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16. 26. 

 Preprocess a planar map S.              
Given a query point p, report                 
the face of S containing p.!

 Goal: O(n)-size data structure              
that enables O(log n) query time."

 Application: Which state is Boston 
located in?"

 Trivial Solution:  O(n) query time, where 
n is the complexity of the map.  Why? "
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36. 

 Draw vertical lines through all 
the vertices of the subdivision."

 Store the x-coordinates of the 
vertices in an ordered binary 
tree."

 Within each slab, sort the 
segments separately along y."

 Query time:  O(log n)."
 Problem:  Too delicate 

subdivision, of size Θ(n2) in the 
worst case."
"(Give such an example!)"

46. 

  Construct a bounding box."
  Assume general position:  unique x 

coordinates."

  Extend upward and downward the vertical 
line from each vertex until it touches another 
segment."

  This works also for                                                           
noncrossing line                                                                  
segments."

56. 

 Contains triangles                                              
and trapezoids."

 Each trapezoid or triangle is determined:"
"   By two vertices that define vertical sides; and"
"   By two segments that define nonvertical sides."

 A refinement of the original map."
66. 

"Every trapezoid (triangle) Δ is defined by"
  Left(Δ): "The left segment of Δ "

"   (actually it is enough (will see later why) only an endpoint 
intersecting by the segment.  "

"   It is either right  endpoint or a left endpoint;"
  Right(Δ): "a segment endpoint (right or left);"
  Top(Δ): "a segment;"
  Bottom(Δ): "a segment."
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76. 86. 

  Possibly by DCEL."

An alternative:"
For each trapezoid store:"
  The vertices that define its right and 

left sides;"
  The top and bottom segments;"
  The (up to two) neighboring 

trapezoids on right and left;"
  (Optional)  The neighboring 

trapezoids from above and below.  
This number might be linear in n, so 
only the leftmost of these trapezoids 
is stored."

96. 
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106. 
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116. 

Given a query point q how can we find the trapezoid containing q ? !

Assume a search-structure node s is given ""
"(initially the root of the DAG)"

Search(q, s):  "
  /* Query point q, search-structure node s. */!
  If s is a segment-endpoint then"

"   q is to the right of s:  go right;"
"   q is to the left of s:  go left;"
"   /*No use of the y-coordinates of s  */ !
"   Else: "

  If s is a segment:"
"   q is below s:  go right;"
"   q is above s:  go left;"

126. 
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136. 

  Find a Bounding Box."
  Randomly permute the segments."
  Insert the segments one by one 

into the map. "
  Update the map and search 

structure in each insertion. "
  The map is independent of the 

order of insertion and its size is Θ
(n). "

  The DAG and its size depends on 
the order of insertion."

146. 

  Find in the existing structure the 
face that contains the left endpoint of 
the new segment.  "

  Find all other trapezoids intersected 
by this segment by moving to the 
right. "

  Update the map Mi and the            
DAG Di."

156. 

The segment is contained entirely 
in one trapezoid."

  In Mi:  Split the trapezoid into 
four trapezoids."

  In Di:  The leaf is replaced by a 
subtree."

 O(1) time." Pi 
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166. 

The ith segment intersects 
ki>1 trapezoids."

 Split trapezoids. "
 Merge trapezoids that 

can be united."
 O(ki) time."

176. 

 Each inner 
trapezoid in Di 
is replaced by:"

 Each outer 
trapezoid in Di 
is replaced by:"
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186. 
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 Leaves are eliminated and 
replaced by one common leaf."

 O(ki) time."
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196. 

 Each segment adds trees of depth 
at most 3, so the depth of Di is ≤ 3i."

 Query time (depth of Di):           O
(i),  Θ(i) in the worst case."

 The ith segment – si - may intersect 
with ki = O(i) trapezoids !"

 The size of D and its construction 
time is in the worst case:"

206. 

 One segment may affect 
many trapezoids"

 One trapezoid may affect 
at most four segments" Δ 

216. 

Compute the expected depth of D:"
 q:  A point, to be searched for in D.!
 pi:  The probability that a new node was created in 

the path leading to q in the ith iteration.	


Compute pi by backward analysis:"
 Δq(Mi-1):  The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i.  !

226. 

Compute the expected depth of D:"
 q:  A point, to be searched for in D.!
 pi:  The probability that a new node was created in 

the path leading to q in the ith iteration.	


Compute pi by backward analysis:"
 Δq(Mi-1):  The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i.  !

236. 

 xi:  The number of nodes created in the ith 
iteration in the path leading to the leaf q."

 The expected length of the path leading to q:"
q 

246. 

 The expected size is O(n)!
 The expected query time is O( log n )!

 (The proof from this point are not required, but 
we will handwave a bit )!



5 

256. 

 Define an indicator"

 ki:  Number of leaves created in the ith iteration."
 Si:  The set of the first i segments."
 Average on s:"

Δ 

266. 

276. 

Finding 
the first 

trapezoid 

The rest of 
the work in 
the ith step 


