QuadTrees:
A data simple data structure for geometric objects (e.g. points, houses, an image, 3D scene)
Support efficiently a very wide variety of queries.

Assume we are given a red/green picture defined a $2^n \times 2^n$ grid. E.g. pixels. Each pixel is either green or red.

(more general and interesting examples – soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of queries. For example:
1. For a given point q, is q red or green?
2. For a given query disk D, are there any green points in D?
3. How many green points are there in D?
4. Etc etc

QuadTrees
Assume we are given a red/green picture defined a $2^n \times 2^n$ grid. E.g. pixels.

Algorithm constructQT (input – a shape R. Output – a Quadtree corresponding to R).

- If R is fully green, or R is fully red – store as one (leaf) node v labeled Green or Red. (Note: A pixel always have a unique color.
- Otherwise, divide the shape into 4 equal-size quadrants NW, NE, SW, SE.
- Call constructQT recursively for each quadrant.
- Create an internal node v having 4 children, corresponding to the 4 quadrants. Return v.

Example:

```
NW 0
2
SW

NE
13

SE

```

```
QuadTrees

Consider a black/white picture stored on a $2^h \times 2^h$ grid.
We can represent the shape "compactly" using a QT.

- Height – at most $h$.
- Point location operation – given a point $q$, is it black or white
  - takes time $O(h)$
  - could it be much smaller?
- Many other operations are very simple to implement.

QuadTrees for a set of points

Now consider a set of points (red) but on a $2^h \times 2^h$ grid.
Splitting policy: Split until each quadrant contains $\leq 1$ point.

- Build a similar QT, but we stop splitting a quadrant when it contains $\leq 1$ point (or some other small constant)
- Point location operation – given a point $q$, is it black or white
  - takes time $O(h)$ (and less in practice)
- Many other splitting policies are very simple to implement.
  (e.g., a leaf could contain $\leq 17$ points)

Regions of nodes

In general, every node $v$ is associated with a region $R(v)$ in the plane

- $R(root)$ is the whole region
- The smallest area of $R(v)$ is a single pixel.
- Let $NW(v)$ denote the North West child of $v$.
  (similarly $NE$, $SW$, $SE$)

$R(v) = \text{union of } R(NW(v)), R(NE(v)), R(SW(v)), R(SE(v))$
QuadTrees for a set of points

Report(Q,v)
// Q – a query disk
/*report all the points in stored
at the subtree rooted at v, which
are also inside Q. */
1. If v is NULL – return.
2. If R(v) is disjoint from Q – return.
3. If R(v) is fully contained in Q – report all points in the
   subtree rooted at v.
4. If v is a leaf – check each
   point in R(v) # inside Q.
5. Else
   * Report(Q, NW(v))
   * Report(Q, NE(v))
   * Report(Q, SW(v))
   * Report(Q, SE(v))

QuadTrees for shape

Input: Set S of triangles
S={t₁,…, tₙ}
Splitting policy: Split quadrant if it intersects
more than 1 triangle of S.

Note – a triangle might be stored in multiple leaves. Some leaves might store no triangles.

Finding all triangles inside a query region Q – essentially same Report Report(Q,v) as before
(minor modifications)

Terrain representations

Raw data – a grid of points (Xᵢ, Yᵢ, Zᵢ)
For every grid point i,j
Triangulated terrain (TIN – Triangulated irregular network)

Each triangle approximately fits the surface below it

How to find good triangulation?

How to find good triangulation?

- Split the plane into squares (quadrants)
- Split each square into 2 right-hand triangles
- Assign to each vertex the height of the terrain above it.
- The approximated elevation of the terrain at any point is the linear interpolation of its vertices.
- Further split if approximation is not actuate enough
- Eg., for some data point, the measured elevation is too far from the interpolated elevation.

(credit: SCALGO)
Level Of Details

- Idea – the same object is stored several times, but with a different level of details
- Coarser representations for distant objects
- Decision which level to use is accepted ‘on the fly’
  (e.g., in graphics applications, if we are far away from a terrain, we could tolerate usually large error)