Computational Geometry

Chapter 4

Linear Programming

On the Agenda

- Linear programming
- Duality
- Smallest enclosing disk

Linear Programming – The Geometry

Linear Programming – The Geometry

Linear Programming – The Geometry

- Each constraint defines defines a half-space region in *d*-dimensional space.
- □ The *feasible region* is the (convex) intersection of these half-spaces.

Linear Programming – The Geometry

- Each constraint defines defines a half-space region in *d*-dimensional space.
- □ The *feasible region* is the (convex) intersection of these half-spaces.

Linear Programming – The Geometry

- Each constraint defines defines a half-space region in *d*-dimensional space.
- □ The *feasible region* is the (convex) intersection of these half-spaces.
- We will treat the case *d* = 2, where each constraint defines a *half-plane*.

Linear Programming – The Geometry

- Each constraint defines defines a half-space region in *d*-dimensional space.
- □ The *feasible region* is the (convex) intersection of these half-spaces.
- □ We will treat the case *d* = 2, where each constraint defines a *half-plane*.

More Geometry

The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.

More Geometry

The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.

More Geometry

- The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.
- **Theorem:** Any bounded linear program that is feasible has a unique solution, which is a *vertex* of the feasible region.

More Geometry

- The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.
- Theorem: Any bounded linear program that is feasible has a unique solution, which is a *vertex* of the feasible region.
- Proof: Convexity ...

More Geometry

- The solution to the linear program is a point in the feasible region that is extreme in the direction of the target
- **Theorem:** Any bounded linear program that is feasible has a unique solution, which is a *vertex* of the feasible region.

Degenerate Cases

Degenerate Cases

The feasible region may be:

Degenerate Cases

The feasible region may be:

Empty

Degenerate Cases

- The feasible region may be:
 - Empty

The Simplex Algorithm

The Simplex Algorithm

Assume WLOG that the cost function points "downwards".

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).
- In R^d, the number of vertices might be $\Theta(n^{\lfloor d/2 \rfloor})$.

LP History

- Mid 20th century: Simplex algorithm, time complexity Θ(n^{Ld/2}) in the worst case.
- □ 1980's (Khachiyan) ellipsoid algorithm with time complexity poly(*n*,*d*).
- □ 1980's (Karmakar) interior-point algorithm with time complexity poly(*n*,*d*).
- □ 1984 (Megiddo) parametric search algorithm with time complexity $O(C_d n)$ where C_d is a constant dependent only on *d*. E.g. $C_d = 2^{d/2}$.
- D The holy grail: An algorithm with complexity independent of *d*.
- In practice the simplex algorithm is used because of its linear expected runtime.

O(n logn) 2D Linear Programming

Input:

- *n* half planes.
- Cost function that WLOG "points down".
- Algorithm:
 - 1. Partition the *n* half-planes into two groups.
 - 2. Compute, recursively, the feasible region for each group.
 - 3. Compute the intersection of the two feasible regions.
 - 4. Check the cost function on the region vertices.

Divide and Conquer – Complexity

Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the EQ – O(n).
- Stage 4:
 - Find the minimal cost vertex O(n).

Divide and Conquer – Complexity

Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the EQ – O(n).

Stage 4:

Find the minimal cost vertex - O(n).

Divide and Conquer – Complexity

Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the EQ – O(n).

Stage 4:

Find the minimal cost vertex - O(*n*).

 $T(n) = 2T(n/2) + O(n) \Rightarrow$ $T(n) = O(n \log n)$

O(n²) Incremental Algorithm

□ The idea:

- Start by intersecting two halfplanes.
- Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.

- Problem: Given a line and a set of half-planes $\{h_1...h_n\}$ find the lowest point on ℓ which is inside $\bigcap_n^n h_i = h_1 \cup h_2 \cup ...h_n$
- Let ℓ_i be the line bounding h_i
- **C** Each half-plane either contains the point $(0, +\infty)$ or contains the point $(0, -\infty)$.
- Consider first only half-plane containing $(0, +\infty)$.
- Compute $p_i = \ell \bigcap \ell_i$ and let p^* the highest such point. Any solution to the LP must be on the portion of ℓ above p^* .
- Ginilarly, find the half-planes contain (0, -∞). Compute their intersections with ℓ'. Let q* be the lowest intersection points.

- $\mathsf{inside} \bigcap h_i = h_1 \cup h_2 \cup \ldots h_n$
- Let ℓ_i be the line bounding h_i
- **G** Each half-plane either contains the point $(0, +\infty)$ or contains the point $(0, -\infty)$.
- Consider first only half-plane containing $(0, +\infty)$.
- Compute $p_i = \ell \bigcap \ell_i$ and let p^* the highest such point. Any solution to the LP must be on the portion of ℓ above p^* .
- Similarly, find the half-planes contain $(0, -\infty)$. Compute their intersections with ℓ . Let q* be the lowest intersection points.

