
Lecture 11: Motion Planning

Motion Planning

Thanks to

Piotr Indyk

Lecture 11: Motion Planning

Piano Mover’s Problem

• Given:

– A set of obstacles

– The initial position of a robot

– The final position of a robot

• Goal: find a path that

– Moves the robot from the initial to final

position

– Avoids the obstacles (at all times)

Lecture 11: Motion Planning

Basic notions

• Work space – the space with obstacles

• Configuration space:

– Describes the robot’s position

• Forbidden space = positions in which robot

collides with an obstacle

• Free space: the rest

• Collision-free path = path in the free part of

configuration space

Lecture 11: Motion Planning

Point case

• Assume robot is a point

• Then work

space=configuration space

• Free space = Work Space

minus the obstacles

*

*

Lecture 11: Motion Planning

Point case – General Algorithm

• Construct a data structure

ROADMAP to represent the

free space

• Given any start and goal

positions use ROADMAP to

decide whether collision free

path is possible

*

*

Lecture 11: Motion Planning

Finding a path

• ROADMAP:

• Compute the trapezoidal map to represent

the free space

• Place a node

– At center of each trapezoid

– Of each edge of the trapezoid

• Put edges between the vertices in the same

trapezoids.

• Path finding=BFS in the roadmap

Note – the size of the roadmap is linear, but

the path is probably not the shortest.

*

*

Roadmap

Lecture 11: Motion Planning

Path in the roadmap via BFS

Lecture 11: Motion Planning

Lecture 11: Motion Planning

Complexity

• Build Road Map: O(n logn) time

– Trapezoidal Map of n segments: O(n log n) time

– O(n) trapezoids, O(n) vertices

– Add edges to roadmap takes O(n) time

• Collision Free path: O(n) time

– Find start and goal trapezoids O(log n)

– BFS takes O(n) time

Lecture 11: Motion Planning

Non-point robots

• Assume a convex robot

• Assume each obstacle is
convex (by triangulating
the obstacles)

• We specify a point on the
robot, called its reference.

• We specify the position of
the robot by specifying the
location of the reference

*

*

reference

robot

Specifying location of robot

Lecture 11: Motion Planning

Collision Free Path

Lecture 11: Motion Planning

Lecture 11: Motion Planning

Non-point robots - cont

• C-obstacle = the set of

robot positions which

overlap an obstacle

• Free space: workspace

minus C-obstacles

• Given a robot and

obstacles, how to calculate

C-obstacles ?

Lecture 11: Motion Planning

Minkowski Sum

• Minkowski Sum of two sets

P and Q is defined as

PQ={p+q: pP, qQ}



o

Lecture 11: Motion Planning

R vs (-R)

R

-R

Lecture 11: Motion Planning

C-obstacles

• Thm: The C-obstacle of P and robot R equals P(-R)

• Proof:

– Assume R collides with P at position m. We want to

show that m  P (-R)

– Consider t(R+m) ∩ P

– Then t–mR → -t+m  -R

– Since tP, we have mP (-R)

• Reverse direction is similar

*

R+m

m

* *

P

* t R

Minkowski Sum

• AB={a+b: aA, bB}

Lecture 11: Motion Planning

A-B

Lecture 11: Motion Planning

C-obstacle of

A and robot B

equals A(-B)

Lecture 11: Motion Planning

Algorithm outline

• Find C-Obstacles

• Create trapezoid map for union of all

C-obstacles

• Efficiency depends:

– Computation time of C-Obstacles

– Computation of trapezoidal map:

O(n log n) where is n is complexity of

union of all C-obstacles (number of

edges)

Lecture 11: Motion Planning

Lecture 11: Motion Planning

 I. Properties of PR

• Thm: If P,R convex, then PR is convex:

• Proof:

– Consider t1,t2  PR. We know ti=pi+ri for
pi  P, riR

– P,Q convex: λp1+(1- λ)p2 P, λr1+(1- λ)r2R

– Therefore:

λt1+(1- λ)t2 = λ(p1+ r1) + (1- λ) (p2+ r2)  PR

Lecture 11: Motion Planning

II. Properties of PR

• Observation: an extreme point of
PR in direction d is a sum of
extreme points of P and R in
direction d

• Simple algorithm – convex hull

A point p  Q is extreme (I.e. corner of

Q) if there is some vector (direction) d

such that p*d = max { q*d | q  Q}

Lecture 11: Motion Planning

III. Properties of PR

• Theorem: If P, R convex and has m and n edges

then PR has at most n+m edges.

