Motion Planning

Thanks to
Piotr Indyk

Lecture 11: Motion Planning

Piano Mover’'s Problem

 Given:
— A set of obstacles

— The Initial position of a robot
— The final position of a robot

» Goal: find a path that

— Moves the robot from the initial to final
position
— Avoids the obstacles (at all times)

Lecture 11: Motion Planning

Basic notions

Work space — the space with obstacles

Configuration space:
— Describes the robot’s position

Forbidden space = positions in which robot
collides with an obstacle

Free space: the rest

Collision-free path = path in the free part of
configuration space

Lecture 11: Motion Planning

Point case

« Assume robot is a point

* Then work
space=configuration space

* Free space = Work Space
minus the obstacles

Lecture 11: Motion Planning

Point case — General Algorithm

« Construct a data structure
ROADMAP to represent the
free space

« Given any start and goal -
positions use ROADMAP to
decide whether collision free
path is possible

Lecture 11: Motion Planning

Finding a path

« ROADMAP:

« Compute the trapezoidal map to represent
the free space

 Place a node
— At center of each trapezoid
— Of each edge of the trapezoid

« Put edges between the vertices in the same
trapezoids.

« Path finding=BFS in the roadmap

Note — the size of the roadmap is linear, but
the path is probably not the shortest.

Lecture 11: Motion Planning

Lecture 11: Motion Planning

Path in the roadmap via BFS

AHI art

““““

. |

Pstart

Lecture 11: Motion Planning

Complexity

* Build Road Map: O(n logn) time
— Trapezoidal Map of n segments: O(n log n) time
— O(n) trapezoids, O(n) vertices
— Add edges to roadmap takes O(n) time
» Collision Free path: O(n) time
— Find start and goal trapezoids O(log n)
— BFS takes O(n) time

Lecture 11: Motion Planning

Non-point robots

Assume a convex robot

Assume each obstacle Is
convex (by triangulating
the obstacles)

We specify a point on the
robot, called its reference.

We specify the position of
the robot by specifying the
location of the reference

Lecture 11: Motion Planning

Specifying location of robot

10 T work space

SRy

reference poin

reference point

Lecture 11: Motion Planning

Collision Free Path

work space configuration space

(G 'é\—'"

4

i

Lecture 11: Motion Planning

Non-point robots - cont

 C-obstacle = the set of .
robot positions which
overlap an obstacle

* Free space: workspace
minus C-obstacles

 Given a robot and
obstacles, how to calculate
C-obstacles ?

CP

Lecture 11: Motion Planning

Minkowskl Sum

 Minkowskl Sum of two sets
P and Q Is defined as

P®Q={p+q: peP, qeQ}

™
.

Lecture 11: Motion Planning

Lecture 11: Motion Planning

C-obstacles

R+m

« Thm: The C-obstacle of P and robot R equals P®(-R)
* Proof:

— Assume R collides with P at position m. We want to
showthat m e P ®(-R)

— Consider te(R+m) N P

— Then t-meR — -t+m e -R

— Since teP, we have meP ®(-R)
* Reverse direction is similar

Lecture 11: Motion Planning

Minkowskl Sum

 A®B={atb: acA, beB}

Lecture 11: Motion Planning

A®D-B

Lecture 11: Motion Planning

C-obstacle of
A and robot B
equals A®(-B)

* t ¢ A®-B = no collision

x ’]
Lecture 11: Motid t e A@-B = collision

>0

Algorithm outline 7 "

 Find C-Obstacles ‘

« Create trapezoid map for union of all ‘
C-obstacles —

 Efficiency depends:
— Computation time of C-Obstacles

— Computation of trapezoidal map:
O(n log n) where is n is complexity of
union of all C-obstacles (number of
edges)

Lecture 11: Motion Planning

|. Properties of POR

« Thm: If P,R convex, then P®R IS convex:

* Proof:

— Consider t,,t, € POR. We know t=p;+r; for
P, e P, reR

— P,Q convex: Ap,+(1- A)p, €P, Ar,+(1- Nr,eR
— Therefore:
A +(1- Nty = Apy+ ry) + (1- A) (py+ 1) € POR

Lecture 11: Motion Planning

Il. Properties of PER

A point p € Q Is extreme (l.e. corner of
Q) if there is some vector (direction) d
suchthat p*d=max {g*d | q € Q}

* Observation: an extreme point of
P®R In direction d is a sum of

extreme points of P and R In
direction d %

« Simple algorithm — convex hull

Lecture 11: Motion Planning

lll. Properties of PER

Theorem: If P, R convex and has m and n edges
then P®R has at most n+m edges.
Intuition: Each edge of P®R is parallel to either an edge

of P or an edge of R. No edge of P,R contributes more
than once.