$1D - LP(\mathcal{C}, h_1 \dots h_n)$

- Problem: Given a line and a set of half-planes $\{h_1...h_n\}$ find the lowest point on ℓ which is inside $\bigcap_n^n h_i = h_1 \cup h_2 \cup ...h_n$
- Let ℓ_i be the line bounding h_i
- **D** Each half-plane either contains the point $(0, +\infty)$ or contains the point $(0, -\infty)$.
- Consider first only half-plane containing $(0, +\infty)$.
- Compute $p_i = \ell \bigcap \ell_i$ and let p^* the highest such point. Any solution to the LP must be on the portion of ℓ' above p^* .
- Similarly, find the half-planes contain $(0, -\infty)$. Compute their intersections with ℓ . Let q* be the lowest intersection points.

Incremental Algorithm - vmbols h_i the l^{h} half plane ℓ_i the line that defines h_i C_i the feasible region after *i* constraints $C_i = h_i \cap h_2 \cap \cdots \cap h_i$ v_i the optimal vertex of C_i ℓ_1

Incremental Algorithm Basic Theorem

□ Theorem:

- 1. if v_{i-1} in h_{i} , then $v_i = v_{i-1}$. // O(1) check,
- nothing to do 2. if v_{i-1} NOT in h_p then either C_i is empty // terminate
- or $C_i = C_{i-1} \cap h_i \text{ and }$
 - v_i lies on I_i // run 1D LP

Proof:

1. Trivial. Otherwise *v_i* would not have been optimum before.

Incremental Algorithm Basic Theorem

□ Theorem:

1. if $v_{i:1}$ in h_{μ} then $v_i = v_{\mu_1}$. // O(1) check, nothing to do 2. if $v_{i:1}$ NOT in h_{μ} then either C_i is empty // terminate

or

- $C_i = C_{i-1} \cap h_{i,}$ and
 - v_i lies on l_i // run 1D LP

Proof:

1. Trivial. Otherwise v_i would not have been optimum before.

Incremental Algorithm Basic Theorem

Theorem:

- 1. if v_{i-1} in h_{i} , then $v_i = v_{i-1}$. // O(1) check,
- nothing to do
- 2. if v_{i-1} NOT in h_p then either C_i is empty // terminate

or

- $C_i = C_{i-1} \cap h_{i,}$ and
- v_i lies on I_i // run 1D LP

Proof:

1. Trivial. Otherwise *v_i* would not have been optimum before.

Incremental Algorithm Basic Theorem

□ Theorem:

1. if v_{i-1} in h_{i} then $v_i = v_{i-1}$. // O(1) check, nothing to do

2. if v_{i-1} NOT in h_i, then either
 C_i is empty // terminate
 or

v_i lies on I_i // run 1D LP

Proof:

1. Trivial. Otherwise *v_i* would not have been optimum before.

Incremental Algorithm Basic Theorem

□ Theorem:

Proof:

1. Trivial. Otherwise *v_i* would not have been optimum before.

Incremental Algorithm Basic Theorem

□ Theorem:

Proof:

1. if v_{i-1} in h_{β} then $v_i = v_{i-1}$. // O(1) check, nothing to do 2. if v_{i-1} NOT in h_{β} then either C_i is empty // terminate or

v_i lies on I_i // run 1D LP

1. Trivial. Otherwise v_i would not have been

 $C_i = C_{i-1} \cap h_i$ and

optimum before.

Incremental Algorithm Basic Theorem

□ Theorem:

1. if v_{i-1} in h_i , then $v_i = v_{i-1}$. // O(1) check,

nothing to do 2. if $v_{i,1}$ NOT in h_{i} then either C_i is empty // terminate or

 $C_i = C_{i+1} \cap h_i$ and v_i lies on $l_i = //$ run 1D LP

Proof:

1. Trivial. Otherwise *v_i* would not have been optimum before.

Basic Theorem - Cont.

2. Assume that v_i is not on I_i , v_i must be in C_{i-1} By convexity, also the line $v_i v_{i-1}$ is in C_{i-1} .

Consider point v_j - the intersection of $v_i v_{i+1}$ with l_i , v_j is in both C_{i+1} and C_p and is better than v_p .

Basic Theorem - Cont.

2. Assume that v_i is not on I_i , v_i must be in C_{i-1} . By convexity, also the line $v_i v_{i-1}$ is in C_{i-1} .

Consider point v_j - the intersection of $v_i v_{i,r}$ with l_i , v_j is in both $C_{i,r}$ and C_i and is better than v_i .

Contradiction.

Contradiction.

4.

4.

Finding v_i given I_i

(one-dimensional LP)

- Intersect each h_j (j<i) with l_i, generating i-1 rays representing (unbounded) intervals.
- **\Box** Intersect the *i*-1 intervals in O(*i*) time.
- If the intersection is empty then report no solution, else report the lowest point.

