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Piano Mover’s Problem 

• Given:  

– A set of obstacles 

– The initial position of a robot 

– The final position of a robot 

• Goal: find a path that 

– Moves the robot from the initial to final 

position 

– Avoids the obstacles (at all times)  
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Basic notions 

• Work space – the space with obstacles 

• Configuration space: 

– Describes the robot’s position 

• Forbidden space = positions in which robot 

collides with an obstacle 

• Free space: the rest  

• Collision-free path = path in the free part of 

configuration space   
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Point case 

• Assume robot is a point 

• Then work 

space=configuration space 

• Free space = Work Space 

minus the obstacles 

 

 

* 

* 
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Point case – General Algorithm 

• Construct a data structure 

ROADMAP to represent the 

free space 

• Given any start and goal 

positions use ROADMAP to 

decide whether collision free 

path is possible 

 

 

* 

* 
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Finding a path 

• ROADMAP: 

• Compute the trapezoidal map to represent 

the free space 

• Place a node  

– At center of each trapezoid 

– Of each edge of the trapezoid 

• Put edges between the vertices in the same 

trapezoids.  

• Path finding=BFS in the roadmap 

 

Note – the size of the roadmap is linear, but 

the path is probably not the shortest.  

* 

* 



Roadmap 
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Path in the roadmap via BFS  
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Complexity 

• Build Road Map: O(n logn) time   

– Trapezoidal Map of n segments: O(n log n) time 

– O(n) trapezoids, O(n) vertices 

–  Add edges to roadmap takes O(n) time 

• Collision Free path: O(n) time 

– Find start and goal trapezoids O(log n) 

– BFS takes O(n) time 
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Non-point robots 

• Assume a convex robot 

• Assume each obstacle is 
convex (by triangulating 
the obstacles) 

• We specify a point on the 
robot, called its reference. 

•  We specify the position of 
the robot by specifying the 
location of the reference 

* 

* 

reference 

robot 



Specifying location of robot 
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Collision Free Path 
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Non-point robots - cont 

• C-obstacle = the set of 

robot positions which 

overlap an obstacle 

• Free space: workspace 

minus C-obstacles 

• Given a robot and 

obstacles, how to calculate 

C-obstacles ? 
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Minkowski Sum 

• Minkowski Sum of two sets 

P and Q is defined as 

PQ={p+q: pP, qQ} 

 

 

 

o 
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R vs (-R) 

R 

-R 
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C-obstacles 

• Thm: The C-obstacle of P and robot R equals P(-R) 

• Proof: 

– Assume R collides with P at position m. We want to 

show that     m  P (-R)  

– Consider t(R+m) ∩ P    

– Then    t–mR  →    -t+m  -R   

– Since tP,  we have mP (-R) 

• Reverse direction is similar 

* 

R+m 

m 

* * 

P 

* t R 



Minkowski Sum 

• AB={a+b: aA, bB} 
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A-B 
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C-obstacle of  

A and robot B  

equals A(-B) 
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Algorithm outline 

• Find C-Obstacles  

• Create trapezoid map for union of all  

C-obstacles  

 

• Efficiency depends: 

– Computation time of C-Obstacles 

–  Computation of trapezoidal map: 

O(n log n) where is n is complexity of 

union of all C-obstacles (number of 

edges) 

Lecture 11: Motion Planning 



Lecture 11: Motion Planning 

 I. Properties of PR  

• Thm: If P,R convex, then PR is convex:  

• Proof: 

– Consider t1,t2  PR. We know ti=pi+ri for     
pi  P, riR  

– P,Q convex: λp1+(1- λ)p2 P, λr1+(1- λ)r2R 

– Therefore:  

λt1+(1- λ)t2  =  λ(p1+ r1) + (1- λ) (p2+ r2)  PR 
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II. Properties of PR   

• Observation: an extreme point  of 
PR in direction d is a sum of 
extreme points of P and R in 
direction d 

 

• Simple algorithm – convex hull 
 

A  point p  Q is extreme (I.e. corner of 

Q) if there is some vector  (direction ) d 

such that   p*d = max { q*d | q  Q}   
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III. Properties of PR  

• Theorem: If P, R convex and has m and n edges 

then PR has at most n+m edges. 

