
Next Topic: Line-Sweep Algorithm
❑ In this section, we will discuss the problem of 

computing all intersection between segments in a 
given set of segments  

❑ The solution to this problem is based on the line-
sweep paradigm. This is a method that is used in 
numerous problems, in many different domains. 

❑ The original problem usually appear when we need to 
sympathize (fuze together) geometric data from 
different sources. Maps merging is a good example of 
such application. 

1 2

Computing Intersection between segments

1 2 1

1 2 1

( ) ( ) 0 1
( ) ( ) 0 1
p t p p p t t
q s q q q s s

= + − ≤ ≤

= + − ≤ ≤
q1

p2

q2
p1

Question: What is the meaning of other  
values of s and t ? 

Solve (2D) linear vector equation for t and s: 

Here we actually need to use division. 

( ) ( )
[0,1] [0,1]

p t q s
t s

=

∈ ∈check that and



3

Line Segment Intersection 

❑ The question of “whether  a pair of segments intersect” 
could be answered more robustly than  “Where do 
they interact”  

❑ Theorem: Segments (p1,p2) and (p3,p4) intersect in their 
interior iff p1 and p2 are on different sides of the line p3p4 
and p3 and p4 are on different sides of the line p1p2.

❑ This can be checked by computing the orientations of 
four triangles. Which ?

❑ Special cases:

p4

p2

p3
p1

4

Line Sweep (warning - sometimes called `plane sweep’)

❑ Problem: Given n segments in the plane, 
compute all their intersections. 

❑ Assume (general position):
No line segment is vertical.
No two segments are collinear.
No three segments intersect at a common 
point.

❑ Naive algorithm: Check each two segments 
for intersection. Complexity: Ω(n2).

A description that does not assume general position can be found in MMMC. 

A simpler version of this algorithm solves a simpler problem, which is 
 “is there any pair of cross each other”  
You could find it in CLRS.



5

a

b

c

d e

f

Planned events (left/right endpoints)

Sweep-line algorithm - evens driven alg.
• Sweep a vertical line from left to right, move from one event to the next event (from 

left to right) 
• Three types of events: left endpoint (birth), right endpoint (death) and intersection 

events 

• The line “knows” which segment it intersect and at which order (conceptually replacing 
x-coordinate with time). 

• Each time two segments become neighbors on the line-sweep, the algorithm checks if 
they intersect in the future (creating an intersection event). 

• Some events are pre-planed. Other are discovered on the fly. 

x2x1 x3

We will use two data structures: 

1.A priority Queue (heap) - always knows what is the 
next event. (if you don’t know about priorities 
queues, it could be replaced by a balanced search 
tree, or a SkipList) 

2.A balanced tree - stores the status  (will define 
shortly)  

6



7

Sweep-line algorithm.
•Input: A set  of segments in  
• Sweep a vertical line  from left to right 
  (conceptually replacing  x-coordinate with time) 

• Maintain dynamic the set   of segments that intersect   
ordered by the y-coordinate of intersection point with .  
• Order changes when 

• new segment is encountered (left endpoints - birth event), 

• existing segment finishes (right endpoint - death event) 

• two segments meet at an intersection point.  

For simplicity assume that a segment contains its left endpoint 
but does not contain its right endpoint (will be clear in the next 
slides) 

P = {s1…sn} ℝ2

ℓ

S ⊆ P ℓ
ℓ

8

The status of the linesweep 

a
b

c

d

e

S={b,a,c}

Def: The status S is the list of segments that the linesweep l intersects (in 
the order from bottom to top).  
Def: an event  happens when the status changes.  
A birth event, a death event, and other types - to be discussed later.   
Note: the status is not changed between events, so    can jump from an 
event to the next event. 
When we reach the right endpoint of a segment, we remove this segment 
from the status     
We will show the status right after the event.

