T AT

Next Topic: Line-Sweep Algorithm Computing Intersection between segments

In this section, we will discuss the problem of
computing all intersection between segments in a p@®)=p +(p,—p)t O=<z=l1

given set of segments q(s) = q, +(q, - q,)s O<s<l

The solution to this problem is based on the line- Question: What is the meaning of other
sweep paradigm. This is a method that is used in values of s and t ?

numerous problems, in many different domains.
Solve (2D) linear vector equation for t and s:

The original problem usually appear when we need to p)=4q(s)
sympathize (fuze together) geometric data from check that r€[0,1]and s€[0,1]
different sources. Maps merging is a good example of

. Here we actually need to use division.
such application.

[—

Line Segment Intersection

The question of “whether a pair of segments intersect”
could be answered more robustly than “Where do
they interact”

Theorem: Segments (p,,p,) and (pp,) intersect in their
interior iff p, and p, are on different sides of the line p;o,
and p; and p, are on different sides of the line p,p,.

This can be checked by computing the orientations of
four triangles. Which ?

Special cases:

T

Line Sweep (warning - sometimes called "plane sweep’)

Problem: Given n segments in the plane,
compute all their intersections.
Assume (general position):
M No line segment is vertical.
W No two segments are collinear.
m No three segments intersect at a common
point.

P3

P1 Naive algorithm: Check each two segments
for intersection. Complexity: Q(n2).

A description that does not assume general position can be found in MMMC.

/< [_[_}_] A simpler version of this algorithm solves a simpler problem, which is
—t] “is there any pair of cross each other”

You could find it in CLRS.

3

. lSweep a ‘l/ertical line from left to right, move from one event to the next event (from
eft to right)
* Three types of events: left endpoint (birth), right endpoint (death) and intersection -
events We will use two data structures:

* The line “knows” which segment it intersect and at which order (conceptually replacing

x-coordinate with time). . _ _)
* Each time two segments become neighbors on the line-sweep, the algorithm checks if

they intersect in tfle future (creating an intersection event). r— .
J Sogle events are pre-planed. Other are discovered on the fly. 1.A priority Queue (heap) = always knows what is the

next event. (if you don’t know about priorities
queues, it could be replaced by a balanced search
tree, or a SkipList)
2.A balanced tree - stores the status (will define
shortly)

o ® © o o O © e ©

Planned events (left/right endpoints) =———» s

Sweep-line algorithm.
«Input: A set of segments in R?

Sweep a vertical line © from left to right
(conceptually replacing x-coordinate with time)

Maintain dynamic the set of segments that intersect

ordered by the y-coordinate of intersection point with
Order changes when
new segment is encountered (left endpoints - birth event),
existing segment finishes (right endpoint - death event)
* two segments meet at an intersection point.

For simplicity assume that a segment contains its left endpoint
but does not contain its right endpoint (will be clear in the next
slides)

_L|—

The status of the linesweep
c

a S={b,a,c}
\

A

Def: The status S is the list of segments that the linesweep / intersects (in
the order from bottom to top).

f: an event happens when the status changes. .
R%Wtah event, aad%rzitﬁ1 event, anc? other typesg to be discussed later.

Note: the status is not changed between events, so £ can jump from an
event to the next event.

e

‘When we reach the right endpoint of a segment, we remove this segment
from the status

We will show the status right after the event.

Al_—

Algorithm - overview

» Sweep with vertical line / from left to right
(I.e. scan the endpoints in increasing ordered of x-coordinate)
¢ Each time that £ meets an endpoint —
1. Update the status
2. Check segments intersection as described in the next slides.

Each time that £ meets an intersection —
1. Report it
2. Update the status (two segments switch places)
~ d I ec o o 3. Check for future intersections (there are < 2 neighboring pairs)

Planned events (left/right endpoints) emp

gl T

L eft endpoint event (birth event):
Process event points in order from left to right.

Process event points in order by from left to right.
For a right endpoint of a segment a (death event).

1. Delete segment a from the status S.
2. Check for future intersection between the segment about a, and

the one below (if exist)
(they became immediate nbrs of each other)

For a left endpoint of segment

® Add segment to the Status §

® Check intersection between
immediate neighbors in status

3. If exists, insert this intersection point as a future event into the

(< one nbr above, and < one nbr beloW)./
the priority queue. N

® [f find any, insert as a future events.

and its

Example: 1is checked for
intersection with and
intersection with

-EI- Intersection point event

Process event points (left to right)

An intersection event, caused by intersection of segment b with a segment C:
1. Swap the order of these two segments in the status S.

