
1

1 / 41

Convex Hulls
in 3-space

(slides mostly by Piotr Indyk and
Jason C. Yang)

2 / 41

Problem Statement

• Given P: set of n points in 3D

• Return:
– Convex hull of P: CH(P), i.e.

smallest polyhedron s.t.
all elements of P on or in
the interior of CH(P).

3 / 41

• Complexity of CH for n points in 3D is O(n)
• ..because the number of edges of a convex

polytope with n vertices is at most 3n-6 and
the number of facets is at most 2n-4

• ..because the graph defined by vertices and
edges of a convex polytope is planar

• Euler’s formula: n – ne + nf = 2

Complexity

4 / 41

Complexity

• Each face has at least 3 arcs
• Each arc incident to two faces

2ne ≥ 3nf

• Using Euler
nf ≤ 2n-4 ne ≤ 3n-6

5 / 41

Algorithm

• Randomized incremental algorithm

• Steps:
– Initialize the algorithm
– Loop over remaining points

Add pr to the convex hull of Pr-1 to transform
CH(Pr-1) to CH(Pr)

[for integer r≥1, let Pr:={p1,…,pr}]

6 / 41

Initialization

• Need a CH to start with
• Build a tetrahedron using 4 points in P

– Start with two distinct points in P, say, p1 and p2
– Walk through P to find p3 that does not lie on the line

through p1 and p2
– Find p4 that does not lie on the plane through p1, p2, p3
– Special case: No such points exist? Planar case!

• Compute random permutation p5,…,pn of
the remaining points

2

7 / 41

Inserting Points into CH

• Add pr to the convex hull of Pr-1 to
transform CH(Pr-1) to CH(Pr)

• Two Cases:
1) Pr is inside or on the boundary of CH(Pr-1)

– Simple: CH(Pr) = CH(Pr-1)
2) Pr is outside of CH(Pr-1) – the hard case

8 / 41

Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible

region of pr on CH(Pr-1)

9 / 41

Visibility

• Consider plane hf containing a facet f of
CH(Pr-1)

• f is visible from a point p if that point lies in
the open half-space on the other side of hf

10 / 41

Rethinking the Horizon

– Boundary of polygon obtained from projecting
CH(Pr-1) onto a plane with pr as the center of
projection

11 / 41

CH(Pr-1) � CH(Pr)

• Remove visible facets from CH(Pr-1)
• Found horizon: Closed curve of edges of CH(Pr-1)

• Form CH(Pr) by connecting each horizon
edge to pr to create a new triangular facet

12 / 41

Algorithm So Far…

• Initialization
– Form tetrahedron CH(P4) from 4 points in P
– Compute random permutation of remaining pts.

• For each remaining point in P
– pr is point to be inserted
– If pr is outside CH(Pr-1) then

• Determine visible region
• Find horizon and remove visible facets
• Add new facets by connecting each horizon edge to pr

How do we determine the visible region?

3

13 / 41

How to Find Visible Region

• Naïve approach:
– Test every facet with respect to pr

– O(n2) work

• Trick is to work ahead:
Maintain information to aid in determining

visible facets.

14 / 41

Conflict Lists

• For each facet f maintain
Pconflict(f) ⊆{pr+1, …, pn}
containing points to be inserted that can see f

• For each pt, where t > r, maintain Fconflict(pt)
containing facets of CH(Pr) visible from pt

• p and f are in conflict because they cannot
coexist on the same convex hull

15 / 41

Conflict Graph G
• Bipartite graph

– points not yet inserted
– facets on CH(Pr)

• Arc for every
point-facet conflict

• Conflict sets for a
point or facet can be
returned in linear time

At any step of our algorithm, we know all conflicts
between the remaining points and facets on the current CH