Complexity Analysis

$$T(n) = \sum_{i=3}^{n} c \cdot i = c(3+4+5+...n) = c \cdot n(n+1)/2 = \Theta(n^2)$$
$$T(n) = \sum_{i=3}^{n} O(i) = O(n^2)$$

Complexity Analysis

$$T(n) = \sum_{i=3}^{n} c \cdot i = c(3+4+5+...n) = c \cdot n(n+1)/2 = \Theta(n^2)$$

$$T(n) = \sum_{i=3}^{n} O(i) = O(n^2)$$

Complexity Analysis

$$T(n) = \sum_{i=3}^{n} c \cdot i = c(3 + 4 + 5 + ...n) = c \cdot n(n+1)/2 = \Theta(n^2)$$

$$T(n) = \sum_{i=3}^{n} O(i) = O(n^2)$$

Incremental Algorithm – O(n)Randomized Version

- Exactly like the deterministic version, only the order of the lines is random.
- **Theorem:** The expected runtime of the random incremental algorithm (over all *n*! permutations of the input constraints) is O(*n*).

Complexity Analysis

Using the 1DLP, finding vi in this case takes i times (linear) So the expected work at the i step is

 $1 \cdot Pr(v_i = v_{i-1}) + i \cdot Pr(v_i \neq v_{i-1}) = 1 * \frac{i-2}{i} + i \cdot \frac{2}{i} = 3$

Lets do it again in a formal way

- Use random variables. A random variable in our context will be a boolean value (flag) that is either true or false.
- Lemma (from probability): For any two constants A,B, and any two boolean random vars x,y, we define the expected value E(xA+yB) as
- $\Box A \cdot Pr(x = 1 \text{ and } y = 0) + B \cdot Pr(x = 0 \text{ and } y = 1) + (A + B) \cdot (Pr(x = 1 \text{ and } y = 1))$
- However, we could greatly simplify it using the identity
- $\Box E(xA+yB)=A \cdot Pr(x=1) + B \cdot Prob(y=1)$
- □ Note we don't care if x,y are depending in each other.
- In our case, lets define a set of boolean values
- $\Box x_i = 1$ iff $v_i \neq v_{i-1}$. Otherwise $x_i = 0$

The running time of the algorithm is $\sum i \cdot x_i$

Lets do it again in a formal way

We will use random variables. A random variable in our context will be a boolean value (flag) that is either true or false.
 Lemma (from probability): For any two constants A,B, and

- any two boolean random vars x,y, we define the expected value **E(xA+yB)** as
- $A \cdot Pr(x = 1 \text{ and } y = 0) + B \cdot Pr(x = 0 \text{ and } y = 1) + (A + B) \cdot (Pr(x = 1 \text{ and } y = 1))$
- However, we could greatly simplify it using the identity

 $E(xA+yB)=A \cdot Pr(x=1) + B \cdot Prob(y=1)$

Note - we don't care if x,y are depending in each other.
In our case, lets define a set of boolean values

$$x_i = 1$$
 iff $v_i \neq v_{i-1}$. Otherwise $x_i = 0$

Lets do it again in a formal way

The running time of the algorithm is $\sum_{i=3}^{n} i \cdot x_i$ The expected running time is $\mathbb{E}\left\{\sum_{i=3}^{n} i \cdot x_i\right\}$ Which (by applying the same rule multiple times)

$$\mathbb{E}\left\{\sum_{i=3}^{n} i \cdot x_i\right\} = \sum_{i=3}^{n} i \cdot \Pr(v_i \neq v_{i-1}) = \sum_{i=3}^{n} 3 = 3n$$

LP in 3D

□ Now the input is a collection of **half-spaces** $\{h_{1...}, h_n\}$. Now l_i is the plane bounding h_i . (notations are analogous to the 2D case). We will define v_3 as the intersection of the **planes** $l_{1,.} l_2$ and $l_{3,.}$ We insert the other halfspaces $\{h_{4...}, h_n\}$ at a random order, and update v_i according to the following Theorem:

□ Theorem: 1. if $v_{i-1} \in h_i$, then $v_i = v_{i-1}$. // O(1) check,

nothing to do

2. if $v_{i-l} \notin h_i$, then the solution (if exists) is on l_i .

 $\operatorname{run} v_i = 2\operatorname{DLP}(h_1 \cap l_i, h_2 \cap l_i \ , \ h_3 \cap l_i, \dots, h_{i-1} \cap l_i).$ Terminates if there is no solution (that is, $C_i = \emptyset$)

LP in 3D and higher dimension

In 3D, the worst case running time is $\Theta(n^3)$ (prove).

However, the expected running time is O(n). In general, the running time in d-dimension is O(d! n). That is, linear in any fixed (and small) dimension.