ℓ

ℓ



9

a

b

c

d
e

f

a
a
b b

c
a a

b
c
d

b
d
c

b
e
d

b
d
c
e

S status

Planned events (left/right endpoints)

b d f 

e

b
e
d
f

b
E

d

10

Algorithm - overview 
• Sweep with vertical line l from left to right 
 (I.e. scan the endpoints in increasing ordered of x-coordinate) 

• Each time that   meets an endpoint – 

  1. Update the status   
  2. Check segments intersection as described in the next slides. 

• Each time that   meets an intersection  –   
1. Report it   
2. Update the status  (two segments switch places)  
3. Check for future intersections (there are  neighboring pairs)

ℓ

ℓ

≤ 2



11

Left endpoint event (birth event): 
 Process event points in order by from left to right.  

For a left endpoint of segment a: 
 Add segment a to the Status S. 
 Check intersection between a and its  

immediate neighbors in status S.   
(  one nbr above, and   one nbr below).  

If find any, insert as a future events.  
≤ ≤

a
b

c

d

e

Example: a is checked for 
intersection with c and 
intersection with b.  

(but not with e) 

S={d,b,a,c,e}

12

Right endpoint event

 Process event points in order from left to right. 
 For a right endpoint of a segment a (death event).  

1. Delete segment a from the status S. 
2. Check for future intersection between the segment about a, and 

the one below (if exist)  
(they became immediate nbrs of each other) 

3. If exists, insert this intersection point as a future event into the 
the priority queue. 

a

b

c

d

eExample: c is checked for 
intersection with b. 

S={d,b,a,c,e}



Intersection point event

13

 Process event points (left to right) 

An intersection event, caused by intersection of segment b with a segment c:  
1. Swap the order of these two segments in the status S. 
2.  Check for future intersection point between c and its new neighbor on . If 

exists, insert this event into the priority queue as a future event.  
3. Repeat step 2 analogously with  b.

ℓ

b

c
e

Example: b is checked for 
intersection with e. S={e,c,b}

S={e,b,c}

Comment: Obviously there is some time when the thm holds, but why is 
there also an event ? 
Proof: Assume WLOG that c is born after b. Consider the birth event of c. 
If c and b are neighbors on  at this time, we are done.  

If they are not neighbors on  , it is because another segment, say f  or f ’ 

separating them on   . 

ℓ

ℓ
ℓ

Theorem: If segments c,b  intersect at a point q,  then at some event 
left of q, they become immediate neighbors along the sweeping line ℓ

f
b

cBut then either  
f  intersects b (at a point to the left of q), or   
f  intersects c (at a point to the left of q)  or  
f ‘ has a right endpoint (at a point to the left of q)  

Each of these cases creates and event before q.   
 QED  

f’
q

ℓ



Successor and predecessor 

15

For a sorted set of keys S={4,19,52,77, 103}, the operation succ(x,S), the 
successor of x in S, is the smallest key strictly larger than x.  
succ(-3) returns 4,      succ(4) returns 19,      succ(5) returns 19,   
succ(103)   returns ‘NULL’ 

The pred(x,S) is the largest key strictly smaller than x 
pred(19,S) returns 4.   pred(4) =NULL 

In a balanced binary search tree, or a SkilList,  

Basically, perform ,  or  for a really small . find(x + ε) find(x − ε) ε

16

Maintaining the status S

a

b

c

d

f
T l

a

b

d

f

❑ We maintain the list of segment that intersect l in 
a sorted search tree T, sorted by the order they 
appear along l.  

❑ We do not maintain exact y-values since they 
keep changing, but we calculate them if needed. 

❑ When we insert a segment, we compare the y-
coordinates of intersections of segments with l. 

❑ Note: The y-coordinate change as l moves, but 
the order is changing only at events. 

c

g g



Operations on the tree

a

b

c

d

f
T l

a

b

d

f

Insert(T,s) - Insert the segment s into the Tree T.  
Delete(T,s)   

Above(T,s)  - returns the segment just above s.  
Example Above(T,b) = c.  

       (successor oprtaion in T) 
Below(T,s)– Analogous operation   (predecessor)

c

g g

18

Algorithm – all together  
  Sort endpnts of the segments in S from left to right, and insert into the queue Q. 
  for each event p in the Q do 

    if p is the left endpnt of a segment  then 
      Insert(T, ) 
     if(Above(T, ) exists and intersects  at a future event  then  
              Insert   this event into the queue.  

if(Below(T, ) exists and intersects  at a future event  then  
              Insert   this event into the queue. 

