*

Convex Hulls
in 3-space

(slides mostly by Piotr Indyk and
Jason C. Yang)

1/41

i Problem Statement

* Given P: set of n points in 3D

e Return:
— Convex hull of P: cH(P), i.e.
smallest polyhedron s.t.

all elements of P on or in
the interior of CH(P).

2/41

i Complexity

e Complexity of ¢ for n points in 3D is O(n)

* ..because the number of edges of a convex
polytope with n vertices is at most 3n-6 and
the number of facets is at most 2n-4

* _because the graph defined by vertices and
edges of a convex polytope is planar
* Euler’s formula: n—n,+n,=2

3/41

i Complexity

* Each face has at least 3 arcs
* Each arc incident to two faces
2ng2 3n;
* Using Euler
n <2n-4 Ne < 3n-6

4/41

* Algorithm

* Randomized incremental algorithm

 Steps:
— Initialize the algorithm

— Loop over remaining points
Add p, to the convex hull of P,_; to transform
CHP,.)) to CHP,)
[for integer =1, let P,:={p,,....p, }]

5/41

i Initialization

e Need a CHto start with

* Build a tetrahedron using 4 points in P
— Start with two distinct points in P, say, p, and p,
— Walk through P to find p, that does not lie on the line

through p, and p,

— Find p, that does not lie on the plane through p,. p,, p
— Special case: No such points exist? Planar case!

* Compute random permutation ps,...,p, of
the remaining points

3

6/41

!-| Inserting Points into CH

e Addp, to the convex hull of P, to
transform CH(P, |) to CH(P,)
» Two Cases:
1) P, is inside or on the boundary of C#H(P,)
— Simple: CHP,) = CHP,)
2) P, is outside of C#H(P,_;) — the hard case

7/41

!-| Case 2: P, outside CH(P,)

* Determine horizon of p, on CHP,_))

— Closed curve of edges enclosing the visible
region of p, on CH(P,)

CH(Pr-1)

8/41

* Visibility

* Consider plane h,containing a facet fof
CHP,) '
® fis visible from a point p if that point lies in
the open half-space on the other side of h,
op

/ﬁ S,
e T ea
1f S

/<

f is visible from p,
but not from ¢

9/41

* Rethinking the Horizon

— Boundary of polygon obtained from projecting
CH(P,_,) onto a plane with p, as the center of
projection

horizon

10/41

i CHP,) > CHP,)

* Remove visible facets from C7(P,)
» Found horizon: Closed curve of edges of CH(P,)

* Form C#H(P,) by connecting each horizon
edge to p, to create a new triangular facet

e —
P Pr

CH(Pr-1) CH(P,)

i
7

11741

i Algorithm So Far...

* Initialization
— Form tetrahedron C#(P,) from 4 points in P

— Compute random permutation of remaining pts.

* For each remaining point in P
— P, is point to be inserted
— If p, is outside CH(P,_)) then
* Determine visible region
« Find horizon and remove visible facets
* Add new facets by connecting each horizon edge to p,

How do we determine the visible region?
12/41

i How to Find Visible Region

* Naive approach:
— Test every facet with respect to p;
— O(n?) work

e Trick is to work ahead:

Maintain information to aid in determining
visible facets.

13/41

i Conflict Lists

* For each facet f maintain

Pconﬂicl(f) D{ pr+1> seey pn}
containing points to be inserted that can see f

* For each p,, where t > r, maintain F___.. (o)
containing facets of CH(P,) visible from p,

* pand fare in conflict because they cannot
coexist on the same convex hull

14/41

Conflict Graph G

conflicts Bipartite graph
points facets — points not yet inserted
l — facets on CH(P,)
¢ Arc for every
point-facet conflict

¢ Conflict sets for a
; point or facet can be
; conftict(Pr) returned in linear time
Feoniict (f) A any step of our algorithm, we know all conflicts

between the remaining points and facets on the current CH

15/41

!-| Initializing G

* Initialize G with C#(P,) in linear time

* Walk through Py, to determine which facet
each point can see

0
Ps

i Updating G

* Discard visible facets from p, by removing
neighbors of p, in G

* Remove p, from G
* Insert /, and determine new conflictg

Ps

P 17/41

Te

Ps

Determining New Conflicts

* If p, can see new f, it can see edge € of f.

