAG Di."

156.

The segment is contained entirely
in one trapezoid."

  In Mi: Split the trapezoid into
four trapezoids."

  In Di: The leaf is replaced by a
subtree."

 O(1) time." Pi

A

Qi

B C

Si

D

A

B

C

D

T

M

Qi

Pi

166.

The ith segment intersects
ki>1 trapezoids."

 Split trapezoids. "
 Merge trapezoids that

can be united."
 O(ki) time."

176.

 Each inner
trapezoid in Di
is replaced by:"

 Each outer
trapezoid in Di
is replaced by:"

Si

A B

Qi

A

Si

B C

A
B Si

186.

Si Si

C

Si

E B D F

K

A

B

C

D

E

F K
G

H

Si

H A G

L

 Leaves are eliminated and
replaced by one common leaf."

 O(ki) time."

L

4

196.

 Each segment adds trees of depth
at most 3, so the depth of Di is ≤ 3i."

 Query time (depth of Di): O
(i), Θ(i) in the worst case."

 The ith segment – si - may intersect
with ki = O(i) trapezoids !"

 The size of D and its construction
time is in the worst case:"

206.

 One segment may affect 
many trapezoids"

 One trapezoid may affect 
at most four segments" Δ

216.

Compute the expected depth of D:"
 q: A point, to be searched for in D.!
 pi: The probability that a new node was created in

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1): The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i. !

226.

Compute the expected depth of D:"
 q: A point, to be searched for in D.!
 pi: The probability that a new node was created in

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1): The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i. !

236.

 xi: The number of nodes created in the ith
iteration in the path leading to the leaf q."

 The expected length of the path leading to q:"
q

246.

 The expected size is O(n)!
 The expected query time is O(log n)!

 (The proof from this point are not required, but
we will handwave a bit)!

5

256.

 Define an indicator"

 ki: Number of leaves created in the ith iteration."
 Si: The set of the first i segments."
 Average on s:"

Δ

266.

276.

Finding
the first

trapezoid

The rest of
the work in
the ith step