• Intuition: Each edge of PR is parallel to either an edge 

of P or an edge of R. No edge of P,R contributes more 

than once. 

 

• Implications: 

• Compute a C-obstacle in O(n+m) time  

• Each C-obstacle has complexity O(n+m) 

– Is this enough? 

  

  

P 
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Pseudodisc Pairs 

• O1 and O2 are Pseudodiscs 

if both O1-O2 and O2-O1 are 

connected 

• I,e, at most two proper 

intersections of boundaries 

 
• Note: Pseudodiscs describes how TWO 

objects interact. Not used to describe one 

object.  

Yes 

No 
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Minkowski sums are pseudodiscs 

• Thm:  If P1, P2,R, are convex and P1 and P2 are disjoint. 
Then CP1=P1R and  CP2=P2R are pseudo-discs. 

 

• Proof by contradiction: 

• Suppose CP1-CP2 is has 2 connected components  

– CP1 is more extreme than CP2  in two directions    
d1 and d2  

– CP2 is more extreme than CP1  in a direction 
between d1 and d2 and in a direction between d2 
and d1 

• By properties of :   

– P1 is more extreme than P2 in directions d1 and d2  

– P2 is more extreme than P1 in a direction between  
d1 and d2 and in a direction between d2 and d1  

• Configuration impossible for disjoint, convex P1 ,P2 
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Union of pseudo-discs 

• Thm: Let P1,…,Pk be polygons in 
pseudo-disk positions. Then their 
union has complexity |P1| +…+ |Pk|  
 

• Proof:  
– Suffices to bound the number of vertices 

– Each vertex either original or induced by 
intersection 

– Charge each intersection vertex to the 
next original vertex in the interior of the 
union 

– Each vertex charged at most twice 
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Ananlysis:  

Convex Robot, Convex Obstacles 

• Given: Total #edges in Obstacles=n,  Robot=m 

 

• Compute all C-obstacles in O(m + n) time  

 

• Computation time for Trapezoidal Map: 

– If k obstacles total complexity of C-obstacles O(n+mk) 

– Union of all C-Obstacles has complexity O(n+mk)   

– Trapezoidal map computed O( n+mk   log(n+mk) ) 
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Analysis:  

Convex Robot and Non-convex Obstacles 

• Given  complexity of  all obstacles=n,  robot=m 

• Triangulate obstacles into T1,…,Tn.  Time O(n log n) 

• Compute RT1,…, R Tn   Time O(n(m+3))=O(nm) 

• Complexity of union of all C-obstacles O(nm)  
– Trapezoidation computed in time O( mn log (mn) )  

 

 

• Compute their union O(mn log2 (mn)):  

– divide-and-conquer + line sweep,  

– similar to computing the union of squares from hw  

– (can be done faster)  
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Compute the Union 

 
• Divide and Conquer: 

ComputeUnion   RT1,…, R Tn 

1. Let C1 = ComputeUnion(RT1,…, R Tn/2 ) 

2. Let C2 = ComputeUnion( RTn/2+1,…, R Tn ) 

3. Return C1 U C2 can compute using line sweep  

 

• Complexity of C1 , C2 is O(mn)  line sweep takes O(mn 
log(mn)) time 

• Recurrence T(n) = 2T(n/2) + O(mn log(mn))  

• Solves to O(mn log2 (mn)) 



Result Summary 

• Given:  

– Robot R of complexity m, translating among 

– Disjoint polygonal obstacles with total 

complexity n  

• We can: 

– Preprocess workspace (i.e. build Roadmap) in 

O(nm log2(nm))  time 

– Answer if there is a collision free path from 

any start to any goal in O(mn) time  
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Higher dim – randomized planner 
• Usually the complexity of the free space for a robot with d degrees 

of freedom in an environment of complexity n is ( nd )  

• It is not practical to construct the free space. 

• Instead, we (very roughly) do  

– create a sample S of positions of R  

– For each position, check if is free.  If yes, it is a node of the graph.  

– For every pair of free positions, chech if the segment connecting them is 

free. If yes  connect them by an edge. 

– Find a path from s to t in this graph.  

 

• Works well in practice  

• Problem: narrow passage.   

• Application (one of many): protein docking.  

 


