
4.

Computational Geometry

Chapter 4

Linear Programming

4.

On the Agenda
! Linear programming
! Duality
! Smallest enclosing disk

4.

Define:
i – types of foods (0< i <d+1).
j – types of vitamins (1≤j≤n).
xi – the amount of food of type i.
aji – the amount of vitamin j in one unit of food i.
ci – the number of calories in one unit of food i.
bj – minimal required amount of vitamin j.

Constraints (we need to consume some minimal amount of each vitamin):

Want to minimize the cost, subject to :

4.

Define:
i – types of foods (0< i <d+1).
j – types of vitamins (1≤j≤n).
xi – the amount of food of type i.
aji – the amount of vitamin j in one unit of food i.
ci – the number of calories in one unit of food i.
bj – minimal required amount of vitamin j.

Constraints (we need to consume some minimal amount of each vitamin):

Want to minimize the cost, subject to :

4.

Linear Programming – The Geometry

4.

Linear Programming – The Geometry

4.

Linear Programming – The Geometry

4.

Linear Programming – The Geometry

4.

Linear Programming – The Geometry

4.

Linear Programming – The Geometry

! Each constraint defines defines a half-space
region in d-dimensional space.

4.

Linear Programming – The Geometry

! Each constraint defines defines a half-space
region in d-dimensional space.

! The feasible region is the (convex)
intersection of these half-spaces.

4.

Linear Programming – The Geometry

! Each constraint defines defines a half-space
region in d-dimensional space.

! The feasible region is the (convex)
intersection of these half-spaces.

4.

Linear Programming – The Geometry

! Each constraint defines defines a half-space
region in d-dimensional space.

! The feasible region is the (convex)
intersection of these half-spaces.

! We will treat the case d = 2, where each
constraint defines a half-plane.

4.

Linear Programming – The Geometry

! Each constraint defines defines a half-space
region in d-dimensional space.

! The feasible region is the (convex)
intersection of these half-spaces.

! We will treat the case d = 2, where each
constraint defines a half-plane.

4.

More Geometry

4.

More Geometry

c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

! Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region. c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

! Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region.

! Proof: Convexity …
c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

! Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region.

! Proof: Convexity …
c

4.

More Geometry

! The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

! Theorem: Any bounded linear program
that is feasible has a unique solution,
which is a vertex of the feasible region.

! Proof: Convexity …
c

4.

Degenerate Cases

4.

Degenerate Cases

! The feasible region may be:

4.

Degenerate Cases

! The feasible region may be:

4.

Degenerate Cases

! The feasible region may be:

4.

Degenerate Cases

! The feasible region may be:

4.

Degenerate Cases

! The feasible region may be:

Empty

4.

Degenerate Cases

! The feasible region may be:

Empty

4.

Degenerate Cases

! The feasible region may be:

Empty

4.

Degenerate Cases

! The feasible region may be:

Empty

4.

Degenerate Cases

! The feasible region may be:

Empty

4.

Degenerate Cases

! The feasible region may be:

Empty

Unbounded

! The solution may be:

Not unique

4.

Degenerate Cases

! The feasible region may be:

Empty

Unbounded

! The solution may be:

Not unique

4.

Degenerate Cases

! The feasible region may be:

Empty

Unbounded

! The solution may be:

Not unique

4.

Degenerate Cases

! The feasible region may be:

Empty

Unbounded

! The solution may be:

Not unique

4.

Degenerate Cases

! The feasible region may be:

Empty

Unbounded

! The solution may be:

Not unique

4.

The Simplex Algorithm

c

4.

The Simplex Algorithm

c

4.

The Simplex Algorithm

c

4.

The Simplex Algorithm

c

4.

The Simplex Algorithm

! Assume WLOG that the cost function
points “downwards”.

c

4.

The Simplex Algorithm

! Assume WLOG that the cost function
points “downwards”.

! Construct (some of) the vertices of the
feasible region.

c

4.

The Simplex Algorithm

! Assume WLOG that the cost function
points “downwards”.

! Construct (some of) the vertices of the
feasible region.

! Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum).

c

4.

The Simplex Algorithm

! Assume WLOG that the cost function
points “downwards”.

! Construct (some of) the vertices of the
feasible region.

! Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum).

c

4.

The Simplex Algorithm

! Assume WLOG that the cost function
points “downwards”.

! Construct (some of) the vertices of the
feasible region.

! Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum).

! In Rd, the number of vertices might be
Θ(n!d/2").

c

4.

LP History

! Mid 20th century: Simplex algorithm, time complexity Θ(n!d/2")
in the worst case.

! 1980’s (Khachiyan) ellipsoid algorithm with time complexity
poly(n,d).

! 1980’s (Karmakar) interior-point algorithm with time complexity
poly(n,d).

! 1984 (Megiddo) – parametric search algorithm with time
complexity O(Cdn) where Cd is a constant dependent only on
d. E.g. Cd = 2d^2.

! The holy grail: An algorithm with complexity independent of d.

! In practice the simplex algorithm is used because of its linear
expected runtime.

4.