2. Check for future intersection point between € and its new neighbor on £. If
exists, insert this event into the priority queue as a future event.
3. Repeat step 2 analogously with b.

Example: b is checked for
intersection with e.

If segments c,b intersect at a point g, then at some event
g, they become immediate neighbors along the sweeping line £
: Obviously there is some time when the thm holds, but why is
there also an event ?
: Assume WLOG that c is born after b. Consider the birth event of c.
If ¢ and b are neighbors on # at this time, we are done.

If they are not neighbors on £, it is because another segment, say f or f~

separating them on £ .

But then either
o f intersects b (at a point to the left of ¢), or
o f intersects ¢ oint to the left of ¢) or
o f ‘ has a right endpoint (at a point to the left of ¢)

Each of these cases creates and event before q.
QED

_..l—

Successor and predecessor

For a sorted set of keys S={4,19,52,77, 103}, the operation succ(x,S), thj
successor of x in S, is the smallest key strictly larger than x.

succ(-3) returns 4, succ(4) returns 19, succ(5) returns 19,
succ(103) returns ‘NULL’

The pred(x,S) is the largest key strictly smaller than x
pred(19,S) returns 4. pred(4) =NULL

In a balanced binary search tree, or a SkilList,

Basically, perform find(x + €), or find(x — ¢) for a really small €.

U We maintain the list of segment that intersect / in
a sorted search tree 7, sorted by the order they
appear along /.

U We do not maintain exact y-values since they
keep changing, but we calculate them if needed.

U When we insert a segment, we compare the y-
coordinates of intersections of segments with /.

U Note: The y-coordinate change as / moves, but
the order is changing only at events.

m T

Operations on'theitree

A\

Insert(Insert the segment - into the Tree
Delete(

Above(returns the segment just above
Example Above(T,b) = c.
(successor oprtaion in T)
Below(" -)— Analogous operation (predecessor)

Algorithm — all together
Sort endpnts of the segments in S from left to right, and insert into the queue Q.
for each event p in the Q do p
if p is the left endpnt of a segment §; then
Insert(T,s;) S;
if(Above(T,s;) exists and intersects 5; at a future event p’ then
Insert p’ this event into the queue.

if(Below(T,s;) exists and intersects ; at a future event p’ th
Insert p’ this event into the queue. Si_ﬁ.><"
Else if p is the right endpnt of s then
if Above(T,s;) and Below(T,S,) and intersect each other at a future event p’
Then Insert p’ event into the queue.
Delete(T,s;)
Else if p is an intersection point of 5; and s Then

Report intersection point.

switch their order in the status

Check if they intersect their new neighbors (and insert into Q if yes.)
End for

I 5 i _ SN——
How does it effect space requirement?

Question 1:
Can the same intersection point be reported more than
once ?

Naively - O(n + k) memory (as usual, k is the number

: of intersection points)
Question 2:

Are the following two numbers always equal?

A tighter analysis shows that we need only O(n)

k, = number of intersection points. memory

k, = the number of pairs of segments crossing
each other

| Time analysis

*There are 2n endpoints — O(n log n) time for sorting
*Each left endpoint event requires
eInsertion into the tree O(log n).
*Finding successor/predecessor O('log n).
*Checking intersection with Above/Below, and maybe inserting
one or two events in Q — O(3 logn)
*Each right endpoint event requires

*Deletion from the tree O(log n).
*Finding successor/predecessor O(log n).
*Checking intersection between Above/Below — O(1).
* On each intersection point, the algorithm spends
O(log n) for the event itself, and O(2log n) for future events.
*Total — O((n+k) log n). Here k is the total number of intersection
points.

" ——

We are done with line sweep
Next: Representations of Planar Maps

Doubly:Connected 'Edge List= DCEL

Each vertex is o
associated with lots of

info (eg location, color)

This info should be kept
only once.

Eg: v, appear as an
endpoint of several
edges. Bad idea: Keep
the location of v, with
each edge.