  
     Else if p is the right endpnt of s then 

if  Above(T, ) and Below(T, ) and intersect each other at a future event p’   
Then Insert p’ event into the queue. 

Delete(T, ) 

Else if p  is an intersection point of  and   Then  
Report intersection point.  
switch their order in the status  
Check if they intersect their new neighbors (and insert into Q if yes.)  

End for

si
si

si si p′ 

p′ 

si si p′ 

p′ 

si si

si
si sj

si

p

si

sj

si



19

Question 1:  
Can the same intersection point be reported more than 
once ?  

Question 2:  
Are the following two numbers always equal?  

  = number of intersection points. 
 the number of pairs of segments crossing 
each other 

k2
k1 =

20

Naively -  memory (as usual, k is the number 
of intersection points) 

A tighter analysis shows that we need only O(n) 
memory 

 

Θ(n + k)

How does it effect space requirement? 



21

Question 2:  
Are the following two numbers always equal?  

  = number of intersection points. 
 the number of pairs of segments crossing 
each other 

k2
k1 =

22

Time analysis
•There are 2n endpoints – O(n log n) time for sorting 
•Each left endpoint event requires  

•Insertion into the tree O(log n). 
•Finding successor/predecessor O( log n ). 
•Checking intersection with Above/Below, and maybe inserting 
one or two events in Q   – O( 3 log n ) 

•Each right endpoint event requires 
•Deletion from the tree O(log n). 
•Finding successor/predecessor O(log n). 
•Checking intersection between Above/Below – O(1). 

• On each intersection point, the algorithm spends           
O(log n) for the event itself, and O(2log n) for future events.   
•Total – O( (  n+k )  log n). Here k is the total number of intersection  
points. 



❑We are done with line sweep 
❑Next: Representations of Planar Maps

23 24

Doubly Connected Edge List - DCEL

f1

f2 f3

f4f5

vertex edge

faceEach vertex is 
associated with lots of 
info (eg location, color) 

This info should be kept 
only once. 

Eg:  appear as an 
endpoint of several 
edges. Bad idea: Keep 
the location of  with 
each edge. 

v2

v2

v2



25

DCEL
❑ Want to 

Walk around the boundary of a given face of a polygon
Access a face from an adjacent one 
Visit all the edges around a given vertex

❑ DCEL
Geometric structures combined by polygonal faces, edges and 
vertices
Linear space representation
Allow easy retrieval of data

26

DCEL

❑ Record for each face, edge and vertex:

Geometric information
Topological information
Attribute information

❑ aka Half-Edge Structure
3 arrays  - Vertices, Edges, Faces, (V,E,F) 
Coordinates are stored only at V, 
Avoid data duplication 
Common operation need to support: Traversing along a line, 
and find its intersections with all edges and faces ) 



27

DCEL

IncidentEdgecoordinateVertex

e2,1(x1,y1,z1)v1

e5,1(x2,y2,z2)v2

e1,1(x3,y3,z3)v3

e7,1(x4,y4,z4)v4

e9,1(x5,y5,z5)v5

e7,2(x6,y6,z6)v6

edgeface

e1,1f1

e5,1f2

e4,2f3

e8,1f4
f1

f2

f3

f4
v1

v2

v3

v4

v5

v6

e1,1

e6,1

e4,1 e7,2 e9,1

e8,1

e3,2

e5,1

e7,1

e3,1e2,1

e4,2
e1,2

prevnext Incident
face

twinoriginHalf-
edge

e2,1e1,1f1e3,2v2e3,1

e4,1e5,1f2e3,1v3e3,2

e5,1e3,2f2e4,2v4e4,1

e6,1e7,1f3e4,1v3e4,2

f5

f5 e1,2

28

DCEL

❑ Half-edge record:
Pointer to its origin: origin(e) 
Pointer to its twin half-edge: twin(e) 
Pointer to the face it bounds: IncidentFace(e) (face lies to left of e 
when traversed from origin to destination)
Next and previous edge on boundary of IncidentFace(e): next(e), 
prev(e)

e

tw
in

(e)

origin(e)

IncFace(e)prev(e)

next(e)
❑ Vertex record:

Coordinates 
Pointer to one  half-
edge that has v as its 
origin

❑ Face record:
Pointer to one half-
edge on its boundary



29

DCEL

❑ Support for:
Walk around boundary of given face
Visit all edges incident to vertex v (how ?)