O(n logn) 2D Linear Programming
! Input:

n half planes.
Cost function that WLOG “points down”.

! Algorithm:
1. Partition the n half-planes into two groups.
2. Compute, recursively, the feasible region for each group.
3. Compute the intersection of the two feasible regions.
4. Check the cost function on the region vertices.

4.

Divide and Conquer – Complexity
! Stage 3:

Intersection of two convex polygons –
plane sweep algorithm.
No more than four segments are ever in
the SLS and no more than eight events in
the EQ – O(n).

! Stage 4:
Find the minimal cost vertex - O(n).

4.

Divide and Conquer – Complexity
! Stage 3:

Intersection of two convex polygons –
plane sweep algorithm.
No more than four segments are ever in
the SLS and no more than eight events in
the EQ – O(n).

! Stage 4:
Find the minimal cost vertex - O(n).

4.

Divide and Conquer – Complexity
! Stage 3:

Intersection of two convex polygons –
plane sweep algorithm.
No more than four segments are ever in
the SLS and no more than eight events in
the EQ – O(n).

! Stage 4:
Find the minimal cost vertex - O(n).

T(n) = 2T(n/2)+O(n) ⇒
T(n) = O(n log n)

4.

O(n2) Incremental Algorithm

! The idea:
Start by intersecting two halfplanes.
Add halfplanes one by one and update optimal vertex by
solving one-dimensional LP problem on new line if needed.

4.

1D − LP(ℓ, h1…hn)

! Problem: Given a line and a set of half-planes find the lowest point on which is

inside

! Let be the line bounding hi

! Each half-plane either contains the point or contains the point .

! Consider first only half-plane containing .

! Compute and let p* the highest such point. Any solution to the LP must be on the
portion of above p*.

! Similarly, find the half-planes contain . Compute their intersections with . Let q* be
the lowest intersection points.

{h1…hn} ℓ
n

⋂
i=1

hi = h1 ∪ h2 ∪ …hn

ℓi

(0, +∞) (0, −∞)
(0, +∞)

pi = ℓ⋂ℓi
ℓ

(0, −∞) ℓ

h1

h2

h5

h1 ∩ ℓ is a ray

ℓ
q*

h4

4.

1D − LP(ℓ, h1…hn)

! Problem: Given a line and a set of half-planes find the lowest point on which is

inside

! Let be the line bounding hi

! Each half-plane either contains the point or contains the point .

! Consider first only half-plane containing .

! Compute and let p* the highest such point. Any solution to the LP must be on the
portion of above p*.

! Similarly, find the half-planes contain . Compute their intersections with . Let q* be
the lowest intersection points.

{h1…hn} ℓ
n

⋂
i=1

hi = h1 ∪ h2 ∪ …hn

ℓi

(0, +∞) (0, −∞)
(0, +∞)

pi = ℓ⋂ℓi
ℓ

(0, −∞) ℓ

h1

h2

h5

h1 ∩ ℓ is a ray

ℓ

p1

p*

q*

h4

4.

1D − LP(ℓ, h1…hn)

! Problem: Given a line and a set of half-planes find the lowest point on which is

inside

! Let be the line bounding hi

! Each half-plane either contains the point or contains the point .

! Consider first only half-plane containing .

! Compute and let p* the highest such point. Any solution to the LP must be on the
portion of above p*.

! Similarly, find the half-planes contain . Compute their intersections with . Let q* be
the lowest intersection points.

{h1…hn} ℓ
n

⋂
i=1

hi = h1 ∪ h2 ∪ …hn

ℓi

(0, +∞) (0, −∞)
(0, +∞)

pi = ℓ⋂ℓi
ℓ

(0, −∞) ℓ

h1

h2

h5

h1 ∩ ℓ is a ray

ℓ

p1

p*

q*

h4

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

l2

h2 C2

v2

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm - Symbols

hi the ith half plane

the line that defines hi

Ci the feasible region after i constraints

vi the optimal vertex of Ci

h1

l1

C1

v3
l3

h3

C3

Ci = h1⋂h2⋂…⋂hi

ℓi

ℓ1

ℓ1

ℓ2

ℓ3

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

hi

vi-1

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

hi

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

hi

vi

4.

Incremental Algorithm
Basic Theorem

! Theorem:
1. if vi-1 in hi, then vi = vi-1. // O(1) check,

 nothing to do
2. if vi-1 NOT in hi, then either
 Ci is empty // terminate
 or
 Ci = Ci-1 ∩ hi, and

vi lies on li // run 1D LP

! Proof:
1. Trivial. Otherwise vi would not have been

optimum before.

hi-1

vi-1

hi

vi

4.

Basic Theorem - Cont.

2. Assume that vi is not on li. vi must be in Ci-1
By convexity, also the line vivi-1 is in Ci-1 .

Consider point vj - the intersection of vivi-1
with li. vj is in both Ci-1 and Ci, and is better
than vi.

Contradiction.

hi-1

vi-1

hi

vi li

4.

Basic Theorem - Cont.