16 / 41

Initializing G

• Initialize G with CH(P4) in linear time
• Walk through P5-n to determine which facet

each point can see

f1
f2

p6

p5

p7

p6

p7

p5

f2

f1

G

17 / 41

Updating G

• Discard visible facets from pr by removing
neighbors of pr in G

• Remove pr from G
• Insert f, and determine new conflicts

p6

p7

p5

f2

f1

G

f1
f2

f3

f3

p6

p7

p5

f2

f1

G

p6

p7

p5

f2

f1

G

p5

p7

p6

18 / 41

Determining New Conflicts
• If pt can see new f, it can see edge e of f.
• e on horizon of pr , so e was already in and

visible from pt in CH(Pr-1)
• If pt sees e, it saw either f1 or f2 in CH(Pr-1)
• pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)

pt

4

19 / 41

Determining New Conflicts

• Conflict list of f can be found by testing the
points in the conflict lists of f1 and f2
incident to the horizon edge e in CH(Pr-1)

pt

20 / 41

What About the Other Facets?

• Pconflict(f) for any f unaffected by pr remains
unchanged

pt

• Pconflict(f) for any f unaffected by pr remains
unchanged

• Deleted facets not on horizon already
accounted for

21 / 41

Final Algorithm

• Initialize CH(P4) and G
• For each remaining point

– Determine visible facets for pr by checking G
– Remove Fconflict(pr) from CH
– Find horizon and add new facets to CH and G
– Update G for new facets by testing the points in

existing conflict lists for facets in CH(Pr-1)
incident to e on the new facets

– Delete pr and Fconflict(pr) from G
22 / 41

Analysis

23 / 41

Expected Number of Facets Created

• Will show that expected number of facets
created by our algorithm is at most 6n-20

• Initialized with a tetrahedron = 4 facets

24 / 41

Expected Number of New Facets

• Backward analysis:
– Remove pr from CH(Pr)
– Number of facets removed same as those

created by pr

– Number of edges incident to pr in CH(Pr) is
degree of pr:

deg(pr, CH(Pr))

5

25 / 41

Expected Degree of pr

• Convex polytope of r vertices has at most 3r-6 edges
• Sum of degrees of vertices of CH(Pr) is 6r-12
• Expected degree of pr bounded by (6r-12)/r

26 / 41

Expected Number of Created Facets

• 4 from initial tetrahedron
• Expected total number of facets created by

adding p5,…,pn

27 / 41

Running Time

• Initialization � O(nlogn)
• Creating and deleting facets � O(n)

– Expected number of facets created is O(n)
• Deleting pr and facets in Fconflict(pr) from G

along with incident arcs � O(n)
• Finding new conflicts � O(?)

28 / 41

Total Time to Find New Conflicts

• For each edge e on horizon we spend
O(|P(e)|) time

where P(e) =Pconfict(f1)∪Pconflict(f2)
• Total time is O(Σe∈L |P(e)|)
The sum is taken over all edges e created.

• Lemma 11.6 The expected value of Σe|P(e)|, where the
summation is over all horizon edges that appear at some
stage of the algorithm is O(n log n)

29 / 41

Running Time

• Initialization � O(nlogn)
• Creating and deleting facets � O(n)
• Updating G � O(n)
• Finding new conflicts � O(nlogn)

• Total Running Time is O(nlogn)

30 / 41

Convex Hulls in Dual Space

• Upper convex hull of a set of points in 3D is essentially
the lower envelope of a set of lines (similar with lower
convex hull and upper envelope)

h={(x,y,z) | z = ax+by+c } � h* = (a,b,c)
p=(a,b,c) � p*={(s,t,r) | r = sa+bt+c |

6

31 / 41

Higher Dimensional Convex Hulls

• Upper Bound Theorem:
The worst-case combinatorial complexity

of the convex hull of n points in d-dimensional
space is Θ(n �d/2�).

• Our algorithm generalizes to higher
dimensions with expected running time of
Θ(n�d/2�)

32 / 41

Higher Dimensional Convex Hulls

• Best known output-sensitive algorithm for
computing convex hulls in Rd is:

O(nlogk +(nk)1-1/(�d/2�+1)logO(n))

where k is complexity