• Intuition: Each edge of PR is parallel to either an edge

of P or an edge of R. No edge of P,R contributes more

than once.

• Implications:

• Compute a C-obstacle in O(n+m) time

• Each C-obstacle has complexity O(n+m)

– Is this enough?

P

Lecture 11: Motion Planning

Pseudodisc Pairs

• O1 and O2 are Pseudodiscs

if both O1-O2 and O2-O1 are

connected

• I,e, at most two proper

intersections of boundaries

• Note: Pseudodiscs describes how TWO

objects interact. Not used to describe one

object.

Yes

No

Lecture 11: Motion Planning

Minkowski sums are pseudodiscs

• Thm: If P1, P2,R, are convex and P1 and P2 are disjoint.
Then CP1=P1R and CP2=P2R are pseudo-discs.

• Proof by contradiction:

• Suppose CP1-CP2 is has 2 connected components

– CP1 is more extreme than CP2 in two directions
d1 and d2

– CP2 is more extreme than CP1 in a direction
between d1 and d2 and in a direction between d2
and d1

• By properties of :

– P1 is more extreme than P2 in directions d1 and d2

– P2 is more extreme than P1 in a direction between
d1 and d2 and in a direction between d2 and d1

• Configuration impossible for disjoint, convex P1 ,P2

Lecture 11: Motion Planning

Union of pseudo-discs

• Thm: Let P1,…,Pk be polygons in
pseudo-disk positions. Then their
union has complexity |P1| +…+ |Pk|

• Proof:
– Suffices to bound the number of vertices

– Each vertex either original or induced by
intersection

– Charge each intersection vertex to the
next original vertex in the interior of the
union

– Each vertex charged at most twice

Lecture 11: Motion Planning

Ananlysis:

Convex Robot, Convex Obstacles

• Given: Total #edges in Obstacles=n, Robot=m

• Compute all C-obstacles in O(m + n) time

• Computation time for Trapezoidal Map:

– If k obstacles total complexity of C-obstacles O(n+mk)

– Union of all C-Obstacles has complexity O(n+mk)

– Trapezoidal map computed O(n+mk log(n+mk))

Lecture 11: Motion Planning

Analysis:

Convex Robot and Non-convex Obstacles

• Given complexity of all obstacles=n, robot=m

• Triangulate obstacles into T1,…,Tn. Time O(n log n)

• Compute RT1,…, R Tn Time O(n(m+3))=O(nm)

• Complexity of union of all C-obstacles O(nm)
– Trapezoidation computed in time O(mn log (mn))

• Compute their union O(mn log2 (mn)):

– divide-and-conquer + line sweep,

– similar to computing the union of squares from hw

– (can be done faster)

Lecture 11: Motion Planning

Compute the Union

• Divide and Conquer:

ComputeUnion RT1,…, R Tn

1. Let C1 = ComputeUnion(RT1,…, R Tn/2)

2. Let C2 = ComputeUnion(RTn/2+1,…, R Tn)

3. Return C1 U C2 can compute using line sweep

• Complexity of C1 , C2 is O(mn)  line sweep takes O(mn
log(mn)) time

• Recurrence T(n) = 2T(n/2) + O(mn log(mn))

• Solves to O(mn log2 (mn))

Result Summary

• Given:

– Robot R of complexity m, translating among

– Disjoint polygonal obstacles with total

complexity n

• We can:

– Preprocess workspace (i.e. build Roadmap) in

O(nm log2(nm)) time

– Answer if there is a collision free path from

any start to any goal in O(mn) time

Lecture 11: Motion Planning

Lecture 11: Motion Planning

Higher dim – randomized planner
• Usually the complexity of the free space for a robot with d degrees

of freedom in an environment of complexity n is (nd)

• It is not practical to construct the free space.

• Instead, we (very roughly) do

– create a sample S of positions of R

– For each position, check if is free. If yes, it is a node of the graph.

– For every pair of free positions, chech if the segment connecting them is

free. If yes connect them by an edge.

– Find a path from s to t in this graph.

• Works well in practice

• Problem: narrow passage.

• Application (one of many): protein docking.