*

DCEL

Want to
m Walk around the boundary of a given face of a polygon
M Access a face from an adjacent one
m Visit all the edges around a given vertex

DCEL
W Geometric structures combined by polygonal faces, edges and
vertices
M Linear space representation
M Allow easy retrieval of data

DCEL

Record for each face, edge and vertex:

m Geometric information
W Topological information
m Attribute information

aka Half-Edge Structure
W3 arrays - Vertices, Edges, Faces, (V,E,F)
m Coordinates are stored only at V,
m Avoid data duplication
m Common operation need to support: Traversing along a line,
and find its intersections with all edges and faces)

Vertex record: -
) next(e)
m Coordinates
m Pointer to one half-
edge that has v as its
origin
Face record:

IncFace(e) ¢

edge on its boundary

\'1 -
on T P

(\|~)’1~4)
Half-edge record: origin(e)
M Pointer to its origin: origin(e)
M| Pointer to its twin half-edge: twin(e)

m Pointer to the face it bounds: IncidentFace(e) (face lies to left of e
- when traversed from origin to destination)
(X5 W Next and previous edge on boundary of IncidentFace(e): next(e),

525 €91
prev(e)

DCEL Graph Definitions

G =<V,E>

Support for: // V = vertices =
o /

W Walk around boundary of given face \ {A,B,C,D,E,F,G,H,I,J,K,L}

m Visit all edges incident to vertex v (how ?) / E = edges = {(A.B).(B,C),(C.D),
Queries: \|\ (D,E),(EF),(F,G),

m Most queries are O(1) \ (G,H),(H.A),(A,J),(A,G),(B.J),(KF),
/

m More - in homework /> (C,L),(C,1),(D,1),(D,F),(F1),(G,K),

(,0), (4K (K,L), (LD}
Vertex degree (valence) = number of edges incident on vertex.
deg(J) = 4, deg(H) =2
k-regular graph = graph whose vertices all have degree k

A face of a graph is a cycle of vertices/edges which cannot be shortened.
F = faces =

{(AH,G),(AJ.K,G),(B,AJ),(B,C.LJ).(C,LJ).(CD,),
(D,E,F),(D,LF),(LLFK),(L,J.K).(K,F.G),(A,B,C,D,E,F,G,H)}

raph Embedding

I Connectivity I 5

Agraph is connected if there is a path of edges . . d . . .
connecting every two vertices. A graph is embedded in R“ (the d-dimensional space) if each
. vertex is assigned a position in Rd.

A graph G’=<V’,E’> is a subgraph of a graph

G=<V,E>if V'is a subset of V and E’ is the subset
of E incident on V’.

A connected component of a graph is a maximal
connected subgraph.

A subset V’ of V is an independent set in
G if the subgraph it induces does not contain
any edges of E.

~

Embedding in R2 Embedding in R3

I Planar Graphs and Plane Graphs I Triangulation

A triangulation is a straight line plane
Planar Graph Plane Graph graph whose faces are all triangles.
= B

(excluding, of course, the outer face)

D
A A Delaunay triangulation of a set of
points is the unique set of triangles

such that such that the circumcircle of
any triangle does not contain any other

. . c
* Anplanar graph is a graph whose vertices and edges sttt

embedded in R2 such that its edges do not cross. (meeting B

only at endpoints) The Dglaunay triangulation avoids long
. and skinny triangles.

Every planar graph can be drawn as ght-line segments

without crossing edges.

The term “plane graph” means a planar graph together with

an embedding of the graph in the plane, such that its edges

are drawn using straight non-crossing edges.

[—

Theorem: In a triangulation:

TOpOlOgy and Euler Formula 1. n,=0(n)andn,=0(n;) (thatis,all three
Example 7, = 6 terms are within a constant from each other)
1y =3 (2+the outside face) 2. The average vertex degree is ~0.
n =7 Proof: In such a triangulated mesh. Replace each edge
¢ by two half -edges. Each face (excluding the outer

+2ne/3.

Two points p,q below to the same face if we can one) uses exactly 3. So n, = 1

start walking from p and reach q without crossing any edges outter face

Euler Formula
Euler Formula For a connected planar graph without parallel edges:

Let
'nv denote the number of vertices,

‘nfdenote the number of faces (including one “surrounding the graph)

‘ne denote the number of edges

Then n,=2+n,—n,
Proof by induction: remove edges until left with a tree.
This is the Base Case: 7 but in a tree n, = n, — 1. Claim holds. 1
Next, add any edge that was deleted. = — 2 deg(v,) ~ 6.
Both #faces and #edges increased by 1. QED n

Vovev