2. Assume that vi is not on li. vi must be in Ci-1
By convexity, also the line vivi-1 is in Ci-1 .

Consider point vj - the intersection of vivi-1
with li. vj is in both Ci-1 and Ci, and is better
than vi.

Contradiction.

hi-1

vi-1

hi

vi vj
li

4.

Finding vi given li
(one-dimensional LP)

! Intersect each hj (j<i) with li, generating i-1
rays representing (unbounded) intervals.

! Intersect the i-1 intervals in O(i) time.
! If the intersection is empty then report no

solution, else report the lowest point.

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Complexity Analysis

!
T(n) =

n

∑
i=3

c ⋅ i = c(3 + 4 + 5 + …n) = c ⋅ n(n + 1)/2 = Θ(n2)

4.

Incremental Algorithm – O(n)
Randomized Version

! Exactly like the deterministic version, only the order
of the lines is random.

! Theorem: The expected runtime of the random
incremental algorithm (over all n! permutations of the
input constraints) is O(n).

4.

General Position Assumption

No three lines share a point
If this is not the case, the running time is

actually smaller.

ℓi, ℓj, ℓk

vi

4.

Probability Analysis
Backward analysis
! Question: When given a solution after i half-planes,

what is the probability that the last half-plane
affected the solution ?

! That is,
! Remember also that in this case, is on

vi ≠ vi−1
vi ℓi

vi

Mental Trick: Assume that we decided who are the first i half-
plane to be inserted. Lets look at . It does not depend on
the order of insertions.

What is the probability that the last inserted half-line is one of

the two green ones ?
Backward analysis
! Answer to the question: Exactly, because a change can occur only if the

last halfplane inserted is one of the two halfplanes thru vi.

(note that vi depends on the i half-planes, but not on their order)

Ci

Ci

4.

Complexity Analysis

Pr(vi ≠ vi−1) =
2
i

Using the 1DLP, finding vi in this case takes i times (linear)

So the expected work at the i step is

1 ⋅ Pr(vi = vi−1) + i ⋅ Pr(vi ≠ vi−1) = 1 *
i − 2

i
+ i ⋅

2
i

= 3

4.

Lets do it again in a formal way

! We will use random variables. A random variable in our context will be a
boolean value (flag) that is either true or false.

! Lemma (from probability): For any two constants A,B, and any two boolean
random vars x,y, we define the expected value E(xA+yB) as

!
! However, we could greatly simplify it using the identity
! E(xA+yB)=
! Note - we don’t care if x,y are depending in each other.
! In our case, lets define a set of boolean values

!

!
The running time of the algorithm is

A ⋅ Pr(x = 1 and y = 0) + B ⋅ Pr(x = 0 and y = 1) + (A + B) ⋅ (Pr(x = 1 and y = 1)

A ⋅ Pr(x = 1) + B ⋅ Prob(y = 1)

xi = 1 iff vi ≠ vi−1 . Otherwise xi = 0
n

∑
i=3

i ⋅ xi

Roulette

4.

Lets do it again in a formal way
! We will use random variables. A random variable in our

context will be a boolean value (flag) that is either true or
false.

! Lemma (from probability): For any two constants A,B, and
any two boolean random vars x,y, we define the expected
value E(xA+yB) as

!
! However, we could greatly simplify it using the identity
! E(xA+yB)=
! Note - we don’t care if x,y are depending in each other.
! In our case, lets define a set of boolean values
!

A ⋅ Pr(x = 1 and y = 0) + B ⋅ Pr(x = 0 and y = 1) + (A + B) ⋅ (Pr(x = 1 and y = 1)

A ⋅ Pr(x = 1) + B ⋅ Prob(y = 1)

xi = 1 iff vi ≠ vi−1 . Otherwise xi = 0
4.

Lets do it again in a formal way

The running time of the algorithm is

The expected running time is

Which (by applying the same rule multiple times)

n

∑
i=3

i ⋅ xi

𝔼{
n

∑
i=3

i ⋅ xi}

𝔼{
n

∑
i=3

i ⋅ xi} =
n

∑
i=3

i ⋅ Pr(vi ≠ vi−1) =
n

∑
i=3

3 = 3n

25

LP in 3D
❑ Now the input is a collection of half-spaces {h1 … hn}.
Now li is the plane bounding hi . (notations are analogous to the 2D case).
We will define v3 as the intersection of the planes l1 , l2 and l3.
We insert the other halfspaces {h4 … hn} at a random order, and update vi
according to the following Theorem:
❑ Theorem:

1. if vi-1 ∈ hi, then vi = vi-1. // O(1) check,
 nothing to do
2. if vi-1 ∉ hi, then the solution (if exists) is on li .
 run vi = 2DLP(h1∩ li , h2∩ li , h3∩ li , …. , h i-1 ∩ li).
 Terminates if there is no solution (that is, Ci=∅)

26

LP in 3D and higher dimension
In 3D, the worst case running time is 𝜣(n3) (prove).
However, the expected running time is O(n). In general, the running time in d-
dimension is O(d! n). That is, linear in any fixed (and small) dimension.