❑ Queries:
Most queries are O(1)
More - in homework

30

Graph Definitions

A

B C

D

E

I

F

L

K

J

H

G

G = <V,E> 

V = vertices = 
{A,B,C,D,E,F,G,H,I,J,K,L} 

E = edges = {(A,B),(B,C),(C,D),
(D,E),(E,F),(F,G), 

(G,H),(H,A),(A,J),(A,G),(B,J),(K,F), 

(C,L),(C,I),(D,I),(D,F),(F,I),(G,K), 

(J,L),(J,K),(K,L),(L,I)}      

Vertex degree (valence) = number of edges incident on vertex. 
deg(J) = 4, deg(H) = 2 

k-regular graph = graph whose vertices all have degree k

A face of a graph is a cycle of vertices/edges which cannot be shortened. 
F = faces =  
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I), 
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)}



31

Connectivity

A graph is connected if there is a path of edges 
connecting every two vertices. 
A graph G’=<V’,E’> is a subgraph of a graph  
G=<V,E> if V’ is a subset of V and E’ is the subset 
of E incident on V’.  
A connected component of a graph is a maximal 
connected subgraph. 
A subset V’ of V is an independent set in  
G if the subgraph it induces does not contain  
any edges of E. 

Graph Embedding

A graph is embedded in  (the d-dimensional space)  if each 
vertex is assigned a position in Rd. 

ℝd

Embedding in R2 Embedding in R3



33

Planar Graphs and Plane Graphs

A

B

C

D
A

B

C

D

Planar Graph Plane Graph

A

B

C

D

Straight Line Plane Graph• A planar graph is a graph  whose vertices and edges can be 
embedded in R2 such that its edges do not cross. (meeting 
only at endpoints) 

• Every planar graph can be drawn as a straight-line segments 
without crossing edges.  

• The term “plane graph” means a planar graph together with 
an embedding of the graph in the plane, such that its edges 
are drawn using straight non-crossing edges. 34

Triangulation

A triangulation is a straight line plane  
graph whose faces are all triangles. 

(excluding, of course, the outer face)

A Delaunay triangulation of a set of 
points is the unique set of triangles 
such that such that the circumcircle of 
any triangle does not contain any other  
point. 
The Delaunay triangulation avoids long  
and skinny triangles. 



35

Topology and Euler Formula

Euler Formula For a connected planar graph without parallel edges: 
Let 

  denote the number of vertices,  
 denote the number of faces (including one “surrounding the graph) 
 denote the number of edges 

          Then     
Proof by induction: remove edges until left with a tree.  
This is the Base Case:   but in a tree . Claim holds.  
Next, add any edge that was deleted.  
Both #faces and #edges increased by 1. QED 

nv
nf
ne

nf = 2 + ne − nv

nf ne = nv − 1

Example    
  ( 2+the outside face) 

nv = 6
nf = 3
ne = 7

Two points p,q below to the same face if we can  
start walking from p and reach q without crossing any edges

36

Conclusion 
Theorem: In a triangulation: 

1.    (that is, all three 
terms are within a constant from each other) 

2. The average vertex degree is ~6. 
Proof: In such a triangulated mesh. Replace each edge 

by two half -edges. Each face (excluding the outer 
one) uses exactly 3. So   .  

         

 

hence     

Average(deg) = .  

nv = Θ(nf ) and ne = Θ(nf )

nf = 1outter face + 2ne/3

nv − ee + nf = 2 Euler  Formula

nv − ne + (1 +
2
3

ne) = 2

nv −
1
3

ne = 1

ne ≈ 3nv

nf = 2(nv − 2)
2ne /nv =

1
nv ∑

vi∈V

𝚍𝚎𝚐(vi) ≈ 6

A

B C

D

E

I

F

L

K

J

H

G