* eon horizon of p,, so e was already in and
visible from p, in CH(P,)

» If p, sees €, it saw either f, or f, in CH(P,)
e pywasin P i (f) or P (F) in ¢2(P,)

°*p

18/41

i Determining New Conflicts

* Conflict list of fcan be found by testing the
points in the conflict lists of £, and £,
incident to the horizon edge ein CH(P,)

*p

19/41

i What About the Other Facets?

* P,..mie(P for any funaffected by p, remains
unchanged

* Deleted facets not on horizon already
accounted for

.
20/41

i Final Algorithm

* Initialize CH(P,) and G
* For each remaining point
— Determine visible facets for p, by checking G
— Remove F_ i (P,) from CH
— Find horizon and add new facets to ¢#/and G
— Update G for new facets by testing the points in
existing conflict lists for facets in CH(P,)
incident to € on the new facets
— Delete p, and F_ . (P,) from G

21/41

*

Analysis

22/41

i Expected Number of Facets Created

» Will show that expected number of facets
created by our algorithm is at most 6n-20

e Initialized with a tetrahedron = 4 facets

23/41

i Expected Number of New Facets

* Backward analysis:
— Remove p, from C#H(P,)
— Number of facets removed same as those
created by p,
— Number of edges incident to p, in CH(P,) is
degree of p,:

deg(p,, CH(P,)

24/41

* Expected Degree of p,

» Convex polytope of I vertices has at most 3r-6 edges
* Sum of degrees of vertices of CH(P,) is 6r-12
» Expected degree of p, bounded by (6r-12)/r

r

E[deg(p,, CH(P)] = Z a(pi, CH(P,))
< L({E x/y(HI‘))} |7>
< 7 (X el 2
6r—12-12 _ 6
s r—4 o

25/41

* Expected Number of Created Facets

¢ 4 from initial tetrahedron

» Expected total number of facets created by
adding p;,....p,

4+ZE 2(pr, CH(P))] < 4+6(n—4)=6n-20.

26/41

* Running Time

* Initialization = O(nlogn)

* Creating and deleting facets = O(n)
— Expected number of facets created is O(n)

* Deleting p, and facets in F__ ;. (p,) from G
along with incident arcs = O(n)

* Finding new conflicts = O(?)

27/41

* Total Time to Find New Conflicts

* For each edge € on horizon we spend
O(IP(e)|) time
where P(e) :Pconﬂcl(fl)DPconﬂicl(f2)
* Total time is O(Z,, IP(e)l)

The sum is taken over all edges e created.

* Lemma 11.6 The expected value of 5 |P(e)|, where the
summation is over all horizon edges that appear at some
stage of the algorithmis O(n log n)

28/41

* Running Time

* Initialization = O(nlogn)

¢ Creating and deleting facets = O(n)
» Updating G = O(n)

* Finding new conflicts = O(nlogn)

* Total Running Time is O(nlogn)

29/41

* Convex Hulls in Dual Space

» Upper convex hull of a set of points in 3D is essentially
the lower envelope of a set of lines (similar with lower
convex hull and upper envelope)

primal plane dual plane

UH(P)

— LE(PY)
h={(x,y,z) | z= ax+by+c /9/}1* =(a,b,c)

p=(a,b,c) > p*={(s,t,r) | T = sa+bt+c |

30/41

* Higher Dimensional Convex Hulls

« Upper Bound Theorem:
The worst-case combinatorial complexity
of the convex hull of n points in d-dimensional
space is O(n L2)).

* QOur algorithm generalizes to higher
dimensions with expected running time of
@(ntd/zj)

31741

* Higher Dimensional Convex Hulls

* Best known output-sensitive algorithm for
computing convex hulls in R9 is:

O(nlogk +(nk)1-1/(Ld/2J+1)10g0(n))

where k is complexity

32/41

