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Linear Programming 

4.

On the Agenda
! Linear programming
! Duality 
! Smallest enclosing disk

4.

Define: 
i   – types of foods (0< i <d+1). 
j   – types of vitamins (1≤j≤n).
xi  – the amount of food of type i.
aji – the amount of vitamin j in one unit of food i.
ci – the number of calories in one unit of food i.
bj – minimal required amount of vitamin j.

Constraints (we need to consume some minimal amount of each vitamin): 

Want to minimize the cost, subject to : 
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The Simplex Algorithm

! Assume WLOG that the cost function 
points “downwards”.

! Construct (some of) the vertices of the 
feasible region.

! Walk edge by edge downwards until 
reaching a local minimum (which is also 
a global minimum).

! In Rd, the number of vertices might be 
Θ(n!d/2").

c

4.

LP History

! Mid 20th century:  Simplex algorithm, time complexity Θ(n!d/2") 
in the worst case. 

! 1980’s (Khachiyan) ellipsoid algorithm with time complexity 
poly(n,d). 

! 1980’s (Karmakar) interior-point algorithm with time complexity 
poly(n,d).

! 1984 (Megiddo) – parametric search algorithm with time 
complexity O(Cdn) where Cd is a constant dependent only on 
d. E.g. Cd = 2d^2.

! The holy grail: An algorithm with complexity independent of d.

! In practice the simplex algorithm is used because of its linear 
expected runtime.

4.

O(n logn) 2D Linear Programming
! Input: 

n half planes.
Cost function that WLOG “points down”.

! Algorithm:
1. Partition the n half-planes into two groups.
2. Compute, recursively, the feasible region for each group.
3. Compute the intersection of the two feasible regions.
4. Check the cost function on the region vertices.
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the EQ – O(n).
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Divide and Conquer – Complexity 
! Stage 3:

Intersection of two convex polygons – 
plane sweep algorithm.
No more than four segments are ever in 
the SLS and no more than eight events in 
the EQ – O(n).

! Stage 4:
Find the minimal cost vertex - O(n).

T(n) = 2T(n/2)+O(n) ⇒ 
T(n) = O(n log n)

4.

O(n2) Incremental Algorithm

! The idea:
Start by intersecting two halfplanes.
Add halfplanes one by one and update optimal vertex by 
solving one-dimensional LP problem on new line if needed.

4.

1D − LP(ℓ, h1…hn)
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the lowest intersection points.  
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Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1

4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1

4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1



4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

hi

vi-1

4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1

hi

4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1

hi

vi

4.

Incremental Algorithm  
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1.   // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
        Ci is empty          // terminate
    or 
        Ci = Ci-1   ∩ hi,  and 

vi lies on li      // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been 

optimum before.

hi-1

vi-1

hi

vi

4.

Basic Theorem - Cont.

2. Assume that vi is not on li. vi must be in Ci-1 
By convexity, also the line vivi-1 is in Ci-1 . 

Consider point vj - the intersection of vivi-1 
with li. vj is in both Ci-1 and Ci, and is better 
than vi. 

Contradiction. 

hi-1

vi-1

hi

vi li
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By convexity, also the line vivi-1 is in Ci-1 . 

Consider point vj - the intersection of vivi-1 
with li. vj is in both Ci-1 and Ci, and is better 
than vi. 

Contradiction. 

hi-1

vi-1

hi

vi vj
li
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Finding vi given li 
(one-dimensional LP)

! Intersect each hj (j<i) with li, generating i-1 
rays representing (unbounded) intervals.

! Intersect the i-1 intervals in O(i) time.
! If the intersection is empty then report no 

solution, else report the lowest point.
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Complexity Analysis
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n
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!
T(n) =

n

∑
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4.

Incremental Algorithm – O(n) 
Randomized Version

! Exactly like the deterministic version, only the order 
of the lines is random.

! Theorem: The expected runtime of the random 
incremental algorithm (over all n! permutations of the 
input constraints) is O(n).

4.

General Position Assumption

No three lines    share a point
If this is not the case, the running time is 

actually smaller. 

ℓi, ℓj, ℓk

vi

4.

Probability Analysis
Backward analysis  
! Question: When given a solution after i half-planes, 

what is the probability that the last half-plane 
affected the solution ?   

!     That is, 
! Remember also that in this case,  is on  

vi ≠ vi−1
vi ℓi

vi

Mental Trick: Assume that we decided who are the first i half-
plane to be inserted. Lets look at  . It does not depend on 
the order of insertions.  

  
What is the probability that the last inserted half-line is one of 

the two green ones ?  
Backward analysis  
! Answer to the question: Exactly, because a change can occur only if the 

last halfplane inserted is one of the two halfplanes thru vi.

(note that vi depends on the i half-planes, but not on their order)

Ci

Ci

4.

Complexity Analysis

Pr(vi ≠ vi−1) =
2
i

Using the 1DLP, finding  vi in this case takes  i times (linear)  

So the expected work at the i step is   

 

1 ⋅ Pr(vi = vi−1) + i ⋅ Pr(vi ≠ vi−1) = 1 *
i − 2

i
+ i ⋅

2
i

= 3

4.

Lets do it again in a formal way

! We will use random variables. A random variable in our context will be a 
boolean value (flag) that is either true or false.  

! Lemma (from probability): For any two constants A,B, and any two boolean 
random vars x,y, we define the expected value E(xA+yB) as  

!  
! However, we could greatly simplify it using the identity 
! E(xA+yB)=  
! Note - we don’t care if x,y are depending in each other.  
! In our case, lets define a set of boolean values  

!  

!
The running time of the algorithm is 

A ⋅ Pr(x = 1 and y = 0) + B ⋅ Pr(x = 0 and y = 1) + (A + B) ⋅ (Pr(x = 1 and y = 1)

A ⋅ Pr(x = 1) + B ⋅ Prob(y = 1)

xi = 1 iff vi ≠ vi−1 .      Otherwise xi = 0
n

∑
i=3

i ⋅ xi

Roulette 
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4.

Lets do it again in a formal way
  

The running time of the algorithm is  

The expected running time is  

Which (by applying the same rule multiple times)  

n

∑
i=3

i ⋅ xi

𝔼{
n

∑
i=3

i ⋅ xi}

𝔼{
n

∑
i=3

i ⋅ xi} =
n

∑
i=3

i ⋅ Pr(vi ≠ vi−1) =
n

∑
i=3

3 = 3n

25

LP in 3D  
❑ Now the input is a collection of half-spaces {h1 …  hn}.  
Now li  is the plane bounding hi .   (notations are analogous to the 2D case).  
We will define v3 as  the intersection of the planes  l1 , l2  and l3.     
We insert the other halfspaces {h4 …  hn} at a random order, and update vi   
according to the following Theorem:   
❑ Theorem: 

1. if vi-1 ∈ hi, then vi = vi-1.   // O(1) check, 
      nothing to do 
2. if vi-1 ∉ hi, then the solution (if exists) is on li .   
  run vi  =  2DLP( h1∩ li , h2∩ li   ,  h3∩ li , …. ,  h i-1 ∩ li ).  
   Terminates if there is no solution ( that is, Ci=∅ )  

26

LP in 3D and higher dimension  
In 3D, the worst case running time is  𝜣(n3) (prove).  
However, the expected running time is O(n). In general, the running time in d-
dimension is O(d! n). That is, linear in any fixed (and small) dimension. 