Implications:
Compute a C-obstacle in O(n+m) time

Each C-obstacle has complexity O(n+m)
— Is this enough?

Lecture 11: Motion Planning

Pseudodisc Pairs

* O, and O, are Pseudodiscs
If both O,-O, and O,-O, are e
connected

* |,e, at most two proper

Intersections of boundaries
No

Note: Pseudodiscs describes how TWO
objects interact. Not used to describe one
object.

Lecture 11: Motion Planning

Minkowski sums are pseudodiscs

Thm: If P, P,,R, are convex and P, and P, are disjoint.
Then CP,=P,®R and CP,=P.,®R are pseudo-discs.

Proof by contradiction:
Suppose CP,-CP, is has 2 connected components

— CP, Iis more extreme than CP, In two directions
d, and d,

— CP, Iis more extreme than CP, in a direction
between d, and d, and in a direction between d,
and d,

By properties of ©:
— P, Is more extreme than P, in directions d, and d,

— P, Is more extreme than P, in a direction between
d, and d, and in a direction between d, and d,

Configuration impossible for disjoint, convex P, ,P,

Lecture 11: Motion Planning

Union of pseudo-discs

* Thm: Let P,,...,P, be polygons in
pseudo- dlsll< posmons Then their
union has complexity |P,| +...+ |P,]|

 Proof:

— Suffices to bound the number of vertices

— Each vertex either original or induced by
Intersection

— Charge each intersection vertex to the

next original vertex in the interior of the
union

— Each vertex charged at most twice

Lecture 11: Motion Planning

Ananlysis:
Convex Robot, Convex Obstacles

* Given: Total #edges in Obstacles=n, Robot=m

« Compute all C-obstacles in O(m + n) time

« Computation time for Trapezoidal Map:
— If k obstacles total complexity of C-obstacles O(n+mk)
— Union of all C-Obstacles has complexity O(n+mk)
— Trapezoidal map computed O(n+mk log(n+mk))

Lecture 11: Motion Planning

Analysis:
Convex Robot and Non-convex Obstacles

Given complexity of all obstacles=n, robot=m
Triangulate obstacles into T,,...,T,, Time O(n log n)
Compute R®T,,..., R®T, Time O(n(m+3))=0(nm)

Complexity of union of all C-obstacles O(nm)
— Trapezoidation computed in time O(mn log (mn))

Compute their union O(mn log? (mn)):

— divide-and-conquer + line sweep,

— similar to computing the union of squares from hw
— (can be done faster)

Lecture 11: Motion Planning

Compute the Union

Divide and Conquer:
ComputeUnion R&T,,..., R®T,
1. Let C, = ComputeUnion(R&®T,,..., R®T,,)
2. Let C, = ComputeUnion(R®T 5.1, --, R&T,)
3. Return C; U C, can compute using line sweep

Complexity of C, , C,is O(mn) - line sweep takes O(mn
log(mn)) time

Recurrence T(n) = 2T(n/2) + O(mn log(mn))
Solves to O(mn log? (mn))

Lecture 11: Motion Planning

Result Summary

* Given:
— Robot R of complexity m, translating among
— Disjoint polygonal obstacles with total
complexity n
* We can:

— Preprocess workspace (i.e. build Roadmap) Iin
O(nm log%(nm)) time

— Answer if there is a collision free path from
any start to any goal in O(mn) time

Lecture 11: Motion Planning

Higher dim — randomized planner

Usually the complexity of the free space for a robot with d degrees
of freedom in an environment of complexity n is ®(n)

It is not practical to construct the free space.

Instead, we (very roughly) do
— create a sample S of positions of R
— For each position, check if is free. If yes, it is a node of the graph.

— For every pair of free positions, chech if the segment connecting them is
free. If yes connect them by an edge.

— Find a path from s to t in this graph.
Works well in practice

Problem: narrow passage.
Application (one of many): protein docking.

Lecture 11: Motion Planning

